xref: /openbmc/linux/mm/filemap.c (revision 0cabf991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49 
50 /*
51  * FIXME: remove all knowledge of the buffer layer from the core VM
52  */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54 
55 #include <asm/mman.h>
56 
57 /*
58  * Shared mappings implemented 30.11.1994. It's not fully working yet,
59  * though.
60  *
61  * Shared mappings now work. 15.8.1995  Bruno.
62  *
63  * finished 'unifying' the page and buffer cache and SMP-threaded the
64  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65  *
66  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67  */
68 
69 /*
70  * Lock ordering:
71  *
72  *  ->i_mmap_rwsem		(truncate_pagecache)
73  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
74  *      ->swap_lock		(exclusive_swap_page, others)
75  *        ->i_pages lock
76  *
77  *  ->i_mutex
78  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
79  *
80  *  ->mmap_lock
81  *    ->i_mmap_rwsem
82  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
83  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
84  *
85  *  ->mmap_lock
86  *    ->lock_page		(access_process_vm)
87  *
88  *  ->i_mutex			(generic_perform_write)
89  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
90  *
91  *  bdi->wb.list_lock
92  *    sb_lock			(fs/fs-writeback.c)
93  *    ->i_pages lock		(__sync_single_inode)
94  *
95  *  ->i_mmap_rwsem
96  *    ->anon_vma.lock		(vma_adjust)
97  *
98  *  ->anon_vma.lock
99  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
100  *
101  *  ->page_table_lock or pte_lock
102  *    ->swap_lock		(try_to_unmap_one)
103  *    ->private_lock		(try_to_unmap_one)
104  *    ->i_pages lock		(try_to_unmap_one)
105  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
106  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
107  *    ->private_lock		(page_remove_rmap->set_page_dirty)
108  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
109  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
110  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
111  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
112  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
113  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
114  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
115  *
116  * ->i_mmap_rwsem
117  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
118  */
119 
120 static void page_cache_delete(struct address_space *mapping,
121 				   struct page *page, void *shadow)
122 {
123 	XA_STATE(xas, &mapping->i_pages, page->index);
124 	unsigned int nr = 1;
125 
126 	mapping_set_update(&xas, mapping);
127 
128 	/* hugetlb pages are represented by a single entry in the xarray */
129 	if (!PageHuge(page)) {
130 		xas_set_order(&xas, page->index, compound_order(page));
131 		nr = compound_nr(page);
132 	}
133 
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE(PageTail(page), page);
136 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137 
138 	xas_store(&xas, shadow);
139 	xas_init_marks(&xas);
140 
141 	page->mapping = NULL;
142 	/* Leave page->index set: truncation lookup relies upon it */
143 
144 	if (shadow) {
145 		mapping->nrexceptional += nr;
146 		/*
147 		 * Make sure the nrexceptional update is committed before
148 		 * the nrpages update so that final truncate racing
149 		 * with reclaim does not see both counters 0 at the
150 		 * same time and miss a shadow entry.
151 		 */
152 		smp_wmb();
153 	}
154 	mapping->nrpages -= nr;
155 }
156 
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 				      struct page *page)
159 {
160 	int nr;
161 
162 	/*
163 	 * if we're uptodate, flush out into the cleancache, otherwise
164 	 * invalidate any existing cleancache entries.  We can't leave
165 	 * stale data around in the cleancache once our page is gone
166 	 */
167 	if (PageUptodate(page) && PageMappedToDisk(page))
168 		cleancache_put_page(page);
169 	else
170 		cleancache_invalidate_page(mapping, page);
171 
172 	VM_BUG_ON_PAGE(PageTail(page), page);
173 	VM_BUG_ON_PAGE(page_mapped(page), page);
174 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 		int mapcount;
176 
177 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
178 			 current->comm, page_to_pfn(page));
179 		dump_page(page, "still mapped when deleted");
180 		dump_stack();
181 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182 
183 		mapcount = page_mapcount(page);
184 		if (mapping_exiting(mapping) &&
185 		    page_count(page) >= mapcount + 2) {
186 			/*
187 			 * All vmas have already been torn down, so it's
188 			 * a good bet that actually the page is unmapped,
189 			 * and we'd prefer not to leak it: if we're wrong,
190 			 * some other bad page check should catch it later.
191 			 */
192 			page_mapcount_reset(page);
193 			page_ref_sub(page, mapcount);
194 		}
195 	}
196 
197 	/* hugetlb pages do not participate in page cache accounting. */
198 	if (PageHuge(page))
199 		return;
200 
201 	nr = hpage_nr_pages(page);
202 
203 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 	if (PageSwapBacked(page)) {
205 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 		if (PageTransHuge(page))
207 			__dec_node_page_state(page, NR_SHMEM_THPS);
208 	} else if (PageTransHuge(page)) {
209 		__dec_node_page_state(page, NR_FILE_THPS);
210 		filemap_nr_thps_dec(mapping);
211 	}
212 
213 	/*
214 	 * At this point page must be either written or cleaned by
215 	 * truncate.  Dirty page here signals a bug and loss of
216 	 * unwritten data.
217 	 *
218 	 * This fixes dirty accounting after removing the page entirely
219 	 * but leaves PageDirty set: it has no effect for truncated
220 	 * page and anyway will be cleared before returning page into
221 	 * buddy allocator.
222 	 */
223 	if (WARN_ON_ONCE(PageDirty(page)))
224 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226 
227 /*
228  * Delete a page from the page cache and free it. Caller has to make
229  * sure the page is locked and that nobody else uses it - or that usage
230  * is safe.  The caller must hold the i_pages lock.
231  */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 	struct address_space *mapping = page->mapping;
235 
236 	trace_mm_filemap_delete_from_page_cache(page);
237 
238 	unaccount_page_cache_page(mapping, page);
239 	page_cache_delete(mapping, page, shadow);
240 }
241 
242 static void page_cache_free_page(struct address_space *mapping,
243 				struct page *page)
244 {
245 	void (*freepage)(struct page *);
246 
247 	freepage = mapping->a_ops->freepage;
248 	if (freepage)
249 		freepage(page);
250 
251 	if (PageTransHuge(page) && !PageHuge(page)) {
252 		page_ref_sub(page, HPAGE_PMD_NR);
253 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 	} else {
255 		put_page(page);
256 	}
257 }
258 
259 /**
260  * delete_from_page_cache - delete page from page cache
261  * @page: the page which the kernel is trying to remove from page cache
262  *
263  * This must be called only on pages that have been verified to be in the page
264  * cache and locked.  It will never put the page into the free list, the caller
265  * has a reference on the page.
266  */
267 void delete_from_page_cache(struct page *page)
268 {
269 	struct address_space *mapping = page_mapping(page);
270 	unsigned long flags;
271 
272 	BUG_ON(!PageLocked(page));
273 	xa_lock_irqsave(&mapping->i_pages, flags);
274 	__delete_from_page_cache(page, NULL);
275 	xa_unlock_irqrestore(&mapping->i_pages, flags);
276 
277 	page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280 
281 /*
282  * page_cache_delete_batch - delete several pages from page cache
283  * @mapping: the mapping to which pages belong
284  * @pvec: pagevec with pages to delete
285  *
286  * The function walks over mapping->i_pages and removes pages passed in @pvec
287  * from the mapping. The function expects @pvec to be sorted by page index
288  * and is optimised for it to be dense.
289  * It tolerates holes in @pvec (mapping entries at those indices are not
290  * modified). The function expects only THP head pages to be present in the
291  * @pvec.
292  *
293  * The function expects the i_pages lock to be held.
294  */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 			     struct pagevec *pvec)
297 {
298 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 	int total_pages = 0;
300 	int i = 0;
301 	struct page *page;
302 
303 	mapping_set_update(&xas, mapping);
304 	xas_for_each(&xas, page, ULONG_MAX) {
305 		if (i >= pagevec_count(pvec))
306 			break;
307 
308 		/* A swap/dax/shadow entry got inserted? Skip it. */
309 		if (xa_is_value(page))
310 			continue;
311 		/*
312 		 * A page got inserted in our range? Skip it. We have our
313 		 * pages locked so they are protected from being removed.
314 		 * If we see a page whose index is higher than ours, it
315 		 * means our page has been removed, which shouldn't be
316 		 * possible because we're holding the PageLock.
317 		 */
318 		if (page != pvec->pages[i]) {
319 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 					page);
321 			continue;
322 		}
323 
324 		WARN_ON_ONCE(!PageLocked(page));
325 
326 		if (page->index == xas.xa_index)
327 			page->mapping = NULL;
328 		/* Leave page->index set: truncation lookup relies on it */
329 
330 		/*
331 		 * Move to the next page in the vector if this is a regular
332 		 * page or the index is of the last sub-page of this compound
333 		 * page.
334 		 */
335 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 			i++;
337 		xas_store(&xas, NULL);
338 		total_pages++;
339 	}
340 	mapping->nrpages -= total_pages;
341 }
342 
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 				  struct pagevec *pvec)
345 {
346 	int i;
347 	unsigned long flags;
348 
349 	if (!pagevec_count(pvec))
350 		return;
351 
352 	xa_lock_irqsave(&mapping->i_pages, flags);
353 	for (i = 0; i < pagevec_count(pvec); i++) {
354 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355 
356 		unaccount_page_cache_page(mapping, pvec->pages[i]);
357 	}
358 	page_cache_delete_batch(mapping, pvec);
359 	xa_unlock_irqrestore(&mapping->i_pages, flags);
360 
361 	for (i = 0; i < pagevec_count(pvec); i++)
362 		page_cache_free_page(mapping, pvec->pages[i]);
363 }
364 
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 	int ret = 0;
368 	/* Check for outstanding write errors */
369 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 		ret = -ENOSPC;
372 	if (test_bit(AS_EIO, &mapping->flags) &&
373 	    test_and_clear_bit(AS_EIO, &mapping->flags))
374 		ret = -EIO;
375 	return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378 
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 	/* Check for outstanding write errors */
382 	if (test_bit(AS_EIO, &mapping->flags))
383 		return -EIO;
384 	if (test_bit(AS_ENOSPC, &mapping->flags))
385 		return -ENOSPC;
386 	return 0;
387 }
388 
389 /**
390  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391  * @mapping:	address space structure to write
392  * @start:	offset in bytes where the range starts
393  * @end:	offset in bytes where the range ends (inclusive)
394  * @sync_mode:	enable synchronous operation
395  *
396  * Start writeback against all of a mapping's dirty pages that lie
397  * within the byte offsets <start, end> inclusive.
398  *
399  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400  * opposed to a regular memory cleansing writeback.  The difference between
401  * these two operations is that if a dirty page/buffer is encountered, it must
402  * be waited upon, and not just skipped over.
403  *
404  * Return: %0 on success, negative error code otherwise.
405  */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 				loff_t end, int sync_mode)
408 {
409 	int ret;
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	if (!mapping_cap_writeback_dirty(mapping) ||
418 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 		return 0;
420 
421 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 	ret = do_writepages(mapping, &wbc);
423 	wbc_detach_inode(&wbc);
424 	return ret;
425 }
426 
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 	int sync_mode)
429 {
430 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432 
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438 
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 				loff_t end)
441 {
442 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 
446 /**
447  * filemap_flush - mostly a non-blocking flush
448  * @mapping:	target address_space
449  *
450  * This is a mostly non-blocking flush.  Not suitable for data-integrity
451  * purposes - I/O may not be started against all dirty pages.
452  *
453  * Return: %0 on success, negative error code otherwise.
454  */
455 int filemap_flush(struct address_space *mapping)
456 {
457 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460 
461 /**
462  * filemap_range_has_page - check if a page exists in range.
463  * @mapping:           address space within which to check
464  * @start_byte:        offset in bytes where the range starts
465  * @end_byte:          offset in bytes where the range ends (inclusive)
466  *
467  * Find at least one page in the range supplied, usually used to check if
468  * direct writing in this range will trigger a writeback.
469  *
470  * Return: %true if at least one page exists in the specified range,
471  * %false otherwise.
472  */
473 bool filemap_range_has_page(struct address_space *mapping,
474 			   loff_t start_byte, loff_t end_byte)
475 {
476 	struct page *page;
477 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 	pgoff_t max = end_byte >> PAGE_SHIFT;
479 
480 	if (end_byte < start_byte)
481 		return false;
482 
483 	rcu_read_lock();
484 	for (;;) {
485 		page = xas_find(&xas, max);
486 		if (xas_retry(&xas, page))
487 			continue;
488 		/* Shadow entries don't count */
489 		if (xa_is_value(page))
490 			continue;
491 		/*
492 		 * We don't need to try to pin this page; we're about to
493 		 * release the RCU lock anyway.  It is enough to know that
494 		 * there was a page here recently.
495 		 */
496 		break;
497 	}
498 	rcu_read_unlock();
499 
500 	return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503 
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 				     loff_t start_byte, loff_t end_byte)
506 {
507 	pgoff_t index = start_byte >> PAGE_SHIFT;
508 	pgoff_t end = end_byte >> PAGE_SHIFT;
509 	struct pagevec pvec;
510 	int nr_pages;
511 
512 	if (end_byte < start_byte)
513 		return;
514 
515 	pagevec_init(&pvec);
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 				end, PAGECACHE_TAG_WRITEBACK);
521 		if (!nr_pages)
522 			break;
523 
524 		for (i = 0; i < nr_pages; i++) {
525 			struct page *page = pvec.pages[i];
526 
527 			wait_on_page_writeback(page);
528 			ClearPageError(page);
529 		}
530 		pagevec_release(&pvec);
531 		cond_resched();
532 	}
533 }
534 
535 /**
536  * filemap_fdatawait_range - wait for writeback to complete
537  * @mapping:		address space structure to wait for
538  * @start_byte:		offset in bytes where the range starts
539  * @end_byte:		offset in bytes where the range ends (inclusive)
540  *
541  * Walk the list of under-writeback pages of the given address space
542  * in the given range and wait for all of them.  Check error status of
543  * the address space and return it.
544  *
545  * Since the error status of the address space is cleared by this function,
546  * callers are responsible for checking the return value and handling and/or
547  * reporting the error.
548  *
549  * Return: error status of the address space.
550  */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 			    loff_t end_byte)
553 {
554 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
555 	return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558 
559 /**
560  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561  * @mapping:		address space structure to wait for
562  * @start_byte:		offset in bytes where the range starts
563  * @end_byte:		offset in bytes where the range ends (inclusive)
564  *
565  * Walk the list of under-writeback pages of the given address space in the
566  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
567  * this function does not clear error status of the address space.
568  *
569  * Use this function if callers don't handle errors themselves.  Expected
570  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571  * fsfreeze(8)
572  */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 		loff_t start_byte, loff_t end_byte)
575 {
576 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
577 	return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580 
581 /**
582  * file_fdatawait_range - wait for writeback to complete
583  * @file:		file pointing to address space structure to wait for
584  * @start_byte:		offset in bytes where the range starts
585  * @end_byte:		offset in bytes where the range ends (inclusive)
586  *
587  * Walk the list of under-writeback pages of the address space that file
588  * refers to, in the given range and wait for all of them.  Check error
589  * status of the address space vs. the file->f_wb_err cursor and return it.
590  *
591  * Since the error status of the file is advanced by this function,
592  * callers are responsible for checking the return value and handling and/or
593  * reporting the error.
594  *
595  * Return: error status of the address space vs. the file->f_wb_err cursor.
596  */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 	struct address_space *mapping = file->f_mapping;
600 
601 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
602 	return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605 
606 /**
607  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608  * @mapping: address space structure to wait for
609  *
610  * Walk the list of under-writeback pages of the given address space
611  * and wait for all of them.  Unlike filemap_fdatawait(), this function
612  * does not clear error status of the address space.
613  *
614  * Use this function if callers don't handle errors themselves.  Expected
615  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616  * fsfreeze(8)
617  *
618  * Return: error status of the address space.
619  */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 	return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626 
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 	if (dax_mapping(mapping))
631 		return mapping->nrexceptional;
632 
633 	return mapping->nrpages;
634 }
635 
636 /**
637  * filemap_write_and_wait_range - write out & wait on a file range
638  * @mapping:	the address_space for the pages
639  * @lstart:	offset in bytes where the range starts
640  * @lend:	offset in bytes where the range ends (inclusive)
641  *
642  * Write out and wait upon file offsets lstart->lend, inclusive.
643  *
644  * Note that @lend is inclusive (describes the last byte to be written) so
645  * that this function can be used to write to the very end-of-file (end = -1).
646  *
647  * Return: error status of the address space.
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 				 loff_t lstart, loff_t lend)
651 {
652 	int err = 0;
653 
654 	if (mapping_needs_writeback(mapping)) {
655 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 						 WB_SYNC_ALL);
657 		/*
658 		 * Even if the above returned error, the pages may be
659 		 * written partially (e.g. -ENOSPC), so we wait for it.
660 		 * But the -EIO is special case, it may indicate the worst
661 		 * thing (e.g. bug) happened, so we avoid waiting for it.
662 		 */
663 		if (err != -EIO) {
664 			int err2 = filemap_fdatawait_range(mapping,
665 						lstart, lend);
666 			if (!err)
667 				err = err2;
668 		} else {
669 			/* Clear any previously stored errors */
670 			filemap_check_errors(mapping);
671 		}
672 	} else {
673 		err = filemap_check_errors(mapping);
674 	}
675 	return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678 
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 
683 	trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686 
687 /**
688  * file_check_and_advance_wb_err - report wb error (if any) that was previously
689  * 				   and advance wb_err to current one
690  * @file: struct file on which the error is being reported
691  *
692  * When userland calls fsync (or something like nfsd does the equivalent), we
693  * want to report any writeback errors that occurred since the last fsync (or
694  * since the file was opened if there haven't been any).
695  *
696  * Grab the wb_err from the mapping. If it matches what we have in the file,
697  * then just quickly return 0. The file is all caught up.
698  *
699  * If it doesn't match, then take the mapping value, set the "seen" flag in
700  * it and try to swap it into place. If it works, or another task beat us
701  * to it with the new value, then update the f_wb_err and return the error
702  * portion. The error at this point must be reported via proper channels
703  * (a'la fsync, or NFS COMMIT operation, etc.).
704  *
705  * While we handle mapping->wb_err with atomic operations, the f_wb_err
706  * value is protected by the f_lock since we must ensure that it reflects
707  * the latest value swapped in for this file descriptor.
708  *
709  * Return: %0 on success, negative error code otherwise.
710  */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 	int err = 0;
714 	errseq_t old = READ_ONCE(file->f_wb_err);
715 	struct address_space *mapping = file->f_mapping;
716 
717 	/* Locklessly handle the common case where nothing has changed */
718 	if (errseq_check(&mapping->wb_err, old)) {
719 		/* Something changed, must use slow path */
720 		spin_lock(&file->f_lock);
721 		old = file->f_wb_err;
722 		err = errseq_check_and_advance(&mapping->wb_err,
723 						&file->f_wb_err);
724 		trace_file_check_and_advance_wb_err(file, old);
725 		spin_unlock(&file->f_lock);
726 	}
727 
728 	/*
729 	 * We're mostly using this function as a drop in replacement for
730 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 	 * that the legacy code would have had on these flags.
732 	 */
733 	clear_bit(AS_EIO, &mapping->flags);
734 	clear_bit(AS_ENOSPC, &mapping->flags);
735 	return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738 
739 /**
740  * file_write_and_wait_range - write out & wait on a file range
741  * @file:	file pointing to address_space with pages
742  * @lstart:	offset in bytes where the range starts
743  * @lend:	offset in bytes where the range ends (inclusive)
744  *
745  * Write out and wait upon file offsets lstart->lend, inclusive.
746  *
747  * Note that @lend is inclusive (describes the last byte to be written) so
748  * that this function can be used to write to the very end-of-file (end = -1).
749  *
750  * After writing out and waiting on the data, we check and advance the
751  * f_wb_err cursor to the latest value, and return any errors detected there.
752  *
753  * Return: %0 on success, negative error code otherwise.
754  */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 	int err = 0, err2;
758 	struct address_space *mapping = file->f_mapping;
759 
760 	if (mapping_needs_writeback(mapping)) {
761 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 						 WB_SYNC_ALL);
763 		/* See comment of filemap_write_and_wait() */
764 		if (err != -EIO)
765 			__filemap_fdatawait_range(mapping, lstart, lend);
766 	}
767 	err2 = file_check_and_advance_wb_err(file);
768 	if (!err)
769 		err = err2;
770 	return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773 
774 /**
775  * replace_page_cache_page - replace a pagecache page with a new one
776  * @old:	page to be replaced
777  * @new:	page to replace with
778  * @gfp_mask:	allocation mode
779  *
780  * This function replaces a page in the pagecache with a new one.  On
781  * success it acquires the pagecache reference for the new page and
782  * drops it for the old page.  Both the old and new pages must be
783  * locked.  This function does not add the new page to the LRU, the
784  * caller must do that.
785  *
786  * The remove + add is atomic.  This function cannot fail.
787  *
788  * Return: %0
789  */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 	struct address_space *mapping = old->mapping;
793 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 	pgoff_t offset = old->index;
795 	XA_STATE(xas, &mapping->i_pages, offset);
796 	unsigned long flags;
797 
798 	VM_BUG_ON_PAGE(!PageLocked(old), old);
799 	VM_BUG_ON_PAGE(!PageLocked(new), new);
800 	VM_BUG_ON_PAGE(new->mapping, new);
801 
802 	get_page(new);
803 	new->mapping = mapping;
804 	new->index = offset;
805 
806 	mem_cgroup_migrate(old, new);
807 
808 	xas_lock_irqsave(&xas, flags);
809 	xas_store(&xas, new);
810 
811 	old->mapping = NULL;
812 	/* hugetlb pages do not participate in page cache accounting. */
813 	if (!PageHuge(old))
814 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
815 	if (!PageHuge(new))
816 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
817 	if (PageSwapBacked(old))
818 		__dec_lruvec_page_state(old, NR_SHMEM);
819 	if (PageSwapBacked(new))
820 		__inc_lruvec_page_state(new, NR_SHMEM);
821 	xas_unlock_irqrestore(&xas, flags);
822 	if (freepage)
823 		freepage(old);
824 	put_page(old);
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829 
830 static int __add_to_page_cache_locked(struct page *page,
831 				      struct address_space *mapping,
832 				      pgoff_t offset, gfp_t gfp_mask,
833 				      void **shadowp)
834 {
835 	XA_STATE(xas, &mapping->i_pages, offset);
836 	int huge = PageHuge(page);
837 	int error;
838 	void *old;
839 
840 	VM_BUG_ON_PAGE(!PageLocked(page), page);
841 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 	mapping_set_update(&xas, mapping);
843 
844 	get_page(page);
845 	page->mapping = mapping;
846 	page->index = offset;
847 
848 	if (!huge) {
849 		error = mem_cgroup_charge(page, current->mm, gfp_mask);
850 		if (error)
851 			goto error;
852 	}
853 
854 	do {
855 		xas_lock_irq(&xas);
856 		old = xas_load(&xas);
857 		if (old && !xa_is_value(old))
858 			xas_set_err(&xas, -EEXIST);
859 		xas_store(&xas, page);
860 		if (xas_error(&xas))
861 			goto unlock;
862 
863 		if (xa_is_value(old)) {
864 			mapping->nrexceptional--;
865 			if (shadowp)
866 				*shadowp = old;
867 		}
868 		mapping->nrpages++;
869 
870 		/* hugetlb pages do not participate in page cache accounting */
871 		if (!huge)
872 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
873 unlock:
874 		xas_unlock_irq(&xas);
875 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876 
877 	if (xas_error(&xas)) {
878 		error = xas_error(&xas);
879 		goto error;
880 	}
881 
882 	trace_mm_filemap_add_to_page_cache(page);
883 	return 0;
884 error:
885 	page->mapping = NULL;
886 	/* Leave page->index set: truncation relies upon it */
887 	put_page(page);
888 	return error;
889 }
890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
891 
892 /**
893  * add_to_page_cache_locked - add a locked page to the pagecache
894  * @page:	page to add
895  * @mapping:	the page's address_space
896  * @offset:	page index
897  * @gfp_mask:	page allocation mode
898  *
899  * This function is used to add a page to the pagecache. It must be locked.
900  * This function does not add the page to the LRU.  The caller must do that.
901  *
902  * Return: %0 on success, negative error code otherwise.
903  */
904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 		pgoff_t offset, gfp_t gfp_mask)
906 {
907 	return __add_to_page_cache_locked(page, mapping, offset,
908 					  gfp_mask, NULL);
909 }
910 EXPORT_SYMBOL(add_to_page_cache_locked);
911 
912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
913 				pgoff_t offset, gfp_t gfp_mask)
914 {
915 	void *shadow = NULL;
916 	int ret;
917 
918 	__SetPageLocked(page);
919 	ret = __add_to_page_cache_locked(page, mapping, offset,
920 					 gfp_mask, &shadow);
921 	if (unlikely(ret))
922 		__ClearPageLocked(page);
923 	else {
924 		/*
925 		 * The page might have been evicted from cache only
926 		 * recently, in which case it should be activated like
927 		 * any other repeatedly accessed page.
928 		 * The exception is pages getting rewritten; evicting other
929 		 * data from the working set, only to cache data that will
930 		 * get overwritten with something else, is a waste of memory.
931 		 */
932 		WARN_ON_ONCE(PageActive(page));
933 		if (!(gfp_mask & __GFP_WRITE) && shadow)
934 			workingset_refault(page, shadow);
935 		lru_cache_add(page);
936 	}
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
940 
941 #ifdef CONFIG_NUMA
942 struct page *__page_cache_alloc(gfp_t gfp)
943 {
944 	int n;
945 	struct page *page;
946 
947 	if (cpuset_do_page_mem_spread()) {
948 		unsigned int cpuset_mems_cookie;
949 		do {
950 			cpuset_mems_cookie = read_mems_allowed_begin();
951 			n = cpuset_mem_spread_node();
952 			page = __alloc_pages_node(n, gfp, 0);
953 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
954 
955 		return page;
956 	}
957 	return alloc_pages(gfp, 0);
958 }
959 EXPORT_SYMBOL(__page_cache_alloc);
960 #endif
961 
962 /*
963  * In order to wait for pages to become available there must be
964  * waitqueues associated with pages. By using a hash table of
965  * waitqueues where the bucket discipline is to maintain all
966  * waiters on the same queue and wake all when any of the pages
967  * become available, and for the woken contexts to check to be
968  * sure the appropriate page became available, this saves space
969  * at a cost of "thundering herd" phenomena during rare hash
970  * collisions.
971  */
972 #define PAGE_WAIT_TABLE_BITS 8
973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
975 
976 static wait_queue_head_t *page_waitqueue(struct page *page)
977 {
978 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
979 }
980 
981 void __init pagecache_init(void)
982 {
983 	int i;
984 
985 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 		init_waitqueue_head(&page_wait_table[i]);
987 
988 	page_writeback_init();
989 }
990 
991 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
992 {
993 	int ret;
994 	struct wait_page_key *key = arg;
995 	struct wait_page_queue *wait_page
996 		= container_of(wait, struct wait_page_queue, wait);
997 
998 	if (!wake_page_match(wait_page, key))
999 		return 0;
1000 
1001 	/*
1002 	 * If it's an exclusive wait, we get the bit for it, and
1003 	 * stop walking if we can't.
1004 	 *
1005 	 * If it's a non-exclusive wait, then the fact that this
1006 	 * wake function was called means that the bit already
1007 	 * was cleared, and we don't care if somebody then
1008 	 * re-took it.
1009 	 */
1010 	ret = 0;
1011 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1012 		if (test_and_set_bit(key->bit_nr, &key->page->flags))
1013 			return -1;
1014 		ret = 1;
1015 	}
1016 	wait->flags |= WQ_FLAG_WOKEN;
1017 
1018 	wake_up_state(wait->private, mode);
1019 
1020 	/*
1021 	 * Ok, we have successfully done what we're waiting for,
1022 	 * and we can unconditionally remove the wait entry.
1023 	 *
1024 	 * Note that this has to be the absolute last thing we do,
1025 	 * since after list_del_init(&wait->entry) the wait entry
1026 	 * might be de-allocated and the process might even have
1027 	 * exited.
1028 	 */
1029 	list_del_init_careful(&wait->entry);
1030 	return ret;
1031 }
1032 
1033 static void wake_up_page_bit(struct page *page, int bit_nr)
1034 {
1035 	wait_queue_head_t *q = page_waitqueue(page);
1036 	struct wait_page_key key;
1037 	unsigned long flags;
1038 	wait_queue_entry_t bookmark;
1039 
1040 	key.page = page;
1041 	key.bit_nr = bit_nr;
1042 	key.page_match = 0;
1043 
1044 	bookmark.flags = 0;
1045 	bookmark.private = NULL;
1046 	bookmark.func = NULL;
1047 	INIT_LIST_HEAD(&bookmark.entry);
1048 
1049 	spin_lock_irqsave(&q->lock, flags);
1050 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1051 
1052 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1053 		/*
1054 		 * Take a breather from holding the lock,
1055 		 * allow pages that finish wake up asynchronously
1056 		 * to acquire the lock and remove themselves
1057 		 * from wait queue
1058 		 */
1059 		spin_unlock_irqrestore(&q->lock, flags);
1060 		cpu_relax();
1061 		spin_lock_irqsave(&q->lock, flags);
1062 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1063 	}
1064 
1065 	/*
1066 	 * It is possible for other pages to have collided on the waitqueue
1067 	 * hash, so in that case check for a page match. That prevents a long-
1068 	 * term waiter
1069 	 *
1070 	 * It is still possible to miss a case here, when we woke page waiters
1071 	 * and removed them from the waitqueue, but there are still other
1072 	 * page waiters.
1073 	 */
1074 	if (!waitqueue_active(q) || !key.page_match) {
1075 		ClearPageWaiters(page);
1076 		/*
1077 		 * It's possible to miss clearing Waiters here, when we woke
1078 		 * our page waiters, but the hashed waitqueue has waiters for
1079 		 * other pages on it.
1080 		 *
1081 		 * That's okay, it's a rare case. The next waker will clear it.
1082 		 */
1083 	}
1084 	spin_unlock_irqrestore(&q->lock, flags);
1085 }
1086 
1087 static void wake_up_page(struct page *page, int bit)
1088 {
1089 	if (!PageWaiters(page))
1090 		return;
1091 	wake_up_page_bit(page, bit);
1092 }
1093 
1094 /*
1095  * A choice of three behaviors for wait_on_page_bit_common():
1096  */
1097 enum behavior {
1098 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1099 			 * __lock_page() waiting on then setting PG_locked.
1100 			 */
1101 	SHARED,		/* Hold ref to page and check the bit when woken, like
1102 			 * wait_on_page_writeback() waiting on PG_writeback.
1103 			 */
1104 	DROP,		/* Drop ref to page before wait, no check when woken,
1105 			 * like put_and_wait_on_page_locked() on PG_locked.
1106 			 */
1107 };
1108 
1109 /*
1110  * Attempt to check (or get) the page bit, and mark the
1111  * waiter woken if successful.
1112  */
1113 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1114 					struct wait_queue_entry *wait)
1115 {
1116 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1117 		if (test_and_set_bit(bit_nr, &page->flags))
1118 			return false;
1119 	} else if (test_bit(bit_nr, &page->flags))
1120 		return false;
1121 
1122 	wait->flags |= WQ_FLAG_WOKEN;
1123 	return true;
1124 }
1125 
1126 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1127 	struct page *page, int bit_nr, int state, enum behavior behavior)
1128 {
1129 	struct wait_page_queue wait_page;
1130 	wait_queue_entry_t *wait = &wait_page.wait;
1131 	bool thrashing = false;
1132 	bool delayacct = false;
1133 	unsigned long pflags;
1134 
1135 	if (bit_nr == PG_locked &&
1136 	    !PageUptodate(page) && PageWorkingset(page)) {
1137 		if (!PageSwapBacked(page)) {
1138 			delayacct_thrashing_start();
1139 			delayacct = true;
1140 		}
1141 		psi_memstall_enter(&pflags);
1142 		thrashing = true;
1143 	}
1144 
1145 	init_wait(wait);
1146 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1147 	wait->func = wake_page_function;
1148 	wait_page.page = page;
1149 	wait_page.bit_nr = bit_nr;
1150 
1151 	/*
1152 	 * Do one last check whether we can get the
1153 	 * page bit synchronously.
1154 	 *
1155 	 * Do the SetPageWaiters() marking before that
1156 	 * to let any waker we _just_ missed know they
1157 	 * need to wake us up (otherwise they'll never
1158 	 * even go to the slow case that looks at the
1159 	 * page queue), and add ourselves to the wait
1160 	 * queue if we need to sleep.
1161 	 *
1162 	 * This part needs to be done under the queue
1163 	 * lock to avoid races.
1164 	 */
1165 	spin_lock_irq(&q->lock);
1166 	SetPageWaiters(page);
1167 	if (!trylock_page_bit_common(page, bit_nr, wait))
1168 		__add_wait_queue_entry_tail(q, wait);
1169 	spin_unlock_irq(&q->lock);
1170 
1171 	/*
1172 	 * From now on, all the logic will be based on
1173 	 * the WQ_FLAG_WOKEN flag, and the and the page
1174 	 * bit testing (and setting) will be - or has
1175 	 * already been - done by the wake function.
1176 	 *
1177 	 * We can drop our reference to the page.
1178 	 */
1179 	if (behavior == DROP)
1180 		put_page(page);
1181 
1182 	for (;;) {
1183 		set_current_state(state);
1184 
1185 		if (signal_pending_state(state, current))
1186 			break;
1187 
1188 		if (wait->flags & WQ_FLAG_WOKEN)
1189 			break;
1190 
1191 		io_schedule();
1192 	}
1193 
1194 	finish_wait(q, wait);
1195 
1196 	if (thrashing) {
1197 		if (delayacct)
1198 			delayacct_thrashing_end();
1199 		psi_memstall_leave(&pflags);
1200 	}
1201 
1202 	/*
1203 	 * A signal could leave PageWaiters set. Clearing it here if
1204 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1205 	 * but still fail to catch it in the case of wait hash collision. We
1206 	 * already can fail to clear wait hash collision cases, so don't
1207 	 * bother with signals either.
1208 	 */
1209 
1210 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1211 }
1212 
1213 void wait_on_page_bit(struct page *page, int bit_nr)
1214 {
1215 	wait_queue_head_t *q = page_waitqueue(page);
1216 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1217 }
1218 EXPORT_SYMBOL(wait_on_page_bit);
1219 
1220 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1221 {
1222 	wait_queue_head_t *q = page_waitqueue(page);
1223 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1224 }
1225 EXPORT_SYMBOL(wait_on_page_bit_killable);
1226 
1227 static int __wait_on_page_locked_async(struct page *page,
1228 				       struct wait_page_queue *wait, bool set)
1229 {
1230 	struct wait_queue_head *q = page_waitqueue(page);
1231 	int ret = 0;
1232 
1233 	wait->page = page;
1234 	wait->bit_nr = PG_locked;
1235 
1236 	spin_lock_irq(&q->lock);
1237 	__add_wait_queue_entry_tail(q, &wait->wait);
1238 	SetPageWaiters(page);
1239 	if (set)
1240 		ret = !trylock_page(page);
1241 	else
1242 		ret = PageLocked(page);
1243 	/*
1244 	 * If we were succesful now, we know we're still on the
1245 	 * waitqueue as we're still under the lock. This means it's
1246 	 * safe to remove and return success, we know the callback
1247 	 * isn't going to trigger.
1248 	 */
1249 	if (!ret)
1250 		__remove_wait_queue(q, &wait->wait);
1251 	else
1252 		ret = -EIOCBQUEUED;
1253 	spin_unlock_irq(&q->lock);
1254 	return ret;
1255 }
1256 
1257 static int wait_on_page_locked_async(struct page *page,
1258 				     struct wait_page_queue *wait)
1259 {
1260 	if (!PageLocked(page))
1261 		return 0;
1262 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1263 }
1264 
1265 /**
1266  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1267  * @page: The page to wait for.
1268  *
1269  * The caller should hold a reference on @page.  They expect the page to
1270  * become unlocked relatively soon, but do not wish to hold up migration
1271  * (for example) by holding the reference while waiting for the page to
1272  * come unlocked.  After this function returns, the caller should not
1273  * dereference @page.
1274  */
1275 void put_and_wait_on_page_locked(struct page *page)
1276 {
1277 	wait_queue_head_t *q;
1278 
1279 	page = compound_head(page);
1280 	q = page_waitqueue(page);
1281 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1282 }
1283 
1284 /**
1285  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1286  * @page: Page defining the wait queue of interest
1287  * @waiter: Waiter to add to the queue
1288  *
1289  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1290  */
1291 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1292 {
1293 	wait_queue_head_t *q = page_waitqueue(page);
1294 	unsigned long flags;
1295 
1296 	spin_lock_irqsave(&q->lock, flags);
1297 	__add_wait_queue_entry_tail(q, waiter);
1298 	SetPageWaiters(page);
1299 	spin_unlock_irqrestore(&q->lock, flags);
1300 }
1301 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1302 
1303 #ifndef clear_bit_unlock_is_negative_byte
1304 
1305 /*
1306  * PG_waiters is the high bit in the same byte as PG_lock.
1307  *
1308  * On x86 (and on many other architectures), we can clear PG_lock and
1309  * test the sign bit at the same time. But if the architecture does
1310  * not support that special operation, we just do this all by hand
1311  * instead.
1312  *
1313  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1314  * being cleared, but a memory barrier should be unnecessary since it is
1315  * in the same byte as PG_locked.
1316  */
1317 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1318 {
1319 	clear_bit_unlock(nr, mem);
1320 	/* smp_mb__after_atomic(); */
1321 	return test_bit(PG_waiters, mem);
1322 }
1323 
1324 #endif
1325 
1326 /**
1327  * unlock_page - unlock a locked page
1328  * @page: the page
1329  *
1330  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1331  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1332  * mechanism between PageLocked pages and PageWriteback pages is shared.
1333  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1334  *
1335  * Note that this depends on PG_waiters being the sign bit in the byte
1336  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1337  * clear the PG_locked bit and test PG_waiters at the same time fairly
1338  * portably (architectures that do LL/SC can test any bit, while x86 can
1339  * test the sign bit).
1340  */
1341 void unlock_page(struct page *page)
1342 {
1343 	BUILD_BUG_ON(PG_waiters != 7);
1344 	page = compound_head(page);
1345 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1346 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1347 		wake_up_page_bit(page, PG_locked);
1348 }
1349 EXPORT_SYMBOL(unlock_page);
1350 
1351 /**
1352  * end_page_writeback - end writeback against a page
1353  * @page: the page
1354  */
1355 void end_page_writeback(struct page *page)
1356 {
1357 	/*
1358 	 * TestClearPageReclaim could be used here but it is an atomic
1359 	 * operation and overkill in this particular case. Failing to
1360 	 * shuffle a page marked for immediate reclaim is too mild to
1361 	 * justify taking an atomic operation penalty at the end of
1362 	 * ever page writeback.
1363 	 */
1364 	if (PageReclaim(page)) {
1365 		ClearPageReclaim(page);
1366 		rotate_reclaimable_page(page);
1367 	}
1368 
1369 	if (!test_clear_page_writeback(page))
1370 		BUG();
1371 
1372 	smp_mb__after_atomic();
1373 	wake_up_page(page, PG_writeback);
1374 }
1375 EXPORT_SYMBOL(end_page_writeback);
1376 
1377 /*
1378  * After completing I/O on a page, call this routine to update the page
1379  * flags appropriately
1380  */
1381 void page_endio(struct page *page, bool is_write, int err)
1382 {
1383 	if (!is_write) {
1384 		if (!err) {
1385 			SetPageUptodate(page);
1386 		} else {
1387 			ClearPageUptodate(page);
1388 			SetPageError(page);
1389 		}
1390 		unlock_page(page);
1391 	} else {
1392 		if (err) {
1393 			struct address_space *mapping;
1394 
1395 			SetPageError(page);
1396 			mapping = page_mapping(page);
1397 			if (mapping)
1398 				mapping_set_error(mapping, err);
1399 		}
1400 		end_page_writeback(page);
1401 	}
1402 }
1403 EXPORT_SYMBOL_GPL(page_endio);
1404 
1405 /**
1406  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1407  * @__page: the page to lock
1408  */
1409 void __lock_page(struct page *__page)
1410 {
1411 	struct page *page = compound_head(__page);
1412 	wait_queue_head_t *q = page_waitqueue(page);
1413 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1414 				EXCLUSIVE);
1415 }
1416 EXPORT_SYMBOL(__lock_page);
1417 
1418 int __lock_page_killable(struct page *__page)
1419 {
1420 	struct page *page = compound_head(__page);
1421 	wait_queue_head_t *q = page_waitqueue(page);
1422 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1423 					EXCLUSIVE);
1424 }
1425 EXPORT_SYMBOL_GPL(__lock_page_killable);
1426 
1427 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1428 {
1429 	return __wait_on_page_locked_async(page, wait, true);
1430 }
1431 
1432 /*
1433  * Return values:
1434  * 1 - page is locked; mmap_lock is still held.
1435  * 0 - page is not locked.
1436  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1437  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1438  *     which case mmap_lock is still held.
1439  *
1440  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1441  * with the page locked and the mmap_lock unperturbed.
1442  */
1443 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1444 			 unsigned int flags)
1445 {
1446 	if (fault_flag_allow_retry_first(flags)) {
1447 		/*
1448 		 * CAUTION! In this case, mmap_lock is not released
1449 		 * even though return 0.
1450 		 */
1451 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1452 			return 0;
1453 
1454 		mmap_read_unlock(mm);
1455 		if (flags & FAULT_FLAG_KILLABLE)
1456 			wait_on_page_locked_killable(page);
1457 		else
1458 			wait_on_page_locked(page);
1459 		return 0;
1460 	} else {
1461 		if (flags & FAULT_FLAG_KILLABLE) {
1462 			int ret;
1463 
1464 			ret = __lock_page_killable(page);
1465 			if (ret) {
1466 				mmap_read_unlock(mm);
1467 				return 0;
1468 			}
1469 		} else
1470 			__lock_page(page);
1471 		return 1;
1472 	}
1473 }
1474 
1475 /**
1476  * page_cache_next_miss() - Find the next gap in the page cache.
1477  * @mapping: Mapping.
1478  * @index: Index.
1479  * @max_scan: Maximum range to search.
1480  *
1481  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1482  * gap with the lowest index.
1483  *
1484  * This function may be called under the rcu_read_lock.  However, this will
1485  * not atomically search a snapshot of the cache at a single point in time.
1486  * For example, if a gap is created at index 5, then subsequently a gap is
1487  * created at index 10, page_cache_next_miss covering both indices may
1488  * return 10 if called under the rcu_read_lock.
1489  *
1490  * Return: The index of the gap if found, otherwise an index outside the
1491  * range specified (in which case 'return - index >= max_scan' will be true).
1492  * In the rare case of index wrap-around, 0 will be returned.
1493  */
1494 pgoff_t page_cache_next_miss(struct address_space *mapping,
1495 			     pgoff_t index, unsigned long max_scan)
1496 {
1497 	XA_STATE(xas, &mapping->i_pages, index);
1498 
1499 	while (max_scan--) {
1500 		void *entry = xas_next(&xas);
1501 		if (!entry || xa_is_value(entry))
1502 			break;
1503 		if (xas.xa_index == 0)
1504 			break;
1505 	}
1506 
1507 	return xas.xa_index;
1508 }
1509 EXPORT_SYMBOL(page_cache_next_miss);
1510 
1511 /**
1512  * page_cache_prev_miss() - Find the previous gap in the page cache.
1513  * @mapping: Mapping.
1514  * @index: Index.
1515  * @max_scan: Maximum range to search.
1516  *
1517  * Search the range [max(index - max_scan + 1, 0), index] for the
1518  * gap with the highest index.
1519  *
1520  * This function may be called under the rcu_read_lock.  However, this will
1521  * not atomically search a snapshot of the cache at a single point in time.
1522  * For example, if a gap is created at index 10, then subsequently a gap is
1523  * created at index 5, page_cache_prev_miss() covering both indices may
1524  * return 5 if called under the rcu_read_lock.
1525  *
1526  * Return: The index of the gap if found, otherwise an index outside the
1527  * range specified (in which case 'index - return >= max_scan' will be true).
1528  * In the rare case of wrap-around, ULONG_MAX will be returned.
1529  */
1530 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1531 			     pgoff_t index, unsigned long max_scan)
1532 {
1533 	XA_STATE(xas, &mapping->i_pages, index);
1534 
1535 	while (max_scan--) {
1536 		void *entry = xas_prev(&xas);
1537 		if (!entry || xa_is_value(entry))
1538 			break;
1539 		if (xas.xa_index == ULONG_MAX)
1540 			break;
1541 	}
1542 
1543 	return xas.xa_index;
1544 }
1545 EXPORT_SYMBOL(page_cache_prev_miss);
1546 
1547 /**
1548  * find_get_entry - find and get a page cache entry
1549  * @mapping: the address_space to search
1550  * @offset: the page cache index
1551  *
1552  * Looks up the page cache slot at @mapping & @offset.  If there is a
1553  * page cache page, it is returned with an increased refcount.
1554  *
1555  * If the slot holds a shadow entry of a previously evicted page, or a
1556  * swap entry from shmem/tmpfs, it is returned.
1557  *
1558  * Return: the found page or shadow entry, %NULL if nothing is found.
1559  */
1560 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1561 {
1562 	XA_STATE(xas, &mapping->i_pages, offset);
1563 	struct page *page;
1564 
1565 	rcu_read_lock();
1566 repeat:
1567 	xas_reset(&xas);
1568 	page = xas_load(&xas);
1569 	if (xas_retry(&xas, page))
1570 		goto repeat;
1571 	/*
1572 	 * A shadow entry of a recently evicted page, or a swap entry from
1573 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1574 	 */
1575 	if (!page || xa_is_value(page))
1576 		goto out;
1577 
1578 	if (!page_cache_get_speculative(page))
1579 		goto repeat;
1580 
1581 	/*
1582 	 * Has the page moved or been split?
1583 	 * This is part of the lockless pagecache protocol. See
1584 	 * include/linux/pagemap.h for details.
1585 	 */
1586 	if (unlikely(page != xas_reload(&xas))) {
1587 		put_page(page);
1588 		goto repeat;
1589 	}
1590 	page = find_subpage(page, offset);
1591 out:
1592 	rcu_read_unlock();
1593 
1594 	return page;
1595 }
1596 
1597 /**
1598  * find_lock_entry - locate, pin and lock a page cache entry
1599  * @mapping: the address_space to search
1600  * @offset: the page cache index
1601  *
1602  * Looks up the page cache slot at @mapping & @offset.  If there is a
1603  * page cache page, it is returned locked and with an increased
1604  * refcount.
1605  *
1606  * If the slot holds a shadow entry of a previously evicted page, or a
1607  * swap entry from shmem/tmpfs, it is returned.
1608  *
1609  * find_lock_entry() may sleep.
1610  *
1611  * Return: the found page or shadow entry, %NULL if nothing is found.
1612  */
1613 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1614 {
1615 	struct page *page;
1616 
1617 repeat:
1618 	page = find_get_entry(mapping, offset);
1619 	if (page && !xa_is_value(page)) {
1620 		lock_page(page);
1621 		/* Has the page been truncated? */
1622 		if (unlikely(page_mapping(page) != mapping)) {
1623 			unlock_page(page);
1624 			put_page(page);
1625 			goto repeat;
1626 		}
1627 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1628 	}
1629 	return page;
1630 }
1631 EXPORT_SYMBOL(find_lock_entry);
1632 
1633 /**
1634  * pagecache_get_page - Find and get a reference to a page.
1635  * @mapping: The address_space to search.
1636  * @index: The page index.
1637  * @fgp_flags: %FGP flags modify how the page is returned.
1638  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1639  *
1640  * Looks up the page cache entry at @mapping & @index.
1641  *
1642  * @fgp_flags can be zero or more of these flags:
1643  *
1644  * * %FGP_ACCESSED - The page will be marked accessed.
1645  * * %FGP_LOCK - The page is returned locked.
1646  * * %FGP_CREAT - If no page is present then a new page is allocated using
1647  *   @gfp_mask and added to the page cache and the VM's LRU list.
1648  *   The page is returned locked and with an increased refcount.
1649  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1650  *   page is already in cache.  If the page was allocated, unlock it before
1651  *   returning so the caller can do the same dance.
1652  * * %FGP_WRITE - The page will be written
1653  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1654  * * %FGP_NOWAIT - Don't get blocked by page lock
1655  *
1656  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1657  * if the %GFP flags specified for %FGP_CREAT are atomic.
1658  *
1659  * If there is a page cache page, it is returned with an increased refcount.
1660  *
1661  * Return: The found page or %NULL otherwise.
1662  */
1663 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1664 		int fgp_flags, gfp_t gfp_mask)
1665 {
1666 	struct page *page;
1667 
1668 repeat:
1669 	page = find_get_entry(mapping, index);
1670 	if (xa_is_value(page))
1671 		page = NULL;
1672 	if (!page)
1673 		goto no_page;
1674 
1675 	if (fgp_flags & FGP_LOCK) {
1676 		if (fgp_flags & FGP_NOWAIT) {
1677 			if (!trylock_page(page)) {
1678 				put_page(page);
1679 				return NULL;
1680 			}
1681 		} else {
1682 			lock_page(page);
1683 		}
1684 
1685 		/* Has the page been truncated? */
1686 		if (unlikely(compound_head(page)->mapping != mapping)) {
1687 			unlock_page(page);
1688 			put_page(page);
1689 			goto repeat;
1690 		}
1691 		VM_BUG_ON_PAGE(page->index != index, page);
1692 	}
1693 
1694 	if (fgp_flags & FGP_ACCESSED)
1695 		mark_page_accessed(page);
1696 	else if (fgp_flags & FGP_WRITE) {
1697 		/* Clear idle flag for buffer write */
1698 		if (page_is_idle(page))
1699 			clear_page_idle(page);
1700 	}
1701 
1702 no_page:
1703 	if (!page && (fgp_flags & FGP_CREAT)) {
1704 		int err;
1705 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1706 			gfp_mask |= __GFP_WRITE;
1707 		if (fgp_flags & FGP_NOFS)
1708 			gfp_mask &= ~__GFP_FS;
1709 
1710 		page = __page_cache_alloc(gfp_mask);
1711 		if (!page)
1712 			return NULL;
1713 
1714 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1715 			fgp_flags |= FGP_LOCK;
1716 
1717 		/* Init accessed so avoid atomic mark_page_accessed later */
1718 		if (fgp_flags & FGP_ACCESSED)
1719 			__SetPageReferenced(page);
1720 
1721 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1722 		if (unlikely(err)) {
1723 			put_page(page);
1724 			page = NULL;
1725 			if (err == -EEXIST)
1726 				goto repeat;
1727 		}
1728 
1729 		/*
1730 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1731 		 * an unlocked page.
1732 		 */
1733 		if (page && (fgp_flags & FGP_FOR_MMAP))
1734 			unlock_page(page);
1735 	}
1736 
1737 	return page;
1738 }
1739 EXPORT_SYMBOL(pagecache_get_page);
1740 
1741 /**
1742  * find_get_entries - gang pagecache lookup
1743  * @mapping:	The address_space to search
1744  * @start:	The starting page cache index
1745  * @nr_entries:	The maximum number of entries
1746  * @entries:	Where the resulting entries are placed
1747  * @indices:	The cache indices corresponding to the entries in @entries
1748  *
1749  * find_get_entries() will search for and return a group of up to
1750  * @nr_entries entries in the mapping.  The entries are placed at
1751  * @entries.  find_get_entries() takes a reference against any actual
1752  * pages it returns.
1753  *
1754  * The search returns a group of mapping-contiguous page cache entries
1755  * with ascending indexes.  There may be holes in the indices due to
1756  * not-present pages.
1757  *
1758  * Any shadow entries of evicted pages, or swap entries from
1759  * shmem/tmpfs, are included in the returned array.
1760  *
1761  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1762  * stops at that page: the caller is likely to have a better way to handle
1763  * the compound page as a whole, and then skip its extent, than repeatedly
1764  * calling find_get_entries() to return all its tails.
1765  *
1766  * Return: the number of pages and shadow entries which were found.
1767  */
1768 unsigned find_get_entries(struct address_space *mapping,
1769 			  pgoff_t start, unsigned int nr_entries,
1770 			  struct page **entries, pgoff_t *indices)
1771 {
1772 	XA_STATE(xas, &mapping->i_pages, start);
1773 	struct page *page;
1774 	unsigned int ret = 0;
1775 
1776 	if (!nr_entries)
1777 		return 0;
1778 
1779 	rcu_read_lock();
1780 	xas_for_each(&xas, page, ULONG_MAX) {
1781 		if (xas_retry(&xas, page))
1782 			continue;
1783 		/*
1784 		 * A shadow entry of a recently evicted page, a swap
1785 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1786 		 * without attempting to raise page count.
1787 		 */
1788 		if (xa_is_value(page))
1789 			goto export;
1790 
1791 		if (!page_cache_get_speculative(page))
1792 			goto retry;
1793 
1794 		/* Has the page moved or been split? */
1795 		if (unlikely(page != xas_reload(&xas)))
1796 			goto put_page;
1797 
1798 		/*
1799 		 * Terminate early on finding a THP, to allow the caller to
1800 		 * handle it all at once; but continue if this is hugetlbfs.
1801 		 */
1802 		if (PageTransHuge(page) && !PageHuge(page)) {
1803 			page = find_subpage(page, xas.xa_index);
1804 			nr_entries = ret + 1;
1805 		}
1806 export:
1807 		indices[ret] = xas.xa_index;
1808 		entries[ret] = page;
1809 		if (++ret == nr_entries)
1810 			break;
1811 		continue;
1812 put_page:
1813 		put_page(page);
1814 retry:
1815 		xas_reset(&xas);
1816 	}
1817 	rcu_read_unlock();
1818 	return ret;
1819 }
1820 
1821 /**
1822  * find_get_pages_range - gang pagecache lookup
1823  * @mapping:	The address_space to search
1824  * @start:	The starting page index
1825  * @end:	The final page index (inclusive)
1826  * @nr_pages:	The maximum number of pages
1827  * @pages:	Where the resulting pages are placed
1828  *
1829  * find_get_pages_range() will search for and return a group of up to @nr_pages
1830  * pages in the mapping starting at index @start and up to index @end
1831  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1832  * a reference against the returned pages.
1833  *
1834  * The search returns a group of mapping-contiguous pages with ascending
1835  * indexes.  There may be holes in the indices due to not-present pages.
1836  * We also update @start to index the next page for the traversal.
1837  *
1838  * Return: the number of pages which were found. If this number is
1839  * smaller than @nr_pages, the end of specified range has been
1840  * reached.
1841  */
1842 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1843 			      pgoff_t end, unsigned int nr_pages,
1844 			      struct page **pages)
1845 {
1846 	XA_STATE(xas, &mapping->i_pages, *start);
1847 	struct page *page;
1848 	unsigned ret = 0;
1849 
1850 	if (unlikely(!nr_pages))
1851 		return 0;
1852 
1853 	rcu_read_lock();
1854 	xas_for_each(&xas, page, end) {
1855 		if (xas_retry(&xas, page))
1856 			continue;
1857 		/* Skip over shadow, swap and DAX entries */
1858 		if (xa_is_value(page))
1859 			continue;
1860 
1861 		if (!page_cache_get_speculative(page))
1862 			goto retry;
1863 
1864 		/* Has the page moved or been split? */
1865 		if (unlikely(page != xas_reload(&xas)))
1866 			goto put_page;
1867 
1868 		pages[ret] = find_subpage(page, xas.xa_index);
1869 		if (++ret == nr_pages) {
1870 			*start = xas.xa_index + 1;
1871 			goto out;
1872 		}
1873 		continue;
1874 put_page:
1875 		put_page(page);
1876 retry:
1877 		xas_reset(&xas);
1878 	}
1879 
1880 	/*
1881 	 * We come here when there is no page beyond @end. We take care to not
1882 	 * overflow the index @start as it confuses some of the callers. This
1883 	 * breaks the iteration when there is a page at index -1 but that is
1884 	 * already broken anyway.
1885 	 */
1886 	if (end == (pgoff_t)-1)
1887 		*start = (pgoff_t)-1;
1888 	else
1889 		*start = end + 1;
1890 out:
1891 	rcu_read_unlock();
1892 
1893 	return ret;
1894 }
1895 
1896 /**
1897  * find_get_pages_contig - gang contiguous pagecache lookup
1898  * @mapping:	The address_space to search
1899  * @index:	The starting page index
1900  * @nr_pages:	The maximum number of pages
1901  * @pages:	Where the resulting pages are placed
1902  *
1903  * find_get_pages_contig() works exactly like find_get_pages(), except
1904  * that the returned number of pages are guaranteed to be contiguous.
1905  *
1906  * Return: the number of pages which were found.
1907  */
1908 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1909 			       unsigned int nr_pages, struct page **pages)
1910 {
1911 	XA_STATE(xas, &mapping->i_pages, index);
1912 	struct page *page;
1913 	unsigned int ret = 0;
1914 
1915 	if (unlikely(!nr_pages))
1916 		return 0;
1917 
1918 	rcu_read_lock();
1919 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1920 		if (xas_retry(&xas, page))
1921 			continue;
1922 		/*
1923 		 * If the entry has been swapped out, we can stop looking.
1924 		 * No current caller is looking for DAX entries.
1925 		 */
1926 		if (xa_is_value(page))
1927 			break;
1928 
1929 		if (!page_cache_get_speculative(page))
1930 			goto retry;
1931 
1932 		/* Has the page moved or been split? */
1933 		if (unlikely(page != xas_reload(&xas)))
1934 			goto put_page;
1935 
1936 		pages[ret] = find_subpage(page, xas.xa_index);
1937 		if (++ret == nr_pages)
1938 			break;
1939 		continue;
1940 put_page:
1941 		put_page(page);
1942 retry:
1943 		xas_reset(&xas);
1944 	}
1945 	rcu_read_unlock();
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL(find_get_pages_contig);
1949 
1950 /**
1951  * find_get_pages_range_tag - find and return pages in given range matching @tag
1952  * @mapping:	the address_space to search
1953  * @index:	the starting page index
1954  * @end:	The final page index (inclusive)
1955  * @tag:	the tag index
1956  * @nr_pages:	the maximum number of pages
1957  * @pages:	where the resulting pages are placed
1958  *
1959  * Like find_get_pages, except we only return pages which are tagged with
1960  * @tag.   We update @index to index the next page for the traversal.
1961  *
1962  * Return: the number of pages which were found.
1963  */
1964 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1965 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1966 			struct page **pages)
1967 {
1968 	XA_STATE(xas, &mapping->i_pages, *index);
1969 	struct page *page;
1970 	unsigned ret = 0;
1971 
1972 	if (unlikely(!nr_pages))
1973 		return 0;
1974 
1975 	rcu_read_lock();
1976 	xas_for_each_marked(&xas, page, end, tag) {
1977 		if (xas_retry(&xas, page))
1978 			continue;
1979 		/*
1980 		 * Shadow entries should never be tagged, but this iteration
1981 		 * is lockless so there is a window for page reclaim to evict
1982 		 * a page we saw tagged.  Skip over it.
1983 		 */
1984 		if (xa_is_value(page))
1985 			continue;
1986 
1987 		if (!page_cache_get_speculative(page))
1988 			goto retry;
1989 
1990 		/* Has the page moved or been split? */
1991 		if (unlikely(page != xas_reload(&xas)))
1992 			goto put_page;
1993 
1994 		pages[ret] = find_subpage(page, xas.xa_index);
1995 		if (++ret == nr_pages) {
1996 			*index = xas.xa_index + 1;
1997 			goto out;
1998 		}
1999 		continue;
2000 put_page:
2001 		put_page(page);
2002 retry:
2003 		xas_reset(&xas);
2004 	}
2005 
2006 	/*
2007 	 * We come here when we got to @end. We take care to not overflow the
2008 	 * index @index as it confuses some of the callers. This breaks the
2009 	 * iteration when there is a page at index -1 but that is already
2010 	 * broken anyway.
2011 	 */
2012 	if (end == (pgoff_t)-1)
2013 		*index = (pgoff_t)-1;
2014 	else
2015 		*index = end + 1;
2016 out:
2017 	rcu_read_unlock();
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL(find_get_pages_range_tag);
2022 
2023 /*
2024  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2025  * a _large_ part of the i/o request. Imagine the worst scenario:
2026  *
2027  *      ---R__________________________________________B__________
2028  *         ^ reading here                             ^ bad block(assume 4k)
2029  *
2030  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2031  * => failing the whole request => read(R) => read(R+1) =>
2032  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2033  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2034  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2035  *
2036  * It is going insane. Fix it by quickly scaling down the readahead size.
2037  */
2038 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2039 {
2040 	ra->ra_pages /= 4;
2041 }
2042 
2043 /**
2044  * generic_file_buffered_read - generic file read routine
2045  * @iocb:	the iocb to read
2046  * @iter:	data destination
2047  * @written:	already copied
2048  *
2049  * This is a generic file read routine, and uses the
2050  * mapping->a_ops->readpage() function for the actual low-level stuff.
2051  *
2052  * This is really ugly. But the goto's actually try to clarify some
2053  * of the logic when it comes to error handling etc.
2054  *
2055  * Return:
2056  * * total number of bytes copied, including those the were already @written
2057  * * negative error code if nothing was copied
2058  */
2059 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2060 		struct iov_iter *iter, ssize_t written)
2061 {
2062 	struct file *filp = iocb->ki_filp;
2063 	struct address_space *mapping = filp->f_mapping;
2064 	struct inode *inode = mapping->host;
2065 	struct file_ra_state *ra = &filp->f_ra;
2066 	loff_t *ppos = &iocb->ki_pos;
2067 	pgoff_t index;
2068 	pgoff_t last_index;
2069 	pgoff_t prev_index;
2070 	unsigned long offset;      /* offset into pagecache page */
2071 	unsigned int prev_offset;
2072 	int error = 0;
2073 
2074 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2075 		return 0;
2076 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2077 
2078 	index = *ppos >> PAGE_SHIFT;
2079 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2080 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2081 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2082 	offset = *ppos & ~PAGE_MASK;
2083 
2084 	for (;;) {
2085 		struct page *page;
2086 		pgoff_t end_index;
2087 		loff_t isize;
2088 		unsigned long nr, ret;
2089 
2090 		cond_resched();
2091 find_page:
2092 		if (fatal_signal_pending(current)) {
2093 			error = -EINTR;
2094 			goto out;
2095 		}
2096 
2097 		page = find_get_page(mapping, index);
2098 		if (!page) {
2099 			if (iocb->ki_flags & IOCB_NOIO)
2100 				goto would_block;
2101 			page_cache_sync_readahead(mapping,
2102 					ra, filp,
2103 					index, last_index - index);
2104 			page = find_get_page(mapping, index);
2105 			if (unlikely(page == NULL))
2106 				goto no_cached_page;
2107 		}
2108 		if (PageReadahead(page)) {
2109 			if (iocb->ki_flags & IOCB_NOIO) {
2110 				put_page(page);
2111 				goto out;
2112 			}
2113 			page_cache_async_readahead(mapping,
2114 					ra, filp, page,
2115 					index, last_index - index);
2116 		}
2117 		if (!PageUptodate(page)) {
2118 			/*
2119 			 * See comment in do_read_cache_page on why
2120 			 * wait_on_page_locked is used to avoid unnecessarily
2121 			 * serialisations and why it's safe.
2122 			 */
2123 			if (iocb->ki_flags & IOCB_WAITQ) {
2124 				if (written) {
2125 					put_page(page);
2126 					goto out;
2127 				}
2128 				error = wait_on_page_locked_async(page,
2129 								iocb->ki_waitq);
2130 			} else {
2131 				if (iocb->ki_flags & IOCB_NOWAIT) {
2132 					put_page(page);
2133 					goto would_block;
2134 				}
2135 				error = wait_on_page_locked_killable(page);
2136 			}
2137 			if (unlikely(error))
2138 				goto readpage_error;
2139 			if (PageUptodate(page))
2140 				goto page_ok;
2141 
2142 			if (inode->i_blkbits == PAGE_SHIFT ||
2143 					!mapping->a_ops->is_partially_uptodate)
2144 				goto page_not_up_to_date;
2145 			/* pipes can't handle partially uptodate pages */
2146 			if (unlikely(iov_iter_is_pipe(iter)))
2147 				goto page_not_up_to_date;
2148 			if (!trylock_page(page))
2149 				goto page_not_up_to_date;
2150 			/* Did it get truncated before we got the lock? */
2151 			if (!page->mapping)
2152 				goto page_not_up_to_date_locked;
2153 			if (!mapping->a_ops->is_partially_uptodate(page,
2154 							offset, iter->count))
2155 				goto page_not_up_to_date_locked;
2156 			unlock_page(page);
2157 		}
2158 page_ok:
2159 		/*
2160 		 * i_size must be checked after we know the page is Uptodate.
2161 		 *
2162 		 * Checking i_size after the check allows us to calculate
2163 		 * the correct value for "nr", which means the zero-filled
2164 		 * part of the page is not copied back to userspace (unless
2165 		 * another truncate extends the file - this is desired though).
2166 		 */
2167 
2168 		isize = i_size_read(inode);
2169 		end_index = (isize - 1) >> PAGE_SHIFT;
2170 		if (unlikely(!isize || index > end_index)) {
2171 			put_page(page);
2172 			goto out;
2173 		}
2174 
2175 		/* nr is the maximum number of bytes to copy from this page */
2176 		nr = PAGE_SIZE;
2177 		if (index == end_index) {
2178 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2179 			if (nr <= offset) {
2180 				put_page(page);
2181 				goto out;
2182 			}
2183 		}
2184 		nr = nr - offset;
2185 
2186 		/* If users can be writing to this page using arbitrary
2187 		 * virtual addresses, take care about potential aliasing
2188 		 * before reading the page on the kernel side.
2189 		 */
2190 		if (mapping_writably_mapped(mapping))
2191 			flush_dcache_page(page);
2192 
2193 		/*
2194 		 * When a sequential read accesses a page several times,
2195 		 * only mark it as accessed the first time.
2196 		 */
2197 		if (prev_index != index || offset != prev_offset)
2198 			mark_page_accessed(page);
2199 		prev_index = index;
2200 
2201 		/*
2202 		 * Ok, we have the page, and it's up-to-date, so
2203 		 * now we can copy it to user space...
2204 		 */
2205 
2206 		ret = copy_page_to_iter(page, offset, nr, iter);
2207 		offset += ret;
2208 		index += offset >> PAGE_SHIFT;
2209 		offset &= ~PAGE_MASK;
2210 		prev_offset = offset;
2211 
2212 		put_page(page);
2213 		written += ret;
2214 		if (!iov_iter_count(iter))
2215 			goto out;
2216 		if (ret < nr) {
2217 			error = -EFAULT;
2218 			goto out;
2219 		}
2220 		continue;
2221 
2222 page_not_up_to_date:
2223 		/* Get exclusive access to the page ... */
2224 		if (iocb->ki_flags & IOCB_WAITQ)
2225 			error = lock_page_async(page, iocb->ki_waitq);
2226 		else
2227 			error = lock_page_killable(page);
2228 		if (unlikely(error))
2229 			goto readpage_error;
2230 
2231 page_not_up_to_date_locked:
2232 		/* Did it get truncated before we got the lock? */
2233 		if (!page->mapping) {
2234 			unlock_page(page);
2235 			put_page(page);
2236 			continue;
2237 		}
2238 
2239 		/* Did somebody else fill it already? */
2240 		if (PageUptodate(page)) {
2241 			unlock_page(page);
2242 			goto page_ok;
2243 		}
2244 
2245 readpage:
2246 		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2247 			unlock_page(page);
2248 			put_page(page);
2249 			goto would_block;
2250 		}
2251 		/*
2252 		 * A previous I/O error may have been due to temporary
2253 		 * failures, eg. multipath errors.
2254 		 * PG_error will be set again if readpage fails.
2255 		 */
2256 		ClearPageError(page);
2257 		/* Start the actual read. The read will unlock the page. */
2258 		error = mapping->a_ops->readpage(filp, page);
2259 
2260 		if (unlikely(error)) {
2261 			if (error == AOP_TRUNCATED_PAGE) {
2262 				put_page(page);
2263 				error = 0;
2264 				goto find_page;
2265 			}
2266 			goto readpage_error;
2267 		}
2268 
2269 		if (!PageUptodate(page)) {
2270 			error = lock_page_killable(page);
2271 			if (unlikely(error))
2272 				goto readpage_error;
2273 			if (!PageUptodate(page)) {
2274 				if (page->mapping == NULL) {
2275 					/*
2276 					 * invalidate_mapping_pages got it
2277 					 */
2278 					unlock_page(page);
2279 					put_page(page);
2280 					goto find_page;
2281 				}
2282 				unlock_page(page);
2283 				shrink_readahead_size_eio(ra);
2284 				error = -EIO;
2285 				goto readpage_error;
2286 			}
2287 			unlock_page(page);
2288 		}
2289 
2290 		goto page_ok;
2291 
2292 readpage_error:
2293 		/* UHHUH! A synchronous read error occurred. Report it */
2294 		put_page(page);
2295 		goto out;
2296 
2297 no_cached_page:
2298 		/*
2299 		 * Ok, it wasn't cached, so we need to create a new
2300 		 * page..
2301 		 */
2302 		page = page_cache_alloc(mapping);
2303 		if (!page) {
2304 			error = -ENOMEM;
2305 			goto out;
2306 		}
2307 		error = add_to_page_cache_lru(page, mapping, index,
2308 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2309 		if (error) {
2310 			put_page(page);
2311 			if (error == -EEXIST) {
2312 				error = 0;
2313 				goto find_page;
2314 			}
2315 			goto out;
2316 		}
2317 		goto readpage;
2318 	}
2319 
2320 would_block:
2321 	error = -EAGAIN;
2322 out:
2323 	ra->prev_pos = prev_index;
2324 	ra->prev_pos <<= PAGE_SHIFT;
2325 	ra->prev_pos |= prev_offset;
2326 
2327 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2328 	file_accessed(filp);
2329 	return written ? written : error;
2330 }
2331 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2332 
2333 /**
2334  * generic_file_read_iter - generic filesystem read routine
2335  * @iocb:	kernel I/O control block
2336  * @iter:	destination for the data read
2337  *
2338  * This is the "read_iter()" routine for all filesystems
2339  * that can use the page cache directly.
2340  *
2341  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2342  * be returned when no data can be read without waiting for I/O requests
2343  * to complete; it doesn't prevent readahead.
2344  *
2345  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2346  * requests shall be made for the read or for readahead.  When no data
2347  * can be read, -EAGAIN shall be returned.  When readahead would be
2348  * triggered, a partial, possibly empty read shall be returned.
2349  *
2350  * Return:
2351  * * number of bytes copied, even for partial reads
2352  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2353  */
2354 ssize_t
2355 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2356 {
2357 	size_t count = iov_iter_count(iter);
2358 	ssize_t retval = 0;
2359 
2360 	if (!count)
2361 		goto out; /* skip atime */
2362 
2363 	if (iocb->ki_flags & IOCB_DIRECT) {
2364 		struct file *file = iocb->ki_filp;
2365 		struct address_space *mapping = file->f_mapping;
2366 		struct inode *inode = mapping->host;
2367 		loff_t size;
2368 
2369 		size = i_size_read(inode);
2370 		if (iocb->ki_flags & IOCB_NOWAIT) {
2371 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2372 						   iocb->ki_pos + count - 1))
2373 				return -EAGAIN;
2374 		} else {
2375 			retval = filemap_write_and_wait_range(mapping,
2376 						iocb->ki_pos,
2377 					        iocb->ki_pos + count - 1);
2378 			if (retval < 0)
2379 				goto out;
2380 		}
2381 
2382 		file_accessed(file);
2383 
2384 		retval = mapping->a_ops->direct_IO(iocb, iter);
2385 		if (retval >= 0) {
2386 			iocb->ki_pos += retval;
2387 			count -= retval;
2388 		}
2389 		iov_iter_revert(iter, count - iov_iter_count(iter));
2390 
2391 		/*
2392 		 * Btrfs can have a short DIO read if we encounter
2393 		 * compressed extents, so if there was an error, or if
2394 		 * we've already read everything we wanted to, or if
2395 		 * there was a short read because we hit EOF, go ahead
2396 		 * and return.  Otherwise fallthrough to buffered io for
2397 		 * the rest of the read.  Buffered reads will not work for
2398 		 * DAX files, so don't bother trying.
2399 		 */
2400 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2401 		    IS_DAX(inode))
2402 			goto out;
2403 	}
2404 
2405 	retval = generic_file_buffered_read(iocb, iter, retval);
2406 out:
2407 	return retval;
2408 }
2409 EXPORT_SYMBOL(generic_file_read_iter);
2410 
2411 #ifdef CONFIG_MMU
2412 #define MMAP_LOTSAMISS  (100)
2413 /*
2414  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2415  * @vmf - the vm_fault for this fault.
2416  * @page - the page to lock.
2417  * @fpin - the pointer to the file we may pin (or is already pinned).
2418  *
2419  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2420  * It differs in that it actually returns the page locked if it returns 1 and 0
2421  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2422  * will point to the pinned file and needs to be fput()'ed at a later point.
2423  */
2424 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2425 				     struct file **fpin)
2426 {
2427 	if (trylock_page(page))
2428 		return 1;
2429 
2430 	/*
2431 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2432 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2433 	 * is supposed to work. We have way too many special cases..
2434 	 */
2435 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2436 		return 0;
2437 
2438 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2439 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2440 		if (__lock_page_killable(page)) {
2441 			/*
2442 			 * We didn't have the right flags to drop the mmap_lock,
2443 			 * but all fault_handlers only check for fatal signals
2444 			 * if we return VM_FAULT_RETRY, so we need to drop the
2445 			 * mmap_lock here and return 0 if we don't have a fpin.
2446 			 */
2447 			if (*fpin == NULL)
2448 				mmap_read_unlock(vmf->vma->vm_mm);
2449 			return 0;
2450 		}
2451 	} else
2452 		__lock_page(page);
2453 	return 1;
2454 }
2455 
2456 
2457 /*
2458  * Synchronous readahead happens when we don't even find a page in the page
2459  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2460  * to drop the mmap sem we return the file that was pinned in order for us to do
2461  * that.  If we didn't pin a file then we return NULL.  The file that is
2462  * returned needs to be fput()'ed when we're done with it.
2463  */
2464 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2465 {
2466 	struct file *file = vmf->vma->vm_file;
2467 	struct file_ra_state *ra = &file->f_ra;
2468 	struct address_space *mapping = file->f_mapping;
2469 	struct file *fpin = NULL;
2470 	pgoff_t offset = vmf->pgoff;
2471 
2472 	/* If we don't want any read-ahead, don't bother */
2473 	if (vmf->vma->vm_flags & VM_RAND_READ)
2474 		return fpin;
2475 	if (!ra->ra_pages)
2476 		return fpin;
2477 
2478 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2479 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2480 		page_cache_sync_readahead(mapping, ra, file, offset,
2481 					  ra->ra_pages);
2482 		return fpin;
2483 	}
2484 
2485 	/* Avoid banging the cache line if not needed */
2486 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2487 		ra->mmap_miss++;
2488 
2489 	/*
2490 	 * Do we miss much more than hit in this file? If so,
2491 	 * stop bothering with read-ahead. It will only hurt.
2492 	 */
2493 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2494 		return fpin;
2495 
2496 	/*
2497 	 * mmap read-around
2498 	 */
2499 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2500 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2501 	ra->size = ra->ra_pages;
2502 	ra->async_size = ra->ra_pages / 4;
2503 	ra_submit(ra, mapping, file);
2504 	return fpin;
2505 }
2506 
2507 /*
2508  * Asynchronous readahead happens when we find the page and PG_readahead,
2509  * so we want to possibly extend the readahead further.  We return the file that
2510  * was pinned if we have to drop the mmap_lock in order to do IO.
2511  */
2512 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2513 					    struct page *page)
2514 {
2515 	struct file *file = vmf->vma->vm_file;
2516 	struct file_ra_state *ra = &file->f_ra;
2517 	struct address_space *mapping = file->f_mapping;
2518 	struct file *fpin = NULL;
2519 	pgoff_t offset = vmf->pgoff;
2520 
2521 	/* If we don't want any read-ahead, don't bother */
2522 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2523 		return fpin;
2524 	if (ra->mmap_miss > 0)
2525 		ra->mmap_miss--;
2526 	if (PageReadahead(page)) {
2527 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2528 		page_cache_async_readahead(mapping, ra, file,
2529 					   page, offset, ra->ra_pages);
2530 	}
2531 	return fpin;
2532 }
2533 
2534 /**
2535  * filemap_fault - read in file data for page fault handling
2536  * @vmf:	struct vm_fault containing details of the fault
2537  *
2538  * filemap_fault() is invoked via the vma operations vector for a
2539  * mapped memory region to read in file data during a page fault.
2540  *
2541  * The goto's are kind of ugly, but this streamlines the normal case of having
2542  * it in the page cache, and handles the special cases reasonably without
2543  * having a lot of duplicated code.
2544  *
2545  * vma->vm_mm->mmap_lock must be held on entry.
2546  *
2547  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2548  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2549  *
2550  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2551  * has not been released.
2552  *
2553  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2554  *
2555  * Return: bitwise-OR of %VM_FAULT_ codes.
2556  */
2557 vm_fault_t filemap_fault(struct vm_fault *vmf)
2558 {
2559 	int error;
2560 	struct file *file = vmf->vma->vm_file;
2561 	struct file *fpin = NULL;
2562 	struct address_space *mapping = file->f_mapping;
2563 	struct file_ra_state *ra = &file->f_ra;
2564 	struct inode *inode = mapping->host;
2565 	pgoff_t offset = vmf->pgoff;
2566 	pgoff_t max_off;
2567 	struct page *page;
2568 	vm_fault_t ret = 0;
2569 
2570 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2571 	if (unlikely(offset >= max_off))
2572 		return VM_FAULT_SIGBUS;
2573 
2574 	/*
2575 	 * Do we have something in the page cache already?
2576 	 */
2577 	page = find_get_page(mapping, offset);
2578 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2579 		/*
2580 		 * We found the page, so try async readahead before
2581 		 * waiting for the lock.
2582 		 */
2583 		fpin = do_async_mmap_readahead(vmf, page);
2584 	} else if (!page) {
2585 		/* No page in the page cache at all */
2586 		count_vm_event(PGMAJFAULT);
2587 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2588 		ret = VM_FAULT_MAJOR;
2589 		fpin = do_sync_mmap_readahead(vmf);
2590 retry_find:
2591 		page = pagecache_get_page(mapping, offset,
2592 					  FGP_CREAT|FGP_FOR_MMAP,
2593 					  vmf->gfp_mask);
2594 		if (!page) {
2595 			if (fpin)
2596 				goto out_retry;
2597 			return VM_FAULT_OOM;
2598 		}
2599 	}
2600 
2601 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2602 		goto out_retry;
2603 
2604 	/* Did it get truncated? */
2605 	if (unlikely(compound_head(page)->mapping != mapping)) {
2606 		unlock_page(page);
2607 		put_page(page);
2608 		goto retry_find;
2609 	}
2610 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2611 
2612 	/*
2613 	 * We have a locked page in the page cache, now we need to check
2614 	 * that it's up-to-date. If not, it is going to be due to an error.
2615 	 */
2616 	if (unlikely(!PageUptodate(page)))
2617 		goto page_not_uptodate;
2618 
2619 	/*
2620 	 * We've made it this far and we had to drop our mmap_lock, now is the
2621 	 * time to return to the upper layer and have it re-find the vma and
2622 	 * redo the fault.
2623 	 */
2624 	if (fpin) {
2625 		unlock_page(page);
2626 		goto out_retry;
2627 	}
2628 
2629 	/*
2630 	 * Found the page and have a reference on it.
2631 	 * We must recheck i_size under page lock.
2632 	 */
2633 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2634 	if (unlikely(offset >= max_off)) {
2635 		unlock_page(page);
2636 		put_page(page);
2637 		return VM_FAULT_SIGBUS;
2638 	}
2639 
2640 	vmf->page = page;
2641 	return ret | VM_FAULT_LOCKED;
2642 
2643 page_not_uptodate:
2644 	/*
2645 	 * Umm, take care of errors if the page isn't up-to-date.
2646 	 * Try to re-read it _once_. We do this synchronously,
2647 	 * because there really aren't any performance issues here
2648 	 * and we need to check for errors.
2649 	 */
2650 	ClearPageError(page);
2651 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2652 	error = mapping->a_ops->readpage(file, page);
2653 	if (!error) {
2654 		wait_on_page_locked(page);
2655 		if (!PageUptodate(page))
2656 			error = -EIO;
2657 	}
2658 	if (fpin)
2659 		goto out_retry;
2660 	put_page(page);
2661 
2662 	if (!error || error == AOP_TRUNCATED_PAGE)
2663 		goto retry_find;
2664 
2665 	shrink_readahead_size_eio(ra);
2666 	return VM_FAULT_SIGBUS;
2667 
2668 out_retry:
2669 	/*
2670 	 * We dropped the mmap_lock, we need to return to the fault handler to
2671 	 * re-find the vma and come back and find our hopefully still populated
2672 	 * page.
2673 	 */
2674 	if (page)
2675 		put_page(page);
2676 	if (fpin)
2677 		fput(fpin);
2678 	return ret | VM_FAULT_RETRY;
2679 }
2680 EXPORT_SYMBOL(filemap_fault);
2681 
2682 void filemap_map_pages(struct vm_fault *vmf,
2683 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2684 {
2685 	struct file *file = vmf->vma->vm_file;
2686 	struct address_space *mapping = file->f_mapping;
2687 	pgoff_t last_pgoff = start_pgoff;
2688 	unsigned long max_idx;
2689 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2690 	struct page *page;
2691 
2692 	rcu_read_lock();
2693 	xas_for_each(&xas, page, end_pgoff) {
2694 		if (xas_retry(&xas, page))
2695 			continue;
2696 		if (xa_is_value(page))
2697 			goto next;
2698 
2699 		/*
2700 		 * Check for a locked page first, as a speculative
2701 		 * reference may adversely influence page migration.
2702 		 */
2703 		if (PageLocked(page))
2704 			goto next;
2705 		if (!page_cache_get_speculative(page))
2706 			goto next;
2707 
2708 		/* Has the page moved or been split? */
2709 		if (unlikely(page != xas_reload(&xas)))
2710 			goto skip;
2711 		page = find_subpage(page, xas.xa_index);
2712 
2713 		if (!PageUptodate(page) ||
2714 				PageReadahead(page) ||
2715 				PageHWPoison(page))
2716 			goto skip;
2717 		if (!trylock_page(page))
2718 			goto skip;
2719 
2720 		if (page->mapping != mapping || !PageUptodate(page))
2721 			goto unlock;
2722 
2723 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2724 		if (page->index >= max_idx)
2725 			goto unlock;
2726 
2727 		if (file->f_ra.mmap_miss > 0)
2728 			file->f_ra.mmap_miss--;
2729 
2730 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2731 		if (vmf->pte)
2732 			vmf->pte += xas.xa_index - last_pgoff;
2733 		last_pgoff = xas.xa_index;
2734 		if (alloc_set_pte(vmf, page))
2735 			goto unlock;
2736 		unlock_page(page);
2737 		goto next;
2738 unlock:
2739 		unlock_page(page);
2740 skip:
2741 		put_page(page);
2742 next:
2743 		/* Huge page is mapped? No need to proceed. */
2744 		if (pmd_trans_huge(*vmf->pmd))
2745 			break;
2746 	}
2747 	rcu_read_unlock();
2748 }
2749 EXPORT_SYMBOL(filemap_map_pages);
2750 
2751 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2752 {
2753 	struct page *page = vmf->page;
2754 	struct inode *inode = file_inode(vmf->vma->vm_file);
2755 	vm_fault_t ret = VM_FAULT_LOCKED;
2756 
2757 	sb_start_pagefault(inode->i_sb);
2758 	file_update_time(vmf->vma->vm_file);
2759 	lock_page(page);
2760 	if (page->mapping != inode->i_mapping) {
2761 		unlock_page(page);
2762 		ret = VM_FAULT_NOPAGE;
2763 		goto out;
2764 	}
2765 	/*
2766 	 * We mark the page dirty already here so that when freeze is in
2767 	 * progress, we are guaranteed that writeback during freezing will
2768 	 * see the dirty page and writeprotect it again.
2769 	 */
2770 	set_page_dirty(page);
2771 	wait_for_stable_page(page);
2772 out:
2773 	sb_end_pagefault(inode->i_sb);
2774 	return ret;
2775 }
2776 
2777 const struct vm_operations_struct generic_file_vm_ops = {
2778 	.fault		= filemap_fault,
2779 	.map_pages	= filemap_map_pages,
2780 	.page_mkwrite	= filemap_page_mkwrite,
2781 };
2782 
2783 /* This is used for a general mmap of a disk file */
2784 
2785 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2786 {
2787 	struct address_space *mapping = file->f_mapping;
2788 
2789 	if (!mapping->a_ops->readpage)
2790 		return -ENOEXEC;
2791 	file_accessed(file);
2792 	vma->vm_ops = &generic_file_vm_ops;
2793 	return 0;
2794 }
2795 
2796 /*
2797  * This is for filesystems which do not implement ->writepage.
2798  */
2799 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2800 {
2801 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2802 		return -EINVAL;
2803 	return generic_file_mmap(file, vma);
2804 }
2805 #else
2806 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2807 {
2808 	return VM_FAULT_SIGBUS;
2809 }
2810 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2811 {
2812 	return -ENOSYS;
2813 }
2814 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2815 {
2816 	return -ENOSYS;
2817 }
2818 #endif /* CONFIG_MMU */
2819 
2820 EXPORT_SYMBOL(filemap_page_mkwrite);
2821 EXPORT_SYMBOL(generic_file_mmap);
2822 EXPORT_SYMBOL(generic_file_readonly_mmap);
2823 
2824 static struct page *wait_on_page_read(struct page *page)
2825 {
2826 	if (!IS_ERR(page)) {
2827 		wait_on_page_locked(page);
2828 		if (!PageUptodate(page)) {
2829 			put_page(page);
2830 			page = ERR_PTR(-EIO);
2831 		}
2832 	}
2833 	return page;
2834 }
2835 
2836 static struct page *do_read_cache_page(struct address_space *mapping,
2837 				pgoff_t index,
2838 				int (*filler)(void *, struct page *),
2839 				void *data,
2840 				gfp_t gfp)
2841 {
2842 	struct page *page;
2843 	int err;
2844 repeat:
2845 	page = find_get_page(mapping, index);
2846 	if (!page) {
2847 		page = __page_cache_alloc(gfp);
2848 		if (!page)
2849 			return ERR_PTR(-ENOMEM);
2850 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2851 		if (unlikely(err)) {
2852 			put_page(page);
2853 			if (err == -EEXIST)
2854 				goto repeat;
2855 			/* Presumably ENOMEM for xarray node */
2856 			return ERR_PTR(err);
2857 		}
2858 
2859 filler:
2860 		if (filler)
2861 			err = filler(data, page);
2862 		else
2863 			err = mapping->a_ops->readpage(data, page);
2864 
2865 		if (err < 0) {
2866 			put_page(page);
2867 			return ERR_PTR(err);
2868 		}
2869 
2870 		page = wait_on_page_read(page);
2871 		if (IS_ERR(page))
2872 			return page;
2873 		goto out;
2874 	}
2875 	if (PageUptodate(page))
2876 		goto out;
2877 
2878 	/*
2879 	 * Page is not up to date and may be locked due one of the following
2880 	 * case a: Page is being filled and the page lock is held
2881 	 * case b: Read/write error clearing the page uptodate status
2882 	 * case c: Truncation in progress (page locked)
2883 	 * case d: Reclaim in progress
2884 	 *
2885 	 * Case a, the page will be up to date when the page is unlocked.
2886 	 *    There is no need to serialise on the page lock here as the page
2887 	 *    is pinned so the lock gives no additional protection. Even if the
2888 	 *    page is truncated, the data is still valid if PageUptodate as
2889 	 *    it's a race vs truncate race.
2890 	 * Case b, the page will not be up to date
2891 	 * Case c, the page may be truncated but in itself, the data may still
2892 	 *    be valid after IO completes as it's a read vs truncate race. The
2893 	 *    operation must restart if the page is not uptodate on unlock but
2894 	 *    otherwise serialising on page lock to stabilise the mapping gives
2895 	 *    no additional guarantees to the caller as the page lock is
2896 	 *    released before return.
2897 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2898 	 *    will be a race with remove_mapping that determines if the mapping
2899 	 *    is valid on unlock but otherwise the data is valid and there is
2900 	 *    no need to serialise with page lock.
2901 	 *
2902 	 * As the page lock gives no additional guarantee, we optimistically
2903 	 * wait on the page to be unlocked and check if it's up to date and
2904 	 * use the page if it is. Otherwise, the page lock is required to
2905 	 * distinguish between the different cases. The motivation is that we
2906 	 * avoid spurious serialisations and wakeups when multiple processes
2907 	 * wait on the same page for IO to complete.
2908 	 */
2909 	wait_on_page_locked(page);
2910 	if (PageUptodate(page))
2911 		goto out;
2912 
2913 	/* Distinguish between all the cases under the safety of the lock */
2914 	lock_page(page);
2915 
2916 	/* Case c or d, restart the operation */
2917 	if (!page->mapping) {
2918 		unlock_page(page);
2919 		put_page(page);
2920 		goto repeat;
2921 	}
2922 
2923 	/* Someone else locked and filled the page in a very small window */
2924 	if (PageUptodate(page)) {
2925 		unlock_page(page);
2926 		goto out;
2927 	}
2928 
2929 	/*
2930 	 * A previous I/O error may have been due to temporary
2931 	 * failures.
2932 	 * Clear page error before actual read, PG_error will be
2933 	 * set again if read page fails.
2934 	 */
2935 	ClearPageError(page);
2936 	goto filler;
2937 
2938 out:
2939 	mark_page_accessed(page);
2940 	return page;
2941 }
2942 
2943 /**
2944  * read_cache_page - read into page cache, fill it if needed
2945  * @mapping:	the page's address_space
2946  * @index:	the page index
2947  * @filler:	function to perform the read
2948  * @data:	first arg to filler(data, page) function, often left as NULL
2949  *
2950  * Read into the page cache. If a page already exists, and PageUptodate() is
2951  * not set, try to fill the page and wait for it to become unlocked.
2952  *
2953  * If the page does not get brought uptodate, return -EIO.
2954  *
2955  * Return: up to date page on success, ERR_PTR() on failure.
2956  */
2957 struct page *read_cache_page(struct address_space *mapping,
2958 				pgoff_t index,
2959 				int (*filler)(void *, struct page *),
2960 				void *data)
2961 {
2962 	return do_read_cache_page(mapping, index, filler, data,
2963 			mapping_gfp_mask(mapping));
2964 }
2965 EXPORT_SYMBOL(read_cache_page);
2966 
2967 /**
2968  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2969  * @mapping:	the page's address_space
2970  * @index:	the page index
2971  * @gfp:	the page allocator flags to use if allocating
2972  *
2973  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2974  * any new page allocations done using the specified allocation flags.
2975  *
2976  * If the page does not get brought uptodate, return -EIO.
2977  *
2978  * Return: up to date page on success, ERR_PTR() on failure.
2979  */
2980 struct page *read_cache_page_gfp(struct address_space *mapping,
2981 				pgoff_t index,
2982 				gfp_t gfp)
2983 {
2984 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2985 }
2986 EXPORT_SYMBOL(read_cache_page_gfp);
2987 
2988 /*
2989  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2990  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2991  * exceeds the limit we return -EFBIG.
2992  */
2993 static int generic_write_check_limits(struct file *file, loff_t pos,
2994 				      loff_t *count)
2995 {
2996 	struct inode *inode = file->f_mapping->host;
2997 	loff_t max_size = inode->i_sb->s_maxbytes;
2998 	loff_t limit = rlimit(RLIMIT_FSIZE);
2999 
3000 	if (limit != RLIM_INFINITY) {
3001 		if (pos >= limit) {
3002 			send_sig(SIGXFSZ, current, 0);
3003 			return -EFBIG;
3004 		}
3005 		*count = min(*count, limit - pos);
3006 	}
3007 
3008 	if (!(file->f_flags & O_LARGEFILE))
3009 		max_size = MAX_NON_LFS;
3010 
3011 	if (unlikely(pos >= max_size))
3012 		return -EFBIG;
3013 
3014 	*count = min(*count, max_size - pos);
3015 
3016 	return 0;
3017 }
3018 
3019 /*
3020  * Performs necessary checks before doing a write
3021  *
3022  * Can adjust writing position or amount of bytes to write.
3023  * Returns appropriate error code that caller should return or
3024  * zero in case that write should be allowed.
3025  */
3026 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3027 {
3028 	struct file *file = iocb->ki_filp;
3029 	struct inode *inode = file->f_mapping->host;
3030 	loff_t count;
3031 	int ret;
3032 
3033 	if (IS_SWAPFILE(inode))
3034 		return -ETXTBSY;
3035 
3036 	if (!iov_iter_count(from))
3037 		return 0;
3038 
3039 	/* FIXME: this is for backwards compatibility with 2.4 */
3040 	if (iocb->ki_flags & IOCB_APPEND)
3041 		iocb->ki_pos = i_size_read(inode);
3042 
3043 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3044 		return -EINVAL;
3045 
3046 	count = iov_iter_count(from);
3047 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3048 	if (ret)
3049 		return ret;
3050 
3051 	iov_iter_truncate(from, count);
3052 	return iov_iter_count(from);
3053 }
3054 EXPORT_SYMBOL(generic_write_checks);
3055 
3056 /*
3057  * Performs necessary checks before doing a clone.
3058  *
3059  * Can adjust amount of bytes to clone via @req_count argument.
3060  * Returns appropriate error code that caller should return or
3061  * zero in case the clone should be allowed.
3062  */
3063 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3064 			 struct file *file_out, loff_t pos_out,
3065 			 loff_t *req_count, unsigned int remap_flags)
3066 {
3067 	struct inode *inode_in = file_in->f_mapping->host;
3068 	struct inode *inode_out = file_out->f_mapping->host;
3069 	uint64_t count = *req_count;
3070 	uint64_t bcount;
3071 	loff_t size_in, size_out;
3072 	loff_t bs = inode_out->i_sb->s_blocksize;
3073 	int ret;
3074 
3075 	/* The start of both ranges must be aligned to an fs block. */
3076 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3077 		return -EINVAL;
3078 
3079 	/* Ensure offsets don't wrap. */
3080 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3081 		return -EINVAL;
3082 
3083 	size_in = i_size_read(inode_in);
3084 	size_out = i_size_read(inode_out);
3085 
3086 	/* Dedupe requires both ranges to be within EOF. */
3087 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3088 	    (pos_in >= size_in || pos_in + count > size_in ||
3089 	     pos_out >= size_out || pos_out + count > size_out))
3090 		return -EINVAL;
3091 
3092 	/* Ensure the infile range is within the infile. */
3093 	if (pos_in >= size_in)
3094 		return -EINVAL;
3095 	count = min(count, size_in - (uint64_t)pos_in);
3096 
3097 	ret = generic_write_check_limits(file_out, pos_out, &count);
3098 	if (ret)
3099 		return ret;
3100 
3101 	/*
3102 	 * If the user wanted us to link to the infile's EOF, round up to the
3103 	 * next block boundary for this check.
3104 	 *
3105 	 * Otherwise, make sure the count is also block-aligned, having
3106 	 * already confirmed the starting offsets' block alignment.
3107 	 */
3108 	if (pos_in + count == size_in) {
3109 		bcount = ALIGN(size_in, bs) - pos_in;
3110 	} else {
3111 		if (!IS_ALIGNED(count, bs))
3112 			count = ALIGN_DOWN(count, bs);
3113 		bcount = count;
3114 	}
3115 
3116 	/* Don't allow overlapped cloning within the same file. */
3117 	if (inode_in == inode_out &&
3118 	    pos_out + bcount > pos_in &&
3119 	    pos_out < pos_in + bcount)
3120 		return -EINVAL;
3121 
3122 	/*
3123 	 * We shortened the request but the caller can't deal with that, so
3124 	 * bounce the request back to userspace.
3125 	 */
3126 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3127 		return -EINVAL;
3128 
3129 	*req_count = count;
3130 	return 0;
3131 }
3132 
3133 
3134 /*
3135  * Performs common checks before doing a file copy/clone
3136  * from @file_in to @file_out.
3137  */
3138 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3139 {
3140 	struct inode *inode_in = file_inode(file_in);
3141 	struct inode *inode_out = file_inode(file_out);
3142 
3143 	/* Don't copy dirs, pipes, sockets... */
3144 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3145 		return -EISDIR;
3146 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3147 		return -EINVAL;
3148 
3149 	if (!(file_in->f_mode & FMODE_READ) ||
3150 	    !(file_out->f_mode & FMODE_WRITE) ||
3151 	    (file_out->f_flags & O_APPEND))
3152 		return -EBADF;
3153 
3154 	return 0;
3155 }
3156 
3157 /*
3158  * Performs necessary checks before doing a file copy
3159  *
3160  * Can adjust amount of bytes to copy via @req_count argument.
3161  * Returns appropriate error code that caller should return or
3162  * zero in case the copy should be allowed.
3163  */
3164 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3165 			     struct file *file_out, loff_t pos_out,
3166 			     size_t *req_count, unsigned int flags)
3167 {
3168 	struct inode *inode_in = file_inode(file_in);
3169 	struct inode *inode_out = file_inode(file_out);
3170 	uint64_t count = *req_count;
3171 	loff_t size_in;
3172 	int ret;
3173 
3174 	ret = generic_file_rw_checks(file_in, file_out);
3175 	if (ret)
3176 		return ret;
3177 
3178 	/* Don't touch certain kinds of inodes */
3179 	if (IS_IMMUTABLE(inode_out))
3180 		return -EPERM;
3181 
3182 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3183 		return -ETXTBSY;
3184 
3185 	/* Ensure offsets don't wrap. */
3186 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3187 		return -EOVERFLOW;
3188 
3189 	/* Shorten the copy to EOF */
3190 	size_in = i_size_read(inode_in);
3191 	if (pos_in >= size_in)
3192 		count = 0;
3193 	else
3194 		count = min(count, size_in - (uint64_t)pos_in);
3195 
3196 	ret = generic_write_check_limits(file_out, pos_out, &count);
3197 	if (ret)
3198 		return ret;
3199 
3200 	/* Don't allow overlapped copying within the same file. */
3201 	if (inode_in == inode_out &&
3202 	    pos_out + count > pos_in &&
3203 	    pos_out < pos_in + count)
3204 		return -EINVAL;
3205 
3206 	*req_count = count;
3207 	return 0;
3208 }
3209 
3210 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3211 				loff_t pos, unsigned len, unsigned flags,
3212 				struct page **pagep, void **fsdata)
3213 {
3214 	const struct address_space_operations *aops = mapping->a_ops;
3215 
3216 	return aops->write_begin(file, mapping, pos, len, flags,
3217 							pagep, fsdata);
3218 }
3219 EXPORT_SYMBOL(pagecache_write_begin);
3220 
3221 int pagecache_write_end(struct file *file, struct address_space *mapping,
3222 				loff_t pos, unsigned len, unsigned copied,
3223 				struct page *page, void *fsdata)
3224 {
3225 	const struct address_space_operations *aops = mapping->a_ops;
3226 
3227 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3228 }
3229 EXPORT_SYMBOL(pagecache_write_end);
3230 
3231 /*
3232  * Warn about a page cache invalidation failure during a direct I/O write.
3233  */
3234 void dio_warn_stale_pagecache(struct file *filp)
3235 {
3236 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3237 	char pathname[128];
3238 	struct inode *inode = file_inode(filp);
3239 	char *path;
3240 
3241 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3242 	if (__ratelimit(&_rs)) {
3243 		path = file_path(filp, pathname, sizeof(pathname));
3244 		if (IS_ERR(path))
3245 			path = "(unknown)";
3246 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3247 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3248 			current->comm);
3249 	}
3250 }
3251 
3252 ssize_t
3253 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3254 {
3255 	struct file	*file = iocb->ki_filp;
3256 	struct address_space *mapping = file->f_mapping;
3257 	struct inode	*inode = mapping->host;
3258 	loff_t		pos = iocb->ki_pos;
3259 	ssize_t		written;
3260 	size_t		write_len;
3261 	pgoff_t		end;
3262 
3263 	write_len = iov_iter_count(from);
3264 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3265 
3266 	if (iocb->ki_flags & IOCB_NOWAIT) {
3267 		/* If there are pages to writeback, return */
3268 		if (filemap_range_has_page(inode->i_mapping, pos,
3269 					   pos + write_len - 1))
3270 			return -EAGAIN;
3271 	} else {
3272 		written = filemap_write_and_wait_range(mapping, pos,
3273 							pos + write_len - 1);
3274 		if (written)
3275 			goto out;
3276 	}
3277 
3278 	/*
3279 	 * After a write we want buffered reads to be sure to go to disk to get
3280 	 * the new data.  We invalidate clean cached page from the region we're
3281 	 * about to write.  We do this *before* the write so that we can return
3282 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3283 	 */
3284 	written = invalidate_inode_pages2_range(mapping,
3285 					pos >> PAGE_SHIFT, end);
3286 	/*
3287 	 * If a page can not be invalidated, return 0 to fall back
3288 	 * to buffered write.
3289 	 */
3290 	if (written) {
3291 		if (written == -EBUSY)
3292 			return 0;
3293 		goto out;
3294 	}
3295 
3296 	written = mapping->a_ops->direct_IO(iocb, from);
3297 
3298 	/*
3299 	 * Finally, try again to invalidate clean pages which might have been
3300 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3301 	 * if the source of the write was an mmap'ed region of the file
3302 	 * we're writing.  Either one is a pretty crazy thing to do,
3303 	 * so we don't support it 100%.  If this invalidation
3304 	 * fails, tough, the write still worked...
3305 	 *
3306 	 * Most of the time we do not need this since dio_complete() will do
3307 	 * the invalidation for us. However there are some file systems that
3308 	 * do not end up with dio_complete() being called, so let's not break
3309 	 * them by removing it completely.
3310 	 *
3311 	 * Noticeable example is a blkdev_direct_IO().
3312 	 *
3313 	 * Skip invalidation for async writes or if mapping has no pages.
3314 	 */
3315 	if (written > 0 && mapping->nrpages &&
3316 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3317 		dio_warn_stale_pagecache(file);
3318 
3319 	if (written > 0) {
3320 		pos += written;
3321 		write_len -= written;
3322 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3323 			i_size_write(inode, pos);
3324 			mark_inode_dirty(inode);
3325 		}
3326 		iocb->ki_pos = pos;
3327 	}
3328 	iov_iter_revert(from, write_len - iov_iter_count(from));
3329 out:
3330 	return written;
3331 }
3332 EXPORT_SYMBOL(generic_file_direct_write);
3333 
3334 /*
3335  * Find or create a page at the given pagecache position. Return the locked
3336  * page. This function is specifically for buffered writes.
3337  */
3338 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3339 					pgoff_t index, unsigned flags)
3340 {
3341 	struct page *page;
3342 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3343 
3344 	if (flags & AOP_FLAG_NOFS)
3345 		fgp_flags |= FGP_NOFS;
3346 
3347 	page = pagecache_get_page(mapping, index, fgp_flags,
3348 			mapping_gfp_mask(mapping));
3349 	if (page)
3350 		wait_for_stable_page(page);
3351 
3352 	return page;
3353 }
3354 EXPORT_SYMBOL(grab_cache_page_write_begin);
3355 
3356 ssize_t generic_perform_write(struct file *file,
3357 				struct iov_iter *i, loff_t pos)
3358 {
3359 	struct address_space *mapping = file->f_mapping;
3360 	const struct address_space_operations *a_ops = mapping->a_ops;
3361 	long status = 0;
3362 	ssize_t written = 0;
3363 	unsigned int flags = 0;
3364 
3365 	do {
3366 		struct page *page;
3367 		unsigned long offset;	/* Offset into pagecache page */
3368 		unsigned long bytes;	/* Bytes to write to page */
3369 		size_t copied;		/* Bytes copied from user */
3370 		void *fsdata;
3371 
3372 		offset = (pos & (PAGE_SIZE - 1));
3373 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3374 						iov_iter_count(i));
3375 
3376 again:
3377 		/*
3378 		 * Bring in the user page that we will copy from _first_.
3379 		 * Otherwise there's a nasty deadlock on copying from the
3380 		 * same page as we're writing to, without it being marked
3381 		 * up-to-date.
3382 		 *
3383 		 * Not only is this an optimisation, but it is also required
3384 		 * to check that the address is actually valid, when atomic
3385 		 * usercopies are used, below.
3386 		 */
3387 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3388 			status = -EFAULT;
3389 			break;
3390 		}
3391 
3392 		if (fatal_signal_pending(current)) {
3393 			status = -EINTR;
3394 			break;
3395 		}
3396 
3397 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3398 						&page, &fsdata);
3399 		if (unlikely(status < 0))
3400 			break;
3401 
3402 		if (mapping_writably_mapped(mapping))
3403 			flush_dcache_page(page);
3404 
3405 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3406 		flush_dcache_page(page);
3407 
3408 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3409 						page, fsdata);
3410 		if (unlikely(status < 0))
3411 			break;
3412 		copied = status;
3413 
3414 		cond_resched();
3415 
3416 		iov_iter_advance(i, copied);
3417 		if (unlikely(copied == 0)) {
3418 			/*
3419 			 * If we were unable to copy any data at all, we must
3420 			 * fall back to a single segment length write.
3421 			 *
3422 			 * If we didn't fallback here, we could livelock
3423 			 * because not all segments in the iov can be copied at
3424 			 * once without a pagefault.
3425 			 */
3426 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3427 						iov_iter_single_seg_count(i));
3428 			goto again;
3429 		}
3430 		pos += copied;
3431 		written += copied;
3432 
3433 		balance_dirty_pages_ratelimited(mapping);
3434 	} while (iov_iter_count(i));
3435 
3436 	return written ? written : status;
3437 }
3438 EXPORT_SYMBOL(generic_perform_write);
3439 
3440 /**
3441  * __generic_file_write_iter - write data to a file
3442  * @iocb:	IO state structure (file, offset, etc.)
3443  * @from:	iov_iter with data to write
3444  *
3445  * This function does all the work needed for actually writing data to a
3446  * file. It does all basic checks, removes SUID from the file, updates
3447  * modification times and calls proper subroutines depending on whether we
3448  * do direct IO or a standard buffered write.
3449  *
3450  * It expects i_mutex to be grabbed unless we work on a block device or similar
3451  * object which does not need locking at all.
3452  *
3453  * This function does *not* take care of syncing data in case of O_SYNC write.
3454  * A caller has to handle it. This is mainly due to the fact that we want to
3455  * avoid syncing under i_mutex.
3456  *
3457  * Return:
3458  * * number of bytes written, even for truncated writes
3459  * * negative error code if no data has been written at all
3460  */
3461 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3462 {
3463 	struct file *file = iocb->ki_filp;
3464 	struct address_space * mapping = file->f_mapping;
3465 	struct inode 	*inode = mapping->host;
3466 	ssize_t		written = 0;
3467 	ssize_t		err;
3468 	ssize_t		status;
3469 
3470 	/* We can write back this queue in page reclaim */
3471 	current->backing_dev_info = inode_to_bdi(inode);
3472 	err = file_remove_privs(file);
3473 	if (err)
3474 		goto out;
3475 
3476 	err = file_update_time(file);
3477 	if (err)
3478 		goto out;
3479 
3480 	if (iocb->ki_flags & IOCB_DIRECT) {
3481 		loff_t pos, endbyte;
3482 
3483 		written = generic_file_direct_write(iocb, from);
3484 		/*
3485 		 * If the write stopped short of completing, fall back to
3486 		 * buffered writes.  Some filesystems do this for writes to
3487 		 * holes, for example.  For DAX files, a buffered write will
3488 		 * not succeed (even if it did, DAX does not handle dirty
3489 		 * page-cache pages correctly).
3490 		 */
3491 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3492 			goto out;
3493 
3494 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3495 		/*
3496 		 * If generic_perform_write() returned a synchronous error
3497 		 * then we want to return the number of bytes which were
3498 		 * direct-written, or the error code if that was zero.  Note
3499 		 * that this differs from normal direct-io semantics, which
3500 		 * will return -EFOO even if some bytes were written.
3501 		 */
3502 		if (unlikely(status < 0)) {
3503 			err = status;
3504 			goto out;
3505 		}
3506 		/*
3507 		 * We need to ensure that the page cache pages are written to
3508 		 * disk and invalidated to preserve the expected O_DIRECT
3509 		 * semantics.
3510 		 */
3511 		endbyte = pos + status - 1;
3512 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3513 		if (err == 0) {
3514 			iocb->ki_pos = endbyte + 1;
3515 			written += status;
3516 			invalidate_mapping_pages(mapping,
3517 						 pos >> PAGE_SHIFT,
3518 						 endbyte >> PAGE_SHIFT);
3519 		} else {
3520 			/*
3521 			 * We don't know how much we wrote, so just return
3522 			 * the number of bytes which were direct-written
3523 			 */
3524 		}
3525 	} else {
3526 		written = generic_perform_write(file, from, iocb->ki_pos);
3527 		if (likely(written > 0))
3528 			iocb->ki_pos += written;
3529 	}
3530 out:
3531 	current->backing_dev_info = NULL;
3532 	return written ? written : err;
3533 }
3534 EXPORT_SYMBOL(__generic_file_write_iter);
3535 
3536 /**
3537  * generic_file_write_iter - write data to a file
3538  * @iocb:	IO state structure
3539  * @from:	iov_iter with data to write
3540  *
3541  * This is a wrapper around __generic_file_write_iter() to be used by most
3542  * filesystems. It takes care of syncing the file in case of O_SYNC file
3543  * and acquires i_mutex as needed.
3544  * Return:
3545  * * negative error code if no data has been written at all of
3546  *   vfs_fsync_range() failed for a synchronous write
3547  * * number of bytes written, even for truncated writes
3548  */
3549 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3550 {
3551 	struct file *file = iocb->ki_filp;
3552 	struct inode *inode = file->f_mapping->host;
3553 	ssize_t ret;
3554 
3555 	inode_lock(inode);
3556 	ret = generic_write_checks(iocb, from);
3557 	if (ret > 0)
3558 		ret = __generic_file_write_iter(iocb, from);
3559 	inode_unlock(inode);
3560 
3561 	if (ret > 0)
3562 		ret = generic_write_sync(iocb, ret);
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL(generic_file_write_iter);
3566 
3567 /**
3568  * try_to_release_page() - release old fs-specific metadata on a page
3569  *
3570  * @page: the page which the kernel is trying to free
3571  * @gfp_mask: memory allocation flags (and I/O mode)
3572  *
3573  * The address_space is to try to release any data against the page
3574  * (presumably at page->private).
3575  *
3576  * This may also be called if PG_fscache is set on a page, indicating that the
3577  * page is known to the local caching routines.
3578  *
3579  * The @gfp_mask argument specifies whether I/O may be performed to release
3580  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3581  *
3582  * Return: %1 if the release was successful, otherwise return zero.
3583  */
3584 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3585 {
3586 	struct address_space * const mapping = page->mapping;
3587 
3588 	BUG_ON(!PageLocked(page));
3589 	if (PageWriteback(page))
3590 		return 0;
3591 
3592 	if (mapping && mapping->a_ops->releasepage)
3593 		return mapping->a_ops->releasepage(page, gfp_mask);
3594 	return try_to_free_buffers(page);
3595 }
3596 
3597 EXPORT_SYMBOL(try_to_release_page);
3598