xref: /openbmc/linux/mm/filemap.c (revision 1802d0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
47 
48 /*
49  * FIXME: remove all knowledge of the buffer layer from the core VM
50  */
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 
53 #include <asm/mman.h>
54 
55 /*
56  * Shared mappings implemented 30.11.1994. It's not fully working yet,
57  * though.
58  *
59  * Shared mappings now work. 15.8.1995  Bruno.
60  *
61  * finished 'unifying' the page and buffer cache and SMP-threaded the
62  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63  *
64  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65  */
66 
67 /*
68  * Lock ordering:
69  *
70  *  ->i_mmap_rwsem		(truncate_pagecache)
71  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72  *      ->swap_lock		(exclusive_swap_page, others)
73  *        ->i_pages lock
74  *
75  *  ->i_mutex
76  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
77  *
78  *  ->mmap_sem
79  *    ->i_mmap_rwsem
80  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
81  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
82  *
83  *  ->mmap_sem
84  *    ->lock_page		(access_process_vm)
85  *
86  *  ->i_mutex			(generic_perform_write)
87  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
88  *
89  *  bdi->wb.list_lock
90  *    sb_lock			(fs/fs-writeback.c)
91  *    ->i_pages lock		(__sync_single_inode)
92  *
93  *  ->i_mmap_rwsem
94  *    ->anon_vma.lock		(vma_adjust)
95  *
96  *  ->anon_vma.lock
97  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
98  *
99  *  ->page_table_lock or pte_lock
100  *    ->swap_lock		(try_to_unmap_one)
101  *    ->private_lock		(try_to_unmap_one)
102  *    ->i_pages lock		(try_to_unmap_one)
103  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
104  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
105  *    ->private_lock		(page_remove_rmap->set_page_dirty)
106  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
112  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
113  *
114  * ->i_mmap_rwsem
115  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
116  */
117 
118 static void page_cache_delete(struct address_space *mapping,
119 				   struct page *page, void *shadow)
120 {
121 	XA_STATE(xas, &mapping->i_pages, page->index);
122 	unsigned int nr = 1;
123 
124 	mapping_set_update(&xas, mapping);
125 
126 	/* hugetlb pages are represented by a single entry in the xarray */
127 	if (!PageHuge(page)) {
128 		xas_set_order(&xas, page->index, compound_order(page));
129 		nr = 1U << compound_order(page);
130 	}
131 
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE(PageTail(page), page);
134 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135 
136 	xas_store(&xas, shadow);
137 	xas_init_marks(&xas);
138 
139 	page->mapping = NULL;
140 	/* Leave page->index set: truncation lookup relies upon it */
141 
142 	if (shadow) {
143 		mapping->nrexceptional += nr;
144 		/*
145 		 * Make sure the nrexceptional update is committed before
146 		 * the nrpages update so that final truncate racing
147 		 * with reclaim does not see both counters 0 at the
148 		 * same time and miss a shadow entry.
149 		 */
150 		smp_wmb();
151 	}
152 	mapping->nrpages -= nr;
153 }
154 
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 				      struct page *page)
157 {
158 	int nr;
159 
160 	/*
161 	 * if we're uptodate, flush out into the cleancache, otherwise
162 	 * invalidate any existing cleancache entries.  We can't leave
163 	 * stale data around in the cleancache once our page is gone
164 	 */
165 	if (PageUptodate(page) && PageMappedToDisk(page))
166 		cleancache_put_page(page);
167 	else
168 		cleancache_invalidate_page(mapping, page);
169 
170 	VM_BUG_ON_PAGE(PageTail(page), page);
171 	VM_BUG_ON_PAGE(page_mapped(page), page);
172 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 		int mapcount;
174 
175 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
176 			 current->comm, page_to_pfn(page));
177 		dump_page(page, "still mapped when deleted");
178 		dump_stack();
179 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180 
181 		mapcount = page_mapcount(page);
182 		if (mapping_exiting(mapping) &&
183 		    page_count(page) >= mapcount + 2) {
184 			/*
185 			 * All vmas have already been torn down, so it's
186 			 * a good bet that actually the page is unmapped,
187 			 * and we'd prefer not to leak it: if we're wrong,
188 			 * some other bad page check should catch it later.
189 			 */
190 			page_mapcount_reset(page);
191 			page_ref_sub(page, mapcount);
192 		}
193 	}
194 
195 	/* hugetlb pages do not participate in page cache accounting. */
196 	if (PageHuge(page))
197 		return;
198 
199 	nr = hpage_nr_pages(page);
200 
201 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 	if (PageSwapBacked(page)) {
203 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 		if (PageTransHuge(page))
205 			__dec_node_page_state(page, NR_SHMEM_THPS);
206 	} else {
207 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
208 	}
209 
210 	/*
211 	 * At this point page must be either written or cleaned by
212 	 * truncate.  Dirty page here signals a bug and loss of
213 	 * unwritten data.
214 	 *
215 	 * This fixes dirty accounting after removing the page entirely
216 	 * but leaves PageDirty set: it has no effect for truncated
217 	 * page and anyway will be cleared before returning page into
218 	 * buddy allocator.
219 	 */
220 	if (WARN_ON_ONCE(PageDirty(page)))
221 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
222 }
223 
224 /*
225  * Delete a page from the page cache and free it. Caller has to make
226  * sure the page is locked and that nobody else uses it - or that usage
227  * is safe.  The caller must hold the i_pages lock.
228  */
229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 	struct address_space *mapping = page->mapping;
232 
233 	trace_mm_filemap_delete_from_page_cache(page);
234 
235 	unaccount_page_cache_page(mapping, page);
236 	page_cache_delete(mapping, page, shadow);
237 }
238 
239 static void page_cache_free_page(struct address_space *mapping,
240 				struct page *page)
241 {
242 	void (*freepage)(struct page *);
243 
244 	freepage = mapping->a_ops->freepage;
245 	if (freepage)
246 		freepage(page);
247 
248 	if (PageTransHuge(page) && !PageHuge(page)) {
249 		page_ref_sub(page, HPAGE_PMD_NR);
250 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 	} else {
252 		put_page(page);
253 	}
254 }
255 
256 /**
257  * delete_from_page_cache - delete page from page cache
258  * @page: the page which the kernel is trying to remove from page cache
259  *
260  * This must be called only on pages that have been verified to be in the page
261  * cache and locked.  It will never put the page into the free list, the caller
262  * has a reference on the page.
263  */
264 void delete_from_page_cache(struct page *page)
265 {
266 	struct address_space *mapping = page_mapping(page);
267 	unsigned long flags;
268 
269 	BUG_ON(!PageLocked(page));
270 	xa_lock_irqsave(&mapping->i_pages, flags);
271 	__delete_from_page_cache(page, NULL);
272 	xa_unlock_irqrestore(&mapping->i_pages, flags);
273 
274 	page_cache_free_page(mapping, page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277 
278 /*
279  * page_cache_delete_batch - delete several pages from page cache
280  * @mapping: the mapping to which pages belong
281  * @pvec: pagevec with pages to delete
282  *
283  * The function walks over mapping->i_pages and removes pages passed in @pvec
284  * from the mapping. The function expects @pvec to be sorted by page index
285  * and is optimised for it to be dense.
286  * It tolerates holes in @pvec (mapping entries at those indices are not
287  * modified). The function expects only THP head pages to be present in the
288  * @pvec.
289  *
290  * The function expects the i_pages lock to be held.
291  */
292 static void page_cache_delete_batch(struct address_space *mapping,
293 			     struct pagevec *pvec)
294 {
295 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296 	int total_pages = 0;
297 	int i = 0;
298 	struct page *page;
299 
300 	mapping_set_update(&xas, mapping);
301 	xas_for_each(&xas, page, ULONG_MAX) {
302 		if (i >= pagevec_count(pvec))
303 			break;
304 
305 		/* A swap/dax/shadow entry got inserted? Skip it. */
306 		if (xa_is_value(page))
307 			continue;
308 		/*
309 		 * A page got inserted in our range? Skip it. We have our
310 		 * pages locked so they are protected from being removed.
311 		 * If we see a page whose index is higher than ours, it
312 		 * means our page has been removed, which shouldn't be
313 		 * possible because we're holding the PageLock.
314 		 */
315 		if (page != pvec->pages[i]) {
316 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
317 					page);
318 			continue;
319 		}
320 
321 		WARN_ON_ONCE(!PageLocked(page));
322 
323 		if (page->index == xas.xa_index)
324 			page->mapping = NULL;
325 		/* Leave page->index set: truncation lookup relies on it */
326 
327 		/*
328 		 * Move to the next page in the vector if this is a regular
329 		 * page or the index is of the last sub-page of this compound
330 		 * page.
331 		 */
332 		if (page->index + (1UL << compound_order(page)) - 1 ==
333 				xas.xa_index)
334 			i++;
335 		xas_store(&xas, NULL);
336 		total_pages++;
337 	}
338 	mapping->nrpages -= total_pages;
339 }
340 
341 void delete_from_page_cache_batch(struct address_space *mapping,
342 				  struct pagevec *pvec)
343 {
344 	int i;
345 	unsigned long flags;
346 
347 	if (!pagevec_count(pvec))
348 		return;
349 
350 	xa_lock_irqsave(&mapping->i_pages, flags);
351 	for (i = 0; i < pagevec_count(pvec); i++) {
352 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
353 
354 		unaccount_page_cache_page(mapping, pvec->pages[i]);
355 	}
356 	page_cache_delete_batch(mapping, pvec);
357 	xa_unlock_irqrestore(&mapping->i_pages, flags);
358 
359 	for (i = 0; i < pagevec_count(pvec); i++)
360 		page_cache_free_page(mapping, pvec->pages[i]);
361 }
362 
363 int filemap_check_errors(struct address_space *mapping)
364 {
365 	int ret = 0;
366 	/* Check for outstanding write errors */
367 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
369 		ret = -ENOSPC;
370 	if (test_bit(AS_EIO, &mapping->flags) &&
371 	    test_and_clear_bit(AS_EIO, &mapping->flags))
372 		ret = -EIO;
373 	return ret;
374 }
375 EXPORT_SYMBOL(filemap_check_errors);
376 
377 static int filemap_check_and_keep_errors(struct address_space *mapping)
378 {
379 	/* Check for outstanding write errors */
380 	if (test_bit(AS_EIO, &mapping->flags))
381 		return -EIO;
382 	if (test_bit(AS_ENOSPC, &mapping->flags))
383 		return -ENOSPC;
384 	return 0;
385 }
386 
387 /**
388  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389  * @mapping:	address space structure to write
390  * @start:	offset in bytes where the range starts
391  * @end:	offset in bytes where the range ends (inclusive)
392  * @sync_mode:	enable synchronous operation
393  *
394  * Start writeback against all of a mapping's dirty pages that lie
395  * within the byte offsets <start, end> inclusive.
396  *
397  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398  * opposed to a regular memory cleansing writeback.  The difference between
399  * these two operations is that if a dirty page/buffer is encountered, it must
400  * be waited upon, and not just skipped over.
401  *
402  * Return: %0 on success, negative error code otherwise.
403  */
404 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
405 				loff_t end, int sync_mode)
406 {
407 	int ret;
408 	struct writeback_control wbc = {
409 		.sync_mode = sync_mode,
410 		.nr_to_write = LONG_MAX,
411 		.range_start = start,
412 		.range_end = end,
413 	};
414 
415 	if (!mapping_cap_writeback_dirty(mapping))
416 		return 0;
417 
418 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
419 	ret = do_writepages(mapping, &wbc);
420 	wbc_detach_inode(&wbc);
421 	return ret;
422 }
423 
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct page *page;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		page = xas_find(&xas, max);
483 		if (xas_retry(&xas, page))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(page))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return page != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct pagevec pvec;
507 	int nr_pages;
508 
509 	if (end_byte < start_byte)
510 		return;
511 
512 	pagevec_init(&pvec);
513 	while (index <= end) {
514 		unsigned i;
515 
516 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 				end, PAGECACHE_TAG_WRITEBACK);
518 		if (!nr_pages)
519 			break;
520 
521 		for (i = 0; i < nr_pages; i++) {
522 			struct page *page = pvec.pages[i];
523 
524 			wait_on_page_writeback(page);
525 			ClearPageError(page);
526 		}
527 		pagevec_release(&pvec);
528 		cond_resched();
529 	}
530 }
531 
532 /**
533  * filemap_fdatawait_range - wait for writeback to complete
534  * @mapping:		address space structure to wait for
535  * @start_byte:		offset in bytes where the range starts
536  * @end_byte:		offset in bytes where the range ends (inclusive)
537  *
538  * Walk the list of under-writeback pages of the given address space
539  * in the given range and wait for all of them.  Check error status of
540  * the address space and return it.
541  *
542  * Since the error status of the address space is cleared by this function,
543  * callers are responsible for checking the return value and handling and/or
544  * reporting the error.
545  *
546  * Return: error status of the address space.
547  */
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 			    loff_t end_byte)
550 {
551 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
552 	return filemap_check_errors(mapping);
553 }
554 EXPORT_SYMBOL(filemap_fdatawait_range);
555 
556 /**
557  * file_fdatawait_range - wait for writeback to complete
558  * @file:		file pointing to address space structure to wait for
559  * @start_byte:		offset in bytes where the range starts
560  * @end_byte:		offset in bytes where the range ends (inclusive)
561  *
562  * Walk the list of under-writeback pages of the address space that file
563  * refers to, in the given range and wait for all of them.  Check error
564  * status of the address space vs. the file->f_wb_err cursor and return it.
565  *
566  * Since the error status of the file is advanced by this function,
567  * callers are responsible for checking the return value and handling and/or
568  * reporting the error.
569  *
570  * Return: error status of the address space vs. the file->f_wb_err cursor.
571  */
572 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
573 {
574 	struct address_space *mapping = file->f_mapping;
575 
576 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
577 	return file_check_and_advance_wb_err(file);
578 }
579 EXPORT_SYMBOL(file_fdatawait_range);
580 
581 /**
582  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
583  * @mapping: address space structure to wait for
584  *
585  * Walk the list of under-writeback pages of the given address space
586  * and wait for all of them.  Unlike filemap_fdatawait(), this function
587  * does not clear error status of the address space.
588  *
589  * Use this function if callers don't handle errors themselves.  Expected
590  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
591  * fsfreeze(8)
592  *
593  * Return: error status of the address space.
594  */
595 int filemap_fdatawait_keep_errors(struct address_space *mapping)
596 {
597 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
598 	return filemap_check_and_keep_errors(mapping);
599 }
600 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
601 
602 static bool mapping_needs_writeback(struct address_space *mapping)
603 {
604 	return (!dax_mapping(mapping) && mapping->nrpages) ||
605 	    (dax_mapping(mapping) && mapping->nrexceptional);
606 }
607 
608 int filemap_write_and_wait(struct address_space *mapping)
609 {
610 	int err = 0;
611 
612 	if (mapping_needs_writeback(mapping)) {
613 		err = filemap_fdatawrite(mapping);
614 		/*
615 		 * Even if the above returned error, the pages may be
616 		 * written partially (e.g. -ENOSPC), so we wait for it.
617 		 * But the -EIO is special case, it may indicate the worst
618 		 * thing (e.g. bug) happened, so we avoid waiting for it.
619 		 */
620 		if (err != -EIO) {
621 			int err2 = filemap_fdatawait(mapping);
622 			if (!err)
623 				err = err2;
624 		} else {
625 			/* Clear any previously stored errors */
626 			filemap_check_errors(mapping);
627 		}
628 	} else {
629 		err = filemap_check_errors(mapping);
630 	}
631 	return err;
632 }
633 EXPORT_SYMBOL(filemap_write_and_wait);
634 
635 /**
636  * filemap_write_and_wait_range - write out & wait on a file range
637  * @mapping:	the address_space for the pages
638  * @lstart:	offset in bytes where the range starts
639  * @lend:	offset in bytes where the range ends (inclusive)
640  *
641  * Write out and wait upon file offsets lstart->lend, inclusive.
642  *
643  * Note that @lend is inclusive (describes the last byte to be written) so
644  * that this function can be used to write to the very end-of-file (end = -1).
645  *
646  * Return: error status of the address space.
647  */
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 				 loff_t lstart, loff_t lend)
650 {
651 	int err = 0;
652 
653 	if (mapping_needs_writeback(mapping)) {
654 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
655 						 WB_SYNC_ALL);
656 		/* See comment of filemap_write_and_wait() */
657 		if (err != -EIO) {
658 			int err2 = filemap_fdatawait_range(mapping,
659 						lstart, lend);
660 			if (!err)
661 				err = err2;
662 		} else {
663 			/* Clear any previously stored errors */
664 			filemap_check_errors(mapping);
665 		}
666 	} else {
667 		err = filemap_check_errors(mapping);
668 	}
669 	return err;
670 }
671 EXPORT_SYMBOL(filemap_write_and_wait_range);
672 
673 void __filemap_set_wb_err(struct address_space *mapping, int err)
674 {
675 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
676 
677 	trace_filemap_set_wb_err(mapping, eseq);
678 }
679 EXPORT_SYMBOL(__filemap_set_wb_err);
680 
681 /**
682  * file_check_and_advance_wb_err - report wb error (if any) that was previously
683  * 				   and advance wb_err to current one
684  * @file: struct file on which the error is being reported
685  *
686  * When userland calls fsync (or something like nfsd does the equivalent), we
687  * want to report any writeback errors that occurred since the last fsync (or
688  * since the file was opened if there haven't been any).
689  *
690  * Grab the wb_err from the mapping. If it matches what we have in the file,
691  * then just quickly return 0. The file is all caught up.
692  *
693  * If it doesn't match, then take the mapping value, set the "seen" flag in
694  * it and try to swap it into place. If it works, or another task beat us
695  * to it with the new value, then update the f_wb_err and return the error
696  * portion. The error at this point must be reported via proper channels
697  * (a'la fsync, or NFS COMMIT operation, etc.).
698  *
699  * While we handle mapping->wb_err with atomic operations, the f_wb_err
700  * value is protected by the f_lock since we must ensure that it reflects
701  * the latest value swapped in for this file descriptor.
702  *
703  * Return: %0 on success, negative error code otherwise.
704  */
705 int file_check_and_advance_wb_err(struct file *file)
706 {
707 	int err = 0;
708 	errseq_t old = READ_ONCE(file->f_wb_err);
709 	struct address_space *mapping = file->f_mapping;
710 
711 	/* Locklessly handle the common case where nothing has changed */
712 	if (errseq_check(&mapping->wb_err, old)) {
713 		/* Something changed, must use slow path */
714 		spin_lock(&file->f_lock);
715 		old = file->f_wb_err;
716 		err = errseq_check_and_advance(&mapping->wb_err,
717 						&file->f_wb_err);
718 		trace_file_check_and_advance_wb_err(file, old);
719 		spin_unlock(&file->f_lock);
720 	}
721 
722 	/*
723 	 * We're mostly using this function as a drop in replacement for
724 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 	 * that the legacy code would have had on these flags.
726 	 */
727 	clear_bit(AS_EIO, &mapping->flags);
728 	clear_bit(AS_ENOSPC, &mapping->flags);
729 	return err;
730 }
731 EXPORT_SYMBOL(file_check_and_advance_wb_err);
732 
733 /**
734  * file_write_and_wait_range - write out & wait on a file range
735  * @file:	file pointing to address_space with pages
736  * @lstart:	offset in bytes where the range starts
737  * @lend:	offset in bytes where the range ends (inclusive)
738  *
739  * Write out and wait upon file offsets lstart->lend, inclusive.
740  *
741  * Note that @lend is inclusive (describes the last byte to be written) so
742  * that this function can be used to write to the very end-of-file (end = -1).
743  *
744  * After writing out and waiting on the data, we check and advance the
745  * f_wb_err cursor to the latest value, and return any errors detected there.
746  *
747  * Return: %0 on success, negative error code otherwise.
748  */
749 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
750 {
751 	int err = 0, err2;
752 	struct address_space *mapping = file->f_mapping;
753 
754 	if (mapping_needs_writeback(mapping)) {
755 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
756 						 WB_SYNC_ALL);
757 		/* See comment of filemap_write_and_wait() */
758 		if (err != -EIO)
759 			__filemap_fdatawait_range(mapping, lstart, lend);
760 	}
761 	err2 = file_check_and_advance_wb_err(file);
762 	if (!err)
763 		err = err2;
764 	return err;
765 }
766 EXPORT_SYMBOL(file_write_and_wait_range);
767 
768 /**
769  * replace_page_cache_page - replace a pagecache page with a new one
770  * @old:	page to be replaced
771  * @new:	page to replace with
772  * @gfp_mask:	allocation mode
773  *
774  * This function replaces a page in the pagecache with a new one.  On
775  * success it acquires the pagecache reference for the new page and
776  * drops it for the old page.  Both the old and new pages must be
777  * locked.  This function does not add the new page to the LRU, the
778  * caller must do that.
779  *
780  * The remove + add is atomic.  This function cannot fail.
781  *
782  * Return: %0
783  */
784 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
785 {
786 	struct address_space *mapping = old->mapping;
787 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
788 	pgoff_t offset = old->index;
789 	XA_STATE(xas, &mapping->i_pages, offset);
790 	unsigned long flags;
791 
792 	VM_BUG_ON_PAGE(!PageLocked(old), old);
793 	VM_BUG_ON_PAGE(!PageLocked(new), new);
794 	VM_BUG_ON_PAGE(new->mapping, new);
795 
796 	get_page(new);
797 	new->mapping = mapping;
798 	new->index = offset;
799 
800 	xas_lock_irqsave(&xas, flags);
801 	xas_store(&xas, new);
802 
803 	old->mapping = NULL;
804 	/* hugetlb pages do not participate in page cache accounting. */
805 	if (!PageHuge(old))
806 		__dec_node_page_state(new, NR_FILE_PAGES);
807 	if (!PageHuge(new))
808 		__inc_node_page_state(new, NR_FILE_PAGES);
809 	if (PageSwapBacked(old))
810 		__dec_node_page_state(new, NR_SHMEM);
811 	if (PageSwapBacked(new))
812 		__inc_node_page_state(new, NR_SHMEM);
813 	xas_unlock_irqrestore(&xas, flags);
814 	mem_cgroup_migrate(old, new);
815 	if (freepage)
816 		freepage(old);
817 	put_page(old);
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(replace_page_cache_page);
822 
823 static int __add_to_page_cache_locked(struct page *page,
824 				      struct address_space *mapping,
825 				      pgoff_t offset, gfp_t gfp_mask,
826 				      void **shadowp)
827 {
828 	XA_STATE(xas, &mapping->i_pages, offset);
829 	int huge = PageHuge(page);
830 	struct mem_cgroup *memcg;
831 	int error;
832 	void *old;
833 
834 	VM_BUG_ON_PAGE(!PageLocked(page), page);
835 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
836 	mapping_set_update(&xas, mapping);
837 
838 	if (!huge) {
839 		error = mem_cgroup_try_charge(page, current->mm,
840 					      gfp_mask, &memcg, false);
841 		if (error)
842 			return error;
843 	}
844 
845 	get_page(page);
846 	page->mapping = mapping;
847 	page->index = offset;
848 
849 	do {
850 		xas_lock_irq(&xas);
851 		old = xas_load(&xas);
852 		if (old && !xa_is_value(old))
853 			xas_set_err(&xas, -EEXIST);
854 		xas_store(&xas, page);
855 		if (xas_error(&xas))
856 			goto unlock;
857 
858 		if (xa_is_value(old)) {
859 			mapping->nrexceptional--;
860 			if (shadowp)
861 				*shadowp = old;
862 		}
863 		mapping->nrpages++;
864 
865 		/* hugetlb pages do not participate in page cache accounting */
866 		if (!huge)
867 			__inc_node_page_state(page, NR_FILE_PAGES);
868 unlock:
869 		xas_unlock_irq(&xas);
870 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
871 
872 	if (xas_error(&xas))
873 		goto error;
874 
875 	if (!huge)
876 		mem_cgroup_commit_charge(page, memcg, false, false);
877 	trace_mm_filemap_add_to_page_cache(page);
878 	return 0;
879 error:
880 	page->mapping = NULL;
881 	/* Leave page->index set: truncation relies upon it */
882 	if (!huge)
883 		mem_cgroup_cancel_charge(page, memcg, false);
884 	put_page(page);
885 	return xas_error(&xas);
886 }
887 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
888 
889 /**
890  * add_to_page_cache_locked - add a locked page to the pagecache
891  * @page:	page to add
892  * @mapping:	the page's address_space
893  * @offset:	page index
894  * @gfp_mask:	page allocation mode
895  *
896  * This function is used to add a page to the pagecache. It must be locked.
897  * This function does not add the page to the LRU.  The caller must do that.
898  *
899  * Return: %0 on success, negative error code otherwise.
900  */
901 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
902 		pgoff_t offset, gfp_t gfp_mask)
903 {
904 	return __add_to_page_cache_locked(page, mapping, offset,
905 					  gfp_mask, NULL);
906 }
907 EXPORT_SYMBOL(add_to_page_cache_locked);
908 
909 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
910 				pgoff_t offset, gfp_t gfp_mask)
911 {
912 	void *shadow = NULL;
913 	int ret;
914 
915 	__SetPageLocked(page);
916 	ret = __add_to_page_cache_locked(page, mapping, offset,
917 					 gfp_mask, &shadow);
918 	if (unlikely(ret))
919 		__ClearPageLocked(page);
920 	else {
921 		/*
922 		 * The page might have been evicted from cache only
923 		 * recently, in which case it should be activated like
924 		 * any other repeatedly accessed page.
925 		 * The exception is pages getting rewritten; evicting other
926 		 * data from the working set, only to cache data that will
927 		 * get overwritten with something else, is a waste of memory.
928 		 */
929 		WARN_ON_ONCE(PageActive(page));
930 		if (!(gfp_mask & __GFP_WRITE) && shadow)
931 			workingset_refault(page, shadow);
932 		lru_cache_add(page);
933 	}
934 	return ret;
935 }
936 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
937 
938 #ifdef CONFIG_NUMA
939 struct page *__page_cache_alloc(gfp_t gfp)
940 {
941 	int n;
942 	struct page *page;
943 
944 	if (cpuset_do_page_mem_spread()) {
945 		unsigned int cpuset_mems_cookie;
946 		do {
947 			cpuset_mems_cookie = read_mems_allowed_begin();
948 			n = cpuset_mem_spread_node();
949 			page = __alloc_pages_node(n, gfp, 0);
950 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
951 
952 		return page;
953 	}
954 	return alloc_pages(gfp, 0);
955 }
956 EXPORT_SYMBOL(__page_cache_alloc);
957 #endif
958 
959 /*
960  * In order to wait for pages to become available there must be
961  * waitqueues associated with pages. By using a hash table of
962  * waitqueues where the bucket discipline is to maintain all
963  * waiters on the same queue and wake all when any of the pages
964  * become available, and for the woken contexts to check to be
965  * sure the appropriate page became available, this saves space
966  * at a cost of "thundering herd" phenomena during rare hash
967  * collisions.
968  */
969 #define PAGE_WAIT_TABLE_BITS 8
970 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
971 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
972 
973 static wait_queue_head_t *page_waitqueue(struct page *page)
974 {
975 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
976 }
977 
978 void __init pagecache_init(void)
979 {
980 	int i;
981 
982 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
983 		init_waitqueue_head(&page_wait_table[i]);
984 
985 	page_writeback_init();
986 }
987 
988 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
989 struct wait_page_key {
990 	struct page *page;
991 	int bit_nr;
992 	int page_match;
993 };
994 
995 struct wait_page_queue {
996 	struct page *page;
997 	int bit_nr;
998 	wait_queue_entry_t wait;
999 };
1000 
1001 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1002 {
1003 	struct wait_page_key *key = arg;
1004 	struct wait_page_queue *wait_page
1005 		= container_of(wait, struct wait_page_queue, wait);
1006 
1007 	if (wait_page->page != key->page)
1008 	       return 0;
1009 	key->page_match = 1;
1010 
1011 	if (wait_page->bit_nr != key->bit_nr)
1012 		return 0;
1013 
1014 	/*
1015 	 * Stop walking if it's locked.
1016 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1017 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1018 	 * has now already been set by another task, that task must also hold
1019 	 * a reference to the *same usage* of this page; so there is no need
1020 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1021 	 */
1022 	if (test_bit(key->bit_nr, &key->page->flags))
1023 		return -1;
1024 
1025 	return autoremove_wake_function(wait, mode, sync, key);
1026 }
1027 
1028 static void wake_up_page_bit(struct page *page, int bit_nr)
1029 {
1030 	wait_queue_head_t *q = page_waitqueue(page);
1031 	struct wait_page_key key;
1032 	unsigned long flags;
1033 	wait_queue_entry_t bookmark;
1034 
1035 	key.page = page;
1036 	key.bit_nr = bit_nr;
1037 	key.page_match = 0;
1038 
1039 	bookmark.flags = 0;
1040 	bookmark.private = NULL;
1041 	bookmark.func = NULL;
1042 	INIT_LIST_HEAD(&bookmark.entry);
1043 
1044 	spin_lock_irqsave(&q->lock, flags);
1045 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1046 
1047 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1048 		/*
1049 		 * Take a breather from holding the lock,
1050 		 * allow pages that finish wake up asynchronously
1051 		 * to acquire the lock and remove themselves
1052 		 * from wait queue
1053 		 */
1054 		spin_unlock_irqrestore(&q->lock, flags);
1055 		cpu_relax();
1056 		spin_lock_irqsave(&q->lock, flags);
1057 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1058 	}
1059 
1060 	/*
1061 	 * It is possible for other pages to have collided on the waitqueue
1062 	 * hash, so in that case check for a page match. That prevents a long-
1063 	 * term waiter
1064 	 *
1065 	 * It is still possible to miss a case here, when we woke page waiters
1066 	 * and removed them from the waitqueue, but there are still other
1067 	 * page waiters.
1068 	 */
1069 	if (!waitqueue_active(q) || !key.page_match) {
1070 		ClearPageWaiters(page);
1071 		/*
1072 		 * It's possible to miss clearing Waiters here, when we woke
1073 		 * our page waiters, but the hashed waitqueue has waiters for
1074 		 * other pages on it.
1075 		 *
1076 		 * That's okay, it's a rare case. The next waker will clear it.
1077 		 */
1078 	}
1079 	spin_unlock_irqrestore(&q->lock, flags);
1080 }
1081 
1082 static void wake_up_page(struct page *page, int bit)
1083 {
1084 	if (!PageWaiters(page))
1085 		return;
1086 	wake_up_page_bit(page, bit);
1087 }
1088 
1089 /*
1090  * A choice of three behaviors for wait_on_page_bit_common():
1091  */
1092 enum behavior {
1093 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1094 			 * __lock_page() waiting on then setting PG_locked.
1095 			 */
1096 	SHARED,		/* Hold ref to page and check the bit when woken, like
1097 			 * wait_on_page_writeback() waiting on PG_writeback.
1098 			 */
1099 	DROP,		/* Drop ref to page before wait, no check when woken,
1100 			 * like put_and_wait_on_page_locked() on PG_locked.
1101 			 */
1102 };
1103 
1104 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1105 	struct page *page, int bit_nr, int state, enum behavior behavior)
1106 {
1107 	struct wait_page_queue wait_page;
1108 	wait_queue_entry_t *wait = &wait_page.wait;
1109 	bool bit_is_set;
1110 	bool thrashing = false;
1111 	bool delayacct = false;
1112 	unsigned long pflags;
1113 	int ret = 0;
1114 
1115 	if (bit_nr == PG_locked &&
1116 	    !PageUptodate(page) && PageWorkingset(page)) {
1117 		if (!PageSwapBacked(page)) {
1118 			delayacct_thrashing_start();
1119 			delayacct = true;
1120 		}
1121 		psi_memstall_enter(&pflags);
1122 		thrashing = true;
1123 	}
1124 
1125 	init_wait(wait);
1126 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1127 	wait->func = wake_page_function;
1128 	wait_page.page = page;
1129 	wait_page.bit_nr = bit_nr;
1130 
1131 	for (;;) {
1132 		spin_lock_irq(&q->lock);
1133 
1134 		if (likely(list_empty(&wait->entry))) {
1135 			__add_wait_queue_entry_tail(q, wait);
1136 			SetPageWaiters(page);
1137 		}
1138 
1139 		set_current_state(state);
1140 
1141 		spin_unlock_irq(&q->lock);
1142 
1143 		bit_is_set = test_bit(bit_nr, &page->flags);
1144 		if (behavior == DROP)
1145 			put_page(page);
1146 
1147 		if (likely(bit_is_set))
1148 			io_schedule();
1149 
1150 		if (behavior == EXCLUSIVE) {
1151 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1152 				break;
1153 		} else if (behavior == SHARED) {
1154 			if (!test_bit(bit_nr, &page->flags))
1155 				break;
1156 		}
1157 
1158 		if (signal_pending_state(state, current)) {
1159 			ret = -EINTR;
1160 			break;
1161 		}
1162 
1163 		if (behavior == DROP) {
1164 			/*
1165 			 * We can no longer safely access page->flags:
1166 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1167 			 * there is a risk of waiting forever on a page reused
1168 			 * for something that keeps it locked indefinitely.
1169 			 * But best check for -EINTR above before breaking.
1170 			 */
1171 			break;
1172 		}
1173 	}
1174 
1175 	finish_wait(q, wait);
1176 
1177 	if (thrashing) {
1178 		if (delayacct)
1179 			delayacct_thrashing_end();
1180 		psi_memstall_leave(&pflags);
1181 	}
1182 
1183 	/*
1184 	 * A signal could leave PageWaiters set. Clearing it here if
1185 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1186 	 * but still fail to catch it in the case of wait hash collision. We
1187 	 * already can fail to clear wait hash collision cases, so don't
1188 	 * bother with signals either.
1189 	 */
1190 
1191 	return ret;
1192 }
1193 
1194 void wait_on_page_bit(struct page *page, int bit_nr)
1195 {
1196 	wait_queue_head_t *q = page_waitqueue(page);
1197 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1198 }
1199 EXPORT_SYMBOL(wait_on_page_bit);
1200 
1201 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1202 {
1203 	wait_queue_head_t *q = page_waitqueue(page);
1204 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1205 }
1206 EXPORT_SYMBOL(wait_on_page_bit_killable);
1207 
1208 /**
1209  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1210  * @page: The page to wait for.
1211  *
1212  * The caller should hold a reference on @page.  They expect the page to
1213  * become unlocked relatively soon, but do not wish to hold up migration
1214  * (for example) by holding the reference while waiting for the page to
1215  * come unlocked.  After this function returns, the caller should not
1216  * dereference @page.
1217  */
1218 void put_and_wait_on_page_locked(struct page *page)
1219 {
1220 	wait_queue_head_t *q;
1221 
1222 	page = compound_head(page);
1223 	q = page_waitqueue(page);
1224 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1225 }
1226 
1227 /**
1228  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1229  * @page: Page defining the wait queue of interest
1230  * @waiter: Waiter to add to the queue
1231  *
1232  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1233  */
1234 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1235 {
1236 	wait_queue_head_t *q = page_waitqueue(page);
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&q->lock, flags);
1240 	__add_wait_queue_entry_tail(q, waiter);
1241 	SetPageWaiters(page);
1242 	spin_unlock_irqrestore(&q->lock, flags);
1243 }
1244 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1245 
1246 #ifndef clear_bit_unlock_is_negative_byte
1247 
1248 /*
1249  * PG_waiters is the high bit in the same byte as PG_lock.
1250  *
1251  * On x86 (and on many other architectures), we can clear PG_lock and
1252  * test the sign bit at the same time. But if the architecture does
1253  * not support that special operation, we just do this all by hand
1254  * instead.
1255  *
1256  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1257  * being cleared, but a memory barrier should be unneccssary since it is
1258  * in the same byte as PG_locked.
1259  */
1260 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1261 {
1262 	clear_bit_unlock(nr, mem);
1263 	/* smp_mb__after_atomic(); */
1264 	return test_bit(PG_waiters, mem);
1265 }
1266 
1267 #endif
1268 
1269 /**
1270  * unlock_page - unlock a locked page
1271  * @page: the page
1272  *
1273  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1274  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1275  * mechanism between PageLocked pages and PageWriteback pages is shared.
1276  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1277  *
1278  * Note that this depends on PG_waiters being the sign bit in the byte
1279  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1280  * clear the PG_locked bit and test PG_waiters at the same time fairly
1281  * portably (architectures that do LL/SC can test any bit, while x86 can
1282  * test the sign bit).
1283  */
1284 void unlock_page(struct page *page)
1285 {
1286 	BUILD_BUG_ON(PG_waiters != 7);
1287 	page = compound_head(page);
1288 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1289 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1290 		wake_up_page_bit(page, PG_locked);
1291 }
1292 EXPORT_SYMBOL(unlock_page);
1293 
1294 /**
1295  * end_page_writeback - end writeback against a page
1296  * @page: the page
1297  */
1298 void end_page_writeback(struct page *page)
1299 {
1300 	/*
1301 	 * TestClearPageReclaim could be used here but it is an atomic
1302 	 * operation and overkill in this particular case. Failing to
1303 	 * shuffle a page marked for immediate reclaim is too mild to
1304 	 * justify taking an atomic operation penalty at the end of
1305 	 * ever page writeback.
1306 	 */
1307 	if (PageReclaim(page)) {
1308 		ClearPageReclaim(page);
1309 		rotate_reclaimable_page(page);
1310 	}
1311 
1312 	if (!test_clear_page_writeback(page))
1313 		BUG();
1314 
1315 	smp_mb__after_atomic();
1316 	wake_up_page(page, PG_writeback);
1317 }
1318 EXPORT_SYMBOL(end_page_writeback);
1319 
1320 /*
1321  * After completing I/O on a page, call this routine to update the page
1322  * flags appropriately
1323  */
1324 void page_endio(struct page *page, bool is_write, int err)
1325 {
1326 	if (!is_write) {
1327 		if (!err) {
1328 			SetPageUptodate(page);
1329 		} else {
1330 			ClearPageUptodate(page);
1331 			SetPageError(page);
1332 		}
1333 		unlock_page(page);
1334 	} else {
1335 		if (err) {
1336 			struct address_space *mapping;
1337 
1338 			SetPageError(page);
1339 			mapping = page_mapping(page);
1340 			if (mapping)
1341 				mapping_set_error(mapping, err);
1342 		}
1343 		end_page_writeback(page);
1344 	}
1345 }
1346 EXPORT_SYMBOL_GPL(page_endio);
1347 
1348 /**
1349  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1350  * @__page: the page to lock
1351  */
1352 void __lock_page(struct page *__page)
1353 {
1354 	struct page *page = compound_head(__page);
1355 	wait_queue_head_t *q = page_waitqueue(page);
1356 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1357 				EXCLUSIVE);
1358 }
1359 EXPORT_SYMBOL(__lock_page);
1360 
1361 int __lock_page_killable(struct page *__page)
1362 {
1363 	struct page *page = compound_head(__page);
1364 	wait_queue_head_t *q = page_waitqueue(page);
1365 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1366 					EXCLUSIVE);
1367 }
1368 EXPORT_SYMBOL_GPL(__lock_page_killable);
1369 
1370 /*
1371  * Return values:
1372  * 1 - page is locked; mmap_sem is still held.
1373  * 0 - page is not locked.
1374  *     mmap_sem has been released (up_read()), unless flags had both
1375  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1376  *     which case mmap_sem is still held.
1377  *
1378  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1379  * with the page locked and the mmap_sem unperturbed.
1380  */
1381 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1382 			 unsigned int flags)
1383 {
1384 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1385 		/*
1386 		 * CAUTION! In this case, mmap_sem is not released
1387 		 * even though return 0.
1388 		 */
1389 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1390 			return 0;
1391 
1392 		up_read(&mm->mmap_sem);
1393 		if (flags & FAULT_FLAG_KILLABLE)
1394 			wait_on_page_locked_killable(page);
1395 		else
1396 			wait_on_page_locked(page);
1397 		return 0;
1398 	} else {
1399 		if (flags & FAULT_FLAG_KILLABLE) {
1400 			int ret;
1401 
1402 			ret = __lock_page_killable(page);
1403 			if (ret) {
1404 				up_read(&mm->mmap_sem);
1405 				return 0;
1406 			}
1407 		} else
1408 			__lock_page(page);
1409 		return 1;
1410 	}
1411 }
1412 
1413 /**
1414  * page_cache_next_miss() - Find the next gap in the page cache.
1415  * @mapping: Mapping.
1416  * @index: Index.
1417  * @max_scan: Maximum range to search.
1418  *
1419  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1420  * gap with the lowest index.
1421  *
1422  * This function may be called under the rcu_read_lock.  However, this will
1423  * not atomically search a snapshot of the cache at a single point in time.
1424  * For example, if a gap is created at index 5, then subsequently a gap is
1425  * created at index 10, page_cache_next_miss covering both indices may
1426  * return 10 if called under the rcu_read_lock.
1427  *
1428  * Return: The index of the gap if found, otherwise an index outside the
1429  * range specified (in which case 'return - index >= max_scan' will be true).
1430  * In the rare case of index wrap-around, 0 will be returned.
1431  */
1432 pgoff_t page_cache_next_miss(struct address_space *mapping,
1433 			     pgoff_t index, unsigned long max_scan)
1434 {
1435 	XA_STATE(xas, &mapping->i_pages, index);
1436 
1437 	while (max_scan--) {
1438 		void *entry = xas_next(&xas);
1439 		if (!entry || xa_is_value(entry))
1440 			break;
1441 		if (xas.xa_index == 0)
1442 			break;
1443 	}
1444 
1445 	return xas.xa_index;
1446 }
1447 EXPORT_SYMBOL(page_cache_next_miss);
1448 
1449 /**
1450  * page_cache_prev_miss() - Find the previous gap in the page cache.
1451  * @mapping: Mapping.
1452  * @index: Index.
1453  * @max_scan: Maximum range to search.
1454  *
1455  * Search the range [max(index - max_scan + 1, 0), index] for the
1456  * gap with the highest index.
1457  *
1458  * This function may be called under the rcu_read_lock.  However, this will
1459  * not atomically search a snapshot of the cache at a single point in time.
1460  * For example, if a gap is created at index 10, then subsequently a gap is
1461  * created at index 5, page_cache_prev_miss() covering both indices may
1462  * return 5 if called under the rcu_read_lock.
1463  *
1464  * Return: The index of the gap if found, otherwise an index outside the
1465  * range specified (in which case 'index - return >= max_scan' will be true).
1466  * In the rare case of wrap-around, ULONG_MAX will be returned.
1467  */
1468 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1469 			     pgoff_t index, unsigned long max_scan)
1470 {
1471 	XA_STATE(xas, &mapping->i_pages, index);
1472 
1473 	while (max_scan--) {
1474 		void *entry = xas_prev(&xas);
1475 		if (!entry || xa_is_value(entry))
1476 			break;
1477 		if (xas.xa_index == ULONG_MAX)
1478 			break;
1479 	}
1480 
1481 	return xas.xa_index;
1482 }
1483 EXPORT_SYMBOL(page_cache_prev_miss);
1484 
1485 /**
1486  * find_get_entry - find and get a page cache entry
1487  * @mapping: the address_space to search
1488  * @offset: the page cache index
1489  *
1490  * Looks up the page cache slot at @mapping & @offset.  If there is a
1491  * page cache page, it is returned with an increased refcount.
1492  *
1493  * If the slot holds a shadow entry of a previously evicted page, or a
1494  * swap entry from shmem/tmpfs, it is returned.
1495  *
1496  * Return: the found page or shadow entry, %NULL if nothing is found.
1497  */
1498 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1499 {
1500 	XA_STATE(xas, &mapping->i_pages, offset);
1501 	struct page *page;
1502 
1503 	rcu_read_lock();
1504 repeat:
1505 	xas_reset(&xas);
1506 	page = xas_load(&xas);
1507 	if (xas_retry(&xas, page))
1508 		goto repeat;
1509 	/*
1510 	 * A shadow entry of a recently evicted page, or a swap entry from
1511 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1512 	 */
1513 	if (!page || xa_is_value(page))
1514 		goto out;
1515 
1516 	if (!page_cache_get_speculative(page))
1517 		goto repeat;
1518 
1519 	/*
1520 	 * Has the page moved or been split?
1521 	 * This is part of the lockless pagecache protocol. See
1522 	 * include/linux/pagemap.h for details.
1523 	 */
1524 	if (unlikely(page != xas_reload(&xas))) {
1525 		put_page(page);
1526 		goto repeat;
1527 	}
1528 	page = find_subpage(page, offset);
1529 out:
1530 	rcu_read_unlock();
1531 
1532 	return page;
1533 }
1534 EXPORT_SYMBOL(find_get_entry);
1535 
1536 /**
1537  * find_lock_entry - locate, pin and lock a page cache entry
1538  * @mapping: the address_space to search
1539  * @offset: the page cache index
1540  *
1541  * Looks up the page cache slot at @mapping & @offset.  If there is a
1542  * page cache page, it is returned locked and with an increased
1543  * refcount.
1544  *
1545  * If the slot holds a shadow entry of a previously evicted page, or a
1546  * swap entry from shmem/tmpfs, it is returned.
1547  *
1548  * find_lock_entry() may sleep.
1549  *
1550  * Return: the found page or shadow entry, %NULL if nothing is found.
1551  */
1552 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1553 {
1554 	struct page *page;
1555 
1556 repeat:
1557 	page = find_get_entry(mapping, offset);
1558 	if (page && !xa_is_value(page)) {
1559 		lock_page(page);
1560 		/* Has the page been truncated? */
1561 		if (unlikely(page_mapping(page) != mapping)) {
1562 			unlock_page(page);
1563 			put_page(page);
1564 			goto repeat;
1565 		}
1566 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1567 	}
1568 	return page;
1569 }
1570 EXPORT_SYMBOL(find_lock_entry);
1571 
1572 /**
1573  * pagecache_get_page - find and get a page reference
1574  * @mapping: the address_space to search
1575  * @offset: the page index
1576  * @fgp_flags: PCG flags
1577  * @gfp_mask: gfp mask to use for the page cache data page allocation
1578  *
1579  * Looks up the page cache slot at @mapping & @offset.
1580  *
1581  * PCG flags modify how the page is returned.
1582  *
1583  * @fgp_flags can be:
1584  *
1585  * - FGP_ACCESSED: the page will be marked accessed
1586  * - FGP_LOCK: Page is return locked
1587  * - FGP_CREAT: If page is not present then a new page is allocated using
1588  *   @gfp_mask and added to the page cache and the VM's LRU
1589  *   list. The page is returned locked and with an increased
1590  *   refcount.
1591  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1592  *   its own locking dance if the page is already in cache, or unlock the page
1593  *   before returning if we had to add the page to pagecache.
1594  *
1595  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1596  * if the GFP flags specified for FGP_CREAT are atomic.
1597  *
1598  * If there is a page cache page, it is returned with an increased refcount.
1599  *
1600  * Return: the found page or %NULL otherwise.
1601  */
1602 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1603 	int fgp_flags, gfp_t gfp_mask)
1604 {
1605 	struct page *page;
1606 
1607 repeat:
1608 	page = find_get_entry(mapping, offset);
1609 	if (xa_is_value(page))
1610 		page = NULL;
1611 	if (!page)
1612 		goto no_page;
1613 
1614 	if (fgp_flags & FGP_LOCK) {
1615 		if (fgp_flags & FGP_NOWAIT) {
1616 			if (!trylock_page(page)) {
1617 				put_page(page);
1618 				return NULL;
1619 			}
1620 		} else {
1621 			lock_page(page);
1622 		}
1623 
1624 		/* Has the page been truncated? */
1625 		if (unlikely(page->mapping != mapping)) {
1626 			unlock_page(page);
1627 			put_page(page);
1628 			goto repeat;
1629 		}
1630 		VM_BUG_ON_PAGE(page->index != offset, page);
1631 	}
1632 
1633 	if (fgp_flags & FGP_ACCESSED)
1634 		mark_page_accessed(page);
1635 
1636 no_page:
1637 	if (!page && (fgp_flags & FGP_CREAT)) {
1638 		int err;
1639 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1640 			gfp_mask |= __GFP_WRITE;
1641 		if (fgp_flags & FGP_NOFS)
1642 			gfp_mask &= ~__GFP_FS;
1643 
1644 		page = __page_cache_alloc(gfp_mask);
1645 		if (!page)
1646 			return NULL;
1647 
1648 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1649 			fgp_flags |= FGP_LOCK;
1650 
1651 		/* Init accessed so avoid atomic mark_page_accessed later */
1652 		if (fgp_flags & FGP_ACCESSED)
1653 			__SetPageReferenced(page);
1654 
1655 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1656 		if (unlikely(err)) {
1657 			put_page(page);
1658 			page = NULL;
1659 			if (err == -EEXIST)
1660 				goto repeat;
1661 		}
1662 
1663 		/*
1664 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1665 		 * an unlocked page.
1666 		 */
1667 		if (page && (fgp_flags & FGP_FOR_MMAP))
1668 			unlock_page(page);
1669 	}
1670 
1671 	return page;
1672 }
1673 EXPORT_SYMBOL(pagecache_get_page);
1674 
1675 /**
1676  * find_get_entries - gang pagecache lookup
1677  * @mapping:	The address_space to search
1678  * @start:	The starting page cache index
1679  * @nr_entries:	The maximum number of entries
1680  * @entries:	Where the resulting entries are placed
1681  * @indices:	The cache indices corresponding to the entries in @entries
1682  *
1683  * find_get_entries() will search for and return a group of up to
1684  * @nr_entries entries in the mapping.  The entries are placed at
1685  * @entries.  find_get_entries() takes a reference against any actual
1686  * pages it returns.
1687  *
1688  * The search returns a group of mapping-contiguous page cache entries
1689  * with ascending indexes.  There may be holes in the indices due to
1690  * not-present pages.
1691  *
1692  * Any shadow entries of evicted pages, or swap entries from
1693  * shmem/tmpfs, are included in the returned array.
1694  *
1695  * Return: the number of pages and shadow entries which were found.
1696  */
1697 unsigned find_get_entries(struct address_space *mapping,
1698 			  pgoff_t start, unsigned int nr_entries,
1699 			  struct page **entries, pgoff_t *indices)
1700 {
1701 	XA_STATE(xas, &mapping->i_pages, start);
1702 	struct page *page;
1703 	unsigned int ret = 0;
1704 
1705 	if (!nr_entries)
1706 		return 0;
1707 
1708 	rcu_read_lock();
1709 	xas_for_each(&xas, page, ULONG_MAX) {
1710 		if (xas_retry(&xas, page))
1711 			continue;
1712 		/*
1713 		 * A shadow entry of a recently evicted page, a swap
1714 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1715 		 * without attempting to raise page count.
1716 		 */
1717 		if (xa_is_value(page))
1718 			goto export;
1719 
1720 		if (!page_cache_get_speculative(page))
1721 			goto retry;
1722 
1723 		/* Has the page moved or been split? */
1724 		if (unlikely(page != xas_reload(&xas)))
1725 			goto put_page;
1726 		page = find_subpage(page, xas.xa_index);
1727 
1728 export:
1729 		indices[ret] = xas.xa_index;
1730 		entries[ret] = page;
1731 		if (++ret == nr_entries)
1732 			break;
1733 		continue;
1734 put_page:
1735 		put_page(page);
1736 retry:
1737 		xas_reset(&xas);
1738 	}
1739 	rcu_read_unlock();
1740 	return ret;
1741 }
1742 
1743 /**
1744  * find_get_pages_range - gang pagecache lookup
1745  * @mapping:	The address_space to search
1746  * @start:	The starting page index
1747  * @end:	The final page index (inclusive)
1748  * @nr_pages:	The maximum number of pages
1749  * @pages:	Where the resulting pages are placed
1750  *
1751  * find_get_pages_range() will search for and return a group of up to @nr_pages
1752  * pages in the mapping starting at index @start and up to index @end
1753  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1754  * a reference against the returned pages.
1755  *
1756  * The search returns a group of mapping-contiguous pages with ascending
1757  * indexes.  There may be holes in the indices due to not-present pages.
1758  * We also update @start to index the next page for the traversal.
1759  *
1760  * Return: the number of pages which were found. If this number is
1761  * smaller than @nr_pages, the end of specified range has been
1762  * reached.
1763  */
1764 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1765 			      pgoff_t end, unsigned int nr_pages,
1766 			      struct page **pages)
1767 {
1768 	XA_STATE(xas, &mapping->i_pages, *start);
1769 	struct page *page;
1770 	unsigned ret = 0;
1771 
1772 	if (unlikely(!nr_pages))
1773 		return 0;
1774 
1775 	rcu_read_lock();
1776 	xas_for_each(&xas, page, end) {
1777 		if (xas_retry(&xas, page))
1778 			continue;
1779 		/* Skip over shadow, swap and DAX entries */
1780 		if (xa_is_value(page))
1781 			continue;
1782 
1783 		if (!page_cache_get_speculative(page))
1784 			goto retry;
1785 
1786 		/* Has the page moved or been split? */
1787 		if (unlikely(page != xas_reload(&xas)))
1788 			goto put_page;
1789 
1790 		pages[ret] = find_subpage(page, xas.xa_index);
1791 		if (++ret == nr_pages) {
1792 			*start = xas.xa_index + 1;
1793 			goto out;
1794 		}
1795 		continue;
1796 put_page:
1797 		put_page(page);
1798 retry:
1799 		xas_reset(&xas);
1800 	}
1801 
1802 	/*
1803 	 * We come here when there is no page beyond @end. We take care to not
1804 	 * overflow the index @start as it confuses some of the callers. This
1805 	 * breaks the iteration when there is a page at index -1 but that is
1806 	 * already broken anyway.
1807 	 */
1808 	if (end == (pgoff_t)-1)
1809 		*start = (pgoff_t)-1;
1810 	else
1811 		*start = end + 1;
1812 out:
1813 	rcu_read_unlock();
1814 
1815 	return ret;
1816 }
1817 
1818 /**
1819  * find_get_pages_contig - gang contiguous pagecache lookup
1820  * @mapping:	The address_space to search
1821  * @index:	The starting page index
1822  * @nr_pages:	The maximum number of pages
1823  * @pages:	Where the resulting pages are placed
1824  *
1825  * find_get_pages_contig() works exactly like find_get_pages(), except
1826  * that the returned number of pages are guaranteed to be contiguous.
1827  *
1828  * Return: the number of pages which were found.
1829  */
1830 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1831 			       unsigned int nr_pages, struct page **pages)
1832 {
1833 	XA_STATE(xas, &mapping->i_pages, index);
1834 	struct page *page;
1835 	unsigned int ret = 0;
1836 
1837 	if (unlikely(!nr_pages))
1838 		return 0;
1839 
1840 	rcu_read_lock();
1841 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1842 		if (xas_retry(&xas, page))
1843 			continue;
1844 		/*
1845 		 * If the entry has been swapped out, we can stop looking.
1846 		 * No current caller is looking for DAX entries.
1847 		 */
1848 		if (xa_is_value(page))
1849 			break;
1850 
1851 		if (!page_cache_get_speculative(page))
1852 			goto retry;
1853 
1854 		/* Has the page moved or been split? */
1855 		if (unlikely(page != xas_reload(&xas)))
1856 			goto put_page;
1857 
1858 		pages[ret] = find_subpage(page, xas.xa_index);
1859 		if (++ret == nr_pages)
1860 			break;
1861 		continue;
1862 put_page:
1863 		put_page(page);
1864 retry:
1865 		xas_reset(&xas);
1866 	}
1867 	rcu_read_unlock();
1868 	return ret;
1869 }
1870 EXPORT_SYMBOL(find_get_pages_contig);
1871 
1872 /**
1873  * find_get_pages_range_tag - find and return pages in given range matching @tag
1874  * @mapping:	the address_space to search
1875  * @index:	the starting page index
1876  * @end:	The final page index (inclusive)
1877  * @tag:	the tag index
1878  * @nr_pages:	the maximum number of pages
1879  * @pages:	where the resulting pages are placed
1880  *
1881  * Like find_get_pages, except we only return pages which are tagged with
1882  * @tag.   We update @index to index the next page for the traversal.
1883  *
1884  * Return: the number of pages which were found.
1885  */
1886 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1887 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1888 			struct page **pages)
1889 {
1890 	XA_STATE(xas, &mapping->i_pages, *index);
1891 	struct page *page;
1892 	unsigned ret = 0;
1893 
1894 	if (unlikely(!nr_pages))
1895 		return 0;
1896 
1897 	rcu_read_lock();
1898 	xas_for_each_marked(&xas, page, end, tag) {
1899 		if (xas_retry(&xas, page))
1900 			continue;
1901 		/*
1902 		 * Shadow entries should never be tagged, but this iteration
1903 		 * is lockless so there is a window for page reclaim to evict
1904 		 * a page we saw tagged.  Skip over it.
1905 		 */
1906 		if (xa_is_value(page))
1907 			continue;
1908 
1909 		if (!page_cache_get_speculative(page))
1910 			goto retry;
1911 
1912 		/* Has the page moved or been split? */
1913 		if (unlikely(page != xas_reload(&xas)))
1914 			goto put_page;
1915 
1916 		pages[ret] = find_subpage(page, xas.xa_index);
1917 		if (++ret == nr_pages) {
1918 			*index = xas.xa_index + 1;
1919 			goto out;
1920 		}
1921 		continue;
1922 put_page:
1923 		put_page(page);
1924 retry:
1925 		xas_reset(&xas);
1926 	}
1927 
1928 	/*
1929 	 * We come here when we got to @end. We take care to not overflow the
1930 	 * index @index as it confuses some of the callers. This breaks the
1931 	 * iteration when there is a page at index -1 but that is already
1932 	 * broken anyway.
1933 	 */
1934 	if (end == (pgoff_t)-1)
1935 		*index = (pgoff_t)-1;
1936 	else
1937 		*index = end + 1;
1938 out:
1939 	rcu_read_unlock();
1940 
1941 	return ret;
1942 }
1943 EXPORT_SYMBOL(find_get_pages_range_tag);
1944 
1945 /*
1946  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1947  * a _large_ part of the i/o request. Imagine the worst scenario:
1948  *
1949  *      ---R__________________________________________B__________
1950  *         ^ reading here                             ^ bad block(assume 4k)
1951  *
1952  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1953  * => failing the whole request => read(R) => read(R+1) =>
1954  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1955  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1956  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1957  *
1958  * It is going insane. Fix it by quickly scaling down the readahead size.
1959  */
1960 static void shrink_readahead_size_eio(struct file *filp,
1961 					struct file_ra_state *ra)
1962 {
1963 	ra->ra_pages /= 4;
1964 }
1965 
1966 /**
1967  * generic_file_buffered_read - generic file read routine
1968  * @iocb:	the iocb to read
1969  * @iter:	data destination
1970  * @written:	already copied
1971  *
1972  * This is a generic file read routine, and uses the
1973  * mapping->a_ops->readpage() function for the actual low-level stuff.
1974  *
1975  * This is really ugly. But the goto's actually try to clarify some
1976  * of the logic when it comes to error handling etc.
1977  *
1978  * Return:
1979  * * total number of bytes copied, including those the were already @written
1980  * * negative error code if nothing was copied
1981  */
1982 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1983 		struct iov_iter *iter, ssize_t written)
1984 {
1985 	struct file *filp = iocb->ki_filp;
1986 	struct address_space *mapping = filp->f_mapping;
1987 	struct inode *inode = mapping->host;
1988 	struct file_ra_state *ra = &filp->f_ra;
1989 	loff_t *ppos = &iocb->ki_pos;
1990 	pgoff_t index;
1991 	pgoff_t last_index;
1992 	pgoff_t prev_index;
1993 	unsigned long offset;      /* offset into pagecache page */
1994 	unsigned int prev_offset;
1995 	int error = 0;
1996 
1997 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1998 		return 0;
1999 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2000 
2001 	index = *ppos >> PAGE_SHIFT;
2002 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2003 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2004 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2005 	offset = *ppos & ~PAGE_MASK;
2006 
2007 	for (;;) {
2008 		struct page *page;
2009 		pgoff_t end_index;
2010 		loff_t isize;
2011 		unsigned long nr, ret;
2012 
2013 		cond_resched();
2014 find_page:
2015 		if (fatal_signal_pending(current)) {
2016 			error = -EINTR;
2017 			goto out;
2018 		}
2019 
2020 		page = find_get_page(mapping, index);
2021 		if (!page) {
2022 			if (iocb->ki_flags & IOCB_NOWAIT)
2023 				goto would_block;
2024 			page_cache_sync_readahead(mapping,
2025 					ra, filp,
2026 					index, last_index - index);
2027 			page = find_get_page(mapping, index);
2028 			if (unlikely(page == NULL))
2029 				goto no_cached_page;
2030 		}
2031 		if (PageReadahead(page)) {
2032 			page_cache_async_readahead(mapping,
2033 					ra, filp, page,
2034 					index, last_index - index);
2035 		}
2036 		if (!PageUptodate(page)) {
2037 			if (iocb->ki_flags & IOCB_NOWAIT) {
2038 				put_page(page);
2039 				goto would_block;
2040 			}
2041 
2042 			/*
2043 			 * See comment in do_read_cache_page on why
2044 			 * wait_on_page_locked is used to avoid unnecessarily
2045 			 * serialisations and why it's safe.
2046 			 */
2047 			error = wait_on_page_locked_killable(page);
2048 			if (unlikely(error))
2049 				goto readpage_error;
2050 			if (PageUptodate(page))
2051 				goto page_ok;
2052 
2053 			if (inode->i_blkbits == PAGE_SHIFT ||
2054 					!mapping->a_ops->is_partially_uptodate)
2055 				goto page_not_up_to_date;
2056 			/* pipes can't handle partially uptodate pages */
2057 			if (unlikely(iov_iter_is_pipe(iter)))
2058 				goto page_not_up_to_date;
2059 			if (!trylock_page(page))
2060 				goto page_not_up_to_date;
2061 			/* Did it get truncated before we got the lock? */
2062 			if (!page->mapping)
2063 				goto page_not_up_to_date_locked;
2064 			if (!mapping->a_ops->is_partially_uptodate(page,
2065 							offset, iter->count))
2066 				goto page_not_up_to_date_locked;
2067 			unlock_page(page);
2068 		}
2069 page_ok:
2070 		/*
2071 		 * i_size must be checked after we know the page is Uptodate.
2072 		 *
2073 		 * Checking i_size after the check allows us to calculate
2074 		 * the correct value for "nr", which means the zero-filled
2075 		 * part of the page is not copied back to userspace (unless
2076 		 * another truncate extends the file - this is desired though).
2077 		 */
2078 
2079 		isize = i_size_read(inode);
2080 		end_index = (isize - 1) >> PAGE_SHIFT;
2081 		if (unlikely(!isize || index > end_index)) {
2082 			put_page(page);
2083 			goto out;
2084 		}
2085 
2086 		/* nr is the maximum number of bytes to copy from this page */
2087 		nr = PAGE_SIZE;
2088 		if (index == end_index) {
2089 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2090 			if (nr <= offset) {
2091 				put_page(page);
2092 				goto out;
2093 			}
2094 		}
2095 		nr = nr - offset;
2096 
2097 		/* If users can be writing to this page using arbitrary
2098 		 * virtual addresses, take care about potential aliasing
2099 		 * before reading the page on the kernel side.
2100 		 */
2101 		if (mapping_writably_mapped(mapping))
2102 			flush_dcache_page(page);
2103 
2104 		/*
2105 		 * When a sequential read accesses a page several times,
2106 		 * only mark it as accessed the first time.
2107 		 */
2108 		if (prev_index != index || offset != prev_offset)
2109 			mark_page_accessed(page);
2110 		prev_index = index;
2111 
2112 		/*
2113 		 * Ok, we have the page, and it's up-to-date, so
2114 		 * now we can copy it to user space...
2115 		 */
2116 
2117 		ret = copy_page_to_iter(page, offset, nr, iter);
2118 		offset += ret;
2119 		index += offset >> PAGE_SHIFT;
2120 		offset &= ~PAGE_MASK;
2121 		prev_offset = offset;
2122 
2123 		put_page(page);
2124 		written += ret;
2125 		if (!iov_iter_count(iter))
2126 			goto out;
2127 		if (ret < nr) {
2128 			error = -EFAULT;
2129 			goto out;
2130 		}
2131 		continue;
2132 
2133 page_not_up_to_date:
2134 		/* Get exclusive access to the page ... */
2135 		error = lock_page_killable(page);
2136 		if (unlikely(error))
2137 			goto readpage_error;
2138 
2139 page_not_up_to_date_locked:
2140 		/* Did it get truncated before we got the lock? */
2141 		if (!page->mapping) {
2142 			unlock_page(page);
2143 			put_page(page);
2144 			continue;
2145 		}
2146 
2147 		/* Did somebody else fill it already? */
2148 		if (PageUptodate(page)) {
2149 			unlock_page(page);
2150 			goto page_ok;
2151 		}
2152 
2153 readpage:
2154 		/*
2155 		 * A previous I/O error may have been due to temporary
2156 		 * failures, eg. multipath errors.
2157 		 * PG_error will be set again if readpage fails.
2158 		 */
2159 		ClearPageError(page);
2160 		/* Start the actual read. The read will unlock the page. */
2161 		error = mapping->a_ops->readpage(filp, page);
2162 
2163 		if (unlikely(error)) {
2164 			if (error == AOP_TRUNCATED_PAGE) {
2165 				put_page(page);
2166 				error = 0;
2167 				goto find_page;
2168 			}
2169 			goto readpage_error;
2170 		}
2171 
2172 		if (!PageUptodate(page)) {
2173 			error = lock_page_killable(page);
2174 			if (unlikely(error))
2175 				goto readpage_error;
2176 			if (!PageUptodate(page)) {
2177 				if (page->mapping == NULL) {
2178 					/*
2179 					 * invalidate_mapping_pages got it
2180 					 */
2181 					unlock_page(page);
2182 					put_page(page);
2183 					goto find_page;
2184 				}
2185 				unlock_page(page);
2186 				shrink_readahead_size_eio(filp, ra);
2187 				error = -EIO;
2188 				goto readpage_error;
2189 			}
2190 			unlock_page(page);
2191 		}
2192 
2193 		goto page_ok;
2194 
2195 readpage_error:
2196 		/* UHHUH! A synchronous read error occurred. Report it */
2197 		put_page(page);
2198 		goto out;
2199 
2200 no_cached_page:
2201 		/*
2202 		 * Ok, it wasn't cached, so we need to create a new
2203 		 * page..
2204 		 */
2205 		page = page_cache_alloc(mapping);
2206 		if (!page) {
2207 			error = -ENOMEM;
2208 			goto out;
2209 		}
2210 		error = add_to_page_cache_lru(page, mapping, index,
2211 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2212 		if (error) {
2213 			put_page(page);
2214 			if (error == -EEXIST) {
2215 				error = 0;
2216 				goto find_page;
2217 			}
2218 			goto out;
2219 		}
2220 		goto readpage;
2221 	}
2222 
2223 would_block:
2224 	error = -EAGAIN;
2225 out:
2226 	ra->prev_pos = prev_index;
2227 	ra->prev_pos <<= PAGE_SHIFT;
2228 	ra->prev_pos |= prev_offset;
2229 
2230 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2231 	file_accessed(filp);
2232 	return written ? written : error;
2233 }
2234 
2235 /**
2236  * generic_file_read_iter - generic filesystem read routine
2237  * @iocb:	kernel I/O control block
2238  * @iter:	destination for the data read
2239  *
2240  * This is the "read_iter()" routine for all filesystems
2241  * that can use the page cache directly.
2242  * Return:
2243  * * number of bytes copied, even for partial reads
2244  * * negative error code if nothing was read
2245  */
2246 ssize_t
2247 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2248 {
2249 	size_t count = iov_iter_count(iter);
2250 	ssize_t retval = 0;
2251 
2252 	if (!count)
2253 		goto out; /* skip atime */
2254 
2255 	if (iocb->ki_flags & IOCB_DIRECT) {
2256 		struct file *file = iocb->ki_filp;
2257 		struct address_space *mapping = file->f_mapping;
2258 		struct inode *inode = mapping->host;
2259 		loff_t size;
2260 
2261 		size = i_size_read(inode);
2262 		if (iocb->ki_flags & IOCB_NOWAIT) {
2263 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2264 						   iocb->ki_pos + count - 1))
2265 				return -EAGAIN;
2266 		} else {
2267 			retval = filemap_write_and_wait_range(mapping,
2268 						iocb->ki_pos,
2269 					        iocb->ki_pos + count - 1);
2270 			if (retval < 0)
2271 				goto out;
2272 		}
2273 
2274 		file_accessed(file);
2275 
2276 		retval = mapping->a_ops->direct_IO(iocb, iter);
2277 		if (retval >= 0) {
2278 			iocb->ki_pos += retval;
2279 			count -= retval;
2280 		}
2281 		iov_iter_revert(iter, count - iov_iter_count(iter));
2282 
2283 		/*
2284 		 * Btrfs can have a short DIO read if we encounter
2285 		 * compressed extents, so if there was an error, or if
2286 		 * we've already read everything we wanted to, or if
2287 		 * there was a short read because we hit EOF, go ahead
2288 		 * and return.  Otherwise fallthrough to buffered io for
2289 		 * the rest of the read.  Buffered reads will not work for
2290 		 * DAX files, so don't bother trying.
2291 		 */
2292 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2293 		    IS_DAX(inode))
2294 			goto out;
2295 	}
2296 
2297 	retval = generic_file_buffered_read(iocb, iter, retval);
2298 out:
2299 	return retval;
2300 }
2301 EXPORT_SYMBOL(generic_file_read_iter);
2302 
2303 #ifdef CONFIG_MMU
2304 #define MMAP_LOTSAMISS  (100)
2305 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2306 					     struct file *fpin)
2307 {
2308 	int flags = vmf->flags;
2309 
2310 	if (fpin)
2311 		return fpin;
2312 
2313 	/*
2314 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2315 	 * anything, so we only pin the file and drop the mmap_sem if only
2316 	 * FAULT_FLAG_ALLOW_RETRY is set.
2317 	 */
2318 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2319 	    FAULT_FLAG_ALLOW_RETRY) {
2320 		fpin = get_file(vmf->vma->vm_file);
2321 		up_read(&vmf->vma->vm_mm->mmap_sem);
2322 	}
2323 	return fpin;
2324 }
2325 
2326 /*
2327  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2328  * @vmf - the vm_fault for this fault.
2329  * @page - the page to lock.
2330  * @fpin - the pointer to the file we may pin (or is already pinned).
2331  *
2332  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2333  * It differs in that it actually returns the page locked if it returns 1 and 0
2334  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2335  * will point to the pinned file and needs to be fput()'ed at a later point.
2336  */
2337 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2338 				     struct file **fpin)
2339 {
2340 	if (trylock_page(page))
2341 		return 1;
2342 
2343 	/*
2344 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2345 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2346 	 * is supposed to work. We have way too many special cases..
2347 	 */
2348 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2349 		return 0;
2350 
2351 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2352 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2353 		if (__lock_page_killable(page)) {
2354 			/*
2355 			 * We didn't have the right flags to drop the mmap_sem,
2356 			 * but all fault_handlers only check for fatal signals
2357 			 * if we return VM_FAULT_RETRY, so we need to drop the
2358 			 * mmap_sem here and return 0 if we don't have a fpin.
2359 			 */
2360 			if (*fpin == NULL)
2361 				up_read(&vmf->vma->vm_mm->mmap_sem);
2362 			return 0;
2363 		}
2364 	} else
2365 		__lock_page(page);
2366 	return 1;
2367 }
2368 
2369 
2370 /*
2371  * Synchronous readahead happens when we don't even find a page in the page
2372  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2373  * to drop the mmap sem we return the file that was pinned in order for us to do
2374  * that.  If we didn't pin a file then we return NULL.  The file that is
2375  * returned needs to be fput()'ed when we're done with it.
2376  */
2377 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2378 {
2379 	struct file *file = vmf->vma->vm_file;
2380 	struct file_ra_state *ra = &file->f_ra;
2381 	struct address_space *mapping = file->f_mapping;
2382 	struct file *fpin = NULL;
2383 	pgoff_t offset = vmf->pgoff;
2384 
2385 	/* If we don't want any read-ahead, don't bother */
2386 	if (vmf->vma->vm_flags & VM_RAND_READ)
2387 		return fpin;
2388 	if (!ra->ra_pages)
2389 		return fpin;
2390 
2391 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2392 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2393 		page_cache_sync_readahead(mapping, ra, file, offset,
2394 					  ra->ra_pages);
2395 		return fpin;
2396 	}
2397 
2398 	/* Avoid banging the cache line if not needed */
2399 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2400 		ra->mmap_miss++;
2401 
2402 	/*
2403 	 * Do we miss much more than hit in this file? If so,
2404 	 * stop bothering with read-ahead. It will only hurt.
2405 	 */
2406 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2407 		return fpin;
2408 
2409 	/*
2410 	 * mmap read-around
2411 	 */
2412 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2413 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2414 	ra->size = ra->ra_pages;
2415 	ra->async_size = ra->ra_pages / 4;
2416 	ra_submit(ra, mapping, file);
2417 	return fpin;
2418 }
2419 
2420 /*
2421  * Asynchronous readahead happens when we find the page and PG_readahead,
2422  * so we want to possibly extend the readahead further.  We return the file that
2423  * was pinned if we have to drop the mmap_sem in order to do IO.
2424  */
2425 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2426 					    struct page *page)
2427 {
2428 	struct file *file = vmf->vma->vm_file;
2429 	struct file_ra_state *ra = &file->f_ra;
2430 	struct address_space *mapping = file->f_mapping;
2431 	struct file *fpin = NULL;
2432 	pgoff_t offset = vmf->pgoff;
2433 
2434 	/* If we don't want any read-ahead, don't bother */
2435 	if (vmf->vma->vm_flags & VM_RAND_READ)
2436 		return fpin;
2437 	if (ra->mmap_miss > 0)
2438 		ra->mmap_miss--;
2439 	if (PageReadahead(page)) {
2440 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2441 		page_cache_async_readahead(mapping, ra, file,
2442 					   page, offset, ra->ra_pages);
2443 	}
2444 	return fpin;
2445 }
2446 
2447 /**
2448  * filemap_fault - read in file data for page fault handling
2449  * @vmf:	struct vm_fault containing details of the fault
2450  *
2451  * filemap_fault() is invoked via the vma operations vector for a
2452  * mapped memory region to read in file data during a page fault.
2453  *
2454  * The goto's are kind of ugly, but this streamlines the normal case of having
2455  * it in the page cache, and handles the special cases reasonably without
2456  * having a lot of duplicated code.
2457  *
2458  * vma->vm_mm->mmap_sem must be held on entry.
2459  *
2460  * If our return value has VM_FAULT_RETRY set, it's because
2461  * lock_page_or_retry() returned 0.
2462  * The mmap_sem has usually been released in this case.
2463  * See __lock_page_or_retry() for the exception.
2464  *
2465  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2466  * has not been released.
2467  *
2468  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2469  *
2470  * Return: bitwise-OR of %VM_FAULT_ codes.
2471  */
2472 vm_fault_t filemap_fault(struct vm_fault *vmf)
2473 {
2474 	int error;
2475 	struct file *file = vmf->vma->vm_file;
2476 	struct file *fpin = NULL;
2477 	struct address_space *mapping = file->f_mapping;
2478 	struct file_ra_state *ra = &file->f_ra;
2479 	struct inode *inode = mapping->host;
2480 	pgoff_t offset = vmf->pgoff;
2481 	pgoff_t max_off;
2482 	struct page *page;
2483 	vm_fault_t ret = 0;
2484 
2485 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2486 	if (unlikely(offset >= max_off))
2487 		return VM_FAULT_SIGBUS;
2488 
2489 	/*
2490 	 * Do we have something in the page cache already?
2491 	 */
2492 	page = find_get_page(mapping, offset);
2493 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2494 		/*
2495 		 * We found the page, so try async readahead before
2496 		 * waiting for the lock.
2497 		 */
2498 		fpin = do_async_mmap_readahead(vmf, page);
2499 	} else if (!page) {
2500 		/* No page in the page cache at all */
2501 		count_vm_event(PGMAJFAULT);
2502 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2503 		ret = VM_FAULT_MAJOR;
2504 		fpin = do_sync_mmap_readahead(vmf);
2505 retry_find:
2506 		page = pagecache_get_page(mapping, offset,
2507 					  FGP_CREAT|FGP_FOR_MMAP,
2508 					  vmf->gfp_mask);
2509 		if (!page) {
2510 			if (fpin)
2511 				goto out_retry;
2512 			return vmf_error(-ENOMEM);
2513 		}
2514 	}
2515 
2516 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2517 		goto out_retry;
2518 
2519 	/* Did it get truncated? */
2520 	if (unlikely(page->mapping != mapping)) {
2521 		unlock_page(page);
2522 		put_page(page);
2523 		goto retry_find;
2524 	}
2525 	VM_BUG_ON_PAGE(page->index != offset, page);
2526 
2527 	/*
2528 	 * We have a locked page in the page cache, now we need to check
2529 	 * that it's up-to-date. If not, it is going to be due to an error.
2530 	 */
2531 	if (unlikely(!PageUptodate(page)))
2532 		goto page_not_uptodate;
2533 
2534 	/*
2535 	 * We've made it this far and we had to drop our mmap_sem, now is the
2536 	 * time to return to the upper layer and have it re-find the vma and
2537 	 * redo the fault.
2538 	 */
2539 	if (fpin) {
2540 		unlock_page(page);
2541 		goto out_retry;
2542 	}
2543 
2544 	/*
2545 	 * Found the page and have a reference on it.
2546 	 * We must recheck i_size under page lock.
2547 	 */
2548 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2549 	if (unlikely(offset >= max_off)) {
2550 		unlock_page(page);
2551 		put_page(page);
2552 		return VM_FAULT_SIGBUS;
2553 	}
2554 
2555 	vmf->page = page;
2556 	return ret | VM_FAULT_LOCKED;
2557 
2558 page_not_uptodate:
2559 	/*
2560 	 * Umm, take care of errors if the page isn't up-to-date.
2561 	 * Try to re-read it _once_. We do this synchronously,
2562 	 * because there really aren't any performance issues here
2563 	 * and we need to check for errors.
2564 	 */
2565 	ClearPageError(page);
2566 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2567 	error = mapping->a_ops->readpage(file, page);
2568 	if (!error) {
2569 		wait_on_page_locked(page);
2570 		if (!PageUptodate(page))
2571 			error = -EIO;
2572 	}
2573 	if (fpin)
2574 		goto out_retry;
2575 	put_page(page);
2576 
2577 	if (!error || error == AOP_TRUNCATED_PAGE)
2578 		goto retry_find;
2579 
2580 	/* Things didn't work out. Return zero to tell the mm layer so. */
2581 	shrink_readahead_size_eio(file, ra);
2582 	return VM_FAULT_SIGBUS;
2583 
2584 out_retry:
2585 	/*
2586 	 * We dropped the mmap_sem, we need to return to the fault handler to
2587 	 * re-find the vma and come back and find our hopefully still populated
2588 	 * page.
2589 	 */
2590 	if (page)
2591 		put_page(page);
2592 	if (fpin)
2593 		fput(fpin);
2594 	return ret | VM_FAULT_RETRY;
2595 }
2596 EXPORT_SYMBOL(filemap_fault);
2597 
2598 void filemap_map_pages(struct vm_fault *vmf,
2599 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2600 {
2601 	struct file *file = vmf->vma->vm_file;
2602 	struct address_space *mapping = file->f_mapping;
2603 	pgoff_t last_pgoff = start_pgoff;
2604 	unsigned long max_idx;
2605 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2606 	struct page *page;
2607 
2608 	rcu_read_lock();
2609 	xas_for_each(&xas, page, end_pgoff) {
2610 		if (xas_retry(&xas, page))
2611 			continue;
2612 		if (xa_is_value(page))
2613 			goto next;
2614 
2615 		/*
2616 		 * Check for a locked page first, as a speculative
2617 		 * reference may adversely influence page migration.
2618 		 */
2619 		if (PageLocked(page))
2620 			goto next;
2621 		if (!page_cache_get_speculative(page))
2622 			goto next;
2623 
2624 		/* Has the page moved or been split? */
2625 		if (unlikely(page != xas_reload(&xas)))
2626 			goto skip;
2627 		page = find_subpage(page, xas.xa_index);
2628 
2629 		if (!PageUptodate(page) ||
2630 				PageReadahead(page) ||
2631 				PageHWPoison(page))
2632 			goto skip;
2633 		if (!trylock_page(page))
2634 			goto skip;
2635 
2636 		if (page->mapping != mapping || !PageUptodate(page))
2637 			goto unlock;
2638 
2639 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2640 		if (page->index >= max_idx)
2641 			goto unlock;
2642 
2643 		if (file->f_ra.mmap_miss > 0)
2644 			file->f_ra.mmap_miss--;
2645 
2646 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2647 		if (vmf->pte)
2648 			vmf->pte += xas.xa_index - last_pgoff;
2649 		last_pgoff = xas.xa_index;
2650 		if (alloc_set_pte(vmf, NULL, page))
2651 			goto unlock;
2652 		unlock_page(page);
2653 		goto next;
2654 unlock:
2655 		unlock_page(page);
2656 skip:
2657 		put_page(page);
2658 next:
2659 		/* Huge page is mapped? No need to proceed. */
2660 		if (pmd_trans_huge(*vmf->pmd))
2661 			break;
2662 	}
2663 	rcu_read_unlock();
2664 }
2665 EXPORT_SYMBOL(filemap_map_pages);
2666 
2667 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2668 {
2669 	struct page *page = vmf->page;
2670 	struct inode *inode = file_inode(vmf->vma->vm_file);
2671 	vm_fault_t ret = VM_FAULT_LOCKED;
2672 
2673 	sb_start_pagefault(inode->i_sb);
2674 	file_update_time(vmf->vma->vm_file);
2675 	lock_page(page);
2676 	if (page->mapping != inode->i_mapping) {
2677 		unlock_page(page);
2678 		ret = VM_FAULT_NOPAGE;
2679 		goto out;
2680 	}
2681 	/*
2682 	 * We mark the page dirty already here so that when freeze is in
2683 	 * progress, we are guaranteed that writeback during freezing will
2684 	 * see the dirty page and writeprotect it again.
2685 	 */
2686 	set_page_dirty(page);
2687 	wait_for_stable_page(page);
2688 out:
2689 	sb_end_pagefault(inode->i_sb);
2690 	return ret;
2691 }
2692 
2693 const struct vm_operations_struct generic_file_vm_ops = {
2694 	.fault		= filemap_fault,
2695 	.map_pages	= filemap_map_pages,
2696 	.page_mkwrite	= filemap_page_mkwrite,
2697 };
2698 
2699 /* This is used for a general mmap of a disk file */
2700 
2701 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2702 {
2703 	struct address_space *mapping = file->f_mapping;
2704 
2705 	if (!mapping->a_ops->readpage)
2706 		return -ENOEXEC;
2707 	file_accessed(file);
2708 	vma->vm_ops = &generic_file_vm_ops;
2709 	return 0;
2710 }
2711 
2712 /*
2713  * This is for filesystems which do not implement ->writepage.
2714  */
2715 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2716 {
2717 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2718 		return -EINVAL;
2719 	return generic_file_mmap(file, vma);
2720 }
2721 #else
2722 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2723 {
2724 	return VM_FAULT_SIGBUS;
2725 }
2726 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2727 {
2728 	return -ENOSYS;
2729 }
2730 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2731 {
2732 	return -ENOSYS;
2733 }
2734 #endif /* CONFIG_MMU */
2735 
2736 EXPORT_SYMBOL(filemap_page_mkwrite);
2737 EXPORT_SYMBOL(generic_file_mmap);
2738 EXPORT_SYMBOL(generic_file_readonly_mmap);
2739 
2740 static struct page *wait_on_page_read(struct page *page)
2741 {
2742 	if (!IS_ERR(page)) {
2743 		wait_on_page_locked(page);
2744 		if (!PageUptodate(page)) {
2745 			put_page(page);
2746 			page = ERR_PTR(-EIO);
2747 		}
2748 	}
2749 	return page;
2750 }
2751 
2752 static struct page *do_read_cache_page(struct address_space *mapping,
2753 				pgoff_t index,
2754 				int (*filler)(void *, struct page *),
2755 				void *data,
2756 				gfp_t gfp)
2757 {
2758 	struct page *page;
2759 	int err;
2760 repeat:
2761 	page = find_get_page(mapping, index);
2762 	if (!page) {
2763 		page = __page_cache_alloc(gfp);
2764 		if (!page)
2765 			return ERR_PTR(-ENOMEM);
2766 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2767 		if (unlikely(err)) {
2768 			put_page(page);
2769 			if (err == -EEXIST)
2770 				goto repeat;
2771 			/* Presumably ENOMEM for xarray node */
2772 			return ERR_PTR(err);
2773 		}
2774 
2775 filler:
2776 		err = filler(data, page);
2777 		if (err < 0) {
2778 			put_page(page);
2779 			return ERR_PTR(err);
2780 		}
2781 
2782 		page = wait_on_page_read(page);
2783 		if (IS_ERR(page))
2784 			return page;
2785 		goto out;
2786 	}
2787 	if (PageUptodate(page))
2788 		goto out;
2789 
2790 	/*
2791 	 * Page is not up to date and may be locked due one of the following
2792 	 * case a: Page is being filled and the page lock is held
2793 	 * case b: Read/write error clearing the page uptodate status
2794 	 * case c: Truncation in progress (page locked)
2795 	 * case d: Reclaim in progress
2796 	 *
2797 	 * Case a, the page will be up to date when the page is unlocked.
2798 	 *    There is no need to serialise on the page lock here as the page
2799 	 *    is pinned so the lock gives no additional protection. Even if the
2800 	 *    the page is truncated, the data is still valid if PageUptodate as
2801 	 *    it's a race vs truncate race.
2802 	 * Case b, the page will not be up to date
2803 	 * Case c, the page may be truncated but in itself, the data may still
2804 	 *    be valid after IO completes as it's a read vs truncate race. The
2805 	 *    operation must restart if the page is not uptodate on unlock but
2806 	 *    otherwise serialising on page lock to stabilise the mapping gives
2807 	 *    no additional guarantees to the caller as the page lock is
2808 	 *    released before return.
2809 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2810 	 *    will be a race with remove_mapping that determines if the mapping
2811 	 *    is valid on unlock but otherwise the data is valid and there is
2812 	 *    no need to serialise with page lock.
2813 	 *
2814 	 * As the page lock gives no additional guarantee, we optimistically
2815 	 * wait on the page to be unlocked and check if it's up to date and
2816 	 * use the page if it is. Otherwise, the page lock is required to
2817 	 * distinguish between the different cases. The motivation is that we
2818 	 * avoid spurious serialisations and wakeups when multiple processes
2819 	 * wait on the same page for IO to complete.
2820 	 */
2821 	wait_on_page_locked(page);
2822 	if (PageUptodate(page))
2823 		goto out;
2824 
2825 	/* Distinguish between all the cases under the safety of the lock */
2826 	lock_page(page);
2827 
2828 	/* Case c or d, restart the operation */
2829 	if (!page->mapping) {
2830 		unlock_page(page);
2831 		put_page(page);
2832 		goto repeat;
2833 	}
2834 
2835 	/* Someone else locked and filled the page in a very small window */
2836 	if (PageUptodate(page)) {
2837 		unlock_page(page);
2838 		goto out;
2839 	}
2840 	goto filler;
2841 
2842 out:
2843 	mark_page_accessed(page);
2844 	return page;
2845 }
2846 
2847 /**
2848  * read_cache_page - read into page cache, fill it if needed
2849  * @mapping:	the page's address_space
2850  * @index:	the page index
2851  * @filler:	function to perform the read
2852  * @data:	first arg to filler(data, page) function, often left as NULL
2853  *
2854  * Read into the page cache. If a page already exists, and PageUptodate() is
2855  * not set, try to fill the page and wait for it to become unlocked.
2856  *
2857  * If the page does not get brought uptodate, return -EIO.
2858  *
2859  * Return: up to date page on success, ERR_PTR() on failure.
2860  */
2861 struct page *read_cache_page(struct address_space *mapping,
2862 				pgoff_t index,
2863 				int (*filler)(void *, struct page *),
2864 				void *data)
2865 {
2866 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2867 }
2868 EXPORT_SYMBOL(read_cache_page);
2869 
2870 /**
2871  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2872  * @mapping:	the page's address_space
2873  * @index:	the page index
2874  * @gfp:	the page allocator flags to use if allocating
2875  *
2876  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2877  * any new page allocations done using the specified allocation flags.
2878  *
2879  * If the page does not get brought uptodate, return -EIO.
2880  *
2881  * Return: up to date page on success, ERR_PTR() on failure.
2882  */
2883 struct page *read_cache_page_gfp(struct address_space *mapping,
2884 				pgoff_t index,
2885 				gfp_t gfp)
2886 {
2887 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2888 
2889 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2890 }
2891 EXPORT_SYMBOL(read_cache_page_gfp);
2892 
2893 /*
2894  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2895  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2896  * exceeds the limit we return -EFBIG.
2897  */
2898 static int generic_access_check_limits(struct file *file, loff_t pos,
2899 				       loff_t *count)
2900 {
2901 	struct inode *inode = file->f_mapping->host;
2902 	loff_t max_size = inode->i_sb->s_maxbytes;
2903 
2904 	if (!(file->f_flags & O_LARGEFILE))
2905 		max_size = MAX_NON_LFS;
2906 
2907 	if (unlikely(pos >= max_size))
2908 		return -EFBIG;
2909 	*count = min(*count, max_size - pos);
2910 	return 0;
2911 }
2912 
2913 static int generic_write_check_limits(struct file *file, loff_t pos,
2914 				      loff_t *count)
2915 {
2916 	loff_t limit = rlimit(RLIMIT_FSIZE);
2917 
2918 	if (limit != RLIM_INFINITY) {
2919 		if (pos >= limit) {
2920 			send_sig(SIGXFSZ, current, 0);
2921 			return -EFBIG;
2922 		}
2923 		*count = min(*count, limit - pos);
2924 	}
2925 
2926 	return generic_access_check_limits(file, pos, count);
2927 }
2928 
2929 /*
2930  * Performs necessary checks before doing a write
2931  *
2932  * Can adjust writing position or amount of bytes to write.
2933  * Returns appropriate error code that caller should return or
2934  * zero in case that write should be allowed.
2935  */
2936 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2937 {
2938 	struct file *file = iocb->ki_filp;
2939 	struct inode *inode = file->f_mapping->host;
2940 	loff_t count;
2941 	int ret;
2942 
2943 	if (!iov_iter_count(from))
2944 		return 0;
2945 
2946 	/* FIXME: this is for backwards compatibility with 2.4 */
2947 	if (iocb->ki_flags & IOCB_APPEND)
2948 		iocb->ki_pos = i_size_read(inode);
2949 
2950 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2951 		return -EINVAL;
2952 
2953 	count = iov_iter_count(from);
2954 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2955 	if (ret)
2956 		return ret;
2957 
2958 	iov_iter_truncate(from, count);
2959 	return iov_iter_count(from);
2960 }
2961 EXPORT_SYMBOL(generic_write_checks);
2962 
2963 /*
2964  * Performs necessary checks before doing a clone.
2965  *
2966  * Can adjust amount of bytes to clone.
2967  * Returns appropriate error code that caller should return or
2968  * zero in case the clone should be allowed.
2969  */
2970 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2971 			 struct file *file_out, loff_t pos_out,
2972 			 loff_t *req_count, unsigned int remap_flags)
2973 {
2974 	struct inode *inode_in = file_in->f_mapping->host;
2975 	struct inode *inode_out = file_out->f_mapping->host;
2976 	uint64_t count = *req_count;
2977 	uint64_t bcount;
2978 	loff_t size_in, size_out;
2979 	loff_t bs = inode_out->i_sb->s_blocksize;
2980 	int ret;
2981 
2982 	/* The start of both ranges must be aligned to an fs block. */
2983 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2984 		return -EINVAL;
2985 
2986 	/* Ensure offsets don't wrap. */
2987 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2988 		return -EINVAL;
2989 
2990 	size_in = i_size_read(inode_in);
2991 	size_out = i_size_read(inode_out);
2992 
2993 	/* Dedupe requires both ranges to be within EOF. */
2994 	if ((remap_flags & REMAP_FILE_DEDUP) &&
2995 	    (pos_in >= size_in || pos_in + count > size_in ||
2996 	     pos_out >= size_out || pos_out + count > size_out))
2997 		return -EINVAL;
2998 
2999 	/* Ensure the infile range is within the infile. */
3000 	if (pos_in >= size_in)
3001 		return -EINVAL;
3002 	count = min(count, size_in - (uint64_t)pos_in);
3003 
3004 	ret = generic_access_check_limits(file_in, pos_in, &count);
3005 	if (ret)
3006 		return ret;
3007 
3008 	ret = generic_write_check_limits(file_out, pos_out, &count);
3009 	if (ret)
3010 		return ret;
3011 
3012 	/*
3013 	 * If the user wanted us to link to the infile's EOF, round up to the
3014 	 * next block boundary for this check.
3015 	 *
3016 	 * Otherwise, make sure the count is also block-aligned, having
3017 	 * already confirmed the starting offsets' block alignment.
3018 	 */
3019 	if (pos_in + count == size_in) {
3020 		bcount = ALIGN(size_in, bs) - pos_in;
3021 	} else {
3022 		if (!IS_ALIGNED(count, bs))
3023 			count = ALIGN_DOWN(count, bs);
3024 		bcount = count;
3025 	}
3026 
3027 	/* Don't allow overlapped cloning within the same file. */
3028 	if (inode_in == inode_out &&
3029 	    pos_out + bcount > pos_in &&
3030 	    pos_out < pos_in + bcount)
3031 		return -EINVAL;
3032 
3033 	/*
3034 	 * We shortened the request but the caller can't deal with that, so
3035 	 * bounce the request back to userspace.
3036 	 */
3037 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3038 		return -EINVAL;
3039 
3040 	*req_count = count;
3041 	return 0;
3042 }
3043 
3044 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3045 				loff_t pos, unsigned len, unsigned flags,
3046 				struct page **pagep, void **fsdata)
3047 {
3048 	const struct address_space_operations *aops = mapping->a_ops;
3049 
3050 	return aops->write_begin(file, mapping, pos, len, flags,
3051 							pagep, fsdata);
3052 }
3053 EXPORT_SYMBOL(pagecache_write_begin);
3054 
3055 int pagecache_write_end(struct file *file, struct address_space *mapping,
3056 				loff_t pos, unsigned len, unsigned copied,
3057 				struct page *page, void *fsdata)
3058 {
3059 	const struct address_space_operations *aops = mapping->a_ops;
3060 
3061 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3062 }
3063 EXPORT_SYMBOL(pagecache_write_end);
3064 
3065 ssize_t
3066 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3067 {
3068 	struct file	*file = iocb->ki_filp;
3069 	struct address_space *mapping = file->f_mapping;
3070 	struct inode	*inode = mapping->host;
3071 	loff_t		pos = iocb->ki_pos;
3072 	ssize_t		written;
3073 	size_t		write_len;
3074 	pgoff_t		end;
3075 
3076 	write_len = iov_iter_count(from);
3077 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3078 
3079 	if (iocb->ki_flags & IOCB_NOWAIT) {
3080 		/* If there are pages to writeback, return */
3081 		if (filemap_range_has_page(inode->i_mapping, pos,
3082 					   pos + write_len - 1))
3083 			return -EAGAIN;
3084 	} else {
3085 		written = filemap_write_and_wait_range(mapping, pos,
3086 							pos + write_len - 1);
3087 		if (written)
3088 			goto out;
3089 	}
3090 
3091 	/*
3092 	 * After a write we want buffered reads to be sure to go to disk to get
3093 	 * the new data.  We invalidate clean cached page from the region we're
3094 	 * about to write.  We do this *before* the write so that we can return
3095 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3096 	 */
3097 	written = invalidate_inode_pages2_range(mapping,
3098 					pos >> PAGE_SHIFT, end);
3099 	/*
3100 	 * If a page can not be invalidated, return 0 to fall back
3101 	 * to buffered write.
3102 	 */
3103 	if (written) {
3104 		if (written == -EBUSY)
3105 			return 0;
3106 		goto out;
3107 	}
3108 
3109 	written = mapping->a_ops->direct_IO(iocb, from);
3110 
3111 	/*
3112 	 * Finally, try again to invalidate clean pages which might have been
3113 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3114 	 * if the source of the write was an mmap'ed region of the file
3115 	 * we're writing.  Either one is a pretty crazy thing to do,
3116 	 * so we don't support it 100%.  If this invalidation
3117 	 * fails, tough, the write still worked...
3118 	 *
3119 	 * Most of the time we do not need this since dio_complete() will do
3120 	 * the invalidation for us. However there are some file systems that
3121 	 * do not end up with dio_complete() being called, so let's not break
3122 	 * them by removing it completely
3123 	 */
3124 	if (mapping->nrpages)
3125 		invalidate_inode_pages2_range(mapping,
3126 					pos >> PAGE_SHIFT, end);
3127 
3128 	if (written > 0) {
3129 		pos += written;
3130 		write_len -= written;
3131 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3132 			i_size_write(inode, pos);
3133 			mark_inode_dirty(inode);
3134 		}
3135 		iocb->ki_pos = pos;
3136 	}
3137 	iov_iter_revert(from, write_len - iov_iter_count(from));
3138 out:
3139 	return written;
3140 }
3141 EXPORT_SYMBOL(generic_file_direct_write);
3142 
3143 /*
3144  * Find or create a page at the given pagecache position. Return the locked
3145  * page. This function is specifically for buffered writes.
3146  */
3147 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3148 					pgoff_t index, unsigned flags)
3149 {
3150 	struct page *page;
3151 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3152 
3153 	if (flags & AOP_FLAG_NOFS)
3154 		fgp_flags |= FGP_NOFS;
3155 
3156 	page = pagecache_get_page(mapping, index, fgp_flags,
3157 			mapping_gfp_mask(mapping));
3158 	if (page)
3159 		wait_for_stable_page(page);
3160 
3161 	return page;
3162 }
3163 EXPORT_SYMBOL(grab_cache_page_write_begin);
3164 
3165 ssize_t generic_perform_write(struct file *file,
3166 				struct iov_iter *i, loff_t pos)
3167 {
3168 	struct address_space *mapping = file->f_mapping;
3169 	const struct address_space_operations *a_ops = mapping->a_ops;
3170 	long status = 0;
3171 	ssize_t written = 0;
3172 	unsigned int flags = 0;
3173 
3174 	do {
3175 		struct page *page;
3176 		unsigned long offset;	/* Offset into pagecache page */
3177 		unsigned long bytes;	/* Bytes to write to page */
3178 		size_t copied;		/* Bytes copied from user */
3179 		void *fsdata;
3180 
3181 		offset = (pos & (PAGE_SIZE - 1));
3182 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3183 						iov_iter_count(i));
3184 
3185 again:
3186 		/*
3187 		 * Bring in the user page that we will copy from _first_.
3188 		 * Otherwise there's a nasty deadlock on copying from the
3189 		 * same page as we're writing to, without it being marked
3190 		 * up-to-date.
3191 		 *
3192 		 * Not only is this an optimisation, but it is also required
3193 		 * to check that the address is actually valid, when atomic
3194 		 * usercopies are used, below.
3195 		 */
3196 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3197 			status = -EFAULT;
3198 			break;
3199 		}
3200 
3201 		if (fatal_signal_pending(current)) {
3202 			status = -EINTR;
3203 			break;
3204 		}
3205 
3206 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3207 						&page, &fsdata);
3208 		if (unlikely(status < 0))
3209 			break;
3210 
3211 		if (mapping_writably_mapped(mapping))
3212 			flush_dcache_page(page);
3213 
3214 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3215 		flush_dcache_page(page);
3216 
3217 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3218 						page, fsdata);
3219 		if (unlikely(status < 0))
3220 			break;
3221 		copied = status;
3222 
3223 		cond_resched();
3224 
3225 		iov_iter_advance(i, copied);
3226 		if (unlikely(copied == 0)) {
3227 			/*
3228 			 * If we were unable to copy any data at all, we must
3229 			 * fall back to a single segment length write.
3230 			 *
3231 			 * If we didn't fallback here, we could livelock
3232 			 * because not all segments in the iov can be copied at
3233 			 * once without a pagefault.
3234 			 */
3235 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3236 						iov_iter_single_seg_count(i));
3237 			goto again;
3238 		}
3239 		pos += copied;
3240 		written += copied;
3241 
3242 		balance_dirty_pages_ratelimited(mapping);
3243 	} while (iov_iter_count(i));
3244 
3245 	return written ? written : status;
3246 }
3247 EXPORT_SYMBOL(generic_perform_write);
3248 
3249 /**
3250  * __generic_file_write_iter - write data to a file
3251  * @iocb:	IO state structure (file, offset, etc.)
3252  * @from:	iov_iter with data to write
3253  *
3254  * This function does all the work needed for actually writing data to a
3255  * file. It does all basic checks, removes SUID from the file, updates
3256  * modification times and calls proper subroutines depending on whether we
3257  * do direct IO or a standard buffered write.
3258  *
3259  * It expects i_mutex to be grabbed unless we work on a block device or similar
3260  * object which does not need locking at all.
3261  *
3262  * This function does *not* take care of syncing data in case of O_SYNC write.
3263  * A caller has to handle it. This is mainly due to the fact that we want to
3264  * avoid syncing under i_mutex.
3265  *
3266  * Return:
3267  * * number of bytes written, even for truncated writes
3268  * * negative error code if no data has been written at all
3269  */
3270 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3271 {
3272 	struct file *file = iocb->ki_filp;
3273 	struct address_space * mapping = file->f_mapping;
3274 	struct inode 	*inode = mapping->host;
3275 	ssize_t		written = 0;
3276 	ssize_t		err;
3277 	ssize_t		status;
3278 
3279 	/* We can write back this queue in page reclaim */
3280 	current->backing_dev_info = inode_to_bdi(inode);
3281 	err = file_remove_privs(file);
3282 	if (err)
3283 		goto out;
3284 
3285 	err = file_update_time(file);
3286 	if (err)
3287 		goto out;
3288 
3289 	if (iocb->ki_flags & IOCB_DIRECT) {
3290 		loff_t pos, endbyte;
3291 
3292 		written = generic_file_direct_write(iocb, from);
3293 		/*
3294 		 * If the write stopped short of completing, fall back to
3295 		 * buffered writes.  Some filesystems do this for writes to
3296 		 * holes, for example.  For DAX files, a buffered write will
3297 		 * not succeed (even if it did, DAX does not handle dirty
3298 		 * page-cache pages correctly).
3299 		 */
3300 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3301 			goto out;
3302 
3303 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3304 		/*
3305 		 * If generic_perform_write() returned a synchronous error
3306 		 * then we want to return the number of bytes which were
3307 		 * direct-written, or the error code if that was zero.  Note
3308 		 * that this differs from normal direct-io semantics, which
3309 		 * will return -EFOO even if some bytes were written.
3310 		 */
3311 		if (unlikely(status < 0)) {
3312 			err = status;
3313 			goto out;
3314 		}
3315 		/*
3316 		 * We need to ensure that the page cache pages are written to
3317 		 * disk and invalidated to preserve the expected O_DIRECT
3318 		 * semantics.
3319 		 */
3320 		endbyte = pos + status - 1;
3321 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3322 		if (err == 0) {
3323 			iocb->ki_pos = endbyte + 1;
3324 			written += status;
3325 			invalidate_mapping_pages(mapping,
3326 						 pos >> PAGE_SHIFT,
3327 						 endbyte >> PAGE_SHIFT);
3328 		} else {
3329 			/*
3330 			 * We don't know how much we wrote, so just return
3331 			 * the number of bytes which were direct-written
3332 			 */
3333 		}
3334 	} else {
3335 		written = generic_perform_write(file, from, iocb->ki_pos);
3336 		if (likely(written > 0))
3337 			iocb->ki_pos += written;
3338 	}
3339 out:
3340 	current->backing_dev_info = NULL;
3341 	return written ? written : err;
3342 }
3343 EXPORT_SYMBOL(__generic_file_write_iter);
3344 
3345 /**
3346  * generic_file_write_iter - write data to a file
3347  * @iocb:	IO state structure
3348  * @from:	iov_iter with data to write
3349  *
3350  * This is a wrapper around __generic_file_write_iter() to be used by most
3351  * filesystems. It takes care of syncing the file in case of O_SYNC file
3352  * and acquires i_mutex as needed.
3353  * Return:
3354  * * negative error code if no data has been written at all of
3355  *   vfs_fsync_range() failed for a synchronous write
3356  * * number of bytes written, even for truncated writes
3357  */
3358 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3359 {
3360 	struct file *file = iocb->ki_filp;
3361 	struct inode *inode = file->f_mapping->host;
3362 	ssize_t ret;
3363 
3364 	inode_lock(inode);
3365 	ret = generic_write_checks(iocb, from);
3366 	if (ret > 0)
3367 		ret = __generic_file_write_iter(iocb, from);
3368 	inode_unlock(inode);
3369 
3370 	if (ret > 0)
3371 		ret = generic_write_sync(iocb, ret);
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL(generic_file_write_iter);
3375 
3376 /**
3377  * try_to_release_page() - release old fs-specific metadata on a page
3378  *
3379  * @page: the page which the kernel is trying to free
3380  * @gfp_mask: memory allocation flags (and I/O mode)
3381  *
3382  * The address_space is to try to release any data against the page
3383  * (presumably at page->private).
3384  *
3385  * This may also be called if PG_fscache is set on a page, indicating that the
3386  * page is known to the local caching routines.
3387  *
3388  * The @gfp_mask argument specifies whether I/O may be performed to release
3389  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3390  *
3391  * Return: %1 if the release was successful, otherwise return zero.
3392  */
3393 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3394 {
3395 	struct address_space * const mapping = page->mapping;
3396 
3397 	BUG_ON(!PageLocked(page));
3398 	if (PageWriteback(page))
3399 		return 0;
3400 
3401 	if (mapping && mapping->a_ops->releasepage)
3402 		return mapping->a_ops->releasepage(page, gfp_mask);
3403 	return try_to_free_buffers(page);
3404 }
3405 
3406 EXPORT_SYMBOL(try_to_release_page);
3407