1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include "internal.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/filemap.h> 48 49 /* 50 * FIXME: remove all knowledge of the buffer layer from the core VM 51 */ 52 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 53 54 #include <asm/mman.h> 55 56 /* 57 * Shared mappings implemented 30.11.1994. It's not fully working yet, 58 * though. 59 * 60 * Shared mappings now work. 15.8.1995 Bruno. 61 * 62 * finished 'unifying' the page and buffer cache and SMP-threaded the 63 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 64 * 65 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 66 */ 67 68 /* 69 * Lock ordering: 70 * 71 * ->i_mmap_rwsem (truncate_pagecache) 72 * ->private_lock (__free_pte->__set_page_dirty_buffers) 73 * ->swap_lock (exclusive_swap_page, others) 74 * ->i_pages lock 75 * 76 * ->i_mutex 77 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 78 * 79 * ->mmap_lock 80 * ->i_mmap_rwsem 81 * ->page_table_lock or pte_lock (various, mainly in memory.c) 82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 83 * 84 * ->mmap_lock 85 * ->lock_page (access_process_vm) 86 * 87 * ->i_mutex (generic_perform_write) 88 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 89 * 90 * bdi->wb.list_lock 91 * sb_lock (fs/fs-writeback.c) 92 * ->i_pages lock (__sync_single_inode) 93 * 94 * ->i_mmap_rwsem 95 * ->anon_vma.lock (vma_adjust) 96 * 97 * ->anon_vma.lock 98 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 99 * 100 * ->page_table_lock or pte_lock 101 * ->swap_lock (try_to_unmap_one) 102 * ->private_lock (try_to_unmap_one) 103 * ->i_pages lock (try_to_unmap_one) 104 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 106 * ->private_lock (page_remove_rmap->set_page_dirty) 107 * ->i_pages lock (page_remove_rmap->set_page_dirty) 108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 109 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 112 * ->inode->i_lock (zap_pte_range->set_page_dirty) 113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 114 * 115 * ->i_mmap_rwsem 116 * ->tasklist_lock (memory_failure, collect_procs_ao) 117 */ 118 119 static void page_cache_delete(struct address_space *mapping, 120 struct page *page, void *shadow) 121 { 122 XA_STATE(xas, &mapping->i_pages, page->index); 123 unsigned int nr = 1; 124 125 mapping_set_update(&xas, mapping); 126 127 /* hugetlb pages are represented by a single entry in the xarray */ 128 if (!PageHuge(page)) { 129 xas_set_order(&xas, page->index, compound_order(page)); 130 nr = compound_nr(page); 131 } 132 133 VM_BUG_ON_PAGE(!PageLocked(page), page); 134 VM_BUG_ON_PAGE(PageTail(page), page); 135 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 136 137 xas_store(&xas, shadow); 138 xas_init_marks(&xas); 139 140 page->mapping = NULL; 141 /* Leave page->index set: truncation lookup relies upon it */ 142 143 if (shadow) { 144 mapping->nrexceptional += nr; 145 /* 146 * Make sure the nrexceptional update is committed before 147 * the nrpages update so that final truncate racing 148 * with reclaim does not see both counters 0 at the 149 * same time and miss a shadow entry. 150 */ 151 smp_wmb(); 152 } 153 mapping->nrpages -= nr; 154 } 155 156 static void unaccount_page_cache_page(struct address_space *mapping, 157 struct page *page) 158 { 159 int nr; 160 161 /* 162 * if we're uptodate, flush out into the cleancache, otherwise 163 * invalidate any existing cleancache entries. We can't leave 164 * stale data around in the cleancache once our page is gone 165 */ 166 if (PageUptodate(page) && PageMappedToDisk(page)) 167 cleancache_put_page(page); 168 else 169 cleancache_invalidate_page(mapping, page); 170 171 VM_BUG_ON_PAGE(PageTail(page), page); 172 VM_BUG_ON_PAGE(page_mapped(page), page); 173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 174 int mapcount; 175 176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 177 current->comm, page_to_pfn(page)); 178 dump_page(page, "still mapped when deleted"); 179 dump_stack(); 180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 181 182 mapcount = page_mapcount(page); 183 if (mapping_exiting(mapping) && 184 page_count(page) >= mapcount + 2) { 185 /* 186 * All vmas have already been torn down, so it's 187 * a good bet that actually the page is unmapped, 188 * and we'd prefer not to leak it: if we're wrong, 189 * some other bad page check should catch it later. 190 */ 191 page_mapcount_reset(page); 192 page_ref_sub(page, mapcount); 193 } 194 } 195 196 /* hugetlb pages do not participate in page cache accounting. */ 197 if (PageHuge(page)) 198 return; 199 200 nr = hpage_nr_pages(page); 201 202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 203 if (PageSwapBacked(page)) { 204 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 205 if (PageTransHuge(page)) 206 __dec_node_page_state(page, NR_SHMEM_THPS); 207 } else if (PageTransHuge(page)) { 208 __dec_node_page_state(page, NR_FILE_THPS); 209 filemap_nr_thps_dec(mapping); 210 } 211 212 /* 213 * At this point page must be either written or cleaned by 214 * truncate. Dirty page here signals a bug and loss of 215 * unwritten data. 216 * 217 * This fixes dirty accounting after removing the page entirely 218 * but leaves PageDirty set: it has no effect for truncated 219 * page and anyway will be cleared before returning page into 220 * buddy allocator. 221 */ 222 if (WARN_ON_ONCE(PageDirty(page))) 223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 224 } 225 226 /* 227 * Delete a page from the page cache and free it. Caller has to make 228 * sure the page is locked and that nobody else uses it - or that usage 229 * is safe. The caller must hold the i_pages lock. 230 */ 231 void __delete_from_page_cache(struct page *page, void *shadow) 232 { 233 struct address_space *mapping = page->mapping; 234 235 trace_mm_filemap_delete_from_page_cache(page); 236 237 unaccount_page_cache_page(mapping, page); 238 page_cache_delete(mapping, page, shadow); 239 } 240 241 static void page_cache_free_page(struct address_space *mapping, 242 struct page *page) 243 { 244 void (*freepage)(struct page *); 245 246 freepage = mapping->a_ops->freepage; 247 if (freepage) 248 freepage(page); 249 250 if (PageTransHuge(page) && !PageHuge(page)) { 251 page_ref_sub(page, HPAGE_PMD_NR); 252 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 253 } else { 254 put_page(page); 255 } 256 } 257 258 /** 259 * delete_from_page_cache - delete page from page cache 260 * @page: the page which the kernel is trying to remove from page cache 261 * 262 * This must be called only on pages that have been verified to be in the page 263 * cache and locked. It will never put the page into the free list, the caller 264 * has a reference on the page. 265 */ 266 void delete_from_page_cache(struct page *page) 267 { 268 struct address_space *mapping = page_mapping(page); 269 unsigned long flags; 270 271 BUG_ON(!PageLocked(page)); 272 xa_lock_irqsave(&mapping->i_pages, flags); 273 __delete_from_page_cache(page, NULL); 274 xa_unlock_irqrestore(&mapping->i_pages, flags); 275 276 page_cache_free_page(mapping, page); 277 } 278 EXPORT_SYMBOL(delete_from_page_cache); 279 280 /* 281 * page_cache_delete_batch - delete several pages from page cache 282 * @mapping: the mapping to which pages belong 283 * @pvec: pagevec with pages to delete 284 * 285 * The function walks over mapping->i_pages and removes pages passed in @pvec 286 * from the mapping. The function expects @pvec to be sorted by page index 287 * and is optimised for it to be dense. 288 * It tolerates holes in @pvec (mapping entries at those indices are not 289 * modified). The function expects only THP head pages to be present in the 290 * @pvec. 291 * 292 * The function expects the i_pages lock to be held. 293 */ 294 static void page_cache_delete_batch(struct address_space *mapping, 295 struct pagevec *pvec) 296 { 297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 298 int total_pages = 0; 299 int i = 0; 300 struct page *page; 301 302 mapping_set_update(&xas, mapping); 303 xas_for_each(&xas, page, ULONG_MAX) { 304 if (i >= pagevec_count(pvec)) 305 break; 306 307 /* A swap/dax/shadow entry got inserted? Skip it. */ 308 if (xa_is_value(page)) 309 continue; 310 /* 311 * A page got inserted in our range? Skip it. We have our 312 * pages locked so they are protected from being removed. 313 * If we see a page whose index is higher than ours, it 314 * means our page has been removed, which shouldn't be 315 * possible because we're holding the PageLock. 316 */ 317 if (page != pvec->pages[i]) { 318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 319 page); 320 continue; 321 } 322 323 WARN_ON_ONCE(!PageLocked(page)); 324 325 if (page->index == xas.xa_index) 326 page->mapping = NULL; 327 /* Leave page->index set: truncation lookup relies on it */ 328 329 /* 330 * Move to the next page in the vector if this is a regular 331 * page or the index is of the last sub-page of this compound 332 * page. 333 */ 334 if (page->index + compound_nr(page) - 1 == xas.xa_index) 335 i++; 336 xas_store(&xas, NULL); 337 total_pages++; 338 } 339 mapping->nrpages -= total_pages; 340 } 341 342 void delete_from_page_cache_batch(struct address_space *mapping, 343 struct pagevec *pvec) 344 { 345 int i; 346 unsigned long flags; 347 348 if (!pagevec_count(pvec)) 349 return; 350 351 xa_lock_irqsave(&mapping->i_pages, flags); 352 for (i = 0; i < pagevec_count(pvec); i++) { 353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 354 355 unaccount_page_cache_page(mapping, pvec->pages[i]); 356 } 357 page_cache_delete_batch(mapping, pvec); 358 xa_unlock_irqrestore(&mapping->i_pages, flags); 359 360 for (i = 0; i < pagevec_count(pvec); i++) 361 page_cache_free_page(mapping, pvec->pages[i]); 362 } 363 364 int filemap_check_errors(struct address_space *mapping) 365 { 366 int ret = 0; 367 /* Check for outstanding write errors */ 368 if (test_bit(AS_ENOSPC, &mapping->flags) && 369 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 370 ret = -ENOSPC; 371 if (test_bit(AS_EIO, &mapping->flags) && 372 test_and_clear_bit(AS_EIO, &mapping->flags)) 373 ret = -EIO; 374 return ret; 375 } 376 EXPORT_SYMBOL(filemap_check_errors); 377 378 static int filemap_check_and_keep_errors(struct address_space *mapping) 379 { 380 /* Check for outstanding write errors */ 381 if (test_bit(AS_EIO, &mapping->flags)) 382 return -EIO; 383 if (test_bit(AS_ENOSPC, &mapping->flags)) 384 return -ENOSPC; 385 return 0; 386 } 387 388 /** 389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 390 * @mapping: address space structure to write 391 * @start: offset in bytes where the range starts 392 * @end: offset in bytes where the range ends (inclusive) 393 * @sync_mode: enable synchronous operation 394 * 395 * Start writeback against all of a mapping's dirty pages that lie 396 * within the byte offsets <start, end> inclusive. 397 * 398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 399 * opposed to a regular memory cleansing writeback. The difference between 400 * these two operations is that if a dirty page/buffer is encountered, it must 401 * be waited upon, and not just skipped over. 402 * 403 * Return: %0 on success, negative error code otherwise. 404 */ 405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 406 loff_t end, int sync_mode) 407 { 408 int ret; 409 struct writeback_control wbc = { 410 .sync_mode = sync_mode, 411 .nr_to_write = LONG_MAX, 412 .range_start = start, 413 .range_end = end, 414 }; 415 416 if (!mapping_cap_writeback_dirty(mapping) || 417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 418 return 0; 419 420 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 421 ret = do_writepages(mapping, &wbc); 422 wbc_detach_inode(&wbc); 423 return ret; 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct page *page; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 page = xas_find(&xas, max); 485 if (xas_retry(&xas, page)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(page)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return page != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct pagevec pvec; 509 int nr_pages; 510 511 if (end_byte < start_byte) 512 return; 513 514 pagevec_init(&pvec); 515 while (index <= end) { 516 unsigned i; 517 518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 519 end, PAGECACHE_TAG_WRITEBACK); 520 if (!nr_pages) 521 break; 522 523 for (i = 0; i < nr_pages; i++) { 524 struct page *page = pvec.pages[i]; 525 526 wait_on_page_writeback(page); 527 ClearPageError(page); 528 } 529 pagevec_release(&pvec); 530 cond_resched(); 531 } 532 } 533 534 /** 535 * filemap_fdatawait_range - wait for writeback to complete 536 * @mapping: address space structure to wait for 537 * @start_byte: offset in bytes where the range starts 538 * @end_byte: offset in bytes where the range ends (inclusive) 539 * 540 * Walk the list of under-writeback pages of the given address space 541 * in the given range and wait for all of them. Check error status of 542 * the address space and return it. 543 * 544 * Since the error status of the address space is cleared by this function, 545 * callers are responsible for checking the return value and handling and/or 546 * reporting the error. 547 * 548 * Return: error status of the address space. 549 */ 550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 551 loff_t end_byte) 552 { 553 __filemap_fdatawait_range(mapping, start_byte, end_byte); 554 return filemap_check_errors(mapping); 555 } 556 EXPORT_SYMBOL(filemap_fdatawait_range); 557 558 /** 559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 560 * @mapping: address space structure to wait for 561 * @start_byte: offset in bytes where the range starts 562 * @end_byte: offset in bytes where the range ends (inclusive) 563 * 564 * Walk the list of under-writeback pages of the given address space in the 565 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 566 * this function does not clear error status of the address space. 567 * 568 * Use this function if callers don't handle errors themselves. Expected 569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 570 * fsfreeze(8) 571 */ 572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 573 loff_t start_byte, loff_t end_byte) 574 { 575 __filemap_fdatawait_range(mapping, start_byte, end_byte); 576 return filemap_check_and_keep_errors(mapping); 577 } 578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 579 580 /** 581 * file_fdatawait_range - wait for writeback to complete 582 * @file: file pointing to address space structure to wait for 583 * @start_byte: offset in bytes where the range starts 584 * @end_byte: offset in bytes where the range ends (inclusive) 585 * 586 * Walk the list of under-writeback pages of the address space that file 587 * refers to, in the given range and wait for all of them. Check error 588 * status of the address space vs. the file->f_wb_err cursor and return it. 589 * 590 * Since the error status of the file is advanced by this function, 591 * callers are responsible for checking the return value and handling and/or 592 * reporting the error. 593 * 594 * Return: error status of the address space vs. the file->f_wb_err cursor. 595 */ 596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 597 { 598 struct address_space *mapping = file->f_mapping; 599 600 __filemap_fdatawait_range(mapping, start_byte, end_byte); 601 return file_check_and_advance_wb_err(file); 602 } 603 EXPORT_SYMBOL(file_fdatawait_range); 604 605 /** 606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 607 * @mapping: address space structure to wait for 608 * 609 * Walk the list of under-writeback pages of the given address space 610 * and wait for all of them. Unlike filemap_fdatawait(), this function 611 * does not clear error status of the address space. 612 * 613 * Use this function if callers don't handle errors themselves. Expected 614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 615 * fsfreeze(8) 616 * 617 * Return: error status of the address space. 618 */ 619 int filemap_fdatawait_keep_errors(struct address_space *mapping) 620 { 621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 622 return filemap_check_and_keep_errors(mapping); 623 } 624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 625 626 /* Returns true if writeback might be needed or already in progress. */ 627 static bool mapping_needs_writeback(struct address_space *mapping) 628 { 629 if (dax_mapping(mapping)) 630 return mapping->nrexceptional; 631 632 return mapping->nrpages; 633 } 634 635 /** 636 * filemap_write_and_wait_range - write out & wait on a file range 637 * @mapping: the address_space for the pages 638 * @lstart: offset in bytes where the range starts 639 * @lend: offset in bytes where the range ends (inclusive) 640 * 641 * Write out and wait upon file offsets lstart->lend, inclusive. 642 * 643 * Note that @lend is inclusive (describes the last byte to be written) so 644 * that this function can be used to write to the very end-of-file (end = -1). 645 * 646 * Return: error status of the address space. 647 */ 648 int filemap_write_and_wait_range(struct address_space *mapping, 649 loff_t lstart, loff_t lend) 650 { 651 int err = 0; 652 653 if (mapping_needs_writeback(mapping)) { 654 err = __filemap_fdatawrite_range(mapping, lstart, lend, 655 WB_SYNC_ALL); 656 /* 657 * Even if the above returned error, the pages may be 658 * written partially (e.g. -ENOSPC), so we wait for it. 659 * But the -EIO is special case, it may indicate the worst 660 * thing (e.g. bug) happened, so we avoid waiting for it. 661 */ 662 if (err != -EIO) { 663 int err2 = filemap_fdatawait_range(mapping, 664 lstart, lend); 665 if (!err) 666 err = err2; 667 } else { 668 /* Clear any previously stored errors */ 669 filemap_check_errors(mapping); 670 } 671 } else { 672 err = filemap_check_errors(mapping); 673 } 674 return err; 675 } 676 EXPORT_SYMBOL(filemap_write_and_wait_range); 677 678 void __filemap_set_wb_err(struct address_space *mapping, int err) 679 { 680 errseq_t eseq = errseq_set(&mapping->wb_err, err); 681 682 trace_filemap_set_wb_err(mapping, eseq); 683 } 684 EXPORT_SYMBOL(__filemap_set_wb_err); 685 686 /** 687 * file_check_and_advance_wb_err - report wb error (if any) that was previously 688 * and advance wb_err to current one 689 * @file: struct file on which the error is being reported 690 * 691 * When userland calls fsync (or something like nfsd does the equivalent), we 692 * want to report any writeback errors that occurred since the last fsync (or 693 * since the file was opened if there haven't been any). 694 * 695 * Grab the wb_err from the mapping. If it matches what we have in the file, 696 * then just quickly return 0. The file is all caught up. 697 * 698 * If it doesn't match, then take the mapping value, set the "seen" flag in 699 * it and try to swap it into place. If it works, or another task beat us 700 * to it with the new value, then update the f_wb_err and return the error 701 * portion. The error at this point must be reported via proper channels 702 * (a'la fsync, or NFS COMMIT operation, etc.). 703 * 704 * While we handle mapping->wb_err with atomic operations, the f_wb_err 705 * value is protected by the f_lock since we must ensure that it reflects 706 * the latest value swapped in for this file descriptor. 707 * 708 * Return: %0 on success, negative error code otherwise. 709 */ 710 int file_check_and_advance_wb_err(struct file *file) 711 { 712 int err = 0; 713 errseq_t old = READ_ONCE(file->f_wb_err); 714 struct address_space *mapping = file->f_mapping; 715 716 /* Locklessly handle the common case where nothing has changed */ 717 if (errseq_check(&mapping->wb_err, old)) { 718 /* Something changed, must use slow path */ 719 spin_lock(&file->f_lock); 720 old = file->f_wb_err; 721 err = errseq_check_and_advance(&mapping->wb_err, 722 &file->f_wb_err); 723 trace_file_check_and_advance_wb_err(file, old); 724 spin_unlock(&file->f_lock); 725 } 726 727 /* 728 * We're mostly using this function as a drop in replacement for 729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 730 * that the legacy code would have had on these flags. 731 */ 732 clear_bit(AS_EIO, &mapping->flags); 733 clear_bit(AS_ENOSPC, &mapping->flags); 734 return err; 735 } 736 EXPORT_SYMBOL(file_check_and_advance_wb_err); 737 738 /** 739 * file_write_and_wait_range - write out & wait on a file range 740 * @file: file pointing to address_space with pages 741 * @lstart: offset in bytes where the range starts 742 * @lend: offset in bytes where the range ends (inclusive) 743 * 744 * Write out and wait upon file offsets lstart->lend, inclusive. 745 * 746 * Note that @lend is inclusive (describes the last byte to be written) so 747 * that this function can be used to write to the very end-of-file (end = -1). 748 * 749 * After writing out and waiting on the data, we check and advance the 750 * f_wb_err cursor to the latest value, and return any errors detected there. 751 * 752 * Return: %0 on success, negative error code otherwise. 753 */ 754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 755 { 756 int err = 0, err2; 757 struct address_space *mapping = file->f_mapping; 758 759 if (mapping_needs_writeback(mapping)) { 760 err = __filemap_fdatawrite_range(mapping, lstart, lend, 761 WB_SYNC_ALL); 762 /* See comment of filemap_write_and_wait() */ 763 if (err != -EIO) 764 __filemap_fdatawait_range(mapping, lstart, lend); 765 } 766 err2 = file_check_and_advance_wb_err(file); 767 if (!err) 768 err = err2; 769 return err; 770 } 771 EXPORT_SYMBOL(file_write_and_wait_range); 772 773 /** 774 * replace_page_cache_page - replace a pagecache page with a new one 775 * @old: page to be replaced 776 * @new: page to replace with 777 * @gfp_mask: allocation mode 778 * 779 * This function replaces a page in the pagecache with a new one. On 780 * success it acquires the pagecache reference for the new page and 781 * drops it for the old page. Both the old and new pages must be 782 * locked. This function does not add the new page to the LRU, the 783 * caller must do that. 784 * 785 * The remove + add is atomic. This function cannot fail. 786 * 787 * Return: %0 788 */ 789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 790 { 791 struct address_space *mapping = old->mapping; 792 void (*freepage)(struct page *) = mapping->a_ops->freepage; 793 pgoff_t offset = old->index; 794 XA_STATE(xas, &mapping->i_pages, offset); 795 unsigned long flags; 796 797 VM_BUG_ON_PAGE(!PageLocked(old), old); 798 VM_BUG_ON_PAGE(!PageLocked(new), new); 799 VM_BUG_ON_PAGE(new->mapping, new); 800 801 get_page(new); 802 new->mapping = mapping; 803 new->index = offset; 804 805 mem_cgroup_migrate(old, new); 806 807 xas_lock_irqsave(&xas, flags); 808 xas_store(&xas, new); 809 810 old->mapping = NULL; 811 /* hugetlb pages do not participate in page cache accounting. */ 812 if (!PageHuge(old)) 813 __dec_lruvec_page_state(old, NR_FILE_PAGES); 814 if (!PageHuge(new)) 815 __inc_lruvec_page_state(new, NR_FILE_PAGES); 816 if (PageSwapBacked(old)) 817 __dec_lruvec_page_state(old, NR_SHMEM); 818 if (PageSwapBacked(new)) 819 __inc_lruvec_page_state(new, NR_SHMEM); 820 xas_unlock_irqrestore(&xas, flags); 821 if (freepage) 822 freepage(old); 823 put_page(old); 824 825 return 0; 826 } 827 EXPORT_SYMBOL_GPL(replace_page_cache_page); 828 829 static int __add_to_page_cache_locked(struct page *page, 830 struct address_space *mapping, 831 pgoff_t offset, gfp_t gfp_mask, 832 void **shadowp) 833 { 834 XA_STATE(xas, &mapping->i_pages, offset); 835 int huge = PageHuge(page); 836 int error; 837 void *old; 838 839 VM_BUG_ON_PAGE(!PageLocked(page), page); 840 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 841 mapping_set_update(&xas, mapping); 842 843 get_page(page); 844 page->mapping = mapping; 845 page->index = offset; 846 847 if (!huge) { 848 error = mem_cgroup_charge(page, current->mm, gfp_mask); 849 if (error) 850 goto error; 851 } 852 853 do { 854 xas_lock_irq(&xas); 855 old = xas_load(&xas); 856 if (old && !xa_is_value(old)) 857 xas_set_err(&xas, -EEXIST); 858 xas_store(&xas, page); 859 if (xas_error(&xas)) 860 goto unlock; 861 862 if (xa_is_value(old)) { 863 mapping->nrexceptional--; 864 if (shadowp) 865 *shadowp = old; 866 } 867 mapping->nrpages++; 868 869 /* hugetlb pages do not participate in page cache accounting */ 870 if (!huge) 871 __inc_lruvec_page_state(page, NR_FILE_PAGES); 872 unlock: 873 xas_unlock_irq(&xas); 874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 875 876 if (xas_error(&xas)) { 877 error = xas_error(&xas); 878 goto error; 879 } 880 881 trace_mm_filemap_add_to_page_cache(page); 882 return 0; 883 error: 884 page->mapping = NULL; 885 /* Leave page->index set: truncation relies upon it */ 886 put_page(page); 887 return error; 888 } 889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 890 891 /** 892 * add_to_page_cache_locked - add a locked page to the pagecache 893 * @page: page to add 894 * @mapping: the page's address_space 895 * @offset: page index 896 * @gfp_mask: page allocation mode 897 * 898 * This function is used to add a page to the pagecache. It must be locked. 899 * This function does not add the page to the LRU. The caller must do that. 900 * 901 * Return: %0 on success, negative error code otherwise. 902 */ 903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 904 pgoff_t offset, gfp_t gfp_mask) 905 { 906 return __add_to_page_cache_locked(page, mapping, offset, 907 gfp_mask, NULL); 908 } 909 EXPORT_SYMBOL(add_to_page_cache_locked); 910 911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 912 pgoff_t offset, gfp_t gfp_mask) 913 { 914 void *shadow = NULL; 915 int ret; 916 917 __SetPageLocked(page); 918 ret = __add_to_page_cache_locked(page, mapping, offset, 919 gfp_mask, &shadow); 920 if (unlikely(ret)) 921 __ClearPageLocked(page); 922 else { 923 /* 924 * The page might have been evicted from cache only 925 * recently, in which case it should be activated like 926 * any other repeatedly accessed page. 927 * The exception is pages getting rewritten; evicting other 928 * data from the working set, only to cache data that will 929 * get overwritten with something else, is a waste of memory. 930 */ 931 WARN_ON_ONCE(PageActive(page)); 932 if (!(gfp_mask & __GFP_WRITE) && shadow) 933 workingset_refault(page, shadow); 934 lru_cache_add(page); 935 } 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 939 940 #ifdef CONFIG_NUMA 941 struct page *__page_cache_alloc(gfp_t gfp) 942 { 943 int n; 944 struct page *page; 945 946 if (cpuset_do_page_mem_spread()) { 947 unsigned int cpuset_mems_cookie; 948 do { 949 cpuset_mems_cookie = read_mems_allowed_begin(); 950 n = cpuset_mem_spread_node(); 951 page = __alloc_pages_node(n, gfp, 0); 952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 953 954 return page; 955 } 956 return alloc_pages(gfp, 0); 957 } 958 EXPORT_SYMBOL(__page_cache_alloc); 959 #endif 960 961 /* 962 * In order to wait for pages to become available there must be 963 * waitqueues associated with pages. By using a hash table of 964 * waitqueues where the bucket discipline is to maintain all 965 * waiters on the same queue and wake all when any of the pages 966 * become available, and for the woken contexts to check to be 967 * sure the appropriate page became available, this saves space 968 * at a cost of "thundering herd" phenomena during rare hash 969 * collisions. 970 */ 971 #define PAGE_WAIT_TABLE_BITS 8 972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 974 975 static wait_queue_head_t *page_waitqueue(struct page *page) 976 { 977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 978 } 979 980 void __init pagecache_init(void) 981 { 982 int i; 983 984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 985 init_waitqueue_head(&page_wait_table[i]); 986 987 page_writeback_init(); 988 } 989 990 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 991 struct wait_page_key { 992 struct page *page; 993 int bit_nr; 994 int page_match; 995 }; 996 997 struct wait_page_queue { 998 struct page *page; 999 int bit_nr; 1000 wait_queue_entry_t wait; 1001 }; 1002 1003 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1004 { 1005 struct wait_page_key *key = arg; 1006 struct wait_page_queue *wait_page 1007 = container_of(wait, struct wait_page_queue, wait); 1008 1009 if (wait_page->page != key->page) 1010 return 0; 1011 key->page_match = 1; 1012 1013 if (wait_page->bit_nr != key->bit_nr) 1014 return 0; 1015 1016 /* 1017 * Stop walking if it's locked. 1018 * Is this safe if put_and_wait_on_page_locked() is in use? 1019 * Yes: the waker must hold a reference to this page, and if PG_locked 1020 * has now already been set by another task, that task must also hold 1021 * a reference to the *same usage* of this page; so there is no need 1022 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1023 */ 1024 if (test_bit(key->bit_nr, &key->page->flags)) 1025 return -1; 1026 1027 return autoremove_wake_function(wait, mode, sync, key); 1028 } 1029 1030 static void wake_up_page_bit(struct page *page, int bit_nr) 1031 { 1032 wait_queue_head_t *q = page_waitqueue(page); 1033 struct wait_page_key key; 1034 unsigned long flags; 1035 wait_queue_entry_t bookmark; 1036 1037 key.page = page; 1038 key.bit_nr = bit_nr; 1039 key.page_match = 0; 1040 1041 bookmark.flags = 0; 1042 bookmark.private = NULL; 1043 bookmark.func = NULL; 1044 INIT_LIST_HEAD(&bookmark.entry); 1045 1046 spin_lock_irqsave(&q->lock, flags); 1047 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1048 1049 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1050 /* 1051 * Take a breather from holding the lock, 1052 * allow pages that finish wake up asynchronously 1053 * to acquire the lock and remove themselves 1054 * from wait queue 1055 */ 1056 spin_unlock_irqrestore(&q->lock, flags); 1057 cpu_relax(); 1058 spin_lock_irqsave(&q->lock, flags); 1059 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1060 } 1061 1062 /* 1063 * It is possible for other pages to have collided on the waitqueue 1064 * hash, so in that case check for a page match. That prevents a long- 1065 * term waiter 1066 * 1067 * It is still possible to miss a case here, when we woke page waiters 1068 * and removed them from the waitqueue, but there are still other 1069 * page waiters. 1070 */ 1071 if (!waitqueue_active(q) || !key.page_match) { 1072 ClearPageWaiters(page); 1073 /* 1074 * It's possible to miss clearing Waiters here, when we woke 1075 * our page waiters, but the hashed waitqueue has waiters for 1076 * other pages on it. 1077 * 1078 * That's okay, it's a rare case. The next waker will clear it. 1079 */ 1080 } 1081 spin_unlock_irqrestore(&q->lock, flags); 1082 } 1083 1084 static void wake_up_page(struct page *page, int bit) 1085 { 1086 if (!PageWaiters(page)) 1087 return; 1088 wake_up_page_bit(page, bit); 1089 } 1090 1091 /* 1092 * A choice of three behaviors for wait_on_page_bit_common(): 1093 */ 1094 enum behavior { 1095 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1096 * __lock_page() waiting on then setting PG_locked. 1097 */ 1098 SHARED, /* Hold ref to page and check the bit when woken, like 1099 * wait_on_page_writeback() waiting on PG_writeback. 1100 */ 1101 DROP, /* Drop ref to page before wait, no check when woken, 1102 * like put_and_wait_on_page_locked() on PG_locked. 1103 */ 1104 }; 1105 1106 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1107 struct page *page, int bit_nr, int state, enum behavior behavior) 1108 { 1109 struct wait_page_queue wait_page; 1110 wait_queue_entry_t *wait = &wait_page.wait; 1111 bool bit_is_set; 1112 bool thrashing = false; 1113 bool delayacct = false; 1114 unsigned long pflags; 1115 int ret = 0; 1116 1117 if (bit_nr == PG_locked && 1118 !PageUptodate(page) && PageWorkingset(page)) { 1119 if (!PageSwapBacked(page)) { 1120 delayacct_thrashing_start(); 1121 delayacct = true; 1122 } 1123 psi_memstall_enter(&pflags); 1124 thrashing = true; 1125 } 1126 1127 init_wait(wait); 1128 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1129 wait->func = wake_page_function; 1130 wait_page.page = page; 1131 wait_page.bit_nr = bit_nr; 1132 1133 for (;;) { 1134 spin_lock_irq(&q->lock); 1135 1136 if (likely(list_empty(&wait->entry))) { 1137 __add_wait_queue_entry_tail(q, wait); 1138 SetPageWaiters(page); 1139 } 1140 1141 set_current_state(state); 1142 1143 spin_unlock_irq(&q->lock); 1144 1145 bit_is_set = test_bit(bit_nr, &page->flags); 1146 if (behavior == DROP) 1147 put_page(page); 1148 1149 if (likely(bit_is_set)) 1150 io_schedule(); 1151 1152 if (behavior == EXCLUSIVE) { 1153 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1154 break; 1155 } else if (behavior == SHARED) { 1156 if (!test_bit(bit_nr, &page->flags)) 1157 break; 1158 } 1159 1160 if (signal_pending_state(state, current)) { 1161 ret = -EINTR; 1162 break; 1163 } 1164 1165 if (behavior == DROP) { 1166 /* 1167 * We can no longer safely access page->flags: 1168 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1169 * there is a risk of waiting forever on a page reused 1170 * for something that keeps it locked indefinitely. 1171 * But best check for -EINTR above before breaking. 1172 */ 1173 break; 1174 } 1175 } 1176 1177 finish_wait(q, wait); 1178 1179 if (thrashing) { 1180 if (delayacct) 1181 delayacct_thrashing_end(); 1182 psi_memstall_leave(&pflags); 1183 } 1184 1185 /* 1186 * A signal could leave PageWaiters set. Clearing it here if 1187 * !waitqueue_active would be possible (by open-coding finish_wait), 1188 * but still fail to catch it in the case of wait hash collision. We 1189 * already can fail to clear wait hash collision cases, so don't 1190 * bother with signals either. 1191 */ 1192 1193 return ret; 1194 } 1195 1196 void wait_on_page_bit(struct page *page, int bit_nr) 1197 { 1198 wait_queue_head_t *q = page_waitqueue(page); 1199 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1200 } 1201 EXPORT_SYMBOL(wait_on_page_bit); 1202 1203 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1204 { 1205 wait_queue_head_t *q = page_waitqueue(page); 1206 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1207 } 1208 EXPORT_SYMBOL(wait_on_page_bit_killable); 1209 1210 /** 1211 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1212 * @page: The page to wait for. 1213 * 1214 * The caller should hold a reference on @page. They expect the page to 1215 * become unlocked relatively soon, but do not wish to hold up migration 1216 * (for example) by holding the reference while waiting for the page to 1217 * come unlocked. After this function returns, the caller should not 1218 * dereference @page. 1219 */ 1220 void put_and_wait_on_page_locked(struct page *page) 1221 { 1222 wait_queue_head_t *q; 1223 1224 page = compound_head(page); 1225 q = page_waitqueue(page); 1226 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1227 } 1228 1229 /** 1230 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1231 * @page: Page defining the wait queue of interest 1232 * @waiter: Waiter to add to the queue 1233 * 1234 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1235 */ 1236 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1237 { 1238 wait_queue_head_t *q = page_waitqueue(page); 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&q->lock, flags); 1242 __add_wait_queue_entry_tail(q, waiter); 1243 SetPageWaiters(page); 1244 spin_unlock_irqrestore(&q->lock, flags); 1245 } 1246 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1247 1248 #ifndef clear_bit_unlock_is_negative_byte 1249 1250 /* 1251 * PG_waiters is the high bit in the same byte as PG_lock. 1252 * 1253 * On x86 (and on many other architectures), we can clear PG_lock and 1254 * test the sign bit at the same time. But if the architecture does 1255 * not support that special operation, we just do this all by hand 1256 * instead. 1257 * 1258 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1259 * being cleared, but a memory barrier should be unnecessary since it is 1260 * in the same byte as PG_locked. 1261 */ 1262 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1263 { 1264 clear_bit_unlock(nr, mem); 1265 /* smp_mb__after_atomic(); */ 1266 return test_bit(PG_waiters, mem); 1267 } 1268 1269 #endif 1270 1271 /** 1272 * unlock_page - unlock a locked page 1273 * @page: the page 1274 * 1275 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1276 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1277 * mechanism between PageLocked pages and PageWriteback pages is shared. 1278 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1279 * 1280 * Note that this depends on PG_waiters being the sign bit in the byte 1281 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1282 * clear the PG_locked bit and test PG_waiters at the same time fairly 1283 * portably (architectures that do LL/SC can test any bit, while x86 can 1284 * test the sign bit). 1285 */ 1286 void unlock_page(struct page *page) 1287 { 1288 BUILD_BUG_ON(PG_waiters != 7); 1289 page = compound_head(page); 1290 VM_BUG_ON_PAGE(!PageLocked(page), page); 1291 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1292 wake_up_page_bit(page, PG_locked); 1293 } 1294 EXPORT_SYMBOL(unlock_page); 1295 1296 /** 1297 * end_page_writeback - end writeback against a page 1298 * @page: the page 1299 */ 1300 void end_page_writeback(struct page *page) 1301 { 1302 /* 1303 * TestClearPageReclaim could be used here but it is an atomic 1304 * operation and overkill in this particular case. Failing to 1305 * shuffle a page marked for immediate reclaim is too mild to 1306 * justify taking an atomic operation penalty at the end of 1307 * ever page writeback. 1308 */ 1309 if (PageReclaim(page)) { 1310 ClearPageReclaim(page); 1311 rotate_reclaimable_page(page); 1312 } 1313 1314 if (!test_clear_page_writeback(page)) 1315 BUG(); 1316 1317 smp_mb__after_atomic(); 1318 wake_up_page(page, PG_writeback); 1319 } 1320 EXPORT_SYMBOL(end_page_writeback); 1321 1322 /* 1323 * After completing I/O on a page, call this routine to update the page 1324 * flags appropriately 1325 */ 1326 void page_endio(struct page *page, bool is_write, int err) 1327 { 1328 if (!is_write) { 1329 if (!err) { 1330 SetPageUptodate(page); 1331 } else { 1332 ClearPageUptodate(page); 1333 SetPageError(page); 1334 } 1335 unlock_page(page); 1336 } else { 1337 if (err) { 1338 struct address_space *mapping; 1339 1340 SetPageError(page); 1341 mapping = page_mapping(page); 1342 if (mapping) 1343 mapping_set_error(mapping, err); 1344 } 1345 end_page_writeback(page); 1346 } 1347 } 1348 EXPORT_SYMBOL_GPL(page_endio); 1349 1350 /** 1351 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1352 * @__page: the page to lock 1353 */ 1354 void __lock_page(struct page *__page) 1355 { 1356 struct page *page = compound_head(__page); 1357 wait_queue_head_t *q = page_waitqueue(page); 1358 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1359 EXCLUSIVE); 1360 } 1361 EXPORT_SYMBOL(__lock_page); 1362 1363 int __lock_page_killable(struct page *__page) 1364 { 1365 struct page *page = compound_head(__page); 1366 wait_queue_head_t *q = page_waitqueue(page); 1367 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1368 EXCLUSIVE); 1369 } 1370 EXPORT_SYMBOL_GPL(__lock_page_killable); 1371 1372 /* 1373 * Return values: 1374 * 1 - page is locked; mmap_lock is still held. 1375 * 0 - page is not locked. 1376 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1377 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1378 * which case mmap_lock is still held. 1379 * 1380 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1381 * with the page locked and the mmap_lock unperturbed. 1382 */ 1383 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1384 unsigned int flags) 1385 { 1386 if (fault_flag_allow_retry_first(flags)) { 1387 /* 1388 * CAUTION! In this case, mmap_lock is not released 1389 * even though return 0. 1390 */ 1391 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1392 return 0; 1393 1394 mmap_read_unlock(mm); 1395 if (flags & FAULT_FLAG_KILLABLE) 1396 wait_on_page_locked_killable(page); 1397 else 1398 wait_on_page_locked(page); 1399 return 0; 1400 } else { 1401 if (flags & FAULT_FLAG_KILLABLE) { 1402 int ret; 1403 1404 ret = __lock_page_killable(page); 1405 if (ret) { 1406 mmap_read_unlock(mm); 1407 return 0; 1408 } 1409 } else 1410 __lock_page(page); 1411 return 1; 1412 } 1413 } 1414 1415 /** 1416 * page_cache_next_miss() - Find the next gap in the page cache. 1417 * @mapping: Mapping. 1418 * @index: Index. 1419 * @max_scan: Maximum range to search. 1420 * 1421 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1422 * gap with the lowest index. 1423 * 1424 * This function may be called under the rcu_read_lock. However, this will 1425 * not atomically search a snapshot of the cache at a single point in time. 1426 * For example, if a gap is created at index 5, then subsequently a gap is 1427 * created at index 10, page_cache_next_miss covering both indices may 1428 * return 10 if called under the rcu_read_lock. 1429 * 1430 * Return: The index of the gap if found, otherwise an index outside the 1431 * range specified (in which case 'return - index >= max_scan' will be true). 1432 * In the rare case of index wrap-around, 0 will be returned. 1433 */ 1434 pgoff_t page_cache_next_miss(struct address_space *mapping, 1435 pgoff_t index, unsigned long max_scan) 1436 { 1437 XA_STATE(xas, &mapping->i_pages, index); 1438 1439 while (max_scan--) { 1440 void *entry = xas_next(&xas); 1441 if (!entry || xa_is_value(entry)) 1442 break; 1443 if (xas.xa_index == 0) 1444 break; 1445 } 1446 1447 return xas.xa_index; 1448 } 1449 EXPORT_SYMBOL(page_cache_next_miss); 1450 1451 /** 1452 * page_cache_prev_miss() - Find the previous gap in the page cache. 1453 * @mapping: Mapping. 1454 * @index: Index. 1455 * @max_scan: Maximum range to search. 1456 * 1457 * Search the range [max(index - max_scan + 1, 0), index] for the 1458 * gap with the highest index. 1459 * 1460 * This function may be called under the rcu_read_lock. However, this will 1461 * not atomically search a snapshot of the cache at a single point in time. 1462 * For example, if a gap is created at index 10, then subsequently a gap is 1463 * created at index 5, page_cache_prev_miss() covering both indices may 1464 * return 5 if called under the rcu_read_lock. 1465 * 1466 * Return: The index of the gap if found, otherwise an index outside the 1467 * range specified (in which case 'index - return >= max_scan' will be true). 1468 * In the rare case of wrap-around, ULONG_MAX will be returned. 1469 */ 1470 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1471 pgoff_t index, unsigned long max_scan) 1472 { 1473 XA_STATE(xas, &mapping->i_pages, index); 1474 1475 while (max_scan--) { 1476 void *entry = xas_prev(&xas); 1477 if (!entry || xa_is_value(entry)) 1478 break; 1479 if (xas.xa_index == ULONG_MAX) 1480 break; 1481 } 1482 1483 return xas.xa_index; 1484 } 1485 EXPORT_SYMBOL(page_cache_prev_miss); 1486 1487 /** 1488 * find_get_entry - find and get a page cache entry 1489 * @mapping: the address_space to search 1490 * @offset: the page cache index 1491 * 1492 * Looks up the page cache slot at @mapping & @offset. If there is a 1493 * page cache page, it is returned with an increased refcount. 1494 * 1495 * If the slot holds a shadow entry of a previously evicted page, or a 1496 * swap entry from shmem/tmpfs, it is returned. 1497 * 1498 * Return: the found page or shadow entry, %NULL if nothing is found. 1499 */ 1500 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1501 { 1502 XA_STATE(xas, &mapping->i_pages, offset); 1503 struct page *page; 1504 1505 rcu_read_lock(); 1506 repeat: 1507 xas_reset(&xas); 1508 page = xas_load(&xas); 1509 if (xas_retry(&xas, page)) 1510 goto repeat; 1511 /* 1512 * A shadow entry of a recently evicted page, or a swap entry from 1513 * shmem/tmpfs. Return it without attempting to raise page count. 1514 */ 1515 if (!page || xa_is_value(page)) 1516 goto out; 1517 1518 if (!page_cache_get_speculative(page)) 1519 goto repeat; 1520 1521 /* 1522 * Has the page moved or been split? 1523 * This is part of the lockless pagecache protocol. See 1524 * include/linux/pagemap.h for details. 1525 */ 1526 if (unlikely(page != xas_reload(&xas))) { 1527 put_page(page); 1528 goto repeat; 1529 } 1530 page = find_subpage(page, offset); 1531 out: 1532 rcu_read_unlock(); 1533 1534 return page; 1535 } 1536 1537 /** 1538 * find_lock_entry - locate, pin and lock a page cache entry 1539 * @mapping: the address_space to search 1540 * @offset: the page cache index 1541 * 1542 * Looks up the page cache slot at @mapping & @offset. If there is a 1543 * page cache page, it is returned locked and with an increased 1544 * refcount. 1545 * 1546 * If the slot holds a shadow entry of a previously evicted page, or a 1547 * swap entry from shmem/tmpfs, it is returned. 1548 * 1549 * find_lock_entry() may sleep. 1550 * 1551 * Return: the found page or shadow entry, %NULL if nothing is found. 1552 */ 1553 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1554 { 1555 struct page *page; 1556 1557 repeat: 1558 page = find_get_entry(mapping, offset); 1559 if (page && !xa_is_value(page)) { 1560 lock_page(page); 1561 /* Has the page been truncated? */ 1562 if (unlikely(page_mapping(page) != mapping)) { 1563 unlock_page(page); 1564 put_page(page); 1565 goto repeat; 1566 } 1567 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1568 } 1569 return page; 1570 } 1571 EXPORT_SYMBOL(find_lock_entry); 1572 1573 /** 1574 * pagecache_get_page - Find and get a reference to a page. 1575 * @mapping: The address_space to search. 1576 * @index: The page index. 1577 * @fgp_flags: %FGP flags modify how the page is returned. 1578 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1579 * 1580 * Looks up the page cache entry at @mapping & @index. 1581 * 1582 * @fgp_flags can be zero or more of these flags: 1583 * 1584 * * %FGP_ACCESSED - The page will be marked accessed. 1585 * * %FGP_LOCK - The page is returned locked. 1586 * * %FGP_CREAT - If no page is present then a new page is allocated using 1587 * @gfp_mask and added to the page cache and the VM's LRU list. 1588 * The page is returned locked and with an increased refcount. 1589 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1590 * page is already in cache. If the page was allocated, unlock it before 1591 * returning so the caller can do the same dance. 1592 * 1593 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1594 * if the %GFP flags specified for %FGP_CREAT are atomic. 1595 * 1596 * If there is a page cache page, it is returned with an increased refcount. 1597 * 1598 * Return: The found page or %NULL otherwise. 1599 */ 1600 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1601 int fgp_flags, gfp_t gfp_mask) 1602 { 1603 struct page *page; 1604 1605 repeat: 1606 page = find_get_entry(mapping, index); 1607 if (xa_is_value(page)) 1608 page = NULL; 1609 if (!page) 1610 goto no_page; 1611 1612 if (fgp_flags & FGP_LOCK) { 1613 if (fgp_flags & FGP_NOWAIT) { 1614 if (!trylock_page(page)) { 1615 put_page(page); 1616 return NULL; 1617 } 1618 } else { 1619 lock_page(page); 1620 } 1621 1622 /* Has the page been truncated? */ 1623 if (unlikely(compound_head(page)->mapping != mapping)) { 1624 unlock_page(page); 1625 put_page(page); 1626 goto repeat; 1627 } 1628 VM_BUG_ON_PAGE(page->index != index, page); 1629 } 1630 1631 if (fgp_flags & FGP_ACCESSED) 1632 mark_page_accessed(page); 1633 1634 no_page: 1635 if (!page && (fgp_flags & FGP_CREAT)) { 1636 int err; 1637 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1638 gfp_mask |= __GFP_WRITE; 1639 if (fgp_flags & FGP_NOFS) 1640 gfp_mask &= ~__GFP_FS; 1641 1642 page = __page_cache_alloc(gfp_mask); 1643 if (!page) 1644 return NULL; 1645 1646 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1647 fgp_flags |= FGP_LOCK; 1648 1649 /* Init accessed so avoid atomic mark_page_accessed later */ 1650 if (fgp_flags & FGP_ACCESSED) 1651 __SetPageReferenced(page); 1652 1653 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1654 if (unlikely(err)) { 1655 put_page(page); 1656 page = NULL; 1657 if (err == -EEXIST) 1658 goto repeat; 1659 } 1660 1661 /* 1662 * add_to_page_cache_lru locks the page, and for mmap we expect 1663 * an unlocked page. 1664 */ 1665 if (page && (fgp_flags & FGP_FOR_MMAP)) 1666 unlock_page(page); 1667 } 1668 1669 return page; 1670 } 1671 EXPORT_SYMBOL(pagecache_get_page); 1672 1673 /** 1674 * find_get_entries - gang pagecache lookup 1675 * @mapping: The address_space to search 1676 * @start: The starting page cache index 1677 * @nr_entries: The maximum number of entries 1678 * @entries: Where the resulting entries are placed 1679 * @indices: The cache indices corresponding to the entries in @entries 1680 * 1681 * find_get_entries() will search for and return a group of up to 1682 * @nr_entries entries in the mapping. The entries are placed at 1683 * @entries. find_get_entries() takes a reference against any actual 1684 * pages it returns. 1685 * 1686 * The search returns a group of mapping-contiguous page cache entries 1687 * with ascending indexes. There may be holes in the indices due to 1688 * not-present pages. 1689 * 1690 * Any shadow entries of evicted pages, or swap entries from 1691 * shmem/tmpfs, are included in the returned array. 1692 * 1693 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1694 * stops at that page: the caller is likely to have a better way to handle 1695 * the compound page as a whole, and then skip its extent, than repeatedly 1696 * calling find_get_entries() to return all its tails. 1697 * 1698 * Return: the number of pages and shadow entries which were found. 1699 */ 1700 unsigned find_get_entries(struct address_space *mapping, 1701 pgoff_t start, unsigned int nr_entries, 1702 struct page **entries, pgoff_t *indices) 1703 { 1704 XA_STATE(xas, &mapping->i_pages, start); 1705 struct page *page; 1706 unsigned int ret = 0; 1707 1708 if (!nr_entries) 1709 return 0; 1710 1711 rcu_read_lock(); 1712 xas_for_each(&xas, page, ULONG_MAX) { 1713 if (xas_retry(&xas, page)) 1714 continue; 1715 /* 1716 * A shadow entry of a recently evicted page, a swap 1717 * entry from shmem/tmpfs or a DAX entry. Return it 1718 * without attempting to raise page count. 1719 */ 1720 if (xa_is_value(page)) 1721 goto export; 1722 1723 if (!page_cache_get_speculative(page)) 1724 goto retry; 1725 1726 /* Has the page moved or been split? */ 1727 if (unlikely(page != xas_reload(&xas))) 1728 goto put_page; 1729 1730 /* 1731 * Terminate early on finding a THP, to allow the caller to 1732 * handle it all at once; but continue if this is hugetlbfs. 1733 */ 1734 if (PageTransHuge(page) && !PageHuge(page)) { 1735 page = find_subpage(page, xas.xa_index); 1736 nr_entries = ret + 1; 1737 } 1738 export: 1739 indices[ret] = xas.xa_index; 1740 entries[ret] = page; 1741 if (++ret == nr_entries) 1742 break; 1743 continue; 1744 put_page: 1745 put_page(page); 1746 retry: 1747 xas_reset(&xas); 1748 } 1749 rcu_read_unlock(); 1750 return ret; 1751 } 1752 1753 /** 1754 * find_get_pages_range - gang pagecache lookup 1755 * @mapping: The address_space to search 1756 * @start: The starting page index 1757 * @end: The final page index (inclusive) 1758 * @nr_pages: The maximum number of pages 1759 * @pages: Where the resulting pages are placed 1760 * 1761 * find_get_pages_range() will search for and return a group of up to @nr_pages 1762 * pages in the mapping starting at index @start and up to index @end 1763 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1764 * a reference against the returned pages. 1765 * 1766 * The search returns a group of mapping-contiguous pages with ascending 1767 * indexes. There may be holes in the indices due to not-present pages. 1768 * We also update @start to index the next page for the traversal. 1769 * 1770 * Return: the number of pages which were found. If this number is 1771 * smaller than @nr_pages, the end of specified range has been 1772 * reached. 1773 */ 1774 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1775 pgoff_t end, unsigned int nr_pages, 1776 struct page **pages) 1777 { 1778 XA_STATE(xas, &mapping->i_pages, *start); 1779 struct page *page; 1780 unsigned ret = 0; 1781 1782 if (unlikely(!nr_pages)) 1783 return 0; 1784 1785 rcu_read_lock(); 1786 xas_for_each(&xas, page, end) { 1787 if (xas_retry(&xas, page)) 1788 continue; 1789 /* Skip over shadow, swap and DAX entries */ 1790 if (xa_is_value(page)) 1791 continue; 1792 1793 if (!page_cache_get_speculative(page)) 1794 goto retry; 1795 1796 /* Has the page moved or been split? */ 1797 if (unlikely(page != xas_reload(&xas))) 1798 goto put_page; 1799 1800 pages[ret] = find_subpage(page, xas.xa_index); 1801 if (++ret == nr_pages) { 1802 *start = xas.xa_index + 1; 1803 goto out; 1804 } 1805 continue; 1806 put_page: 1807 put_page(page); 1808 retry: 1809 xas_reset(&xas); 1810 } 1811 1812 /* 1813 * We come here when there is no page beyond @end. We take care to not 1814 * overflow the index @start as it confuses some of the callers. This 1815 * breaks the iteration when there is a page at index -1 but that is 1816 * already broken anyway. 1817 */ 1818 if (end == (pgoff_t)-1) 1819 *start = (pgoff_t)-1; 1820 else 1821 *start = end + 1; 1822 out: 1823 rcu_read_unlock(); 1824 1825 return ret; 1826 } 1827 1828 /** 1829 * find_get_pages_contig - gang contiguous pagecache lookup 1830 * @mapping: The address_space to search 1831 * @index: The starting page index 1832 * @nr_pages: The maximum number of pages 1833 * @pages: Where the resulting pages are placed 1834 * 1835 * find_get_pages_contig() works exactly like find_get_pages(), except 1836 * that the returned number of pages are guaranteed to be contiguous. 1837 * 1838 * Return: the number of pages which were found. 1839 */ 1840 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1841 unsigned int nr_pages, struct page **pages) 1842 { 1843 XA_STATE(xas, &mapping->i_pages, index); 1844 struct page *page; 1845 unsigned int ret = 0; 1846 1847 if (unlikely(!nr_pages)) 1848 return 0; 1849 1850 rcu_read_lock(); 1851 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1852 if (xas_retry(&xas, page)) 1853 continue; 1854 /* 1855 * If the entry has been swapped out, we can stop looking. 1856 * No current caller is looking for DAX entries. 1857 */ 1858 if (xa_is_value(page)) 1859 break; 1860 1861 if (!page_cache_get_speculative(page)) 1862 goto retry; 1863 1864 /* Has the page moved or been split? */ 1865 if (unlikely(page != xas_reload(&xas))) 1866 goto put_page; 1867 1868 pages[ret] = find_subpage(page, xas.xa_index); 1869 if (++ret == nr_pages) 1870 break; 1871 continue; 1872 put_page: 1873 put_page(page); 1874 retry: 1875 xas_reset(&xas); 1876 } 1877 rcu_read_unlock(); 1878 return ret; 1879 } 1880 EXPORT_SYMBOL(find_get_pages_contig); 1881 1882 /** 1883 * find_get_pages_range_tag - find and return pages in given range matching @tag 1884 * @mapping: the address_space to search 1885 * @index: the starting page index 1886 * @end: The final page index (inclusive) 1887 * @tag: the tag index 1888 * @nr_pages: the maximum number of pages 1889 * @pages: where the resulting pages are placed 1890 * 1891 * Like find_get_pages, except we only return pages which are tagged with 1892 * @tag. We update @index to index the next page for the traversal. 1893 * 1894 * Return: the number of pages which were found. 1895 */ 1896 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1897 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1898 struct page **pages) 1899 { 1900 XA_STATE(xas, &mapping->i_pages, *index); 1901 struct page *page; 1902 unsigned ret = 0; 1903 1904 if (unlikely(!nr_pages)) 1905 return 0; 1906 1907 rcu_read_lock(); 1908 xas_for_each_marked(&xas, page, end, tag) { 1909 if (xas_retry(&xas, page)) 1910 continue; 1911 /* 1912 * Shadow entries should never be tagged, but this iteration 1913 * is lockless so there is a window for page reclaim to evict 1914 * a page we saw tagged. Skip over it. 1915 */ 1916 if (xa_is_value(page)) 1917 continue; 1918 1919 if (!page_cache_get_speculative(page)) 1920 goto retry; 1921 1922 /* Has the page moved or been split? */ 1923 if (unlikely(page != xas_reload(&xas))) 1924 goto put_page; 1925 1926 pages[ret] = find_subpage(page, xas.xa_index); 1927 if (++ret == nr_pages) { 1928 *index = xas.xa_index + 1; 1929 goto out; 1930 } 1931 continue; 1932 put_page: 1933 put_page(page); 1934 retry: 1935 xas_reset(&xas); 1936 } 1937 1938 /* 1939 * We come here when we got to @end. We take care to not overflow the 1940 * index @index as it confuses some of the callers. This breaks the 1941 * iteration when there is a page at index -1 but that is already 1942 * broken anyway. 1943 */ 1944 if (end == (pgoff_t)-1) 1945 *index = (pgoff_t)-1; 1946 else 1947 *index = end + 1; 1948 out: 1949 rcu_read_unlock(); 1950 1951 return ret; 1952 } 1953 EXPORT_SYMBOL(find_get_pages_range_tag); 1954 1955 /* 1956 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1957 * a _large_ part of the i/o request. Imagine the worst scenario: 1958 * 1959 * ---R__________________________________________B__________ 1960 * ^ reading here ^ bad block(assume 4k) 1961 * 1962 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1963 * => failing the whole request => read(R) => read(R+1) => 1964 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1965 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1966 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1967 * 1968 * It is going insane. Fix it by quickly scaling down the readahead size. 1969 */ 1970 static void shrink_readahead_size_eio(struct file_ra_state *ra) 1971 { 1972 ra->ra_pages /= 4; 1973 } 1974 1975 /** 1976 * generic_file_buffered_read - generic file read routine 1977 * @iocb: the iocb to read 1978 * @iter: data destination 1979 * @written: already copied 1980 * 1981 * This is a generic file read routine, and uses the 1982 * mapping->a_ops->readpage() function for the actual low-level stuff. 1983 * 1984 * This is really ugly. But the goto's actually try to clarify some 1985 * of the logic when it comes to error handling etc. 1986 * 1987 * Return: 1988 * * total number of bytes copied, including those the were already @written 1989 * * negative error code if nothing was copied 1990 */ 1991 ssize_t generic_file_buffered_read(struct kiocb *iocb, 1992 struct iov_iter *iter, ssize_t written) 1993 { 1994 struct file *filp = iocb->ki_filp; 1995 struct address_space *mapping = filp->f_mapping; 1996 struct inode *inode = mapping->host; 1997 struct file_ra_state *ra = &filp->f_ra; 1998 loff_t *ppos = &iocb->ki_pos; 1999 pgoff_t index; 2000 pgoff_t last_index; 2001 pgoff_t prev_index; 2002 unsigned long offset; /* offset into pagecache page */ 2003 unsigned int prev_offset; 2004 int error = 0; 2005 2006 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2007 return 0; 2008 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2009 2010 index = *ppos >> PAGE_SHIFT; 2011 prev_index = ra->prev_pos >> PAGE_SHIFT; 2012 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2013 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2014 offset = *ppos & ~PAGE_MASK; 2015 2016 for (;;) { 2017 struct page *page; 2018 pgoff_t end_index; 2019 loff_t isize; 2020 unsigned long nr, ret; 2021 2022 cond_resched(); 2023 find_page: 2024 if (fatal_signal_pending(current)) { 2025 error = -EINTR; 2026 goto out; 2027 } 2028 2029 page = find_get_page(mapping, index); 2030 if (!page) { 2031 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2032 goto would_block; 2033 page_cache_sync_readahead(mapping, 2034 ra, filp, 2035 index, last_index - index); 2036 page = find_get_page(mapping, index); 2037 if (unlikely(page == NULL)) 2038 goto no_cached_page; 2039 } 2040 if (PageReadahead(page)) { 2041 if (iocb->ki_flags & IOCB_NOIO) { 2042 put_page(page); 2043 goto out; 2044 } 2045 page_cache_async_readahead(mapping, 2046 ra, filp, page, 2047 index, last_index - index); 2048 } 2049 if (!PageUptodate(page)) { 2050 if (iocb->ki_flags & IOCB_NOWAIT) { 2051 put_page(page); 2052 goto would_block; 2053 } 2054 2055 /* 2056 * See comment in do_read_cache_page on why 2057 * wait_on_page_locked is used to avoid unnecessarily 2058 * serialisations and why it's safe. 2059 */ 2060 error = wait_on_page_locked_killable(page); 2061 if (unlikely(error)) 2062 goto readpage_error; 2063 if (PageUptodate(page)) 2064 goto page_ok; 2065 2066 if (inode->i_blkbits == PAGE_SHIFT || 2067 !mapping->a_ops->is_partially_uptodate) 2068 goto page_not_up_to_date; 2069 /* pipes can't handle partially uptodate pages */ 2070 if (unlikely(iov_iter_is_pipe(iter))) 2071 goto page_not_up_to_date; 2072 if (!trylock_page(page)) 2073 goto page_not_up_to_date; 2074 /* Did it get truncated before we got the lock? */ 2075 if (!page->mapping) 2076 goto page_not_up_to_date_locked; 2077 if (!mapping->a_ops->is_partially_uptodate(page, 2078 offset, iter->count)) 2079 goto page_not_up_to_date_locked; 2080 unlock_page(page); 2081 } 2082 page_ok: 2083 /* 2084 * i_size must be checked after we know the page is Uptodate. 2085 * 2086 * Checking i_size after the check allows us to calculate 2087 * the correct value for "nr", which means the zero-filled 2088 * part of the page is not copied back to userspace (unless 2089 * another truncate extends the file - this is desired though). 2090 */ 2091 2092 isize = i_size_read(inode); 2093 end_index = (isize - 1) >> PAGE_SHIFT; 2094 if (unlikely(!isize || index > end_index)) { 2095 put_page(page); 2096 goto out; 2097 } 2098 2099 /* nr is the maximum number of bytes to copy from this page */ 2100 nr = PAGE_SIZE; 2101 if (index == end_index) { 2102 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2103 if (nr <= offset) { 2104 put_page(page); 2105 goto out; 2106 } 2107 } 2108 nr = nr - offset; 2109 2110 /* If users can be writing to this page using arbitrary 2111 * virtual addresses, take care about potential aliasing 2112 * before reading the page on the kernel side. 2113 */ 2114 if (mapping_writably_mapped(mapping)) 2115 flush_dcache_page(page); 2116 2117 /* 2118 * When a sequential read accesses a page several times, 2119 * only mark it as accessed the first time. 2120 */ 2121 if (prev_index != index || offset != prev_offset) 2122 mark_page_accessed(page); 2123 prev_index = index; 2124 2125 /* 2126 * Ok, we have the page, and it's up-to-date, so 2127 * now we can copy it to user space... 2128 */ 2129 2130 ret = copy_page_to_iter(page, offset, nr, iter); 2131 offset += ret; 2132 index += offset >> PAGE_SHIFT; 2133 offset &= ~PAGE_MASK; 2134 prev_offset = offset; 2135 2136 put_page(page); 2137 written += ret; 2138 if (!iov_iter_count(iter)) 2139 goto out; 2140 if (ret < nr) { 2141 error = -EFAULT; 2142 goto out; 2143 } 2144 continue; 2145 2146 page_not_up_to_date: 2147 /* Get exclusive access to the page ... */ 2148 error = lock_page_killable(page); 2149 if (unlikely(error)) 2150 goto readpage_error; 2151 2152 page_not_up_to_date_locked: 2153 /* Did it get truncated before we got the lock? */ 2154 if (!page->mapping) { 2155 unlock_page(page); 2156 put_page(page); 2157 continue; 2158 } 2159 2160 /* Did somebody else fill it already? */ 2161 if (PageUptodate(page)) { 2162 unlock_page(page); 2163 goto page_ok; 2164 } 2165 2166 readpage: 2167 if (iocb->ki_flags & IOCB_NOIO) { 2168 unlock_page(page); 2169 put_page(page); 2170 goto would_block; 2171 } 2172 /* 2173 * A previous I/O error may have been due to temporary 2174 * failures, eg. multipath errors. 2175 * PG_error will be set again if readpage fails. 2176 */ 2177 ClearPageError(page); 2178 /* Start the actual read. The read will unlock the page. */ 2179 error = mapping->a_ops->readpage(filp, page); 2180 2181 if (unlikely(error)) { 2182 if (error == AOP_TRUNCATED_PAGE) { 2183 put_page(page); 2184 error = 0; 2185 goto find_page; 2186 } 2187 goto readpage_error; 2188 } 2189 2190 if (!PageUptodate(page)) { 2191 error = lock_page_killable(page); 2192 if (unlikely(error)) 2193 goto readpage_error; 2194 if (!PageUptodate(page)) { 2195 if (page->mapping == NULL) { 2196 /* 2197 * invalidate_mapping_pages got it 2198 */ 2199 unlock_page(page); 2200 put_page(page); 2201 goto find_page; 2202 } 2203 unlock_page(page); 2204 shrink_readahead_size_eio(ra); 2205 error = -EIO; 2206 goto readpage_error; 2207 } 2208 unlock_page(page); 2209 } 2210 2211 goto page_ok; 2212 2213 readpage_error: 2214 /* UHHUH! A synchronous read error occurred. Report it */ 2215 put_page(page); 2216 goto out; 2217 2218 no_cached_page: 2219 /* 2220 * Ok, it wasn't cached, so we need to create a new 2221 * page.. 2222 */ 2223 page = page_cache_alloc(mapping); 2224 if (!page) { 2225 error = -ENOMEM; 2226 goto out; 2227 } 2228 error = add_to_page_cache_lru(page, mapping, index, 2229 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2230 if (error) { 2231 put_page(page); 2232 if (error == -EEXIST) { 2233 error = 0; 2234 goto find_page; 2235 } 2236 goto out; 2237 } 2238 goto readpage; 2239 } 2240 2241 would_block: 2242 error = -EAGAIN; 2243 out: 2244 ra->prev_pos = prev_index; 2245 ra->prev_pos <<= PAGE_SHIFT; 2246 ra->prev_pos |= prev_offset; 2247 2248 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2249 file_accessed(filp); 2250 return written ? written : error; 2251 } 2252 EXPORT_SYMBOL_GPL(generic_file_buffered_read); 2253 2254 /** 2255 * generic_file_read_iter - generic filesystem read routine 2256 * @iocb: kernel I/O control block 2257 * @iter: destination for the data read 2258 * 2259 * This is the "read_iter()" routine for all filesystems 2260 * that can use the page cache directly. 2261 * 2262 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2263 * be returned when no data can be read without waiting for I/O requests 2264 * to complete; it doesn't prevent readahead. 2265 * 2266 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2267 * requests shall be made for the read or for readahead. When no data 2268 * can be read, -EAGAIN shall be returned. When readahead would be 2269 * triggered, a partial, possibly empty read shall be returned. 2270 * 2271 * Return: 2272 * * number of bytes copied, even for partial reads 2273 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2274 */ 2275 ssize_t 2276 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2277 { 2278 size_t count = iov_iter_count(iter); 2279 ssize_t retval = 0; 2280 2281 if (!count) 2282 goto out; /* skip atime */ 2283 2284 if (iocb->ki_flags & IOCB_DIRECT) { 2285 struct file *file = iocb->ki_filp; 2286 struct address_space *mapping = file->f_mapping; 2287 struct inode *inode = mapping->host; 2288 loff_t size; 2289 2290 size = i_size_read(inode); 2291 if (iocb->ki_flags & IOCB_NOWAIT) { 2292 if (filemap_range_has_page(mapping, iocb->ki_pos, 2293 iocb->ki_pos + count - 1)) 2294 return -EAGAIN; 2295 } else { 2296 retval = filemap_write_and_wait_range(mapping, 2297 iocb->ki_pos, 2298 iocb->ki_pos + count - 1); 2299 if (retval < 0) 2300 goto out; 2301 } 2302 2303 file_accessed(file); 2304 2305 retval = mapping->a_ops->direct_IO(iocb, iter); 2306 if (retval >= 0) { 2307 iocb->ki_pos += retval; 2308 count -= retval; 2309 } 2310 iov_iter_revert(iter, count - iov_iter_count(iter)); 2311 2312 /* 2313 * Btrfs can have a short DIO read if we encounter 2314 * compressed extents, so if there was an error, or if 2315 * we've already read everything we wanted to, or if 2316 * there was a short read because we hit EOF, go ahead 2317 * and return. Otherwise fallthrough to buffered io for 2318 * the rest of the read. Buffered reads will not work for 2319 * DAX files, so don't bother trying. 2320 */ 2321 if (retval < 0 || !count || iocb->ki_pos >= size || 2322 IS_DAX(inode)) 2323 goto out; 2324 } 2325 2326 retval = generic_file_buffered_read(iocb, iter, retval); 2327 out: 2328 return retval; 2329 } 2330 EXPORT_SYMBOL(generic_file_read_iter); 2331 2332 #ifdef CONFIG_MMU 2333 #define MMAP_LOTSAMISS (100) 2334 /* 2335 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2336 * @vmf - the vm_fault for this fault. 2337 * @page - the page to lock. 2338 * @fpin - the pointer to the file we may pin (or is already pinned). 2339 * 2340 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2341 * It differs in that it actually returns the page locked if it returns 1 and 0 2342 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2343 * will point to the pinned file and needs to be fput()'ed at a later point. 2344 */ 2345 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2346 struct file **fpin) 2347 { 2348 if (trylock_page(page)) 2349 return 1; 2350 2351 /* 2352 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2353 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2354 * is supposed to work. We have way too many special cases.. 2355 */ 2356 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2357 return 0; 2358 2359 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2360 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2361 if (__lock_page_killable(page)) { 2362 /* 2363 * We didn't have the right flags to drop the mmap_lock, 2364 * but all fault_handlers only check for fatal signals 2365 * if we return VM_FAULT_RETRY, so we need to drop the 2366 * mmap_lock here and return 0 if we don't have a fpin. 2367 */ 2368 if (*fpin == NULL) 2369 mmap_read_unlock(vmf->vma->vm_mm); 2370 return 0; 2371 } 2372 } else 2373 __lock_page(page); 2374 return 1; 2375 } 2376 2377 2378 /* 2379 * Synchronous readahead happens when we don't even find a page in the page 2380 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2381 * to drop the mmap sem we return the file that was pinned in order for us to do 2382 * that. If we didn't pin a file then we return NULL. The file that is 2383 * returned needs to be fput()'ed when we're done with it. 2384 */ 2385 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2386 { 2387 struct file *file = vmf->vma->vm_file; 2388 struct file_ra_state *ra = &file->f_ra; 2389 struct address_space *mapping = file->f_mapping; 2390 struct file *fpin = NULL; 2391 pgoff_t offset = vmf->pgoff; 2392 2393 /* If we don't want any read-ahead, don't bother */ 2394 if (vmf->vma->vm_flags & VM_RAND_READ) 2395 return fpin; 2396 if (!ra->ra_pages) 2397 return fpin; 2398 2399 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2400 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2401 page_cache_sync_readahead(mapping, ra, file, offset, 2402 ra->ra_pages); 2403 return fpin; 2404 } 2405 2406 /* Avoid banging the cache line if not needed */ 2407 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2408 ra->mmap_miss++; 2409 2410 /* 2411 * Do we miss much more than hit in this file? If so, 2412 * stop bothering with read-ahead. It will only hurt. 2413 */ 2414 if (ra->mmap_miss > MMAP_LOTSAMISS) 2415 return fpin; 2416 2417 /* 2418 * mmap read-around 2419 */ 2420 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2421 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2422 ra->size = ra->ra_pages; 2423 ra->async_size = ra->ra_pages / 4; 2424 ra_submit(ra, mapping, file); 2425 return fpin; 2426 } 2427 2428 /* 2429 * Asynchronous readahead happens when we find the page and PG_readahead, 2430 * so we want to possibly extend the readahead further. We return the file that 2431 * was pinned if we have to drop the mmap_lock in order to do IO. 2432 */ 2433 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2434 struct page *page) 2435 { 2436 struct file *file = vmf->vma->vm_file; 2437 struct file_ra_state *ra = &file->f_ra; 2438 struct address_space *mapping = file->f_mapping; 2439 struct file *fpin = NULL; 2440 pgoff_t offset = vmf->pgoff; 2441 2442 /* If we don't want any read-ahead, don't bother */ 2443 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2444 return fpin; 2445 if (ra->mmap_miss > 0) 2446 ra->mmap_miss--; 2447 if (PageReadahead(page)) { 2448 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2449 page_cache_async_readahead(mapping, ra, file, 2450 page, offset, ra->ra_pages); 2451 } 2452 return fpin; 2453 } 2454 2455 /** 2456 * filemap_fault - read in file data for page fault handling 2457 * @vmf: struct vm_fault containing details of the fault 2458 * 2459 * filemap_fault() is invoked via the vma operations vector for a 2460 * mapped memory region to read in file data during a page fault. 2461 * 2462 * The goto's are kind of ugly, but this streamlines the normal case of having 2463 * it in the page cache, and handles the special cases reasonably without 2464 * having a lot of duplicated code. 2465 * 2466 * vma->vm_mm->mmap_lock must be held on entry. 2467 * 2468 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2469 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2470 * 2471 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2472 * has not been released. 2473 * 2474 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2475 * 2476 * Return: bitwise-OR of %VM_FAULT_ codes. 2477 */ 2478 vm_fault_t filemap_fault(struct vm_fault *vmf) 2479 { 2480 int error; 2481 struct file *file = vmf->vma->vm_file; 2482 struct file *fpin = NULL; 2483 struct address_space *mapping = file->f_mapping; 2484 struct file_ra_state *ra = &file->f_ra; 2485 struct inode *inode = mapping->host; 2486 pgoff_t offset = vmf->pgoff; 2487 pgoff_t max_off; 2488 struct page *page; 2489 vm_fault_t ret = 0; 2490 2491 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2492 if (unlikely(offset >= max_off)) 2493 return VM_FAULT_SIGBUS; 2494 2495 /* 2496 * Do we have something in the page cache already? 2497 */ 2498 page = find_get_page(mapping, offset); 2499 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2500 /* 2501 * We found the page, so try async readahead before 2502 * waiting for the lock. 2503 */ 2504 fpin = do_async_mmap_readahead(vmf, page); 2505 } else if (!page) { 2506 /* No page in the page cache at all */ 2507 count_vm_event(PGMAJFAULT); 2508 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2509 ret = VM_FAULT_MAJOR; 2510 fpin = do_sync_mmap_readahead(vmf); 2511 retry_find: 2512 page = pagecache_get_page(mapping, offset, 2513 FGP_CREAT|FGP_FOR_MMAP, 2514 vmf->gfp_mask); 2515 if (!page) { 2516 if (fpin) 2517 goto out_retry; 2518 return VM_FAULT_OOM; 2519 } 2520 } 2521 2522 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2523 goto out_retry; 2524 2525 /* Did it get truncated? */ 2526 if (unlikely(compound_head(page)->mapping != mapping)) { 2527 unlock_page(page); 2528 put_page(page); 2529 goto retry_find; 2530 } 2531 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 2532 2533 /* 2534 * We have a locked page in the page cache, now we need to check 2535 * that it's up-to-date. If not, it is going to be due to an error. 2536 */ 2537 if (unlikely(!PageUptodate(page))) 2538 goto page_not_uptodate; 2539 2540 /* 2541 * We've made it this far and we had to drop our mmap_lock, now is the 2542 * time to return to the upper layer and have it re-find the vma and 2543 * redo the fault. 2544 */ 2545 if (fpin) { 2546 unlock_page(page); 2547 goto out_retry; 2548 } 2549 2550 /* 2551 * Found the page and have a reference on it. 2552 * We must recheck i_size under page lock. 2553 */ 2554 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2555 if (unlikely(offset >= max_off)) { 2556 unlock_page(page); 2557 put_page(page); 2558 return VM_FAULT_SIGBUS; 2559 } 2560 2561 vmf->page = page; 2562 return ret | VM_FAULT_LOCKED; 2563 2564 page_not_uptodate: 2565 /* 2566 * Umm, take care of errors if the page isn't up-to-date. 2567 * Try to re-read it _once_. We do this synchronously, 2568 * because there really aren't any performance issues here 2569 * and we need to check for errors. 2570 */ 2571 ClearPageError(page); 2572 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2573 error = mapping->a_ops->readpage(file, page); 2574 if (!error) { 2575 wait_on_page_locked(page); 2576 if (!PageUptodate(page)) 2577 error = -EIO; 2578 } 2579 if (fpin) 2580 goto out_retry; 2581 put_page(page); 2582 2583 if (!error || error == AOP_TRUNCATED_PAGE) 2584 goto retry_find; 2585 2586 shrink_readahead_size_eio(ra); 2587 return VM_FAULT_SIGBUS; 2588 2589 out_retry: 2590 /* 2591 * We dropped the mmap_lock, we need to return to the fault handler to 2592 * re-find the vma and come back and find our hopefully still populated 2593 * page. 2594 */ 2595 if (page) 2596 put_page(page); 2597 if (fpin) 2598 fput(fpin); 2599 return ret | VM_FAULT_RETRY; 2600 } 2601 EXPORT_SYMBOL(filemap_fault); 2602 2603 void filemap_map_pages(struct vm_fault *vmf, 2604 pgoff_t start_pgoff, pgoff_t end_pgoff) 2605 { 2606 struct file *file = vmf->vma->vm_file; 2607 struct address_space *mapping = file->f_mapping; 2608 pgoff_t last_pgoff = start_pgoff; 2609 unsigned long max_idx; 2610 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2611 struct page *page; 2612 2613 rcu_read_lock(); 2614 xas_for_each(&xas, page, end_pgoff) { 2615 if (xas_retry(&xas, page)) 2616 continue; 2617 if (xa_is_value(page)) 2618 goto next; 2619 2620 /* 2621 * Check for a locked page first, as a speculative 2622 * reference may adversely influence page migration. 2623 */ 2624 if (PageLocked(page)) 2625 goto next; 2626 if (!page_cache_get_speculative(page)) 2627 goto next; 2628 2629 /* Has the page moved or been split? */ 2630 if (unlikely(page != xas_reload(&xas))) 2631 goto skip; 2632 page = find_subpage(page, xas.xa_index); 2633 2634 if (!PageUptodate(page) || 2635 PageReadahead(page) || 2636 PageHWPoison(page)) 2637 goto skip; 2638 if (!trylock_page(page)) 2639 goto skip; 2640 2641 if (page->mapping != mapping || !PageUptodate(page)) 2642 goto unlock; 2643 2644 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2645 if (page->index >= max_idx) 2646 goto unlock; 2647 2648 if (file->f_ra.mmap_miss > 0) 2649 file->f_ra.mmap_miss--; 2650 2651 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2652 if (vmf->pte) 2653 vmf->pte += xas.xa_index - last_pgoff; 2654 last_pgoff = xas.xa_index; 2655 if (alloc_set_pte(vmf, page)) 2656 goto unlock; 2657 unlock_page(page); 2658 goto next; 2659 unlock: 2660 unlock_page(page); 2661 skip: 2662 put_page(page); 2663 next: 2664 /* Huge page is mapped? No need to proceed. */ 2665 if (pmd_trans_huge(*vmf->pmd)) 2666 break; 2667 } 2668 rcu_read_unlock(); 2669 } 2670 EXPORT_SYMBOL(filemap_map_pages); 2671 2672 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2673 { 2674 struct page *page = vmf->page; 2675 struct inode *inode = file_inode(vmf->vma->vm_file); 2676 vm_fault_t ret = VM_FAULT_LOCKED; 2677 2678 sb_start_pagefault(inode->i_sb); 2679 file_update_time(vmf->vma->vm_file); 2680 lock_page(page); 2681 if (page->mapping != inode->i_mapping) { 2682 unlock_page(page); 2683 ret = VM_FAULT_NOPAGE; 2684 goto out; 2685 } 2686 /* 2687 * We mark the page dirty already here so that when freeze is in 2688 * progress, we are guaranteed that writeback during freezing will 2689 * see the dirty page and writeprotect it again. 2690 */ 2691 set_page_dirty(page); 2692 wait_for_stable_page(page); 2693 out: 2694 sb_end_pagefault(inode->i_sb); 2695 return ret; 2696 } 2697 2698 const struct vm_operations_struct generic_file_vm_ops = { 2699 .fault = filemap_fault, 2700 .map_pages = filemap_map_pages, 2701 .page_mkwrite = filemap_page_mkwrite, 2702 }; 2703 2704 /* This is used for a general mmap of a disk file */ 2705 2706 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2707 { 2708 struct address_space *mapping = file->f_mapping; 2709 2710 if (!mapping->a_ops->readpage) 2711 return -ENOEXEC; 2712 file_accessed(file); 2713 vma->vm_ops = &generic_file_vm_ops; 2714 return 0; 2715 } 2716 2717 /* 2718 * This is for filesystems which do not implement ->writepage. 2719 */ 2720 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2721 { 2722 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2723 return -EINVAL; 2724 return generic_file_mmap(file, vma); 2725 } 2726 #else 2727 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2728 { 2729 return VM_FAULT_SIGBUS; 2730 } 2731 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2732 { 2733 return -ENOSYS; 2734 } 2735 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2736 { 2737 return -ENOSYS; 2738 } 2739 #endif /* CONFIG_MMU */ 2740 2741 EXPORT_SYMBOL(filemap_page_mkwrite); 2742 EXPORT_SYMBOL(generic_file_mmap); 2743 EXPORT_SYMBOL(generic_file_readonly_mmap); 2744 2745 static struct page *wait_on_page_read(struct page *page) 2746 { 2747 if (!IS_ERR(page)) { 2748 wait_on_page_locked(page); 2749 if (!PageUptodate(page)) { 2750 put_page(page); 2751 page = ERR_PTR(-EIO); 2752 } 2753 } 2754 return page; 2755 } 2756 2757 static struct page *do_read_cache_page(struct address_space *mapping, 2758 pgoff_t index, 2759 int (*filler)(void *, struct page *), 2760 void *data, 2761 gfp_t gfp) 2762 { 2763 struct page *page; 2764 int err; 2765 repeat: 2766 page = find_get_page(mapping, index); 2767 if (!page) { 2768 page = __page_cache_alloc(gfp); 2769 if (!page) 2770 return ERR_PTR(-ENOMEM); 2771 err = add_to_page_cache_lru(page, mapping, index, gfp); 2772 if (unlikely(err)) { 2773 put_page(page); 2774 if (err == -EEXIST) 2775 goto repeat; 2776 /* Presumably ENOMEM for xarray node */ 2777 return ERR_PTR(err); 2778 } 2779 2780 filler: 2781 if (filler) 2782 err = filler(data, page); 2783 else 2784 err = mapping->a_ops->readpage(data, page); 2785 2786 if (err < 0) { 2787 put_page(page); 2788 return ERR_PTR(err); 2789 } 2790 2791 page = wait_on_page_read(page); 2792 if (IS_ERR(page)) 2793 return page; 2794 goto out; 2795 } 2796 if (PageUptodate(page)) 2797 goto out; 2798 2799 /* 2800 * Page is not up to date and may be locked due one of the following 2801 * case a: Page is being filled and the page lock is held 2802 * case b: Read/write error clearing the page uptodate status 2803 * case c: Truncation in progress (page locked) 2804 * case d: Reclaim in progress 2805 * 2806 * Case a, the page will be up to date when the page is unlocked. 2807 * There is no need to serialise on the page lock here as the page 2808 * is pinned so the lock gives no additional protection. Even if the 2809 * the page is truncated, the data is still valid if PageUptodate as 2810 * it's a race vs truncate race. 2811 * Case b, the page will not be up to date 2812 * Case c, the page may be truncated but in itself, the data may still 2813 * be valid after IO completes as it's a read vs truncate race. The 2814 * operation must restart if the page is not uptodate on unlock but 2815 * otherwise serialising on page lock to stabilise the mapping gives 2816 * no additional guarantees to the caller as the page lock is 2817 * released before return. 2818 * Case d, similar to truncation. If reclaim holds the page lock, it 2819 * will be a race with remove_mapping that determines if the mapping 2820 * is valid on unlock but otherwise the data is valid and there is 2821 * no need to serialise with page lock. 2822 * 2823 * As the page lock gives no additional guarantee, we optimistically 2824 * wait on the page to be unlocked and check if it's up to date and 2825 * use the page if it is. Otherwise, the page lock is required to 2826 * distinguish between the different cases. The motivation is that we 2827 * avoid spurious serialisations and wakeups when multiple processes 2828 * wait on the same page for IO to complete. 2829 */ 2830 wait_on_page_locked(page); 2831 if (PageUptodate(page)) 2832 goto out; 2833 2834 /* Distinguish between all the cases under the safety of the lock */ 2835 lock_page(page); 2836 2837 /* Case c or d, restart the operation */ 2838 if (!page->mapping) { 2839 unlock_page(page); 2840 put_page(page); 2841 goto repeat; 2842 } 2843 2844 /* Someone else locked and filled the page in a very small window */ 2845 if (PageUptodate(page)) { 2846 unlock_page(page); 2847 goto out; 2848 } 2849 2850 /* 2851 * A previous I/O error may have been due to temporary 2852 * failures. 2853 * Clear page error before actual read, PG_error will be 2854 * set again if read page fails. 2855 */ 2856 ClearPageError(page); 2857 goto filler; 2858 2859 out: 2860 mark_page_accessed(page); 2861 return page; 2862 } 2863 2864 /** 2865 * read_cache_page - read into page cache, fill it if needed 2866 * @mapping: the page's address_space 2867 * @index: the page index 2868 * @filler: function to perform the read 2869 * @data: first arg to filler(data, page) function, often left as NULL 2870 * 2871 * Read into the page cache. If a page already exists, and PageUptodate() is 2872 * not set, try to fill the page and wait for it to become unlocked. 2873 * 2874 * If the page does not get brought uptodate, return -EIO. 2875 * 2876 * Return: up to date page on success, ERR_PTR() on failure. 2877 */ 2878 struct page *read_cache_page(struct address_space *mapping, 2879 pgoff_t index, 2880 int (*filler)(void *, struct page *), 2881 void *data) 2882 { 2883 return do_read_cache_page(mapping, index, filler, data, 2884 mapping_gfp_mask(mapping)); 2885 } 2886 EXPORT_SYMBOL(read_cache_page); 2887 2888 /** 2889 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2890 * @mapping: the page's address_space 2891 * @index: the page index 2892 * @gfp: the page allocator flags to use if allocating 2893 * 2894 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2895 * any new page allocations done using the specified allocation flags. 2896 * 2897 * If the page does not get brought uptodate, return -EIO. 2898 * 2899 * Return: up to date page on success, ERR_PTR() on failure. 2900 */ 2901 struct page *read_cache_page_gfp(struct address_space *mapping, 2902 pgoff_t index, 2903 gfp_t gfp) 2904 { 2905 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 2906 } 2907 EXPORT_SYMBOL(read_cache_page_gfp); 2908 2909 /* 2910 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2911 * LFS limits. If pos is under the limit it becomes a short access. If it 2912 * exceeds the limit we return -EFBIG. 2913 */ 2914 static int generic_write_check_limits(struct file *file, loff_t pos, 2915 loff_t *count) 2916 { 2917 struct inode *inode = file->f_mapping->host; 2918 loff_t max_size = inode->i_sb->s_maxbytes; 2919 loff_t limit = rlimit(RLIMIT_FSIZE); 2920 2921 if (limit != RLIM_INFINITY) { 2922 if (pos >= limit) { 2923 send_sig(SIGXFSZ, current, 0); 2924 return -EFBIG; 2925 } 2926 *count = min(*count, limit - pos); 2927 } 2928 2929 if (!(file->f_flags & O_LARGEFILE)) 2930 max_size = MAX_NON_LFS; 2931 2932 if (unlikely(pos >= max_size)) 2933 return -EFBIG; 2934 2935 *count = min(*count, max_size - pos); 2936 2937 return 0; 2938 } 2939 2940 /* 2941 * Performs necessary checks before doing a write 2942 * 2943 * Can adjust writing position or amount of bytes to write. 2944 * Returns appropriate error code that caller should return or 2945 * zero in case that write should be allowed. 2946 */ 2947 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2948 { 2949 struct file *file = iocb->ki_filp; 2950 struct inode *inode = file->f_mapping->host; 2951 loff_t count; 2952 int ret; 2953 2954 if (IS_SWAPFILE(inode)) 2955 return -ETXTBSY; 2956 2957 if (!iov_iter_count(from)) 2958 return 0; 2959 2960 /* FIXME: this is for backwards compatibility with 2.4 */ 2961 if (iocb->ki_flags & IOCB_APPEND) 2962 iocb->ki_pos = i_size_read(inode); 2963 2964 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2965 return -EINVAL; 2966 2967 count = iov_iter_count(from); 2968 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2969 if (ret) 2970 return ret; 2971 2972 iov_iter_truncate(from, count); 2973 return iov_iter_count(from); 2974 } 2975 EXPORT_SYMBOL(generic_write_checks); 2976 2977 /* 2978 * Performs necessary checks before doing a clone. 2979 * 2980 * Can adjust amount of bytes to clone via @req_count argument. 2981 * Returns appropriate error code that caller should return or 2982 * zero in case the clone should be allowed. 2983 */ 2984 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2985 struct file *file_out, loff_t pos_out, 2986 loff_t *req_count, unsigned int remap_flags) 2987 { 2988 struct inode *inode_in = file_in->f_mapping->host; 2989 struct inode *inode_out = file_out->f_mapping->host; 2990 uint64_t count = *req_count; 2991 uint64_t bcount; 2992 loff_t size_in, size_out; 2993 loff_t bs = inode_out->i_sb->s_blocksize; 2994 int ret; 2995 2996 /* The start of both ranges must be aligned to an fs block. */ 2997 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 2998 return -EINVAL; 2999 3000 /* Ensure offsets don't wrap. */ 3001 if (pos_in + count < pos_in || pos_out + count < pos_out) 3002 return -EINVAL; 3003 3004 size_in = i_size_read(inode_in); 3005 size_out = i_size_read(inode_out); 3006 3007 /* Dedupe requires both ranges to be within EOF. */ 3008 if ((remap_flags & REMAP_FILE_DEDUP) && 3009 (pos_in >= size_in || pos_in + count > size_in || 3010 pos_out >= size_out || pos_out + count > size_out)) 3011 return -EINVAL; 3012 3013 /* Ensure the infile range is within the infile. */ 3014 if (pos_in >= size_in) 3015 return -EINVAL; 3016 count = min(count, size_in - (uint64_t)pos_in); 3017 3018 ret = generic_write_check_limits(file_out, pos_out, &count); 3019 if (ret) 3020 return ret; 3021 3022 /* 3023 * If the user wanted us to link to the infile's EOF, round up to the 3024 * next block boundary for this check. 3025 * 3026 * Otherwise, make sure the count is also block-aligned, having 3027 * already confirmed the starting offsets' block alignment. 3028 */ 3029 if (pos_in + count == size_in) { 3030 bcount = ALIGN(size_in, bs) - pos_in; 3031 } else { 3032 if (!IS_ALIGNED(count, bs)) 3033 count = ALIGN_DOWN(count, bs); 3034 bcount = count; 3035 } 3036 3037 /* Don't allow overlapped cloning within the same file. */ 3038 if (inode_in == inode_out && 3039 pos_out + bcount > pos_in && 3040 pos_out < pos_in + bcount) 3041 return -EINVAL; 3042 3043 /* 3044 * We shortened the request but the caller can't deal with that, so 3045 * bounce the request back to userspace. 3046 */ 3047 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3048 return -EINVAL; 3049 3050 *req_count = count; 3051 return 0; 3052 } 3053 3054 3055 /* 3056 * Performs common checks before doing a file copy/clone 3057 * from @file_in to @file_out. 3058 */ 3059 int generic_file_rw_checks(struct file *file_in, struct file *file_out) 3060 { 3061 struct inode *inode_in = file_inode(file_in); 3062 struct inode *inode_out = file_inode(file_out); 3063 3064 /* Don't copy dirs, pipes, sockets... */ 3065 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) 3066 return -EISDIR; 3067 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) 3068 return -EINVAL; 3069 3070 if (!(file_in->f_mode & FMODE_READ) || 3071 !(file_out->f_mode & FMODE_WRITE) || 3072 (file_out->f_flags & O_APPEND)) 3073 return -EBADF; 3074 3075 return 0; 3076 } 3077 3078 /* 3079 * Performs necessary checks before doing a file copy 3080 * 3081 * Can adjust amount of bytes to copy via @req_count argument. 3082 * Returns appropriate error code that caller should return or 3083 * zero in case the copy should be allowed. 3084 */ 3085 int generic_copy_file_checks(struct file *file_in, loff_t pos_in, 3086 struct file *file_out, loff_t pos_out, 3087 size_t *req_count, unsigned int flags) 3088 { 3089 struct inode *inode_in = file_inode(file_in); 3090 struct inode *inode_out = file_inode(file_out); 3091 uint64_t count = *req_count; 3092 loff_t size_in; 3093 int ret; 3094 3095 ret = generic_file_rw_checks(file_in, file_out); 3096 if (ret) 3097 return ret; 3098 3099 /* Don't touch certain kinds of inodes */ 3100 if (IS_IMMUTABLE(inode_out)) 3101 return -EPERM; 3102 3103 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) 3104 return -ETXTBSY; 3105 3106 /* Ensure offsets don't wrap. */ 3107 if (pos_in + count < pos_in || pos_out + count < pos_out) 3108 return -EOVERFLOW; 3109 3110 /* Shorten the copy to EOF */ 3111 size_in = i_size_read(inode_in); 3112 if (pos_in >= size_in) 3113 count = 0; 3114 else 3115 count = min(count, size_in - (uint64_t)pos_in); 3116 3117 ret = generic_write_check_limits(file_out, pos_out, &count); 3118 if (ret) 3119 return ret; 3120 3121 /* Don't allow overlapped copying within the same file. */ 3122 if (inode_in == inode_out && 3123 pos_out + count > pos_in && 3124 pos_out < pos_in + count) 3125 return -EINVAL; 3126 3127 *req_count = count; 3128 return 0; 3129 } 3130 3131 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3132 loff_t pos, unsigned len, unsigned flags, 3133 struct page **pagep, void **fsdata) 3134 { 3135 const struct address_space_operations *aops = mapping->a_ops; 3136 3137 return aops->write_begin(file, mapping, pos, len, flags, 3138 pagep, fsdata); 3139 } 3140 EXPORT_SYMBOL(pagecache_write_begin); 3141 3142 int pagecache_write_end(struct file *file, struct address_space *mapping, 3143 loff_t pos, unsigned len, unsigned copied, 3144 struct page *page, void *fsdata) 3145 { 3146 const struct address_space_operations *aops = mapping->a_ops; 3147 3148 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3149 } 3150 EXPORT_SYMBOL(pagecache_write_end); 3151 3152 /* 3153 * Warn about a page cache invalidation failure during a direct I/O write. 3154 */ 3155 void dio_warn_stale_pagecache(struct file *filp) 3156 { 3157 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3158 char pathname[128]; 3159 struct inode *inode = file_inode(filp); 3160 char *path; 3161 3162 errseq_set(&inode->i_mapping->wb_err, -EIO); 3163 if (__ratelimit(&_rs)) { 3164 path = file_path(filp, pathname, sizeof(pathname)); 3165 if (IS_ERR(path)) 3166 path = "(unknown)"; 3167 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3168 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3169 current->comm); 3170 } 3171 } 3172 3173 ssize_t 3174 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3175 { 3176 struct file *file = iocb->ki_filp; 3177 struct address_space *mapping = file->f_mapping; 3178 struct inode *inode = mapping->host; 3179 loff_t pos = iocb->ki_pos; 3180 ssize_t written; 3181 size_t write_len; 3182 pgoff_t end; 3183 3184 write_len = iov_iter_count(from); 3185 end = (pos + write_len - 1) >> PAGE_SHIFT; 3186 3187 if (iocb->ki_flags & IOCB_NOWAIT) { 3188 /* If there are pages to writeback, return */ 3189 if (filemap_range_has_page(inode->i_mapping, pos, 3190 pos + write_len - 1)) 3191 return -EAGAIN; 3192 } else { 3193 written = filemap_write_and_wait_range(mapping, pos, 3194 pos + write_len - 1); 3195 if (written) 3196 goto out; 3197 } 3198 3199 /* 3200 * After a write we want buffered reads to be sure to go to disk to get 3201 * the new data. We invalidate clean cached page from the region we're 3202 * about to write. We do this *before* the write so that we can return 3203 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3204 */ 3205 written = invalidate_inode_pages2_range(mapping, 3206 pos >> PAGE_SHIFT, end); 3207 /* 3208 * If a page can not be invalidated, return 0 to fall back 3209 * to buffered write. 3210 */ 3211 if (written) { 3212 if (written == -EBUSY) 3213 return 0; 3214 goto out; 3215 } 3216 3217 written = mapping->a_ops->direct_IO(iocb, from); 3218 3219 /* 3220 * Finally, try again to invalidate clean pages which might have been 3221 * cached by non-direct readahead, or faulted in by get_user_pages() 3222 * if the source of the write was an mmap'ed region of the file 3223 * we're writing. Either one is a pretty crazy thing to do, 3224 * so we don't support it 100%. If this invalidation 3225 * fails, tough, the write still worked... 3226 * 3227 * Most of the time we do not need this since dio_complete() will do 3228 * the invalidation for us. However there are some file systems that 3229 * do not end up with dio_complete() being called, so let's not break 3230 * them by removing it completely. 3231 * 3232 * Noticeable example is a blkdev_direct_IO(). 3233 * 3234 * Skip invalidation for async writes or if mapping has no pages. 3235 */ 3236 if (written > 0 && mapping->nrpages && 3237 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3238 dio_warn_stale_pagecache(file); 3239 3240 if (written > 0) { 3241 pos += written; 3242 write_len -= written; 3243 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3244 i_size_write(inode, pos); 3245 mark_inode_dirty(inode); 3246 } 3247 iocb->ki_pos = pos; 3248 } 3249 iov_iter_revert(from, write_len - iov_iter_count(from)); 3250 out: 3251 return written; 3252 } 3253 EXPORT_SYMBOL(generic_file_direct_write); 3254 3255 /* 3256 * Find or create a page at the given pagecache position. Return the locked 3257 * page. This function is specifically for buffered writes. 3258 */ 3259 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3260 pgoff_t index, unsigned flags) 3261 { 3262 struct page *page; 3263 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3264 3265 if (flags & AOP_FLAG_NOFS) 3266 fgp_flags |= FGP_NOFS; 3267 3268 page = pagecache_get_page(mapping, index, fgp_flags, 3269 mapping_gfp_mask(mapping)); 3270 if (page) 3271 wait_for_stable_page(page); 3272 3273 return page; 3274 } 3275 EXPORT_SYMBOL(grab_cache_page_write_begin); 3276 3277 ssize_t generic_perform_write(struct file *file, 3278 struct iov_iter *i, loff_t pos) 3279 { 3280 struct address_space *mapping = file->f_mapping; 3281 const struct address_space_operations *a_ops = mapping->a_ops; 3282 long status = 0; 3283 ssize_t written = 0; 3284 unsigned int flags = 0; 3285 3286 do { 3287 struct page *page; 3288 unsigned long offset; /* Offset into pagecache page */ 3289 unsigned long bytes; /* Bytes to write to page */ 3290 size_t copied; /* Bytes copied from user */ 3291 void *fsdata; 3292 3293 offset = (pos & (PAGE_SIZE - 1)); 3294 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3295 iov_iter_count(i)); 3296 3297 again: 3298 /* 3299 * Bring in the user page that we will copy from _first_. 3300 * Otherwise there's a nasty deadlock on copying from the 3301 * same page as we're writing to, without it being marked 3302 * up-to-date. 3303 * 3304 * Not only is this an optimisation, but it is also required 3305 * to check that the address is actually valid, when atomic 3306 * usercopies are used, below. 3307 */ 3308 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3309 status = -EFAULT; 3310 break; 3311 } 3312 3313 if (fatal_signal_pending(current)) { 3314 status = -EINTR; 3315 break; 3316 } 3317 3318 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3319 &page, &fsdata); 3320 if (unlikely(status < 0)) 3321 break; 3322 3323 if (mapping_writably_mapped(mapping)) 3324 flush_dcache_page(page); 3325 3326 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3327 flush_dcache_page(page); 3328 3329 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3330 page, fsdata); 3331 if (unlikely(status < 0)) 3332 break; 3333 copied = status; 3334 3335 cond_resched(); 3336 3337 iov_iter_advance(i, copied); 3338 if (unlikely(copied == 0)) { 3339 /* 3340 * If we were unable to copy any data at all, we must 3341 * fall back to a single segment length write. 3342 * 3343 * If we didn't fallback here, we could livelock 3344 * because not all segments in the iov can be copied at 3345 * once without a pagefault. 3346 */ 3347 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3348 iov_iter_single_seg_count(i)); 3349 goto again; 3350 } 3351 pos += copied; 3352 written += copied; 3353 3354 balance_dirty_pages_ratelimited(mapping); 3355 } while (iov_iter_count(i)); 3356 3357 return written ? written : status; 3358 } 3359 EXPORT_SYMBOL(generic_perform_write); 3360 3361 /** 3362 * __generic_file_write_iter - write data to a file 3363 * @iocb: IO state structure (file, offset, etc.) 3364 * @from: iov_iter with data to write 3365 * 3366 * This function does all the work needed for actually writing data to a 3367 * file. It does all basic checks, removes SUID from the file, updates 3368 * modification times and calls proper subroutines depending on whether we 3369 * do direct IO or a standard buffered write. 3370 * 3371 * It expects i_mutex to be grabbed unless we work on a block device or similar 3372 * object which does not need locking at all. 3373 * 3374 * This function does *not* take care of syncing data in case of O_SYNC write. 3375 * A caller has to handle it. This is mainly due to the fact that we want to 3376 * avoid syncing under i_mutex. 3377 * 3378 * Return: 3379 * * number of bytes written, even for truncated writes 3380 * * negative error code if no data has been written at all 3381 */ 3382 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3383 { 3384 struct file *file = iocb->ki_filp; 3385 struct address_space * mapping = file->f_mapping; 3386 struct inode *inode = mapping->host; 3387 ssize_t written = 0; 3388 ssize_t err; 3389 ssize_t status; 3390 3391 /* We can write back this queue in page reclaim */ 3392 current->backing_dev_info = inode_to_bdi(inode); 3393 err = file_remove_privs(file); 3394 if (err) 3395 goto out; 3396 3397 err = file_update_time(file); 3398 if (err) 3399 goto out; 3400 3401 if (iocb->ki_flags & IOCB_DIRECT) { 3402 loff_t pos, endbyte; 3403 3404 written = generic_file_direct_write(iocb, from); 3405 /* 3406 * If the write stopped short of completing, fall back to 3407 * buffered writes. Some filesystems do this for writes to 3408 * holes, for example. For DAX files, a buffered write will 3409 * not succeed (even if it did, DAX does not handle dirty 3410 * page-cache pages correctly). 3411 */ 3412 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3413 goto out; 3414 3415 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3416 /* 3417 * If generic_perform_write() returned a synchronous error 3418 * then we want to return the number of bytes which were 3419 * direct-written, or the error code if that was zero. Note 3420 * that this differs from normal direct-io semantics, which 3421 * will return -EFOO even if some bytes were written. 3422 */ 3423 if (unlikely(status < 0)) { 3424 err = status; 3425 goto out; 3426 } 3427 /* 3428 * We need to ensure that the page cache pages are written to 3429 * disk and invalidated to preserve the expected O_DIRECT 3430 * semantics. 3431 */ 3432 endbyte = pos + status - 1; 3433 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3434 if (err == 0) { 3435 iocb->ki_pos = endbyte + 1; 3436 written += status; 3437 invalidate_mapping_pages(mapping, 3438 pos >> PAGE_SHIFT, 3439 endbyte >> PAGE_SHIFT); 3440 } else { 3441 /* 3442 * We don't know how much we wrote, so just return 3443 * the number of bytes which were direct-written 3444 */ 3445 } 3446 } else { 3447 written = generic_perform_write(file, from, iocb->ki_pos); 3448 if (likely(written > 0)) 3449 iocb->ki_pos += written; 3450 } 3451 out: 3452 current->backing_dev_info = NULL; 3453 return written ? written : err; 3454 } 3455 EXPORT_SYMBOL(__generic_file_write_iter); 3456 3457 /** 3458 * generic_file_write_iter - write data to a file 3459 * @iocb: IO state structure 3460 * @from: iov_iter with data to write 3461 * 3462 * This is a wrapper around __generic_file_write_iter() to be used by most 3463 * filesystems. It takes care of syncing the file in case of O_SYNC file 3464 * and acquires i_mutex as needed. 3465 * Return: 3466 * * negative error code if no data has been written at all of 3467 * vfs_fsync_range() failed for a synchronous write 3468 * * number of bytes written, even for truncated writes 3469 */ 3470 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3471 { 3472 struct file *file = iocb->ki_filp; 3473 struct inode *inode = file->f_mapping->host; 3474 ssize_t ret; 3475 3476 inode_lock(inode); 3477 ret = generic_write_checks(iocb, from); 3478 if (ret > 0) 3479 ret = __generic_file_write_iter(iocb, from); 3480 inode_unlock(inode); 3481 3482 if (ret > 0) 3483 ret = generic_write_sync(iocb, ret); 3484 return ret; 3485 } 3486 EXPORT_SYMBOL(generic_file_write_iter); 3487 3488 /** 3489 * try_to_release_page() - release old fs-specific metadata on a page 3490 * 3491 * @page: the page which the kernel is trying to free 3492 * @gfp_mask: memory allocation flags (and I/O mode) 3493 * 3494 * The address_space is to try to release any data against the page 3495 * (presumably at page->private). 3496 * 3497 * This may also be called if PG_fscache is set on a page, indicating that the 3498 * page is known to the local caching routines. 3499 * 3500 * The @gfp_mask argument specifies whether I/O may be performed to release 3501 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3502 * 3503 * Return: %1 if the release was successful, otherwise return zero. 3504 */ 3505 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3506 { 3507 struct address_space * const mapping = page->mapping; 3508 3509 BUG_ON(!PageLocked(page)); 3510 if (PageWriteback(page)) 3511 return 0; 3512 3513 if (mapping && mapping->a_ops->releasepage) 3514 return mapping->a_ops->releasepage(page, gfp_mask); 3515 return try_to_free_buffers(page); 3516 } 3517 3518 EXPORT_SYMBOL(try_to_release_page); 3519