xref: /openbmc/linux/mm/filemap.c (revision 1491eaf9)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 			if (node)
136 				workingset_node_shadows_dec(node);
137 		} else {
138 			/* DAX can replace empty locked entry with a hole */
139 			WARN_ON_ONCE(p !=
140 				(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
141 					 RADIX_DAX_ENTRY_LOCK));
142 			/* DAX accounts exceptional entries as normal pages */
143 			if (node)
144 				workingset_node_pages_dec(node);
145 			/* Wakeup waiters for exceptional entry lock */
146 			dax_wake_mapping_entry_waiter(mapping, page->index,
147 						      false);
148 		}
149 	}
150 	radix_tree_replace_slot(slot, page);
151 	mapping->nrpages++;
152 	if (node) {
153 		workingset_node_pages_inc(node);
154 		/*
155 		 * Don't track node that contains actual pages.
156 		 *
157 		 * Avoid acquiring the list_lru lock if already
158 		 * untracked.  The list_empty() test is safe as
159 		 * node->private_list is protected by
160 		 * mapping->tree_lock.
161 		 */
162 		if (!list_empty(&node->private_list))
163 			list_lru_del(&workingset_shadow_nodes,
164 				     &node->private_list);
165 	}
166 	return 0;
167 }
168 
169 static void page_cache_tree_delete(struct address_space *mapping,
170 				   struct page *page, void *shadow)
171 {
172 	struct radix_tree_node *node;
173 	int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
174 
175 	VM_BUG_ON_PAGE(!PageLocked(page), page);
176 	VM_BUG_ON_PAGE(PageTail(page), page);
177 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
178 
179 	if (shadow) {
180 		mapping->nrexceptional += nr;
181 		/*
182 		 * Make sure the nrexceptional update is committed before
183 		 * the nrpages update so that final truncate racing
184 		 * with reclaim does not see both counters 0 at the
185 		 * same time and miss a shadow entry.
186 		 */
187 		smp_wmb();
188 	}
189 	mapping->nrpages -= nr;
190 
191 	for (i = 0; i < nr; i++) {
192 		node = radix_tree_replace_clear_tags(&mapping->page_tree,
193 				page->index + i, shadow);
194 		if (!node) {
195 			VM_BUG_ON_PAGE(nr != 1, page);
196 			return;
197 		}
198 
199 		workingset_node_pages_dec(node);
200 		if (shadow)
201 			workingset_node_shadows_inc(node);
202 		else
203 			if (__radix_tree_delete_node(&mapping->page_tree, node))
204 				continue;
205 
206 		/*
207 		 * Track node that only contains shadow entries. DAX mappings
208 		 * contain no shadow entries and may contain other exceptional
209 		 * entries so skip those.
210 		 *
211 		 * Avoid acquiring the list_lru lock if already tracked.
212 		 * The list_empty() test is safe as node->private_list is
213 		 * protected by mapping->tree_lock.
214 		 */
215 		if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
216 				list_empty(&node->private_list)) {
217 			node->private_data = mapping;
218 			list_lru_add(&workingset_shadow_nodes,
219 					&node->private_list);
220 		}
221 	}
222 }
223 
224 /*
225  * Delete a page from the page cache and free it. Caller has to make
226  * sure the page is locked and that nobody else uses it - or that usage
227  * is safe.  The caller must hold the mapping's tree_lock.
228  */
229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 	struct address_space *mapping = page->mapping;
232 	int nr = hpage_nr_pages(page);
233 
234 	trace_mm_filemap_delete_from_page_cache(page);
235 	/*
236 	 * if we're uptodate, flush out into the cleancache, otherwise
237 	 * invalidate any existing cleancache entries.  We can't leave
238 	 * stale data around in the cleancache once our page is gone
239 	 */
240 	if (PageUptodate(page) && PageMappedToDisk(page))
241 		cleancache_put_page(page);
242 	else
243 		cleancache_invalidate_page(mapping, page);
244 
245 	VM_BUG_ON_PAGE(PageTail(page), page);
246 	VM_BUG_ON_PAGE(page_mapped(page), page);
247 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
248 		int mapcount;
249 
250 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
251 			 current->comm, page_to_pfn(page));
252 		dump_page(page, "still mapped when deleted");
253 		dump_stack();
254 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
255 
256 		mapcount = page_mapcount(page);
257 		if (mapping_exiting(mapping) &&
258 		    page_count(page) >= mapcount + 2) {
259 			/*
260 			 * All vmas have already been torn down, so it's
261 			 * a good bet that actually the page is unmapped,
262 			 * and we'd prefer not to leak it: if we're wrong,
263 			 * some other bad page check should catch it later.
264 			 */
265 			page_mapcount_reset(page);
266 			page_ref_sub(page, mapcount);
267 		}
268 	}
269 
270 	page_cache_tree_delete(mapping, page, shadow);
271 
272 	page->mapping = NULL;
273 	/* Leave page->index set: truncation lookup relies upon it */
274 
275 	/* hugetlb pages do not participate in page cache accounting. */
276 	if (!PageHuge(page))
277 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
278 	if (PageSwapBacked(page)) {
279 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
280 		if (PageTransHuge(page))
281 			__dec_node_page_state(page, NR_SHMEM_THPS);
282 	} else {
283 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
284 	}
285 
286 	/*
287 	 * At this point page must be either written or cleaned by truncate.
288 	 * Dirty page here signals a bug and loss of unwritten data.
289 	 *
290 	 * This fixes dirty accounting after removing the page entirely but
291 	 * leaves PageDirty set: it has no effect for truncated page and
292 	 * anyway will be cleared before returning page into buddy allocator.
293 	 */
294 	if (WARN_ON_ONCE(PageDirty(page)))
295 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
296 }
297 
298 /**
299  * delete_from_page_cache - delete page from page cache
300  * @page: the page which the kernel is trying to remove from page cache
301  *
302  * This must be called only on pages that have been verified to be in the page
303  * cache and locked.  It will never put the page into the free list, the caller
304  * has a reference on the page.
305  */
306 void delete_from_page_cache(struct page *page)
307 {
308 	struct address_space *mapping = page_mapping(page);
309 	unsigned long flags;
310 	void (*freepage)(struct page *);
311 
312 	BUG_ON(!PageLocked(page));
313 
314 	freepage = mapping->a_ops->freepage;
315 
316 	spin_lock_irqsave(&mapping->tree_lock, flags);
317 	__delete_from_page_cache(page, NULL);
318 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
319 
320 	if (freepage)
321 		freepage(page);
322 
323 	if (PageTransHuge(page) && !PageHuge(page)) {
324 		page_ref_sub(page, HPAGE_PMD_NR);
325 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
326 	} else {
327 		put_page(page);
328 	}
329 }
330 EXPORT_SYMBOL(delete_from_page_cache);
331 
332 int filemap_check_errors(struct address_space *mapping)
333 {
334 	int ret = 0;
335 	/* Check for outstanding write errors */
336 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
337 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
338 		ret = -ENOSPC;
339 	if (test_bit(AS_EIO, &mapping->flags) &&
340 	    test_and_clear_bit(AS_EIO, &mapping->flags))
341 		ret = -EIO;
342 	return ret;
343 }
344 EXPORT_SYMBOL(filemap_check_errors);
345 
346 /**
347  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
348  * @mapping:	address space structure to write
349  * @start:	offset in bytes where the range starts
350  * @end:	offset in bytes where the range ends (inclusive)
351  * @sync_mode:	enable synchronous operation
352  *
353  * Start writeback against all of a mapping's dirty pages that lie
354  * within the byte offsets <start, end> inclusive.
355  *
356  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
357  * opposed to a regular memory cleansing writeback.  The difference between
358  * these two operations is that if a dirty page/buffer is encountered, it must
359  * be waited upon, and not just skipped over.
360  */
361 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
362 				loff_t end, int sync_mode)
363 {
364 	int ret;
365 	struct writeback_control wbc = {
366 		.sync_mode = sync_mode,
367 		.nr_to_write = LONG_MAX,
368 		.range_start = start,
369 		.range_end = end,
370 	};
371 
372 	if (!mapping_cap_writeback_dirty(mapping))
373 		return 0;
374 
375 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
376 	ret = do_writepages(mapping, &wbc);
377 	wbc_detach_inode(&wbc);
378 	return ret;
379 }
380 
381 static inline int __filemap_fdatawrite(struct address_space *mapping,
382 	int sync_mode)
383 {
384 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
385 }
386 
387 int filemap_fdatawrite(struct address_space *mapping)
388 {
389 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
390 }
391 EXPORT_SYMBOL(filemap_fdatawrite);
392 
393 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
394 				loff_t end)
395 {
396 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
397 }
398 EXPORT_SYMBOL(filemap_fdatawrite_range);
399 
400 /**
401  * filemap_flush - mostly a non-blocking flush
402  * @mapping:	target address_space
403  *
404  * This is a mostly non-blocking flush.  Not suitable for data-integrity
405  * purposes - I/O may not be started against all dirty pages.
406  */
407 int filemap_flush(struct address_space *mapping)
408 {
409 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
410 }
411 EXPORT_SYMBOL(filemap_flush);
412 
413 static int __filemap_fdatawait_range(struct address_space *mapping,
414 				     loff_t start_byte, loff_t end_byte)
415 {
416 	pgoff_t index = start_byte >> PAGE_SHIFT;
417 	pgoff_t end = end_byte >> PAGE_SHIFT;
418 	struct pagevec pvec;
419 	int nr_pages;
420 	int ret = 0;
421 
422 	if (end_byte < start_byte)
423 		goto out;
424 
425 	pagevec_init(&pvec, 0);
426 	while ((index <= end) &&
427 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 			PAGECACHE_TAG_WRITEBACK,
429 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
430 		unsigned i;
431 
432 		for (i = 0; i < nr_pages; i++) {
433 			struct page *page = pvec.pages[i];
434 
435 			/* until radix tree lookup accepts end_index */
436 			if (page->index > end)
437 				continue;
438 
439 			wait_on_page_writeback(page);
440 			if (TestClearPageError(page))
441 				ret = -EIO;
442 		}
443 		pagevec_release(&pvec);
444 		cond_resched();
445 	}
446 out:
447 	return ret;
448 }
449 
450 /**
451  * filemap_fdatawait_range - wait for writeback to complete
452  * @mapping:		address space structure to wait for
453  * @start_byte:		offset in bytes where the range starts
454  * @end_byte:		offset in bytes where the range ends (inclusive)
455  *
456  * Walk the list of under-writeback pages of the given address space
457  * in the given range and wait for all of them.  Check error status of
458  * the address space and return it.
459  *
460  * Since the error status of the address space is cleared by this function,
461  * callers are responsible for checking the return value and handling and/or
462  * reporting the error.
463  */
464 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
465 			    loff_t end_byte)
466 {
467 	int ret, ret2;
468 
469 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
470 	ret2 = filemap_check_errors(mapping);
471 	if (!ret)
472 		ret = ret2;
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477 
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 void filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492 	loff_t i_size = i_size_read(mapping->host);
493 
494 	if (i_size == 0)
495 		return;
496 
497 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
498 }
499 
500 /**
501  * filemap_fdatawait - wait for all under-writeback pages to complete
502  * @mapping: address space structure to wait for
503  *
504  * Walk the list of under-writeback pages of the given address space
505  * and wait for all of them.  Check error status of the address space
506  * and return it.
507  *
508  * Since the error status of the address space is cleared by this function,
509  * callers are responsible for checking the return value and handling and/or
510  * reporting the error.
511  */
512 int filemap_fdatawait(struct address_space *mapping)
513 {
514 	loff_t i_size = i_size_read(mapping->host);
515 
516 	if (i_size == 0)
517 		return 0;
518 
519 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
520 }
521 EXPORT_SYMBOL(filemap_fdatawait);
522 
523 int filemap_write_and_wait(struct address_space *mapping)
524 {
525 	int err = 0;
526 
527 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
528 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
529 		err = filemap_fdatawrite(mapping);
530 		/*
531 		 * Even if the above returned error, the pages may be
532 		 * written partially (e.g. -ENOSPC), so we wait for it.
533 		 * But the -EIO is special case, it may indicate the worst
534 		 * thing (e.g. bug) happened, so we avoid waiting for it.
535 		 */
536 		if (err != -EIO) {
537 			int err2 = filemap_fdatawait(mapping);
538 			if (!err)
539 				err = err2;
540 		}
541 	} else {
542 		err = filemap_check_errors(mapping);
543 	}
544 	return err;
545 }
546 EXPORT_SYMBOL(filemap_write_and_wait);
547 
548 /**
549  * filemap_write_and_wait_range - write out & wait on a file range
550  * @mapping:	the address_space for the pages
551  * @lstart:	offset in bytes where the range starts
552  * @lend:	offset in bytes where the range ends (inclusive)
553  *
554  * Write out and wait upon file offsets lstart->lend, inclusive.
555  *
556  * Note that `lend' is inclusive (describes the last byte to be written) so
557  * that this function can be used to write to the very end-of-file (end = -1).
558  */
559 int filemap_write_and_wait_range(struct address_space *mapping,
560 				 loff_t lstart, loff_t lend)
561 {
562 	int err = 0;
563 
564 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
565 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
566 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
567 						 WB_SYNC_ALL);
568 		/* See comment of filemap_write_and_wait() */
569 		if (err != -EIO) {
570 			int err2 = filemap_fdatawait_range(mapping,
571 						lstart, lend);
572 			if (!err)
573 				err = err2;
574 		}
575 	} else {
576 		err = filemap_check_errors(mapping);
577 	}
578 	return err;
579 }
580 EXPORT_SYMBOL(filemap_write_and_wait_range);
581 
582 /**
583  * replace_page_cache_page - replace a pagecache page with a new one
584  * @old:	page to be replaced
585  * @new:	page to replace with
586  * @gfp_mask:	allocation mode
587  *
588  * This function replaces a page in the pagecache with a new one.  On
589  * success it acquires the pagecache reference for the new page and
590  * drops it for the old page.  Both the old and new pages must be
591  * locked.  This function does not add the new page to the LRU, the
592  * caller must do that.
593  *
594  * The remove + add is atomic.  The only way this function can fail is
595  * memory allocation failure.
596  */
597 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
598 {
599 	int error;
600 
601 	VM_BUG_ON_PAGE(!PageLocked(old), old);
602 	VM_BUG_ON_PAGE(!PageLocked(new), new);
603 	VM_BUG_ON_PAGE(new->mapping, new);
604 
605 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
606 	if (!error) {
607 		struct address_space *mapping = old->mapping;
608 		void (*freepage)(struct page *);
609 		unsigned long flags;
610 
611 		pgoff_t offset = old->index;
612 		freepage = mapping->a_ops->freepage;
613 
614 		get_page(new);
615 		new->mapping = mapping;
616 		new->index = offset;
617 
618 		spin_lock_irqsave(&mapping->tree_lock, flags);
619 		__delete_from_page_cache(old, NULL);
620 		error = page_cache_tree_insert(mapping, new, NULL);
621 		BUG_ON(error);
622 		mapping->nrpages++;
623 
624 		/*
625 		 * hugetlb pages do not participate in page cache accounting.
626 		 */
627 		if (!PageHuge(new))
628 			__inc_node_page_state(new, NR_FILE_PAGES);
629 		if (PageSwapBacked(new))
630 			__inc_node_page_state(new, NR_SHMEM);
631 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
632 		mem_cgroup_migrate(old, new);
633 		radix_tree_preload_end();
634 		if (freepage)
635 			freepage(old);
636 		put_page(old);
637 	}
638 
639 	return error;
640 }
641 EXPORT_SYMBOL_GPL(replace_page_cache_page);
642 
643 static int __add_to_page_cache_locked(struct page *page,
644 				      struct address_space *mapping,
645 				      pgoff_t offset, gfp_t gfp_mask,
646 				      void **shadowp)
647 {
648 	int huge = PageHuge(page);
649 	struct mem_cgroup *memcg;
650 	int error;
651 
652 	VM_BUG_ON_PAGE(!PageLocked(page), page);
653 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
654 
655 	if (!huge) {
656 		error = mem_cgroup_try_charge(page, current->mm,
657 					      gfp_mask, &memcg, false);
658 		if (error)
659 			return error;
660 	}
661 
662 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
663 	if (error) {
664 		if (!huge)
665 			mem_cgroup_cancel_charge(page, memcg, false);
666 		return error;
667 	}
668 
669 	get_page(page);
670 	page->mapping = mapping;
671 	page->index = offset;
672 
673 	spin_lock_irq(&mapping->tree_lock);
674 	error = page_cache_tree_insert(mapping, page, shadowp);
675 	radix_tree_preload_end();
676 	if (unlikely(error))
677 		goto err_insert;
678 
679 	/* hugetlb pages do not participate in page cache accounting. */
680 	if (!huge)
681 		__inc_node_page_state(page, NR_FILE_PAGES);
682 	spin_unlock_irq(&mapping->tree_lock);
683 	if (!huge)
684 		mem_cgroup_commit_charge(page, memcg, false, false);
685 	trace_mm_filemap_add_to_page_cache(page);
686 	return 0;
687 err_insert:
688 	page->mapping = NULL;
689 	/* Leave page->index set: truncation relies upon it */
690 	spin_unlock_irq(&mapping->tree_lock);
691 	if (!huge)
692 		mem_cgroup_cancel_charge(page, memcg, false);
693 	put_page(page);
694 	return error;
695 }
696 
697 /**
698  * add_to_page_cache_locked - add a locked page to the pagecache
699  * @page:	page to add
700  * @mapping:	the page's address_space
701  * @offset:	page index
702  * @gfp_mask:	page allocation mode
703  *
704  * This function is used to add a page to the pagecache. It must be locked.
705  * This function does not add the page to the LRU.  The caller must do that.
706  */
707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708 		pgoff_t offset, gfp_t gfp_mask)
709 {
710 	return __add_to_page_cache_locked(page, mapping, offset,
711 					  gfp_mask, NULL);
712 }
713 EXPORT_SYMBOL(add_to_page_cache_locked);
714 
715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
716 				pgoff_t offset, gfp_t gfp_mask)
717 {
718 	void *shadow = NULL;
719 	int ret;
720 
721 	__SetPageLocked(page);
722 	ret = __add_to_page_cache_locked(page, mapping, offset,
723 					 gfp_mask, &shadow);
724 	if (unlikely(ret))
725 		__ClearPageLocked(page);
726 	else {
727 		/*
728 		 * The page might have been evicted from cache only
729 		 * recently, in which case it should be activated like
730 		 * any other repeatedly accessed page.
731 		 * The exception is pages getting rewritten; evicting other
732 		 * data from the working set, only to cache data that will
733 		 * get overwritten with something else, is a waste of memory.
734 		 */
735 		if (!(gfp_mask & __GFP_WRITE) &&
736 		    shadow && workingset_refault(shadow)) {
737 			SetPageActive(page);
738 			workingset_activation(page);
739 		} else
740 			ClearPageActive(page);
741 		lru_cache_add(page);
742 	}
743 	return ret;
744 }
745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
746 
747 #ifdef CONFIG_NUMA
748 struct page *__page_cache_alloc(gfp_t gfp)
749 {
750 	int n;
751 	struct page *page;
752 
753 	if (cpuset_do_page_mem_spread()) {
754 		unsigned int cpuset_mems_cookie;
755 		do {
756 			cpuset_mems_cookie = read_mems_allowed_begin();
757 			n = cpuset_mem_spread_node();
758 			page = __alloc_pages_node(n, gfp, 0);
759 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
760 
761 		return page;
762 	}
763 	return alloc_pages(gfp, 0);
764 }
765 EXPORT_SYMBOL(__page_cache_alloc);
766 #endif
767 
768 /*
769  * In order to wait for pages to become available there must be
770  * waitqueues associated with pages. By using a hash table of
771  * waitqueues where the bucket discipline is to maintain all
772  * waiters on the same queue and wake all when any of the pages
773  * become available, and for the woken contexts to check to be
774  * sure the appropriate page became available, this saves space
775  * at a cost of "thundering herd" phenomena during rare hash
776  * collisions.
777  */
778 wait_queue_head_t *page_waitqueue(struct page *page)
779 {
780 	const struct zone *zone = page_zone(page);
781 
782 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
783 }
784 EXPORT_SYMBOL(page_waitqueue);
785 
786 void wait_on_page_bit(struct page *page, int bit_nr)
787 {
788 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789 
790 	if (test_bit(bit_nr, &page->flags))
791 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
792 							TASK_UNINTERRUPTIBLE);
793 }
794 EXPORT_SYMBOL(wait_on_page_bit);
795 
796 int wait_on_page_bit_killable(struct page *page, int bit_nr)
797 {
798 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799 
800 	if (!test_bit(bit_nr, &page->flags))
801 		return 0;
802 
803 	return __wait_on_bit(page_waitqueue(page), &wait,
804 			     bit_wait_io, TASK_KILLABLE);
805 }
806 
807 int wait_on_page_bit_killable_timeout(struct page *page,
808 				       int bit_nr, unsigned long timeout)
809 {
810 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811 
812 	wait.key.timeout = jiffies + timeout;
813 	if (!test_bit(bit_nr, &page->flags))
814 		return 0;
815 	return __wait_on_bit(page_waitqueue(page), &wait,
816 			     bit_wait_io_timeout, TASK_KILLABLE);
817 }
818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
819 
820 /**
821  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
822  * @page: Page defining the wait queue of interest
823  * @waiter: Waiter to add to the queue
824  *
825  * Add an arbitrary @waiter to the wait queue for the nominated @page.
826  */
827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
828 {
829 	wait_queue_head_t *q = page_waitqueue(page);
830 	unsigned long flags;
831 
832 	spin_lock_irqsave(&q->lock, flags);
833 	__add_wait_queue(q, waiter);
834 	spin_unlock_irqrestore(&q->lock, flags);
835 }
836 EXPORT_SYMBOL_GPL(add_page_wait_queue);
837 
838 /**
839  * unlock_page - unlock a locked page
840  * @page: the page
841  *
842  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
844  * mechanism between PageLocked pages and PageWriteback pages is shared.
845  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
846  *
847  * The mb is necessary to enforce ordering between the clear_bit and the read
848  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
849  */
850 void unlock_page(struct page *page)
851 {
852 	page = compound_head(page);
853 	VM_BUG_ON_PAGE(!PageLocked(page), page);
854 	clear_bit_unlock(PG_locked, &page->flags);
855 	smp_mb__after_atomic();
856 	wake_up_page(page, PG_locked);
857 }
858 EXPORT_SYMBOL(unlock_page);
859 
860 /**
861  * end_page_writeback - end writeback against a page
862  * @page: the page
863  */
864 void end_page_writeback(struct page *page)
865 {
866 	/*
867 	 * TestClearPageReclaim could be used here but it is an atomic
868 	 * operation and overkill in this particular case. Failing to
869 	 * shuffle a page marked for immediate reclaim is too mild to
870 	 * justify taking an atomic operation penalty at the end of
871 	 * ever page writeback.
872 	 */
873 	if (PageReclaim(page)) {
874 		ClearPageReclaim(page);
875 		rotate_reclaimable_page(page);
876 	}
877 
878 	if (!test_clear_page_writeback(page))
879 		BUG();
880 
881 	smp_mb__after_atomic();
882 	wake_up_page(page, PG_writeback);
883 }
884 EXPORT_SYMBOL(end_page_writeback);
885 
886 /*
887  * After completing I/O on a page, call this routine to update the page
888  * flags appropriately
889  */
890 void page_endio(struct page *page, bool is_write, int err)
891 {
892 	if (!is_write) {
893 		if (!err) {
894 			SetPageUptodate(page);
895 		} else {
896 			ClearPageUptodate(page);
897 			SetPageError(page);
898 		}
899 		unlock_page(page);
900 	} else {
901 		if (err) {
902 			SetPageError(page);
903 			if (page->mapping)
904 				mapping_set_error(page->mapping, err);
905 		}
906 		end_page_writeback(page);
907 	}
908 }
909 EXPORT_SYMBOL_GPL(page_endio);
910 
911 /**
912  * __lock_page - get a lock on the page, assuming we need to sleep to get it
913  * @page: the page to lock
914  */
915 void __lock_page(struct page *page)
916 {
917 	struct page *page_head = compound_head(page);
918 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919 
920 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
921 							TASK_UNINTERRUPTIBLE);
922 }
923 EXPORT_SYMBOL(__lock_page);
924 
925 int __lock_page_killable(struct page *page)
926 {
927 	struct page *page_head = compound_head(page);
928 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
929 
930 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
931 					bit_wait_io, TASK_KILLABLE);
932 }
933 EXPORT_SYMBOL_GPL(__lock_page_killable);
934 
935 /*
936  * Return values:
937  * 1 - page is locked; mmap_sem is still held.
938  * 0 - page is not locked.
939  *     mmap_sem has been released (up_read()), unless flags had both
940  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941  *     which case mmap_sem is still held.
942  *
943  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944  * with the page locked and the mmap_sem unperturbed.
945  */
946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
947 			 unsigned int flags)
948 {
949 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
950 		/*
951 		 * CAUTION! In this case, mmap_sem is not released
952 		 * even though return 0.
953 		 */
954 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
955 			return 0;
956 
957 		up_read(&mm->mmap_sem);
958 		if (flags & FAULT_FLAG_KILLABLE)
959 			wait_on_page_locked_killable(page);
960 		else
961 			wait_on_page_locked(page);
962 		return 0;
963 	} else {
964 		if (flags & FAULT_FLAG_KILLABLE) {
965 			int ret;
966 
967 			ret = __lock_page_killable(page);
968 			if (ret) {
969 				up_read(&mm->mmap_sem);
970 				return 0;
971 			}
972 		} else
973 			__lock_page(page);
974 		return 1;
975 	}
976 }
977 
978 /**
979  * page_cache_next_hole - find the next hole (not-present entry)
980  * @mapping: mapping
981  * @index: index
982  * @max_scan: maximum range to search
983  *
984  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985  * lowest indexed hole.
986  *
987  * Returns: the index of the hole if found, otherwise returns an index
988  * outside of the set specified (in which case 'return - index >=
989  * max_scan' will be true). In rare cases of index wrap-around, 0 will
990  * be returned.
991  *
992  * page_cache_next_hole may be called under rcu_read_lock. However,
993  * like radix_tree_gang_lookup, this will not atomically search a
994  * snapshot of the tree at a single point in time. For example, if a
995  * hole is created at index 5, then subsequently a hole is created at
996  * index 10, page_cache_next_hole covering both indexes may return 10
997  * if called under rcu_read_lock.
998  */
999 pgoff_t page_cache_next_hole(struct address_space *mapping,
1000 			     pgoff_t index, unsigned long max_scan)
1001 {
1002 	unsigned long i;
1003 
1004 	for (i = 0; i < max_scan; i++) {
1005 		struct page *page;
1006 
1007 		page = radix_tree_lookup(&mapping->page_tree, index);
1008 		if (!page || radix_tree_exceptional_entry(page))
1009 			break;
1010 		index++;
1011 		if (index == 0)
1012 			break;
1013 	}
1014 
1015 	return index;
1016 }
1017 EXPORT_SYMBOL(page_cache_next_hole);
1018 
1019 /**
1020  * page_cache_prev_hole - find the prev hole (not-present entry)
1021  * @mapping: mapping
1022  * @index: index
1023  * @max_scan: maximum range to search
1024  *
1025  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026  * the first hole.
1027  *
1028  * Returns: the index of the hole if found, otherwise returns an index
1029  * outside of the set specified (in which case 'index - return >=
1030  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031  * will be returned.
1032  *
1033  * page_cache_prev_hole may be called under rcu_read_lock. However,
1034  * like radix_tree_gang_lookup, this will not atomically search a
1035  * snapshot of the tree at a single point in time. For example, if a
1036  * hole is created at index 10, then subsequently a hole is created at
1037  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038  * called under rcu_read_lock.
1039  */
1040 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041 			     pgoff_t index, unsigned long max_scan)
1042 {
1043 	unsigned long i;
1044 
1045 	for (i = 0; i < max_scan; i++) {
1046 		struct page *page;
1047 
1048 		page = radix_tree_lookup(&mapping->page_tree, index);
1049 		if (!page || radix_tree_exceptional_entry(page))
1050 			break;
1051 		index--;
1052 		if (index == ULONG_MAX)
1053 			break;
1054 	}
1055 
1056 	return index;
1057 }
1058 EXPORT_SYMBOL(page_cache_prev_hole);
1059 
1060 /**
1061  * find_get_entry - find and get a page cache entry
1062  * @mapping: the address_space to search
1063  * @offset: the page cache index
1064  *
1065  * Looks up the page cache slot at @mapping & @offset.  If there is a
1066  * page cache page, it is returned with an increased refcount.
1067  *
1068  * If the slot holds a shadow entry of a previously evicted page, or a
1069  * swap entry from shmem/tmpfs, it is returned.
1070  *
1071  * Otherwise, %NULL is returned.
1072  */
1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1074 {
1075 	void **pagep;
1076 	struct page *head, *page;
1077 
1078 	rcu_read_lock();
1079 repeat:
1080 	page = NULL;
1081 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082 	if (pagep) {
1083 		page = radix_tree_deref_slot(pagep);
1084 		if (unlikely(!page))
1085 			goto out;
1086 		if (radix_tree_exception(page)) {
1087 			if (radix_tree_deref_retry(page))
1088 				goto repeat;
1089 			/*
1090 			 * A shadow entry of a recently evicted page,
1091 			 * or a swap entry from shmem/tmpfs.  Return
1092 			 * it without attempting to raise page count.
1093 			 */
1094 			goto out;
1095 		}
1096 
1097 		head = compound_head(page);
1098 		if (!page_cache_get_speculative(head))
1099 			goto repeat;
1100 
1101 		/* The page was split under us? */
1102 		if (compound_head(page) != head) {
1103 			put_page(head);
1104 			goto repeat;
1105 		}
1106 
1107 		/*
1108 		 * Has the page moved?
1109 		 * This is part of the lockless pagecache protocol. See
1110 		 * include/linux/pagemap.h for details.
1111 		 */
1112 		if (unlikely(page != *pagep)) {
1113 			put_page(head);
1114 			goto repeat;
1115 		}
1116 	}
1117 out:
1118 	rcu_read_unlock();
1119 
1120 	return page;
1121 }
1122 EXPORT_SYMBOL(find_get_entry);
1123 
1124 /**
1125  * find_lock_entry - locate, pin and lock a page cache entry
1126  * @mapping: the address_space to search
1127  * @offset: the page cache index
1128  *
1129  * Looks up the page cache slot at @mapping & @offset.  If there is a
1130  * page cache page, it is returned locked and with an increased
1131  * refcount.
1132  *
1133  * If the slot holds a shadow entry of a previously evicted page, or a
1134  * swap entry from shmem/tmpfs, it is returned.
1135  *
1136  * Otherwise, %NULL is returned.
1137  *
1138  * find_lock_entry() may sleep.
1139  */
1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1141 {
1142 	struct page *page;
1143 
1144 repeat:
1145 	page = find_get_entry(mapping, offset);
1146 	if (page && !radix_tree_exception(page)) {
1147 		lock_page(page);
1148 		/* Has the page been truncated? */
1149 		if (unlikely(page_mapping(page) != mapping)) {
1150 			unlock_page(page);
1151 			put_page(page);
1152 			goto repeat;
1153 		}
1154 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1155 	}
1156 	return page;
1157 }
1158 EXPORT_SYMBOL(find_lock_entry);
1159 
1160 /**
1161  * pagecache_get_page - find and get a page reference
1162  * @mapping: the address_space to search
1163  * @offset: the page index
1164  * @fgp_flags: PCG flags
1165  * @gfp_mask: gfp mask to use for the page cache data page allocation
1166  *
1167  * Looks up the page cache slot at @mapping & @offset.
1168  *
1169  * PCG flags modify how the page is returned.
1170  *
1171  * FGP_ACCESSED: the page will be marked accessed
1172  * FGP_LOCK: Page is return locked
1173  * FGP_CREAT: If page is not present then a new page is allocated using
1174  *		@gfp_mask and added to the page cache and the VM's LRU
1175  *		list. The page is returned locked and with an increased
1176  *		refcount. Otherwise, %NULL is returned.
1177  *
1178  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179  * if the GFP flags specified for FGP_CREAT are atomic.
1180  *
1181  * If there is a page cache page, it is returned with an increased refcount.
1182  */
1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184 	int fgp_flags, gfp_t gfp_mask)
1185 {
1186 	struct page *page;
1187 
1188 repeat:
1189 	page = find_get_entry(mapping, offset);
1190 	if (radix_tree_exceptional_entry(page))
1191 		page = NULL;
1192 	if (!page)
1193 		goto no_page;
1194 
1195 	if (fgp_flags & FGP_LOCK) {
1196 		if (fgp_flags & FGP_NOWAIT) {
1197 			if (!trylock_page(page)) {
1198 				put_page(page);
1199 				return NULL;
1200 			}
1201 		} else {
1202 			lock_page(page);
1203 		}
1204 
1205 		/* Has the page been truncated? */
1206 		if (unlikely(page->mapping != mapping)) {
1207 			unlock_page(page);
1208 			put_page(page);
1209 			goto repeat;
1210 		}
1211 		VM_BUG_ON_PAGE(page->index != offset, page);
1212 	}
1213 
1214 	if (page && (fgp_flags & FGP_ACCESSED))
1215 		mark_page_accessed(page);
1216 
1217 no_page:
1218 	if (!page && (fgp_flags & FGP_CREAT)) {
1219 		int err;
1220 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221 			gfp_mask |= __GFP_WRITE;
1222 		if (fgp_flags & FGP_NOFS)
1223 			gfp_mask &= ~__GFP_FS;
1224 
1225 		page = __page_cache_alloc(gfp_mask);
1226 		if (!page)
1227 			return NULL;
1228 
1229 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230 			fgp_flags |= FGP_LOCK;
1231 
1232 		/* Init accessed so avoid atomic mark_page_accessed later */
1233 		if (fgp_flags & FGP_ACCESSED)
1234 			__SetPageReferenced(page);
1235 
1236 		err = add_to_page_cache_lru(page, mapping, offset,
1237 				gfp_mask & GFP_RECLAIM_MASK);
1238 		if (unlikely(err)) {
1239 			put_page(page);
1240 			page = NULL;
1241 			if (err == -EEXIST)
1242 				goto repeat;
1243 		}
1244 	}
1245 
1246 	return page;
1247 }
1248 EXPORT_SYMBOL(pagecache_get_page);
1249 
1250 /**
1251  * find_get_entries - gang pagecache lookup
1252  * @mapping:	The address_space to search
1253  * @start:	The starting page cache index
1254  * @nr_entries:	The maximum number of entries
1255  * @entries:	Where the resulting entries are placed
1256  * @indices:	The cache indices corresponding to the entries in @entries
1257  *
1258  * find_get_entries() will search for and return a group of up to
1259  * @nr_entries entries in the mapping.  The entries are placed at
1260  * @entries.  find_get_entries() takes a reference against any actual
1261  * pages it returns.
1262  *
1263  * The search returns a group of mapping-contiguous page cache entries
1264  * with ascending indexes.  There may be holes in the indices due to
1265  * not-present pages.
1266  *
1267  * Any shadow entries of evicted pages, or swap entries from
1268  * shmem/tmpfs, are included in the returned array.
1269  *
1270  * find_get_entries() returns the number of pages and shadow entries
1271  * which were found.
1272  */
1273 unsigned find_get_entries(struct address_space *mapping,
1274 			  pgoff_t start, unsigned int nr_entries,
1275 			  struct page **entries, pgoff_t *indices)
1276 {
1277 	void **slot;
1278 	unsigned int ret = 0;
1279 	struct radix_tree_iter iter;
1280 
1281 	if (!nr_entries)
1282 		return 0;
1283 
1284 	rcu_read_lock();
1285 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286 		struct page *head, *page;
1287 repeat:
1288 		page = radix_tree_deref_slot(slot);
1289 		if (unlikely(!page))
1290 			continue;
1291 		if (radix_tree_exception(page)) {
1292 			if (radix_tree_deref_retry(page)) {
1293 				slot = radix_tree_iter_retry(&iter);
1294 				continue;
1295 			}
1296 			/*
1297 			 * A shadow entry of a recently evicted page, a swap
1298 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1299 			 * without attempting to raise page count.
1300 			 */
1301 			goto export;
1302 		}
1303 
1304 		head = compound_head(page);
1305 		if (!page_cache_get_speculative(head))
1306 			goto repeat;
1307 
1308 		/* The page was split under us? */
1309 		if (compound_head(page) != head) {
1310 			put_page(head);
1311 			goto repeat;
1312 		}
1313 
1314 		/* Has the page moved? */
1315 		if (unlikely(page != *slot)) {
1316 			put_page(head);
1317 			goto repeat;
1318 		}
1319 export:
1320 		indices[ret] = iter.index;
1321 		entries[ret] = page;
1322 		if (++ret == nr_entries)
1323 			break;
1324 	}
1325 	rcu_read_unlock();
1326 	return ret;
1327 }
1328 
1329 /**
1330  * find_get_pages - gang pagecache lookup
1331  * @mapping:	The address_space to search
1332  * @start:	The starting page index
1333  * @nr_pages:	The maximum number of pages
1334  * @pages:	Where the resulting pages are placed
1335  *
1336  * find_get_pages() will search for and return a group of up to
1337  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1338  * find_get_pages() takes a reference against the returned pages.
1339  *
1340  * The search returns a group of mapping-contiguous pages with ascending
1341  * indexes.  There may be holes in the indices due to not-present pages.
1342  *
1343  * find_get_pages() returns the number of pages which were found.
1344  */
1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346 			    unsigned int nr_pages, struct page **pages)
1347 {
1348 	struct radix_tree_iter iter;
1349 	void **slot;
1350 	unsigned ret = 0;
1351 
1352 	if (unlikely(!nr_pages))
1353 		return 0;
1354 
1355 	rcu_read_lock();
1356 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357 		struct page *head, *page;
1358 repeat:
1359 		page = radix_tree_deref_slot(slot);
1360 		if (unlikely(!page))
1361 			continue;
1362 
1363 		if (radix_tree_exception(page)) {
1364 			if (radix_tree_deref_retry(page)) {
1365 				slot = radix_tree_iter_retry(&iter);
1366 				continue;
1367 			}
1368 			/*
1369 			 * A shadow entry of a recently evicted page,
1370 			 * or a swap entry from shmem/tmpfs.  Skip
1371 			 * over it.
1372 			 */
1373 			continue;
1374 		}
1375 
1376 		head = compound_head(page);
1377 		if (!page_cache_get_speculative(head))
1378 			goto repeat;
1379 
1380 		/* The page was split under us? */
1381 		if (compound_head(page) != head) {
1382 			put_page(head);
1383 			goto repeat;
1384 		}
1385 
1386 		/* Has the page moved? */
1387 		if (unlikely(page != *slot)) {
1388 			put_page(head);
1389 			goto repeat;
1390 		}
1391 
1392 		pages[ret] = page;
1393 		if (++ret == nr_pages)
1394 			break;
1395 	}
1396 
1397 	rcu_read_unlock();
1398 	return ret;
1399 }
1400 
1401 /**
1402  * find_get_pages_contig - gang contiguous pagecache lookup
1403  * @mapping:	The address_space to search
1404  * @index:	The starting page index
1405  * @nr_pages:	The maximum number of pages
1406  * @pages:	Where the resulting pages are placed
1407  *
1408  * find_get_pages_contig() works exactly like find_get_pages(), except
1409  * that the returned number of pages are guaranteed to be contiguous.
1410  *
1411  * find_get_pages_contig() returns the number of pages which were found.
1412  */
1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414 			       unsigned int nr_pages, struct page **pages)
1415 {
1416 	struct radix_tree_iter iter;
1417 	void **slot;
1418 	unsigned int ret = 0;
1419 
1420 	if (unlikely(!nr_pages))
1421 		return 0;
1422 
1423 	rcu_read_lock();
1424 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425 		struct page *head, *page;
1426 repeat:
1427 		page = radix_tree_deref_slot(slot);
1428 		/* The hole, there no reason to continue */
1429 		if (unlikely(!page))
1430 			break;
1431 
1432 		if (radix_tree_exception(page)) {
1433 			if (radix_tree_deref_retry(page)) {
1434 				slot = radix_tree_iter_retry(&iter);
1435 				continue;
1436 			}
1437 			/*
1438 			 * A shadow entry of a recently evicted page,
1439 			 * or a swap entry from shmem/tmpfs.  Stop
1440 			 * looking for contiguous pages.
1441 			 */
1442 			break;
1443 		}
1444 
1445 		head = compound_head(page);
1446 		if (!page_cache_get_speculative(head))
1447 			goto repeat;
1448 
1449 		/* The page was split under us? */
1450 		if (compound_head(page) != head) {
1451 			put_page(head);
1452 			goto repeat;
1453 		}
1454 
1455 		/* Has the page moved? */
1456 		if (unlikely(page != *slot)) {
1457 			put_page(head);
1458 			goto repeat;
1459 		}
1460 
1461 		/*
1462 		 * must check mapping and index after taking the ref.
1463 		 * otherwise we can get both false positives and false
1464 		 * negatives, which is just confusing to the caller.
1465 		 */
1466 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1467 			put_page(page);
1468 			break;
1469 		}
1470 
1471 		pages[ret] = page;
1472 		if (++ret == nr_pages)
1473 			break;
1474 	}
1475 	rcu_read_unlock();
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(find_get_pages_contig);
1479 
1480 /**
1481  * find_get_pages_tag - find and return pages that match @tag
1482  * @mapping:	the address_space to search
1483  * @index:	the starting page index
1484  * @tag:	the tag index
1485  * @nr_pages:	the maximum number of pages
1486  * @pages:	where the resulting pages are placed
1487  *
1488  * Like find_get_pages, except we only return pages which are tagged with
1489  * @tag.   We update @index to index the next page for the traversal.
1490  */
1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492 			int tag, unsigned int nr_pages, struct page **pages)
1493 {
1494 	struct radix_tree_iter iter;
1495 	void **slot;
1496 	unsigned ret = 0;
1497 
1498 	if (unlikely(!nr_pages))
1499 		return 0;
1500 
1501 	rcu_read_lock();
1502 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503 				   &iter, *index, tag) {
1504 		struct page *head, *page;
1505 repeat:
1506 		page = radix_tree_deref_slot(slot);
1507 		if (unlikely(!page))
1508 			continue;
1509 
1510 		if (radix_tree_exception(page)) {
1511 			if (radix_tree_deref_retry(page)) {
1512 				slot = radix_tree_iter_retry(&iter);
1513 				continue;
1514 			}
1515 			/*
1516 			 * A shadow entry of a recently evicted page.
1517 			 *
1518 			 * Those entries should never be tagged, but
1519 			 * this tree walk is lockless and the tags are
1520 			 * looked up in bulk, one radix tree node at a
1521 			 * time, so there is a sizable window for page
1522 			 * reclaim to evict a page we saw tagged.
1523 			 *
1524 			 * Skip over it.
1525 			 */
1526 			continue;
1527 		}
1528 
1529 		head = compound_head(page);
1530 		if (!page_cache_get_speculative(head))
1531 			goto repeat;
1532 
1533 		/* The page was split under us? */
1534 		if (compound_head(page) != head) {
1535 			put_page(head);
1536 			goto repeat;
1537 		}
1538 
1539 		/* Has the page moved? */
1540 		if (unlikely(page != *slot)) {
1541 			put_page(head);
1542 			goto repeat;
1543 		}
1544 
1545 		pages[ret] = page;
1546 		if (++ret == nr_pages)
1547 			break;
1548 	}
1549 
1550 	rcu_read_unlock();
1551 
1552 	if (ret)
1553 		*index = pages[ret - 1]->index + 1;
1554 
1555 	return ret;
1556 }
1557 EXPORT_SYMBOL(find_get_pages_tag);
1558 
1559 /**
1560  * find_get_entries_tag - find and return entries that match @tag
1561  * @mapping:	the address_space to search
1562  * @start:	the starting page cache index
1563  * @tag:	the tag index
1564  * @nr_entries:	the maximum number of entries
1565  * @entries:	where the resulting entries are placed
1566  * @indices:	the cache indices corresponding to the entries in @entries
1567  *
1568  * Like find_get_entries, except we only return entries which are tagged with
1569  * @tag.
1570  */
1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572 			int tag, unsigned int nr_entries,
1573 			struct page **entries, pgoff_t *indices)
1574 {
1575 	void **slot;
1576 	unsigned int ret = 0;
1577 	struct radix_tree_iter iter;
1578 
1579 	if (!nr_entries)
1580 		return 0;
1581 
1582 	rcu_read_lock();
1583 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584 				   &iter, start, tag) {
1585 		struct page *head, *page;
1586 repeat:
1587 		page = radix_tree_deref_slot(slot);
1588 		if (unlikely(!page))
1589 			continue;
1590 		if (radix_tree_exception(page)) {
1591 			if (radix_tree_deref_retry(page)) {
1592 				slot = radix_tree_iter_retry(&iter);
1593 				continue;
1594 			}
1595 
1596 			/*
1597 			 * A shadow entry of a recently evicted page, a swap
1598 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1599 			 * without attempting to raise page count.
1600 			 */
1601 			goto export;
1602 		}
1603 
1604 		head = compound_head(page);
1605 		if (!page_cache_get_speculative(head))
1606 			goto repeat;
1607 
1608 		/* The page was split under us? */
1609 		if (compound_head(page) != head) {
1610 			put_page(head);
1611 			goto repeat;
1612 		}
1613 
1614 		/* Has the page moved? */
1615 		if (unlikely(page != *slot)) {
1616 			put_page(head);
1617 			goto repeat;
1618 		}
1619 export:
1620 		indices[ret] = iter.index;
1621 		entries[ret] = page;
1622 		if (++ret == nr_entries)
1623 			break;
1624 	}
1625 	rcu_read_unlock();
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL(find_get_entries_tag);
1629 
1630 /*
1631  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632  * a _large_ part of the i/o request. Imagine the worst scenario:
1633  *
1634  *      ---R__________________________________________B__________
1635  *         ^ reading here                             ^ bad block(assume 4k)
1636  *
1637  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638  * => failing the whole request => read(R) => read(R+1) =>
1639  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642  *
1643  * It is going insane. Fix it by quickly scaling down the readahead size.
1644  */
1645 static void shrink_readahead_size_eio(struct file *filp,
1646 					struct file_ra_state *ra)
1647 {
1648 	ra->ra_pages /= 4;
1649 }
1650 
1651 /**
1652  * do_generic_file_read - generic file read routine
1653  * @filp:	the file to read
1654  * @ppos:	current file position
1655  * @iter:	data destination
1656  * @written:	already copied
1657  *
1658  * This is a generic file read routine, and uses the
1659  * mapping->a_ops->readpage() function for the actual low-level stuff.
1660  *
1661  * This is really ugly. But the goto's actually try to clarify some
1662  * of the logic when it comes to error handling etc.
1663  */
1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665 		struct iov_iter *iter, ssize_t written)
1666 {
1667 	struct address_space *mapping = filp->f_mapping;
1668 	struct inode *inode = mapping->host;
1669 	struct file_ra_state *ra = &filp->f_ra;
1670 	pgoff_t index;
1671 	pgoff_t last_index;
1672 	pgoff_t prev_index;
1673 	unsigned long offset;      /* offset into pagecache page */
1674 	unsigned int prev_offset;
1675 	int error = 0;
1676 
1677 	index = *ppos >> PAGE_SHIFT;
1678 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1679 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681 	offset = *ppos & ~PAGE_MASK;
1682 
1683 	for (;;) {
1684 		struct page *page;
1685 		pgoff_t end_index;
1686 		loff_t isize;
1687 		unsigned long nr, ret;
1688 
1689 		cond_resched();
1690 find_page:
1691 		page = find_get_page(mapping, index);
1692 		if (!page) {
1693 			page_cache_sync_readahead(mapping,
1694 					ra, filp,
1695 					index, last_index - index);
1696 			page = find_get_page(mapping, index);
1697 			if (unlikely(page == NULL))
1698 				goto no_cached_page;
1699 		}
1700 		if (PageReadahead(page)) {
1701 			page_cache_async_readahead(mapping,
1702 					ra, filp, page,
1703 					index, last_index - index);
1704 		}
1705 		if (!PageUptodate(page)) {
1706 			/*
1707 			 * See comment in do_read_cache_page on why
1708 			 * wait_on_page_locked is used to avoid unnecessarily
1709 			 * serialisations and why it's safe.
1710 			 */
1711 			wait_on_page_locked_killable(page);
1712 			if (PageUptodate(page))
1713 				goto page_ok;
1714 
1715 			if (inode->i_blkbits == PAGE_SHIFT ||
1716 					!mapping->a_ops->is_partially_uptodate)
1717 				goto page_not_up_to_date;
1718 			if (!trylock_page(page))
1719 				goto page_not_up_to_date;
1720 			/* Did it get truncated before we got the lock? */
1721 			if (!page->mapping)
1722 				goto page_not_up_to_date_locked;
1723 			if (!mapping->a_ops->is_partially_uptodate(page,
1724 							offset, iter->count))
1725 				goto page_not_up_to_date_locked;
1726 			unlock_page(page);
1727 		}
1728 page_ok:
1729 		/*
1730 		 * i_size must be checked after we know the page is Uptodate.
1731 		 *
1732 		 * Checking i_size after the check allows us to calculate
1733 		 * the correct value for "nr", which means the zero-filled
1734 		 * part of the page is not copied back to userspace (unless
1735 		 * another truncate extends the file - this is desired though).
1736 		 */
1737 
1738 		isize = i_size_read(inode);
1739 		end_index = (isize - 1) >> PAGE_SHIFT;
1740 		if (unlikely(!isize || index > end_index)) {
1741 			put_page(page);
1742 			goto out;
1743 		}
1744 
1745 		/* nr is the maximum number of bytes to copy from this page */
1746 		nr = PAGE_SIZE;
1747 		if (index == end_index) {
1748 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1749 			if (nr <= offset) {
1750 				put_page(page);
1751 				goto out;
1752 			}
1753 		}
1754 		nr = nr - offset;
1755 
1756 		/* If users can be writing to this page using arbitrary
1757 		 * virtual addresses, take care about potential aliasing
1758 		 * before reading the page on the kernel side.
1759 		 */
1760 		if (mapping_writably_mapped(mapping))
1761 			flush_dcache_page(page);
1762 
1763 		/*
1764 		 * When a sequential read accesses a page several times,
1765 		 * only mark it as accessed the first time.
1766 		 */
1767 		if (prev_index != index || offset != prev_offset)
1768 			mark_page_accessed(page);
1769 		prev_index = index;
1770 
1771 		/*
1772 		 * Ok, we have the page, and it's up-to-date, so
1773 		 * now we can copy it to user space...
1774 		 */
1775 
1776 		ret = copy_page_to_iter(page, offset, nr, iter);
1777 		offset += ret;
1778 		index += offset >> PAGE_SHIFT;
1779 		offset &= ~PAGE_MASK;
1780 		prev_offset = offset;
1781 
1782 		put_page(page);
1783 		written += ret;
1784 		if (!iov_iter_count(iter))
1785 			goto out;
1786 		if (ret < nr) {
1787 			error = -EFAULT;
1788 			goto out;
1789 		}
1790 		continue;
1791 
1792 page_not_up_to_date:
1793 		/* Get exclusive access to the page ... */
1794 		error = lock_page_killable(page);
1795 		if (unlikely(error))
1796 			goto readpage_error;
1797 
1798 page_not_up_to_date_locked:
1799 		/* Did it get truncated before we got the lock? */
1800 		if (!page->mapping) {
1801 			unlock_page(page);
1802 			put_page(page);
1803 			continue;
1804 		}
1805 
1806 		/* Did somebody else fill it already? */
1807 		if (PageUptodate(page)) {
1808 			unlock_page(page);
1809 			goto page_ok;
1810 		}
1811 
1812 readpage:
1813 		/*
1814 		 * A previous I/O error may have been due to temporary
1815 		 * failures, eg. multipath errors.
1816 		 * PG_error will be set again if readpage fails.
1817 		 */
1818 		ClearPageError(page);
1819 		/* Start the actual read. The read will unlock the page. */
1820 		error = mapping->a_ops->readpage(filp, page);
1821 
1822 		if (unlikely(error)) {
1823 			if (error == AOP_TRUNCATED_PAGE) {
1824 				put_page(page);
1825 				error = 0;
1826 				goto find_page;
1827 			}
1828 			goto readpage_error;
1829 		}
1830 
1831 		if (!PageUptodate(page)) {
1832 			error = lock_page_killable(page);
1833 			if (unlikely(error))
1834 				goto readpage_error;
1835 			if (!PageUptodate(page)) {
1836 				if (page->mapping == NULL) {
1837 					/*
1838 					 * invalidate_mapping_pages got it
1839 					 */
1840 					unlock_page(page);
1841 					put_page(page);
1842 					goto find_page;
1843 				}
1844 				unlock_page(page);
1845 				shrink_readahead_size_eio(filp, ra);
1846 				error = -EIO;
1847 				goto readpage_error;
1848 			}
1849 			unlock_page(page);
1850 		}
1851 
1852 		goto page_ok;
1853 
1854 readpage_error:
1855 		/* UHHUH! A synchronous read error occurred. Report it */
1856 		put_page(page);
1857 		goto out;
1858 
1859 no_cached_page:
1860 		/*
1861 		 * Ok, it wasn't cached, so we need to create a new
1862 		 * page..
1863 		 */
1864 		page = page_cache_alloc_cold(mapping);
1865 		if (!page) {
1866 			error = -ENOMEM;
1867 			goto out;
1868 		}
1869 		error = add_to_page_cache_lru(page, mapping, index,
1870 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1871 		if (error) {
1872 			put_page(page);
1873 			if (error == -EEXIST) {
1874 				error = 0;
1875 				goto find_page;
1876 			}
1877 			goto out;
1878 		}
1879 		goto readpage;
1880 	}
1881 
1882 out:
1883 	ra->prev_pos = prev_index;
1884 	ra->prev_pos <<= PAGE_SHIFT;
1885 	ra->prev_pos |= prev_offset;
1886 
1887 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1888 	file_accessed(filp);
1889 	return written ? written : error;
1890 }
1891 
1892 /**
1893  * generic_file_read_iter - generic filesystem read routine
1894  * @iocb:	kernel I/O control block
1895  * @iter:	destination for the data read
1896  *
1897  * This is the "read_iter()" routine for all filesystems
1898  * that can use the page cache directly.
1899  */
1900 ssize_t
1901 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1902 {
1903 	struct file *file = iocb->ki_filp;
1904 	ssize_t retval = 0;
1905 	size_t count = iov_iter_count(iter);
1906 
1907 	if (!count)
1908 		goto out; /* skip atime */
1909 
1910 	if (iocb->ki_flags & IOCB_DIRECT) {
1911 		struct address_space *mapping = file->f_mapping;
1912 		struct inode *inode = mapping->host;
1913 		loff_t size;
1914 
1915 		size = i_size_read(inode);
1916 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1917 					iocb->ki_pos + count - 1);
1918 		if (!retval) {
1919 			struct iov_iter data = *iter;
1920 			retval = mapping->a_ops->direct_IO(iocb, &data);
1921 		}
1922 
1923 		if (retval > 0) {
1924 			iocb->ki_pos += retval;
1925 			iov_iter_advance(iter, retval);
1926 		}
1927 
1928 		/*
1929 		 * Btrfs can have a short DIO read if we encounter
1930 		 * compressed extents, so if there was an error, or if
1931 		 * we've already read everything we wanted to, or if
1932 		 * there was a short read because we hit EOF, go ahead
1933 		 * and return.  Otherwise fallthrough to buffered io for
1934 		 * the rest of the read.  Buffered reads will not work for
1935 		 * DAX files, so don't bother trying.
1936 		 */
1937 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1938 		    IS_DAX(inode)) {
1939 			file_accessed(file);
1940 			goto out;
1941 		}
1942 	}
1943 
1944 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1945 out:
1946 	return retval;
1947 }
1948 EXPORT_SYMBOL(generic_file_read_iter);
1949 
1950 #ifdef CONFIG_MMU
1951 /**
1952  * page_cache_read - adds requested page to the page cache if not already there
1953  * @file:	file to read
1954  * @offset:	page index
1955  * @gfp_mask:	memory allocation flags
1956  *
1957  * This adds the requested page to the page cache if it isn't already there,
1958  * and schedules an I/O to read in its contents from disk.
1959  */
1960 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1961 {
1962 	struct address_space *mapping = file->f_mapping;
1963 	struct page *page;
1964 	int ret;
1965 
1966 	do {
1967 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1968 		if (!page)
1969 			return -ENOMEM;
1970 
1971 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1972 		if (ret == 0)
1973 			ret = mapping->a_ops->readpage(file, page);
1974 		else if (ret == -EEXIST)
1975 			ret = 0; /* losing race to add is OK */
1976 
1977 		put_page(page);
1978 
1979 	} while (ret == AOP_TRUNCATED_PAGE);
1980 
1981 	return ret;
1982 }
1983 
1984 #define MMAP_LOTSAMISS  (100)
1985 
1986 /*
1987  * Synchronous readahead happens when we don't even find
1988  * a page in the page cache at all.
1989  */
1990 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1991 				   struct file_ra_state *ra,
1992 				   struct file *file,
1993 				   pgoff_t offset)
1994 {
1995 	struct address_space *mapping = file->f_mapping;
1996 
1997 	/* If we don't want any read-ahead, don't bother */
1998 	if (vma->vm_flags & VM_RAND_READ)
1999 		return;
2000 	if (!ra->ra_pages)
2001 		return;
2002 
2003 	if (vma->vm_flags & VM_SEQ_READ) {
2004 		page_cache_sync_readahead(mapping, ra, file, offset,
2005 					  ra->ra_pages);
2006 		return;
2007 	}
2008 
2009 	/* Avoid banging the cache line if not needed */
2010 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2011 		ra->mmap_miss++;
2012 
2013 	/*
2014 	 * Do we miss much more than hit in this file? If so,
2015 	 * stop bothering with read-ahead. It will only hurt.
2016 	 */
2017 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2018 		return;
2019 
2020 	/*
2021 	 * mmap read-around
2022 	 */
2023 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2024 	ra->size = ra->ra_pages;
2025 	ra->async_size = ra->ra_pages / 4;
2026 	ra_submit(ra, mapping, file);
2027 }
2028 
2029 /*
2030  * Asynchronous readahead happens when we find the page and PG_readahead,
2031  * so we want to possibly extend the readahead further..
2032  */
2033 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2034 				    struct file_ra_state *ra,
2035 				    struct file *file,
2036 				    struct page *page,
2037 				    pgoff_t offset)
2038 {
2039 	struct address_space *mapping = file->f_mapping;
2040 
2041 	/* If we don't want any read-ahead, don't bother */
2042 	if (vma->vm_flags & VM_RAND_READ)
2043 		return;
2044 	if (ra->mmap_miss > 0)
2045 		ra->mmap_miss--;
2046 	if (PageReadahead(page))
2047 		page_cache_async_readahead(mapping, ra, file,
2048 					   page, offset, ra->ra_pages);
2049 }
2050 
2051 /**
2052  * filemap_fault - read in file data for page fault handling
2053  * @vma:	vma in which the fault was taken
2054  * @vmf:	struct vm_fault containing details of the fault
2055  *
2056  * filemap_fault() is invoked via the vma operations vector for a
2057  * mapped memory region to read in file data during a page fault.
2058  *
2059  * The goto's are kind of ugly, but this streamlines the normal case of having
2060  * it in the page cache, and handles the special cases reasonably without
2061  * having a lot of duplicated code.
2062  *
2063  * vma->vm_mm->mmap_sem must be held on entry.
2064  *
2065  * If our return value has VM_FAULT_RETRY set, it's because
2066  * lock_page_or_retry() returned 0.
2067  * The mmap_sem has usually been released in this case.
2068  * See __lock_page_or_retry() for the exception.
2069  *
2070  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2071  * has not been released.
2072  *
2073  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2074  */
2075 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2076 {
2077 	int error;
2078 	struct file *file = vma->vm_file;
2079 	struct address_space *mapping = file->f_mapping;
2080 	struct file_ra_state *ra = &file->f_ra;
2081 	struct inode *inode = mapping->host;
2082 	pgoff_t offset = vmf->pgoff;
2083 	struct page *page;
2084 	loff_t size;
2085 	int ret = 0;
2086 
2087 	size = round_up(i_size_read(inode), PAGE_SIZE);
2088 	if (offset >= size >> PAGE_SHIFT)
2089 		return VM_FAULT_SIGBUS;
2090 
2091 	/*
2092 	 * Do we have something in the page cache already?
2093 	 */
2094 	page = find_get_page(mapping, offset);
2095 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2096 		/*
2097 		 * We found the page, so try async readahead before
2098 		 * waiting for the lock.
2099 		 */
2100 		do_async_mmap_readahead(vma, ra, file, page, offset);
2101 	} else if (!page) {
2102 		/* No page in the page cache at all */
2103 		do_sync_mmap_readahead(vma, ra, file, offset);
2104 		count_vm_event(PGMAJFAULT);
2105 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2106 		ret = VM_FAULT_MAJOR;
2107 retry_find:
2108 		page = find_get_page(mapping, offset);
2109 		if (!page)
2110 			goto no_cached_page;
2111 	}
2112 
2113 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2114 		put_page(page);
2115 		return ret | VM_FAULT_RETRY;
2116 	}
2117 
2118 	/* Did it get truncated? */
2119 	if (unlikely(page->mapping != mapping)) {
2120 		unlock_page(page);
2121 		put_page(page);
2122 		goto retry_find;
2123 	}
2124 	VM_BUG_ON_PAGE(page->index != offset, page);
2125 
2126 	/*
2127 	 * We have a locked page in the page cache, now we need to check
2128 	 * that it's up-to-date. If not, it is going to be due to an error.
2129 	 */
2130 	if (unlikely(!PageUptodate(page)))
2131 		goto page_not_uptodate;
2132 
2133 	/*
2134 	 * Found the page and have a reference on it.
2135 	 * We must recheck i_size under page lock.
2136 	 */
2137 	size = round_up(i_size_read(inode), PAGE_SIZE);
2138 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2139 		unlock_page(page);
2140 		put_page(page);
2141 		return VM_FAULT_SIGBUS;
2142 	}
2143 
2144 	vmf->page = page;
2145 	return ret | VM_FAULT_LOCKED;
2146 
2147 no_cached_page:
2148 	/*
2149 	 * We're only likely to ever get here if MADV_RANDOM is in
2150 	 * effect.
2151 	 */
2152 	error = page_cache_read(file, offset, vmf->gfp_mask);
2153 
2154 	/*
2155 	 * The page we want has now been added to the page cache.
2156 	 * In the unlikely event that someone removed it in the
2157 	 * meantime, we'll just come back here and read it again.
2158 	 */
2159 	if (error >= 0)
2160 		goto retry_find;
2161 
2162 	/*
2163 	 * An error return from page_cache_read can result if the
2164 	 * system is low on memory, or a problem occurs while trying
2165 	 * to schedule I/O.
2166 	 */
2167 	if (error == -ENOMEM)
2168 		return VM_FAULT_OOM;
2169 	return VM_FAULT_SIGBUS;
2170 
2171 page_not_uptodate:
2172 	/*
2173 	 * Umm, take care of errors if the page isn't up-to-date.
2174 	 * Try to re-read it _once_. We do this synchronously,
2175 	 * because there really aren't any performance issues here
2176 	 * and we need to check for errors.
2177 	 */
2178 	ClearPageError(page);
2179 	error = mapping->a_ops->readpage(file, page);
2180 	if (!error) {
2181 		wait_on_page_locked(page);
2182 		if (!PageUptodate(page))
2183 			error = -EIO;
2184 	}
2185 	put_page(page);
2186 
2187 	if (!error || error == AOP_TRUNCATED_PAGE)
2188 		goto retry_find;
2189 
2190 	/* Things didn't work out. Return zero to tell the mm layer so. */
2191 	shrink_readahead_size_eio(file, ra);
2192 	return VM_FAULT_SIGBUS;
2193 }
2194 EXPORT_SYMBOL(filemap_fault);
2195 
2196 void filemap_map_pages(struct fault_env *fe,
2197 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2198 {
2199 	struct radix_tree_iter iter;
2200 	void **slot;
2201 	struct file *file = fe->vma->vm_file;
2202 	struct address_space *mapping = file->f_mapping;
2203 	pgoff_t last_pgoff = start_pgoff;
2204 	loff_t size;
2205 	struct page *head, *page;
2206 
2207 	rcu_read_lock();
2208 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2209 			start_pgoff) {
2210 		if (iter.index > end_pgoff)
2211 			break;
2212 repeat:
2213 		page = radix_tree_deref_slot(slot);
2214 		if (unlikely(!page))
2215 			goto next;
2216 		if (radix_tree_exception(page)) {
2217 			if (radix_tree_deref_retry(page)) {
2218 				slot = radix_tree_iter_retry(&iter);
2219 				continue;
2220 			}
2221 			goto next;
2222 		}
2223 
2224 		head = compound_head(page);
2225 		if (!page_cache_get_speculative(head))
2226 			goto repeat;
2227 
2228 		/* The page was split under us? */
2229 		if (compound_head(page) != head) {
2230 			put_page(head);
2231 			goto repeat;
2232 		}
2233 
2234 		/* Has the page moved? */
2235 		if (unlikely(page != *slot)) {
2236 			put_page(head);
2237 			goto repeat;
2238 		}
2239 
2240 		if (!PageUptodate(page) ||
2241 				PageReadahead(page) ||
2242 				PageHWPoison(page))
2243 			goto skip;
2244 		if (!trylock_page(page))
2245 			goto skip;
2246 
2247 		if (page->mapping != mapping || !PageUptodate(page))
2248 			goto unlock;
2249 
2250 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2251 		if (page->index >= size >> PAGE_SHIFT)
2252 			goto unlock;
2253 
2254 		if (file->f_ra.mmap_miss > 0)
2255 			file->f_ra.mmap_miss--;
2256 
2257 		fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2258 		if (fe->pte)
2259 			fe->pte += iter.index - last_pgoff;
2260 		last_pgoff = iter.index;
2261 		if (alloc_set_pte(fe, NULL, page))
2262 			goto unlock;
2263 		unlock_page(page);
2264 		goto next;
2265 unlock:
2266 		unlock_page(page);
2267 skip:
2268 		put_page(page);
2269 next:
2270 		/* Huge page is mapped? No need to proceed. */
2271 		if (pmd_trans_huge(*fe->pmd))
2272 			break;
2273 		if (iter.index == end_pgoff)
2274 			break;
2275 	}
2276 	rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(filemap_map_pages);
2279 
2280 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2281 {
2282 	struct page *page = vmf->page;
2283 	struct inode *inode = file_inode(vma->vm_file);
2284 	int ret = VM_FAULT_LOCKED;
2285 
2286 	sb_start_pagefault(inode->i_sb);
2287 	file_update_time(vma->vm_file);
2288 	lock_page(page);
2289 	if (page->mapping != inode->i_mapping) {
2290 		unlock_page(page);
2291 		ret = VM_FAULT_NOPAGE;
2292 		goto out;
2293 	}
2294 	/*
2295 	 * We mark the page dirty already here so that when freeze is in
2296 	 * progress, we are guaranteed that writeback during freezing will
2297 	 * see the dirty page and writeprotect it again.
2298 	 */
2299 	set_page_dirty(page);
2300 	wait_for_stable_page(page);
2301 out:
2302 	sb_end_pagefault(inode->i_sb);
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL(filemap_page_mkwrite);
2306 
2307 const struct vm_operations_struct generic_file_vm_ops = {
2308 	.fault		= filemap_fault,
2309 	.map_pages	= filemap_map_pages,
2310 	.page_mkwrite	= filemap_page_mkwrite,
2311 };
2312 
2313 /* This is used for a general mmap of a disk file */
2314 
2315 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2316 {
2317 	struct address_space *mapping = file->f_mapping;
2318 
2319 	if (!mapping->a_ops->readpage)
2320 		return -ENOEXEC;
2321 	file_accessed(file);
2322 	vma->vm_ops = &generic_file_vm_ops;
2323 	return 0;
2324 }
2325 
2326 /*
2327  * This is for filesystems which do not implement ->writepage.
2328  */
2329 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2330 {
2331 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2332 		return -EINVAL;
2333 	return generic_file_mmap(file, vma);
2334 }
2335 #else
2336 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2337 {
2338 	return -ENOSYS;
2339 }
2340 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2341 {
2342 	return -ENOSYS;
2343 }
2344 #endif /* CONFIG_MMU */
2345 
2346 EXPORT_SYMBOL(generic_file_mmap);
2347 EXPORT_SYMBOL(generic_file_readonly_mmap);
2348 
2349 static struct page *wait_on_page_read(struct page *page)
2350 {
2351 	if (!IS_ERR(page)) {
2352 		wait_on_page_locked(page);
2353 		if (!PageUptodate(page)) {
2354 			put_page(page);
2355 			page = ERR_PTR(-EIO);
2356 		}
2357 	}
2358 	return page;
2359 }
2360 
2361 static struct page *do_read_cache_page(struct address_space *mapping,
2362 				pgoff_t index,
2363 				int (*filler)(void *, struct page *),
2364 				void *data,
2365 				gfp_t gfp)
2366 {
2367 	struct page *page;
2368 	int err;
2369 repeat:
2370 	page = find_get_page(mapping, index);
2371 	if (!page) {
2372 		page = __page_cache_alloc(gfp | __GFP_COLD);
2373 		if (!page)
2374 			return ERR_PTR(-ENOMEM);
2375 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2376 		if (unlikely(err)) {
2377 			put_page(page);
2378 			if (err == -EEXIST)
2379 				goto repeat;
2380 			/* Presumably ENOMEM for radix tree node */
2381 			return ERR_PTR(err);
2382 		}
2383 
2384 filler:
2385 		err = filler(data, page);
2386 		if (err < 0) {
2387 			put_page(page);
2388 			return ERR_PTR(err);
2389 		}
2390 
2391 		page = wait_on_page_read(page);
2392 		if (IS_ERR(page))
2393 			return page;
2394 		goto out;
2395 	}
2396 	if (PageUptodate(page))
2397 		goto out;
2398 
2399 	/*
2400 	 * Page is not up to date and may be locked due one of the following
2401 	 * case a: Page is being filled and the page lock is held
2402 	 * case b: Read/write error clearing the page uptodate status
2403 	 * case c: Truncation in progress (page locked)
2404 	 * case d: Reclaim in progress
2405 	 *
2406 	 * Case a, the page will be up to date when the page is unlocked.
2407 	 *    There is no need to serialise on the page lock here as the page
2408 	 *    is pinned so the lock gives no additional protection. Even if the
2409 	 *    the page is truncated, the data is still valid if PageUptodate as
2410 	 *    it's a race vs truncate race.
2411 	 * Case b, the page will not be up to date
2412 	 * Case c, the page may be truncated but in itself, the data may still
2413 	 *    be valid after IO completes as it's a read vs truncate race. The
2414 	 *    operation must restart if the page is not uptodate on unlock but
2415 	 *    otherwise serialising on page lock to stabilise the mapping gives
2416 	 *    no additional guarantees to the caller as the page lock is
2417 	 *    released before return.
2418 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2419 	 *    will be a race with remove_mapping that determines if the mapping
2420 	 *    is valid on unlock but otherwise the data is valid and there is
2421 	 *    no need to serialise with page lock.
2422 	 *
2423 	 * As the page lock gives no additional guarantee, we optimistically
2424 	 * wait on the page to be unlocked and check if it's up to date and
2425 	 * use the page if it is. Otherwise, the page lock is required to
2426 	 * distinguish between the different cases. The motivation is that we
2427 	 * avoid spurious serialisations and wakeups when multiple processes
2428 	 * wait on the same page for IO to complete.
2429 	 */
2430 	wait_on_page_locked(page);
2431 	if (PageUptodate(page))
2432 		goto out;
2433 
2434 	/* Distinguish between all the cases under the safety of the lock */
2435 	lock_page(page);
2436 
2437 	/* Case c or d, restart the operation */
2438 	if (!page->mapping) {
2439 		unlock_page(page);
2440 		put_page(page);
2441 		goto repeat;
2442 	}
2443 
2444 	/* Someone else locked and filled the page in a very small window */
2445 	if (PageUptodate(page)) {
2446 		unlock_page(page);
2447 		goto out;
2448 	}
2449 	goto filler;
2450 
2451 out:
2452 	mark_page_accessed(page);
2453 	return page;
2454 }
2455 
2456 /**
2457  * read_cache_page - read into page cache, fill it if needed
2458  * @mapping:	the page's address_space
2459  * @index:	the page index
2460  * @filler:	function to perform the read
2461  * @data:	first arg to filler(data, page) function, often left as NULL
2462  *
2463  * Read into the page cache. If a page already exists, and PageUptodate() is
2464  * not set, try to fill the page and wait for it to become unlocked.
2465  *
2466  * If the page does not get brought uptodate, return -EIO.
2467  */
2468 struct page *read_cache_page(struct address_space *mapping,
2469 				pgoff_t index,
2470 				int (*filler)(void *, struct page *),
2471 				void *data)
2472 {
2473 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2474 }
2475 EXPORT_SYMBOL(read_cache_page);
2476 
2477 /**
2478  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2479  * @mapping:	the page's address_space
2480  * @index:	the page index
2481  * @gfp:	the page allocator flags to use if allocating
2482  *
2483  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2484  * any new page allocations done using the specified allocation flags.
2485  *
2486  * If the page does not get brought uptodate, return -EIO.
2487  */
2488 struct page *read_cache_page_gfp(struct address_space *mapping,
2489 				pgoff_t index,
2490 				gfp_t gfp)
2491 {
2492 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2493 
2494 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2495 }
2496 EXPORT_SYMBOL(read_cache_page_gfp);
2497 
2498 /*
2499  * Performs necessary checks before doing a write
2500  *
2501  * Can adjust writing position or amount of bytes to write.
2502  * Returns appropriate error code that caller should return or
2503  * zero in case that write should be allowed.
2504  */
2505 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2506 {
2507 	struct file *file = iocb->ki_filp;
2508 	struct inode *inode = file->f_mapping->host;
2509 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2510 	loff_t pos;
2511 
2512 	if (!iov_iter_count(from))
2513 		return 0;
2514 
2515 	/* FIXME: this is for backwards compatibility with 2.4 */
2516 	if (iocb->ki_flags & IOCB_APPEND)
2517 		iocb->ki_pos = i_size_read(inode);
2518 
2519 	pos = iocb->ki_pos;
2520 
2521 	if (limit != RLIM_INFINITY) {
2522 		if (iocb->ki_pos >= limit) {
2523 			send_sig(SIGXFSZ, current, 0);
2524 			return -EFBIG;
2525 		}
2526 		iov_iter_truncate(from, limit - (unsigned long)pos);
2527 	}
2528 
2529 	/*
2530 	 * LFS rule
2531 	 */
2532 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2533 				!(file->f_flags & O_LARGEFILE))) {
2534 		if (pos >= MAX_NON_LFS)
2535 			return -EFBIG;
2536 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2537 	}
2538 
2539 	/*
2540 	 * Are we about to exceed the fs block limit ?
2541 	 *
2542 	 * If we have written data it becomes a short write.  If we have
2543 	 * exceeded without writing data we send a signal and return EFBIG.
2544 	 * Linus frestrict idea will clean these up nicely..
2545 	 */
2546 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2547 		return -EFBIG;
2548 
2549 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2550 	return iov_iter_count(from);
2551 }
2552 EXPORT_SYMBOL(generic_write_checks);
2553 
2554 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2555 				loff_t pos, unsigned len, unsigned flags,
2556 				struct page **pagep, void **fsdata)
2557 {
2558 	const struct address_space_operations *aops = mapping->a_ops;
2559 
2560 	return aops->write_begin(file, mapping, pos, len, flags,
2561 							pagep, fsdata);
2562 }
2563 EXPORT_SYMBOL(pagecache_write_begin);
2564 
2565 int pagecache_write_end(struct file *file, struct address_space *mapping,
2566 				loff_t pos, unsigned len, unsigned copied,
2567 				struct page *page, void *fsdata)
2568 {
2569 	const struct address_space_operations *aops = mapping->a_ops;
2570 
2571 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2572 }
2573 EXPORT_SYMBOL(pagecache_write_end);
2574 
2575 ssize_t
2576 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2577 {
2578 	struct file	*file = iocb->ki_filp;
2579 	struct address_space *mapping = file->f_mapping;
2580 	struct inode	*inode = mapping->host;
2581 	loff_t		pos = iocb->ki_pos;
2582 	ssize_t		written;
2583 	size_t		write_len;
2584 	pgoff_t		end;
2585 	struct iov_iter data;
2586 
2587 	write_len = iov_iter_count(from);
2588 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2589 
2590 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2591 	if (written)
2592 		goto out;
2593 
2594 	/*
2595 	 * After a write we want buffered reads to be sure to go to disk to get
2596 	 * the new data.  We invalidate clean cached page from the region we're
2597 	 * about to write.  We do this *before* the write so that we can return
2598 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2599 	 */
2600 	if (mapping->nrpages) {
2601 		written = invalidate_inode_pages2_range(mapping,
2602 					pos >> PAGE_SHIFT, end);
2603 		/*
2604 		 * If a page can not be invalidated, return 0 to fall back
2605 		 * to buffered write.
2606 		 */
2607 		if (written) {
2608 			if (written == -EBUSY)
2609 				return 0;
2610 			goto out;
2611 		}
2612 	}
2613 
2614 	data = *from;
2615 	written = mapping->a_ops->direct_IO(iocb, &data);
2616 
2617 	/*
2618 	 * Finally, try again to invalidate clean pages which might have been
2619 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2620 	 * if the source of the write was an mmap'ed region of the file
2621 	 * we're writing.  Either one is a pretty crazy thing to do,
2622 	 * so we don't support it 100%.  If this invalidation
2623 	 * fails, tough, the write still worked...
2624 	 */
2625 	if (mapping->nrpages) {
2626 		invalidate_inode_pages2_range(mapping,
2627 					      pos >> PAGE_SHIFT, end);
2628 	}
2629 
2630 	if (written > 0) {
2631 		pos += written;
2632 		iov_iter_advance(from, written);
2633 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2634 			i_size_write(inode, pos);
2635 			mark_inode_dirty(inode);
2636 		}
2637 		iocb->ki_pos = pos;
2638 	}
2639 out:
2640 	return written;
2641 }
2642 EXPORT_SYMBOL(generic_file_direct_write);
2643 
2644 /*
2645  * Find or create a page at the given pagecache position. Return the locked
2646  * page. This function is specifically for buffered writes.
2647  */
2648 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2649 					pgoff_t index, unsigned flags)
2650 {
2651 	struct page *page;
2652 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2653 
2654 	if (flags & AOP_FLAG_NOFS)
2655 		fgp_flags |= FGP_NOFS;
2656 
2657 	page = pagecache_get_page(mapping, index, fgp_flags,
2658 			mapping_gfp_mask(mapping));
2659 	if (page)
2660 		wait_for_stable_page(page);
2661 
2662 	return page;
2663 }
2664 EXPORT_SYMBOL(grab_cache_page_write_begin);
2665 
2666 ssize_t generic_perform_write(struct file *file,
2667 				struct iov_iter *i, loff_t pos)
2668 {
2669 	struct address_space *mapping = file->f_mapping;
2670 	const struct address_space_operations *a_ops = mapping->a_ops;
2671 	long status = 0;
2672 	ssize_t written = 0;
2673 	unsigned int flags = 0;
2674 
2675 	/*
2676 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2677 	 */
2678 	if (!iter_is_iovec(i))
2679 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2680 
2681 	do {
2682 		struct page *page;
2683 		unsigned long offset;	/* Offset into pagecache page */
2684 		unsigned long bytes;	/* Bytes to write to page */
2685 		size_t copied;		/* Bytes copied from user */
2686 		void *fsdata;
2687 
2688 		offset = (pos & (PAGE_SIZE - 1));
2689 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2690 						iov_iter_count(i));
2691 
2692 again:
2693 		/*
2694 		 * Bring in the user page that we will copy from _first_.
2695 		 * Otherwise there's a nasty deadlock on copying from the
2696 		 * same page as we're writing to, without it being marked
2697 		 * up-to-date.
2698 		 *
2699 		 * Not only is this an optimisation, but it is also required
2700 		 * to check that the address is actually valid, when atomic
2701 		 * usercopies are used, below.
2702 		 */
2703 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2704 			status = -EFAULT;
2705 			break;
2706 		}
2707 
2708 		if (fatal_signal_pending(current)) {
2709 			status = -EINTR;
2710 			break;
2711 		}
2712 
2713 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2714 						&page, &fsdata);
2715 		if (unlikely(status < 0))
2716 			break;
2717 
2718 		if (mapping_writably_mapped(mapping))
2719 			flush_dcache_page(page);
2720 
2721 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2722 		flush_dcache_page(page);
2723 
2724 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2725 						page, fsdata);
2726 		if (unlikely(status < 0))
2727 			break;
2728 		copied = status;
2729 
2730 		cond_resched();
2731 
2732 		iov_iter_advance(i, copied);
2733 		if (unlikely(copied == 0)) {
2734 			/*
2735 			 * If we were unable to copy any data at all, we must
2736 			 * fall back to a single segment length write.
2737 			 *
2738 			 * If we didn't fallback here, we could livelock
2739 			 * because not all segments in the iov can be copied at
2740 			 * once without a pagefault.
2741 			 */
2742 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2743 						iov_iter_single_seg_count(i));
2744 			goto again;
2745 		}
2746 		pos += copied;
2747 		written += copied;
2748 
2749 		balance_dirty_pages_ratelimited(mapping);
2750 	} while (iov_iter_count(i));
2751 
2752 	return written ? written : status;
2753 }
2754 EXPORT_SYMBOL(generic_perform_write);
2755 
2756 /**
2757  * __generic_file_write_iter - write data to a file
2758  * @iocb:	IO state structure (file, offset, etc.)
2759  * @from:	iov_iter with data to write
2760  *
2761  * This function does all the work needed for actually writing data to a
2762  * file. It does all basic checks, removes SUID from the file, updates
2763  * modification times and calls proper subroutines depending on whether we
2764  * do direct IO or a standard buffered write.
2765  *
2766  * It expects i_mutex to be grabbed unless we work on a block device or similar
2767  * object which does not need locking at all.
2768  *
2769  * This function does *not* take care of syncing data in case of O_SYNC write.
2770  * A caller has to handle it. This is mainly due to the fact that we want to
2771  * avoid syncing under i_mutex.
2772  */
2773 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2774 {
2775 	struct file *file = iocb->ki_filp;
2776 	struct address_space * mapping = file->f_mapping;
2777 	struct inode 	*inode = mapping->host;
2778 	ssize_t		written = 0;
2779 	ssize_t		err;
2780 	ssize_t		status;
2781 
2782 	/* We can write back this queue in page reclaim */
2783 	current->backing_dev_info = inode_to_bdi(inode);
2784 	err = file_remove_privs(file);
2785 	if (err)
2786 		goto out;
2787 
2788 	err = file_update_time(file);
2789 	if (err)
2790 		goto out;
2791 
2792 	if (iocb->ki_flags & IOCB_DIRECT) {
2793 		loff_t pos, endbyte;
2794 
2795 		written = generic_file_direct_write(iocb, from);
2796 		/*
2797 		 * If the write stopped short of completing, fall back to
2798 		 * buffered writes.  Some filesystems do this for writes to
2799 		 * holes, for example.  For DAX files, a buffered write will
2800 		 * not succeed (even if it did, DAX does not handle dirty
2801 		 * page-cache pages correctly).
2802 		 */
2803 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2804 			goto out;
2805 
2806 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2807 		/*
2808 		 * If generic_perform_write() returned a synchronous error
2809 		 * then we want to return the number of bytes which were
2810 		 * direct-written, or the error code if that was zero.  Note
2811 		 * that this differs from normal direct-io semantics, which
2812 		 * will return -EFOO even if some bytes were written.
2813 		 */
2814 		if (unlikely(status < 0)) {
2815 			err = status;
2816 			goto out;
2817 		}
2818 		/*
2819 		 * We need to ensure that the page cache pages are written to
2820 		 * disk and invalidated to preserve the expected O_DIRECT
2821 		 * semantics.
2822 		 */
2823 		endbyte = pos + status - 1;
2824 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2825 		if (err == 0) {
2826 			iocb->ki_pos = endbyte + 1;
2827 			written += status;
2828 			invalidate_mapping_pages(mapping,
2829 						 pos >> PAGE_SHIFT,
2830 						 endbyte >> PAGE_SHIFT);
2831 		} else {
2832 			/*
2833 			 * We don't know how much we wrote, so just return
2834 			 * the number of bytes which were direct-written
2835 			 */
2836 		}
2837 	} else {
2838 		written = generic_perform_write(file, from, iocb->ki_pos);
2839 		if (likely(written > 0))
2840 			iocb->ki_pos += written;
2841 	}
2842 out:
2843 	current->backing_dev_info = NULL;
2844 	return written ? written : err;
2845 }
2846 EXPORT_SYMBOL(__generic_file_write_iter);
2847 
2848 /**
2849  * generic_file_write_iter - write data to a file
2850  * @iocb:	IO state structure
2851  * @from:	iov_iter with data to write
2852  *
2853  * This is a wrapper around __generic_file_write_iter() to be used by most
2854  * filesystems. It takes care of syncing the file in case of O_SYNC file
2855  * and acquires i_mutex as needed.
2856  */
2857 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2858 {
2859 	struct file *file = iocb->ki_filp;
2860 	struct inode *inode = file->f_mapping->host;
2861 	ssize_t ret;
2862 
2863 	inode_lock(inode);
2864 	ret = generic_write_checks(iocb, from);
2865 	if (ret > 0)
2866 		ret = __generic_file_write_iter(iocb, from);
2867 	inode_unlock(inode);
2868 
2869 	if (ret > 0)
2870 		ret = generic_write_sync(iocb, ret);
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL(generic_file_write_iter);
2874 
2875 /**
2876  * try_to_release_page() - release old fs-specific metadata on a page
2877  *
2878  * @page: the page which the kernel is trying to free
2879  * @gfp_mask: memory allocation flags (and I/O mode)
2880  *
2881  * The address_space is to try to release any data against the page
2882  * (presumably at page->private).  If the release was successful, return `1'.
2883  * Otherwise return zero.
2884  *
2885  * This may also be called if PG_fscache is set on a page, indicating that the
2886  * page is known to the local caching routines.
2887  *
2888  * The @gfp_mask argument specifies whether I/O may be performed to release
2889  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2890  *
2891  */
2892 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2893 {
2894 	struct address_space * const mapping = page->mapping;
2895 
2896 	BUG_ON(!PageLocked(page));
2897 	if (PageWriteback(page))
2898 		return 0;
2899 
2900 	if (mapping && mapping->a_ops->releasepage)
2901 		return mapping->a_ops->releasepage(page, gfp_mask);
2902 	return try_to_free_buffers(page);
2903 }
2904 
2905 EXPORT_SYMBOL(try_to_release_page);
2906