xref: /openbmc/linux/mm/filemap.c (revision 06d352f2)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 
155 static int sync_page(void *word)
156 {
157 	struct address_space *mapping;
158 	struct page *page;
159 
160 	page = container_of((unsigned long *)word, struct page, flags);
161 
162 	/*
163 	 * page_mapping() is being called without PG_locked held.
164 	 * Some knowledge of the state and use of the page is used to
165 	 * reduce the requirements down to a memory barrier.
166 	 * The danger here is of a stale page_mapping() return value
167 	 * indicating a struct address_space different from the one it's
168 	 * associated with when it is associated with one.
169 	 * After smp_mb(), it's either the correct page_mapping() for
170 	 * the page, or an old page_mapping() and the page's own
171 	 * page_mapping() has gone NULL.
172 	 * The ->sync_page() address_space operation must tolerate
173 	 * page_mapping() going NULL. By an amazing coincidence,
174 	 * this comes about because none of the users of the page
175 	 * in the ->sync_page() methods make essential use of the
176 	 * page_mapping(), merely passing the page down to the backing
177 	 * device's unplug functions when it's non-NULL, which in turn
178 	 * ignore it for all cases but swap, where only page_private(page) is
179 	 * of interest. When page_mapping() does go NULL, the entire
180 	 * call stack gracefully ignores the page and returns.
181 	 * -- wli
182 	 */
183 	smp_mb();
184 	mapping = page_mapping(page);
185 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 		mapping->a_ops->sync_page(page);
187 	io_schedule();
188 	return 0;
189 }
190 
191 static int sync_page_killable(void *word)
192 {
193 	sync_page(word);
194 	return fatal_signal_pending(current) ? -EINTR : 0;
195 }
196 
197 /**
198  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199  * @mapping:	address space structure to write
200  * @start:	offset in bytes where the range starts
201  * @end:	offset in bytes where the range ends (inclusive)
202  * @sync_mode:	enable synchronous operation
203  *
204  * Start writeback against all of a mapping's dirty pages that lie
205  * within the byte offsets <start, end> inclusive.
206  *
207  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208  * opposed to a regular memory cleansing writeback.  The difference between
209  * these two operations is that if a dirty page/buffer is encountered, it must
210  * be waited upon, and not just skipped over.
211  */
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 				loff_t end, int sync_mode)
214 {
215 	int ret;
216 	struct writeback_control wbc = {
217 		.sync_mode = sync_mode,
218 		.nr_to_write = LONG_MAX,
219 		.range_start = start,
220 		.range_end = end,
221 	};
222 
223 	if (!mapping_cap_writeback_dirty(mapping))
224 		return 0;
225 
226 	ret = do_writepages(mapping, &wbc);
227 	return ret;
228 }
229 
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 	int sync_mode)
232 {
233 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234 }
235 
236 int filemap_fdatawrite(struct address_space *mapping)
237 {
238 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239 }
240 EXPORT_SYMBOL(filemap_fdatawrite);
241 
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 				loff_t end)
244 {
245 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
248 
249 /**
250  * filemap_flush - mostly a non-blocking flush
251  * @mapping:	target address_space
252  *
253  * This is a mostly non-blocking flush.  Not suitable for data-integrity
254  * purposes - I/O may not be started against all dirty pages.
255  */
256 int filemap_flush(struct address_space *mapping)
257 {
258 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259 }
260 EXPORT_SYMBOL(filemap_flush);
261 
262 /**
263  * filemap_fdatawait_range - wait for writeback to complete
264  * @mapping:		address space structure to wait for
265  * @start_byte:		offset in bytes where the range starts
266  * @end_byte:		offset in bytes where the range ends (inclusive)
267  *
268  * Walk the list of under-writeback pages of the given address space
269  * in the given range and wait for all of them.
270  */
271 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 			    loff_t end_byte)
273 {
274 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276 	struct pagevec pvec;
277 	int nr_pages;
278 	int ret = 0;
279 
280 	if (end_byte < start_byte)
281 		return 0;
282 
283 	pagevec_init(&pvec, 0);
284 	while ((index <= end) &&
285 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 			PAGECACHE_TAG_WRITEBACK,
287 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 		unsigned i;
289 
290 		for (i = 0; i < nr_pages; i++) {
291 			struct page *page = pvec.pages[i];
292 
293 			/* until radix tree lookup accepts end_index */
294 			if (page->index > end)
295 				continue;
296 
297 			wait_on_page_writeback(page);
298 			if (PageError(page))
299 				ret = -EIO;
300 		}
301 		pagevec_release(&pvec);
302 		cond_resched();
303 	}
304 
305 	/* Check for outstanding write errors */
306 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 		ret = -ENOSPC;
308 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 		ret = -EIO;
310 
311 	return ret;
312 }
313 EXPORT_SYMBOL(filemap_fdatawait_range);
314 
315 /**
316  * filemap_fdatawait - wait for all under-writeback pages to complete
317  * @mapping: address space structure to wait for
318  *
319  * Walk the list of under-writeback pages of the given address space
320  * and wait for all of them.
321  */
322 int filemap_fdatawait(struct address_space *mapping)
323 {
324 	loff_t i_size = i_size_read(mapping->host);
325 
326 	if (i_size == 0)
327 		return 0;
328 
329 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
330 }
331 EXPORT_SYMBOL(filemap_fdatawait);
332 
333 int filemap_write_and_wait(struct address_space *mapping)
334 {
335 	int err = 0;
336 
337 	if (mapping->nrpages) {
338 		err = filemap_fdatawrite(mapping);
339 		/*
340 		 * Even if the above returned error, the pages may be
341 		 * written partially (e.g. -ENOSPC), so we wait for it.
342 		 * But the -EIO is special case, it may indicate the worst
343 		 * thing (e.g. bug) happened, so we avoid waiting for it.
344 		 */
345 		if (err != -EIO) {
346 			int err2 = filemap_fdatawait(mapping);
347 			if (!err)
348 				err = err2;
349 		}
350 	}
351 	return err;
352 }
353 EXPORT_SYMBOL(filemap_write_and_wait);
354 
355 /**
356  * filemap_write_and_wait_range - write out & wait on a file range
357  * @mapping:	the address_space for the pages
358  * @lstart:	offset in bytes where the range starts
359  * @lend:	offset in bytes where the range ends (inclusive)
360  *
361  * Write out and wait upon file offsets lstart->lend, inclusive.
362  *
363  * Note that `lend' is inclusive (describes the last byte to be written) so
364  * that this function can be used to write to the very end-of-file (end = -1).
365  */
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 				 loff_t lstart, loff_t lend)
368 {
369 	int err = 0;
370 
371 	if (mapping->nrpages) {
372 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 						 WB_SYNC_ALL);
374 		/* See comment of filemap_write_and_wait() */
375 		if (err != -EIO) {
376 			int err2 = filemap_fdatawait_range(mapping,
377 						lstart, lend);
378 			if (!err)
379 				err = err2;
380 		}
381 	}
382 	return err;
383 }
384 EXPORT_SYMBOL(filemap_write_and_wait_range);
385 
386 /**
387  * add_to_page_cache_locked - add a locked page to the pagecache
388  * @page:	page to add
389  * @mapping:	the page's address_space
390  * @offset:	page index
391  * @gfp_mask:	page allocation mode
392  *
393  * This function is used to add a page to the pagecache. It must be locked.
394  * This function does not add the page to the LRU.  The caller must do that.
395  */
396 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397 		pgoff_t offset, gfp_t gfp_mask)
398 {
399 	int error;
400 
401 	VM_BUG_ON(!PageLocked(page));
402 
403 	error = mem_cgroup_cache_charge(page, current->mm,
404 					gfp_mask & GFP_RECLAIM_MASK);
405 	if (error)
406 		goto out;
407 
408 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409 	if (error == 0) {
410 		page_cache_get(page);
411 		page->mapping = mapping;
412 		page->index = offset;
413 
414 		spin_lock_irq(&mapping->tree_lock);
415 		error = radix_tree_insert(&mapping->page_tree, offset, page);
416 		if (likely(!error)) {
417 			mapping->nrpages++;
418 			__inc_zone_page_state(page, NR_FILE_PAGES);
419 			if (PageSwapBacked(page))
420 				__inc_zone_page_state(page, NR_SHMEM);
421 			spin_unlock_irq(&mapping->tree_lock);
422 		} else {
423 			page->mapping = NULL;
424 			spin_unlock_irq(&mapping->tree_lock);
425 			mem_cgroup_uncharge_cache_page(page);
426 			page_cache_release(page);
427 		}
428 		radix_tree_preload_end();
429 	} else
430 		mem_cgroup_uncharge_cache_page(page);
431 out:
432 	return error;
433 }
434 EXPORT_SYMBOL(add_to_page_cache_locked);
435 
436 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437 				pgoff_t offset, gfp_t gfp_mask)
438 {
439 	int ret;
440 
441 	/*
442 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
445 	 * (called in add_to_page_cache) needs to know where they're going too.
446 	 */
447 	if (mapping_cap_swap_backed(mapping))
448 		SetPageSwapBacked(page);
449 
450 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 	if (ret == 0) {
452 		if (page_is_file_cache(page))
453 			lru_cache_add_file(page);
454 		else
455 			lru_cache_add_active_anon(page);
456 	}
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
460 
461 #ifdef CONFIG_NUMA
462 struct page *__page_cache_alloc(gfp_t gfp)
463 {
464 	if (cpuset_do_page_mem_spread()) {
465 		int n = cpuset_mem_spread_node();
466 		return alloc_pages_exact_node(n, gfp, 0);
467 	}
468 	return alloc_pages(gfp, 0);
469 }
470 EXPORT_SYMBOL(__page_cache_alloc);
471 #endif
472 
473 static int __sleep_on_page_lock(void *word)
474 {
475 	io_schedule();
476 	return 0;
477 }
478 
479 /*
480  * In order to wait for pages to become available there must be
481  * waitqueues associated with pages. By using a hash table of
482  * waitqueues where the bucket discipline is to maintain all
483  * waiters on the same queue and wake all when any of the pages
484  * become available, and for the woken contexts to check to be
485  * sure the appropriate page became available, this saves space
486  * at a cost of "thundering herd" phenomena during rare hash
487  * collisions.
488  */
489 static wait_queue_head_t *page_waitqueue(struct page *page)
490 {
491 	const struct zone *zone = page_zone(page);
492 
493 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
494 }
495 
496 static inline void wake_up_page(struct page *page, int bit)
497 {
498 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
499 }
500 
501 void wait_on_page_bit(struct page *page, int bit_nr)
502 {
503 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
504 
505 	if (test_bit(bit_nr, &page->flags))
506 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
507 							TASK_UNINTERRUPTIBLE);
508 }
509 EXPORT_SYMBOL(wait_on_page_bit);
510 
511 /**
512  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
513  * @page: Page defining the wait queue of interest
514  * @waiter: Waiter to add to the queue
515  *
516  * Add an arbitrary @waiter to the wait queue for the nominated @page.
517  */
518 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
519 {
520 	wait_queue_head_t *q = page_waitqueue(page);
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&q->lock, flags);
524 	__add_wait_queue(q, waiter);
525 	spin_unlock_irqrestore(&q->lock, flags);
526 }
527 EXPORT_SYMBOL_GPL(add_page_wait_queue);
528 
529 /**
530  * unlock_page - unlock a locked page
531  * @page: the page
532  *
533  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
534  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
535  * mechananism between PageLocked pages and PageWriteback pages is shared.
536  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
537  *
538  * The mb is necessary to enforce ordering between the clear_bit and the read
539  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
540  */
541 void unlock_page(struct page *page)
542 {
543 	VM_BUG_ON(!PageLocked(page));
544 	clear_bit_unlock(PG_locked, &page->flags);
545 	smp_mb__after_clear_bit();
546 	wake_up_page(page, PG_locked);
547 }
548 EXPORT_SYMBOL(unlock_page);
549 
550 /**
551  * end_page_writeback - end writeback against a page
552  * @page: the page
553  */
554 void end_page_writeback(struct page *page)
555 {
556 	if (TestClearPageReclaim(page))
557 		rotate_reclaimable_page(page);
558 
559 	if (!test_clear_page_writeback(page))
560 		BUG();
561 
562 	smp_mb__after_clear_bit();
563 	wake_up_page(page, PG_writeback);
564 }
565 EXPORT_SYMBOL(end_page_writeback);
566 
567 /**
568  * __lock_page - get a lock on the page, assuming we need to sleep to get it
569  * @page: the page to lock
570  *
571  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
572  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
573  * chances are that on the second loop, the block layer's plug list is empty,
574  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
575  */
576 void __lock_page(struct page *page)
577 {
578 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
579 
580 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
581 							TASK_UNINTERRUPTIBLE);
582 }
583 EXPORT_SYMBOL(__lock_page);
584 
585 int __lock_page_killable(struct page *page)
586 {
587 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588 
589 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
590 					sync_page_killable, TASK_KILLABLE);
591 }
592 EXPORT_SYMBOL_GPL(__lock_page_killable);
593 
594 /**
595  * __lock_page_nosync - get a lock on the page, without calling sync_page()
596  * @page: the page to lock
597  *
598  * Variant of lock_page that does not require the caller to hold a reference
599  * on the page's mapping.
600  */
601 void __lock_page_nosync(struct page *page)
602 {
603 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
604 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
605 							TASK_UNINTERRUPTIBLE);
606 }
607 
608 /**
609  * find_get_page - find and get a page reference
610  * @mapping: the address_space to search
611  * @offset: the page index
612  *
613  * Is there a pagecache struct page at the given (mapping, offset) tuple?
614  * If yes, increment its refcount and return it; if no, return NULL.
615  */
616 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
617 {
618 	void **pagep;
619 	struct page *page;
620 
621 	rcu_read_lock();
622 repeat:
623 	page = NULL;
624 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
625 	if (pagep) {
626 		page = radix_tree_deref_slot(pagep);
627 		if (unlikely(!page || page == RADIX_TREE_RETRY))
628 			goto repeat;
629 
630 		if (!page_cache_get_speculative(page))
631 			goto repeat;
632 
633 		/*
634 		 * Has the page moved?
635 		 * This is part of the lockless pagecache protocol. See
636 		 * include/linux/pagemap.h for details.
637 		 */
638 		if (unlikely(page != *pagep)) {
639 			page_cache_release(page);
640 			goto repeat;
641 		}
642 	}
643 	rcu_read_unlock();
644 
645 	return page;
646 }
647 EXPORT_SYMBOL(find_get_page);
648 
649 /**
650  * find_lock_page - locate, pin and lock a pagecache page
651  * @mapping: the address_space to search
652  * @offset: the page index
653  *
654  * Locates the desired pagecache page, locks it, increments its reference
655  * count and returns its address.
656  *
657  * Returns zero if the page was not present. find_lock_page() may sleep.
658  */
659 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
660 {
661 	struct page *page;
662 
663 repeat:
664 	page = find_get_page(mapping, offset);
665 	if (page) {
666 		lock_page(page);
667 		/* Has the page been truncated? */
668 		if (unlikely(page->mapping != mapping)) {
669 			unlock_page(page);
670 			page_cache_release(page);
671 			goto repeat;
672 		}
673 		VM_BUG_ON(page->index != offset);
674 	}
675 	return page;
676 }
677 EXPORT_SYMBOL(find_lock_page);
678 
679 /**
680  * find_or_create_page - locate or add a pagecache page
681  * @mapping: the page's address_space
682  * @index: the page's index into the mapping
683  * @gfp_mask: page allocation mode
684  *
685  * Locates a page in the pagecache.  If the page is not present, a new page
686  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
687  * LRU list.  The returned page is locked and has its reference count
688  * incremented.
689  *
690  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691  * allocation!
692  *
693  * find_or_create_page() returns the desired page's address, or zero on
694  * memory exhaustion.
695  */
696 struct page *find_or_create_page(struct address_space *mapping,
697 		pgoff_t index, gfp_t gfp_mask)
698 {
699 	struct page *page;
700 	int err;
701 repeat:
702 	page = find_lock_page(mapping, index);
703 	if (!page) {
704 		page = __page_cache_alloc(gfp_mask);
705 		if (!page)
706 			return NULL;
707 		/*
708 		 * We want a regular kernel memory (not highmem or DMA etc)
709 		 * allocation for the radix tree nodes, but we need to honour
710 		 * the context-specific requirements the caller has asked for.
711 		 * GFP_RECLAIM_MASK collects those requirements.
712 		 */
713 		err = add_to_page_cache_lru(page, mapping, index,
714 			(gfp_mask & GFP_RECLAIM_MASK));
715 		if (unlikely(err)) {
716 			page_cache_release(page);
717 			page = NULL;
718 			if (err == -EEXIST)
719 				goto repeat;
720 		}
721 	}
722 	return page;
723 }
724 EXPORT_SYMBOL(find_or_create_page);
725 
726 /**
727  * find_get_pages - gang pagecache lookup
728  * @mapping:	The address_space to search
729  * @start:	The starting page index
730  * @nr_pages:	The maximum number of pages
731  * @pages:	Where the resulting pages are placed
732  *
733  * find_get_pages() will search for and return a group of up to
734  * @nr_pages pages in the mapping.  The pages are placed at @pages.
735  * find_get_pages() takes a reference against the returned pages.
736  *
737  * The search returns a group of mapping-contiguous pages with ascending
738  * indexes.  There may be holes in the indices due to not-present pages.
739  *
740  * find_get_pages() returns the number of pages which were found.
741  */
742 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
743 			    unsigned int nr_pages, struct page **pages)
744 {
745 	unsigned int i;
746 	unsigned int ret;
747 	unsigned int nr_found;
748 
749 	rcu_read_lock();
750 restart:
751 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
752 				(void ***)pages, start, nr_pages);
753 	ret = 0;
754 	for (i = 0; i < nr_found; i++) {
755 		struct page *page;
756 repeat:
757 		page = radix_tree_deref_slot((void **)pages[i]);
758 		if (unlikely(!page))
759 			continue;
760 		/*
761 		 * this can only trigger if nr_found == 1, making livelock
762 		 * a non issue.
763 		 */
764 		if (unlikely(page == RADIX_TREE_RETRY))
765 			goto restart;
766 
767 		if (!page_cache_get_speculative(page))
768 			goto repeat;
769 
770 		/* Has the page moved? */
771 		if (unlikely(page != *((void **)pages[i]))) {
772 			page_cache_release(page);
773 			goto repeat;
774 		}
775 
776 		pages[ret] = page;
777 		ret++;
778 	}
779 	rcu_read_unlock();
780 	return ret;
781 }
782 
783 /**
784  * find_get_pages_contig - gang contiguous pagecache lookup
785  * @mapping:	The address_space to search
786  * @index:	The starting page index
787  * @nr_pages:	The maximum number of pages
788  * @pages:	Where the resulting pages are placed
789  *
790  * find_get_pages_contig() works exactly like find_get_pages(), except
791  * that the returned number of pages are guaranteed to be contiguous.
792  *
793  * find_get_pages_contig() returns the number of pages which were found.
794  */
795 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
796 			       unsigned int nr_pages, struct page **pages)
797 {
798 	unsigned int i;
799 	unsigned int ret;
800 	unsigned int nr_found;
801 
802 	rcu_read_lock();
803 restart:
804 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
805 				(void ***)pages, index, nr_pages);
806 	ret = 0;
807 	for (i = 0; i < nr_found; i++) {
808 		struct page *page;
809 repeat:
810 		page = radix_tree_deref_slot((void **)pages[i]);
811 		if (unlikely(!page))
812 			continue;
813 		/*
814 		 * this can only trigger if nr_found == 1, making livelock
815 		 * a non issue.
816 		 */
817 		if (unlikely(page == RADIX_TREE_RETRY))
818 			goto restart;
819 
820 		if (page->mapping == NULL || page->index != index)
821 			break;
822 
823 		if (!page_cache_get_speculative(page))
824 			goto repeat;
825 
826 		/* Has the page moved? */
827 		if (unlikely(page != *((void **)pages[i]))) {
828 			page_cache_release(page);
829 			goto repeat;
830 		}
831 
832 		pages[ret] = page;
833 		ret++;
834 		index++;
835 	}
836 	rcu_read_unlock();
837 	return ret;
838 }
839 EXPORT_SYMBOL(find_get_pages_contig);
840 
841 /**
842  * find_get_pages_tag - find and return pages that match @tag
843  * @mapping:	the address_space to search
844  * @index:	the starting page index
845  * @tag:	the tag index
846  * @nr_pages:	the maximum number of pages
847  * @pages:	where the resulting pages are placed
848  *
849  * Like find_get_pages, except we only return pages which are tagged with
850  * @tag.   We update @index to index the next page for the traversal.
851  */
852 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
853 			int tag, unsigned int nr_pages, struct page **pages)
854 {
855 	unsigned int i;
856 	unsigned int ret;
857 	unsigned int nr_found;
858 
859 	rcu_read_lock();
860 restart:
861 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
862 				(void ***)pages, *index, nr_pages, tag);
863 	ret = 0;
864 	for (i = 0; i < nr_found; i++) {
865 		struct page *page;
866 repeat:
867 		page = radix_tree_deref_slot((void **)pages[i]);
868 		if (unlikely(!page))
869 			continue;
870 		/*
871 		 * this can only trigger if nr_found == 1, making livelock
872 		 * a non issue.
873 		 */
874 		if (unlikely(page == RADIX_TREE_RETRY))
875 			goto restart;
876 
877 		if (!page_cache_get_speculative(page))
878 			goto repeat;
879 
880 		/* Has the page moved? */
881 		if (unlikely(page != *((void **)pages[i]))) {
882 			page_cache_release(page);
883 			goto repeat;
884 		}
885 
886 		pages[ret] = page;
887 		ret++;
888 	}
889 	rcu_read_unlock();
890 
891 	if (ret)
892 		*index = pages[ret - 1]->index + 1;
893 
894 	return ret;
895 }
896 EXPORT_SYMBOL(find_get_pages_tag);
897 
898 /**
899  * grab_cache_page_nowait - returns locked page at given index in given cache
900  * @mapping: target address_space
901  * @index: the page index
902  *
903  * Same as grab_cache_page(), but do not wait if the page is unavailable.
904  * This is intended for speculative data generators, where the data can
905  * be regenerated if the page couldn't be grabbed.  This routine should
906  * be safe to call while holding the lock for another page.
907  *
908  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
909  * and deadlock against the caller's locked page.
910  */
911 struct page *
912 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
913 {
914 	struct page *page = find_get_page(mapping, index);
915 
916 	if (page) {
917 		if (trylock_page(page))
918 			return page;
919 		page_cache_release(page);
920 		return NULL;
921 	}
922 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
923 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
924 		page_cache_release(page);
925 		page = NULL;
926 	}
927 	return page;
928 }
929 EXPORT_SYMBOL(grab_cache_page_nowait);
930 
931 /*
932  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
933  * a _large_ part of the i/o request. Imagine the worst scenario:
934  *
935  *      ---R__________________________________________B__________
936  *         ^ reading here                             ^ bad block(assume 4k)
937  *
938  * read(R) => miss => readahead(R...B) => media error => frustrating retries
939  * => failing the whole request => read(R) => read(R+1) =>
940  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
941  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
942  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
943  *
944  * It is going insane. Fix it by quickly scaling down the readahead size.
945  */
946 static void shrink_readahead_size_eio(struct file *filp,
947 					struct file_ra_state *ra)
948 {
949 	ra->ra_pages /= 4;
950 }
951 
952 /**
953  * do_generic_file_read - generic file read routine
954  * @filp:	the file to read
955  * @ppos:	current file position
956  * @desc:	read_descriptor
957  * @actor:	read method
958  *
959  * This is a generic file read routine, and uses the
960  * mapping->a_ops->readpage() function for the actual low-level stuff.
961  *
962  * This is really ugly. But the goto's actually try to clarify some
963  * of the logic when it comes to error handling etc.
964  */
965 static void do_generic_file_read(struct file *filp, loff_t *ppos,
966 		read_descriptor_t *desc, read_actor_t actor)
967 {
968 	struct address_space *mapping = filp->f_mapping;
969 	struct inode *inode = mapping->host;
970 	struct file_ra_state *ra = &filp->f_ra;
971 	pgoff_t index;
972 	pgoff_t last_index;
973 	pgoff_t prev_index;
974 	unsigned long offset;      /* offset into pagecache page */
975 	unsigned int prev_offset;
976 	int error;
977 
978 	index = *ppos >> PAGE_CACHE_SHIFT;
979 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
980 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
981 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
982 	offset = *ppos & ~PAGE_CACHE_MASK;
983 
984 	for (;;) {
985 		struct page *page;
986 		pgoff_t end_index;
987 		loff_t isize;
988 		unsigned long nr, ret;
989 
990 		cond_resched();
991 find_page:
992 		page = find_get_page(mapping, index);
993 		if (!page) {
994 			page_cache_sync_readahead(mapping,
995 					ra, filp,
996 					index, last_index - index);
997 			page = find_get_page(mapping, index);
998 			if (unlikely(page == NULL))
999 				goto no_cached_page;
1000 		}
1001 		if (PageReadahead(page)) {
1002 			page_cache_async_readahead(mapping,
1003 					ra, filp, page,
1004 					index, last_index - index);
1005 		}
1006 		if (!PageUptodate(page)) {
1007 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1008 					!mapping->a_ops->is_partially_uptodate)
1009 				goto page_not_up_to_date;
1010 			if (!trylock_page(page))
1011 				goto page_not_up_to_date;
1012 			if (!mapping->a_ops->is_partially_uptodate(page,
1013 								desc, offset))
1014 				goto page_not_up_to_date_locked;
1015 			unlock_page(page);
1016 		}
1017 page_ok:
1018 		/*
1019 		 * i_size must be checked after we know the page is Uptodate.
1020 		 *
1021 		 * Checking i_size after the check allows us to calculate
1022 		 * the correct value for "nr", which means the zero-filled
1023 		 * part of the page is not copied back to userspace (unless
1024 		 * another truncate extends the file - this is desired though).
1025 		 */
1026 
1027 		isize = i_size_read(inode);
1028 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1029 		if (unlikely(!isize || index > end_index)) {
1030 			page_cache_release(page);
1031 			goto out;
1032 		}
1033 
1034 		/* nr is the maximum number of bytes to copy from this page */
1035 		nr = PAGE_CACHE_SIZE;
1036 		if (index == end_index) {
1037 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1038 			if (nr <= offset) {
1039 				page_cache_release(page);
1040 				goto out;
1041 			}
1042 		}
1043 		nr = nr - offset;
1044 
1045 		/* If users can be writing to this page using arbitrary
1046 		 * virtual addresses, take care about potential aliasing
1047 		 * before reading the page on the kernel side.
1048 		 */
1049 		if (mapping_writably_mapped(mapping))
1050 			flush_dcache_page(page);
1051 
1052 		/*
1053 		 * When a sequential read accesses a page several times,
1054 		 * only mark it as accessed the first time.
1055 		 */
1056 		if (prev_index != index || offset != prev_offset)
1057 			mark_page_accessed(page);
1058 		prev_index = index;
1059 
1060 		/*
1061 		 * Ok, we have the page, and it's up-to-date, so
1062 		 * now we can copy it to user space...
1063 		 *
1064 		 * The actor routine returns how many bytes were actually used..
1065 		 * NOTE! This may not be the same as how much of a user buffer
1066 		 * we filled up (we may be padding etc), so we can only update
1067 		 * "pos" here (the actor routine has to update the user buffer
1068 		 * pointers and the remaining count).
1069 		 */
1070 		ret = actor(desc, page, offset, nr);
1071 		offset += ret;
1072 		index += offset >> PAGE_CACHE_SHIFT;
1073 		offset &= ~PAGE_CACHE_MASK;
1074 		prev_offset = offset;
1075 
1076 		page_cache_release(page);
1077 		if (ret == nr && desc->count)
1078 			continue;
1079 		goto out;
1080 
1081 page_not_up_to_date:
1082 		/* Get exclusive access to the page ... */
1083 		error = lock_page_killable(page);
1084 		if (unlikely(error))
1085 			goto readpage_error;
1086 
1087 page_not_up_to_date_locked:
1088 		/* Did it get truncated before we got the lock? */
1089 		if (!page->mapping) {
1090 			unlock_page(page);
1091 			page_cache_release(page);
1092 			continue;
1093 		}
1094 
1095 		/* Did somebody else fill it already? */
1096 		if (PageUptodate(page)) {
1097 			unlock_page(page);
1098 			goto page_ok;
1099 		}
1100 
1101 readpage:
1102 		/* Start the actual read. The read will unlock the page. */
1103 		error = mapping->a_ops->readpage(filp, page);
1104 
1105 		if (unlikely(error)) {
1106 			if (error == AOP_TRUNCATED_PAGE) {
1107 				page_cache_release(page);
1108 				goto find_page;
1109 			}
1110 			goto readpage_error;
1111 		}
1112 
1113 		if (!PageUptodate(page)) {
1114 			error = lock_page_killable(page);
1115 			if (unlikely(error))
1116 				goto readpage_error;
1117 			if (!PageUptodate(page)) {
1118 				if (page->mapping == NULL) {
1119 					/*
1120 					 * invalidate_inode_pages got it
1121 					 */
1122 					unlock_page(page);
1123 					page_cache_release(page);
1124 					goto find_page;
1125 				}
1126 				unlock_page(page);
1127 				shrink_readahead_size_eio(filp, ra);
1128 				error = -EIO;
1129 				goto readpage_error;
1130 			}
1131 			unlock_page(page);
1132 		}
1133 
1134 		goto page_ok;
1135 
1136 readpage_error:
1137 		/* UHHUH! A synchronous read error occurred. Report it */
1138 		desc->error = error;
1139 		page_cache_release(page);
1140 		goto out;
1141 
1142 no_cached_page:
1143 		/*
1144 		 * Ok, it wasn't cached, so we need to create a new
1145 		 * page..
1146 		 */
1147 		page = page_cache_alloc_cold(mapping);
1148 		if (!page) {
1149 			desc->error = -ENOMEM;
1150 			goto out;
1151 		}
1152 		error = add_to_page_cache_lru(page, mapping,
1153 						index, GFP_KERNEL);
1154 		if (error) {
1155 			page_cache_release(page);
1156 			if (error == -EEXIST)
1157 				goto find_page;
1158 			desc->error = error;
1159 			goto out;
1160 		}
1161 		goto readpage;
1162 	}
1163 
1164 out:
1165 	ra->prev_pos = prev_index;
1166 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1167 	ra->prev_pos |= prev_offset;
1168 
1169 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1170 	file_accessed(filp);
1171 }
1172 
1173 int file_read_actor(read_descriptor_t *desc, struct page *page,
1174 			unsigned long offset, unsigned long size)
1175 {
1176 	char *kaddr;
1177 	unsigned long left, count = desc->count;
1178 
1179 	if (size > count)
1180 		size = count;
1181 
1182 	/*
1183 	 * Faults on the destination of a read are common, so do it before
1184 	 * taking the kmap.
1185 	 */
1186 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1187 		kaddr = kmap_atomic(page, KM_USER0);
1188 		left = __copy_to_user_inatomic(desc->arg.buf,
1189 						kaddr + offset, size);
1190 		kunmap_atomic(kaddr, KM_USER0);
1191 		if (left == 0)
1192 			goto success;
1193 	}
1194 
1195 	/* Do it the slow way */
1196 	kaddr = kmap(page);
1197 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1198 	kunmap(page);
1199 
1200 	if (left) {
1201 		size -= left;
1202 		desc->error = -EFAULT;
1203 	}
1204 success:
1205 	desc->count = count - size;
1206 	desc->written += size;
1207 	desc->arg.buf += size;
1208 	return size;
1209 }
1210 
1211 /*
1212  * Performs necessary checks before doing a write
1213  * @iov:	io vector request
1214  * @nr_segs:	number of segments in the iovec
1215  * @count:	number of bytes to write
1216  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1217  *
1218  * Adjust number of segments and amount of bytes to write (nr_segs should be
1219  * properly initialized first). Returns appropriate error code that caller
1220  * should return or zero in case that write should be allowed.
1221  */
1222 int generic_segment_checks(const struct iovec *iov,
1223 			unsigned long *nr_segs, size_t *count, int access_flags)
1224 {
1225 	unsigned long   seg;
1226 	size_t cnt = 0;
1227 	for (seg = 0; seg < *nr_segs; seg++) {
1228 		const struct iovec *iv = &iov[seg];
1229 
1230 		/*
1231 		 * If any segment has a negative length, or the cumulative
1232 		 * length ever wraps negative then return -EINVAL.
1233 		 */
1234 		cnt += iv->iov_len;
1235 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1236 			return -EINVAL;
1237 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1238 			continue;
1239 		if (seg == 0)
1240 			return -EFAULT;
1241 		*nr_segs = seg;
1242 		cnt -= iv->iov_len;	/* This segment is no good */
1243 		break;
1244 	}
1245 	*count = cnt;
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL(generic_segment_checks);
1249 
1250 /**
1251  * generic_file_aio_read - generic filesystem read routine
1252  * @iocb:	kernel I/O control block
1253  * @iov:	io vector request
1254  * @nr_segs:	number of segments in the iovec
1255  * @pos:	current file position
1256  *
1257  * This is the "read()" routine for all filesystems
1258  * that can use the page cache directly.
1259  */
1260 ssize_t
1261 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1262 		unsigned long nr_segs, loff_t pos)
1263 {
1264 	struct file *filp = iocb->ki_filp;
1265 	ssize_t retval;
1266 	unsigned long seg;
1267 	size_t count;
1268 	loff_t *ppos = &iocb->ki_pos;
1269 
1270 	count = 0;
1271 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1272 	if (retval)
1273 		return retval;
1274 
1275 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1276 	if (filp->f_flags & O_DIRECT) {
1277 		loff_t size;
1278 		struct address_space *mapping;
1279 		struct inode *inode;
1280 
1281 		mapping = filp->f_mapping;
1282 		inode = mapping->host;
1283 		if (!count)
1284 			goto out; /* skip atime */
1285 		size = i_size_read(inode);
1286 		if (pos < size) {
1287 			retval = filemap_write_and_wait_range(mapping, pos,
1288 					pos + iov_length(iov, nr_segs) - 1);
1289 			if (!retval) {
1290 				retval = mapping->a_ops->direct_IO(READ, iocb,
1291 							iov, pos, nr_segs);
1292 			}
1293 			if (retval > 0)
1294 				*ppos = pos + retval;
1295 			if (retval) {
1296 				file_accessed(filp);
1297 				goto out;
1298 			}
1299 		}
1300 	}
1301 
1302 	for (seg = 0; seg < nr_segs; seg++) {
1303 		read_descriptor_t desc;
1304 
1305 		desc.written = 0;
1306 		desc.arg.buf = iov[seg].iov_base;
1307 		desc.count = iov[seg].iov_len;
1308 		if (desc.count == 0)
1309 			continue;
1310 		desc.error = 0;
1311 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1312 		retval += desc.written;
1313 		if (desc.error) {
1314 			retval = retval ?: desc.error;
1315 			break;
1316 		}
1317 		if (desc.count > 0)
1318 			break;
1319 	}
1320 out:
1321 	return retval;
1322 }
1323 EXPORT_SYMBOL(generic_file_aio_read);
1324 
1325 static ssize_t
1326 do_readahead(struct address_space *mapping, struct file *filp,
1327 	     pgoff_t index, unsigned long nr)
1328 {
1329 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1330 		return -EINVAL;
1331 
1332 	force_page_cache_readahead(mapping, filp, index, nr);
1333 	return 0;
1334 }
1335 
1336 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1337 {
1338 	ssize_t ret;
1339 	struct file *file;
1340 
1341 	ret = -EBADF;
1342 	file = fget(fd);
1343 	if (file) {
1344 		if (file->f_mode & FMODE_READ) {
1345 			struct address_space *mapping = file->f_mapping;
1346 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1347 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1348 			unsigned long len = end - start + 1;
1349 			ret = do_readahead(mapping, file, start, len);
1350 		}
1351 		fput(file);
1352 	}
1353 	return ret;
1354 }
1355 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1356 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1357 {
1358 	return SYSC_readahead((int) fd, offset, (size_t) count);
1359 }
1360 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1361 #endif
1362 
1363 #ifdef CONFIG_MMU
1364 /**
1365  * page_cache_read - adds requested page to the page cache if not already there
1366  * @file:	file to read
1367  * @offset:	page index
1368  *
1369  * This adds the requested page to the page cache if it isn't already there,
1370  * and schedules an I/O to read in its contents from disk.
1371  */
1372 static int page_cache_read(struct file *file, pgoff_t offset)
1373 {
1374 	struct address_space *mapping = file->f_mapping;
1375 	struct page *page;
1376 	int ret;
1377 
1378 	do {
1379 		page = page_cache_alloc_cold(mapping);
1380 		if (!page)
1381 			return -ENOMEM;
1382 
1383 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1384 		if (ret == 0)
1385 			ret = mapping->a_ops->readpage(file, page);
1386 		else if (ret == -EEXIST)
1387 			ret = 0; /* losing race to add is OK */
1388 
1389 		page_cache_release(page);
1390 
1391 	} while (ret == AOP_TRUNCATED_PAGE);
1392 
1393 	return ret;
1394 }
1395 
1396 #define MMAP_LOTSAMISS  (100)
1397 
1398 /*
1399  * Synchronous readahead happens when we don't even find
1400  * a page in the page cache at all.
1401  */
1402 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1403 				   struct file_ra_state *ra,
1404 				   struct file *file,
1405 				   pgoff_t offset)
1406 {
1407 	unsigned long ra_pages;
1408 	struct address_space *mapping = file->f_mapping;
1409 
1410 	/* If we don't want any read-ahead, don't bother */
1411 	if (VM_RandomReadHint(vma))
1412 		return;
1413 
1414 	if (VM_SequentialReadHint(vma) ||
1415 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1416 		page_cache_sync_readahead(mapping, ra, file, offset,
1417 					  ra->ra_pages);
1418 		return;
1419 	}
1420 
1421 	if (ra->mmap_miss < INT_MAX)
1422 		ra->mmap_miss++;
1423 
1424 	/*
1425 	 * Do we miss much more than hit in this file? If so,
1426 	 * stop bothering with read-ahead. It will only hurt.
1427 	 */
1428 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1429 		return;
1430 
1431 	/*
1432 	 * mmap read-around
1433 	 */
1434 	ra_pages = max_sane_readahead(ra->ra_pages);
1435 	if (ra_pages) {
1436 		ra->start = max_t(long, 0, offset - ra_pages/2);
1437 		ra->size = ra_pages;
1438 		ra->async_size = 0;
1439 		ra_submit(ra, mapping, file);
1440 	}
1441 }
1442 
1443 /*
1444  * Asynchronous readahead happens when we find the page and PG_readahead,
1445  * so we want to possibly extend the readahead further..
1446  */
1447 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1448 				    struct file_ra_state *ra,
1449 				    struct file *file,
1450 				    struct page *page,
1451 				    pgoff_t offset)
1452 {
1453 	struct address_space *mapping = file->f_mapping;
1454 
1455 	/* If we don't want any read-ahead, don't bother */
1456 	if (VM_RandomReadHint(vma))
1457 		return;
1458 	if (ra->mmap_miss > 0)
1459 		ra->mmap_miss--;
1460 	if (PageReadahead(page))
1461 		page_cache_async_readahead(mapping, ra, file,
1462 					   page, offset, ra->ra_pages);
1463 }
1464 
1465 /**
1466  * filemap_fault - read in file data for page fault handling
1467  * @vma:	vma in which the fault was taken
1468  * @vmf:	struct vm_fault containing details of the fault
1469  *
1470  * filemap_fault() is invoked via the vma operations vector for a
1471  * mapped memory region to read in file data during a page fault.
1472  *
1473  * The goto's are kind of ugly, but this streamlines the normal case of having
1474  * it in the page cache, and handles the special cases reasonably without
1475  * having a lot of duplicated code.
1476  */
1477 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1478 {
1479 	int error;
1480 	struct file *file = vma->vm_file;
1481 	struct address_space *mapping = file->f_mapping;
1482 	struct file_ra_state *ra = &file->f_ra;
1483 	struct inode *inode = mapping->host;
1484 	pgoff_t offset = vmf->pgoff;
1485 	struct page *page;
1486 	pgoff_t size;
1487 	int ret = 0;
1488 
1489 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1490 	if (offset >= size)
1491 		return VM_FAULT_SIGBUS;
1492 
1493 	/*
1494 	 * Do we have something in the page cache already?
1495 	 */
1496 	page = find_get_page(mapping, offset);
1497 	if (likely(page)) {
1498 		/*
1499 		 * We found the page, so try async readahead before
1500 		 * waiting for the lock.
1501 		 */
1502 		do_async_mmap_readahead(vma, ra, file, page, offset);
1503 		lock_page(page);
1504 
1505 		/* Did it get truncated? */
1506 		if (unlikely(page->mapping != mapping)) {
1507 			unlock_page(page);
1508 			put_page(page);
1509 			goto no_cached_page;
1510 		}
1511 	} else {
1512 		/* No page in the page cache at all */
1513 		do_sync_mmap_readahead(vma, ra, file, offset);
1514 		count_vm_event(PGMAJFAULT);
1515 		ret = VM_FAULT_MAJOR;
1516 retry_find:
1517 		page = find_lock_page(mapping, offset);
1518 		if (!page)
1519 			goto no_cached_page;
1520 	}
1521 
1522 	/*
1523 	 * We have a locked page in the page cache, now we need to check
1524 	 * that it's up-to-date. If not, it is going to be due to an error.
1525 	 */
1526 	if (unlikely(!PageUptodate(page)))
1527 		goto page_not_uptodate;
1528 
1529 	/*
1530 	 * Found the page and have a reference on it.
1531 	 * We must recheck i_size under page lock.
1532 	 */
1533 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1534 	if (unlikely(offset >= size)) {
1535 		unlock_page(page);
1536 		page_cache_release(page);
1537 		return VM_FAULT_SIGBUS;
1538 	}
1539 
1540 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1541 	vmf->page = page;
1542 	return ret | VM_FAULT_LOCKED;
1543 
1544 no_cached_page:
1545 	/*
1546 	 * We're only likely to ever get here if MADV_RANDOM is in
1547 	 * effect.
1548 	 */
1549 	error = page_cache_read(file, offset);
1550 
1551 	/*
1552 	 * The page we want has now been added to the page cache.
1553 	 * In the unlikely event that someone removed it in the
1554 	 * meantime, we'll just come back here and read it again.
1555 	 */
1556 	if (error >= 0)
1557 		goto retry_find;
1558 
1559 	/*
1560 	 * An error return from page_cache_read can result if the
1561 	 * system is low on memory, or a problem occurs while trying
1562 	 * to schedule I/O.
1563 	 */
1564 	if (error == -ENOMEM)
1565 		return VM_FAULT_OOM;
1566 	return VM_FAULT_SIGBUS;
1567 
1568 page_not_uptodate:
1569 	/*
1570 	 * Umm, take care of errors if the page isn't up-to-date.
1571 	 * Try to re-read it _once_. We do this synchronously,
1572 	 * because there really aren't any performance issues here
1573 	 * and we need to check for errors.
1574 	 */
1575 	ClearPageError(page);
1576 	error = mapping->a_ops->readpage(file, page);
1577 	if (!error) {
1578 		wait_on_page_locked(page);
1579 		if (!PageUptodate(page))
1580 			error = -EIO;
1581 	}
1582 	page_cache_release(page);
1583 
1584 	if (!error || error == AOP_TRUNCATED_PAGE)
1585 		goto retry_find;
1586 
1587 	/* Things didn't work out. Return zero to tell the mm layer so. */
1588 	shrink_readahead_size_eio(file, ra);
1589 	return VM_FAULT_SIGBUS;
1590 }
1591 EXPORT_SYMBOL(filemap_fault);
1592 
1593 const struct vm_operations_struct generic_file_vm_ops = {
1594 	.fault		= filemap_fault,
1595 };
1596 
1597 /* This is used for a general mmap of a disk file */
1598 
1599 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1600 {
1601 	struct address_space *mapping = file->f_mapping;
1602 
1603 	if (!mapping->a_ops->readpage)
1604 		return -ENOEXEC;
1605 	file_accessed(file);
1606 	vma->vm_ops = &generic_file_vm_ops;
1607 	vma->vm_flags |= VM_CAN_NONLINEAR;
1608 	return 0;
1609 }
1610 
1611 /*
1612  * This is for filesystems which do not implement ->writepage.
1613  */
1614 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1615 {
1616 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1617 		return -EINVAL;
1618 	return generic_file_mmap(file, vma);
1619 }
1620 #else
1621 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1622 {
1623 	return -ENOSYS;
1624 }
1625 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1626 {
1627 	return -ENOSYS;
1628 }
1629 #endif /* CONFIG_MMU */
1630 
1631 EXPORT_SYMBOL(generic_file_mmap);
1632 EXPORT_SYMBOL(generic_file_readonly_mmap);
1633 
1634 static struct page *__read_cache_page(struct address_space *mapping,
1635 				pgoff_t index,
1636 				int (*filler)(void *,struct page*),
1637 				void *data)
1638 {
1639 	struct page *page;
1640 	int err;
1641 repeat:
1642 	page = find_get_page(mapping, index);
1643 	if (!page) {
1644 		page = page_cache_alloc_cold(mapping);
1645 		if (!page)
1646 			return ERR_PTR(-ENOMEM);
1647 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1648 		if (unlikely(err)) {
1649 			page_cache_release(page);
1650 			if (err == -EEXIST)
1651 				goto repeat;
1652 			/* Presumably ENOMEM for radix tree node */
1653 			return ERR_PTR(err);
1654 		}
1655 		err = filler(data, page);
1656 		if (err < 0) {
1657 			page_cache_release(page);
1658 			page = ERR_PTR(err);
1659 		}
1660 	}
1661 	return page;
1662 }
1663 
1664 /**
1665  * read_cache_page_async - read into page cache, fill it if needed
1666  * @mapping:	the page's address_space
1667  * @index:	the page index
1668  * @filler:	function to perform the read
1669  * @data:	destination for read data
1670  *
1671  * Same as read_cache_page, but don't wait for page to become unlocked
1672  * after submitting it to the filler.
1673  *
1674  * Read into the page cache. If a page already exists, and PageUptodate() is
1675  * not set, try to fill the page but don't wait for it to become unlocked.
1676  *
1677  * If the page does not get brought uptodate, return -EIO.
1678  */
1679 struct page *read_cache_page_async(struct address_space *mapping,
1680 				pgoff_t index,
1681 				int (*filler)(void *,struct page*),
1682 				void *data)
1683 {
1684 	struct page *page;
1685 	int err;
1686 
1687 retry:
1688 	page = __read_cache_page(mapping, index, filler, data);
1689 	if (IS_ERR(page))
1690 		return page;
1691 	if (PageUptodate(page))
1692 		goto out;
1693 
1694 	lock_page(page);
1695 	if (!page->mapping) {
1696 		unlock_page(page);
1697 		page_cache_release(page);
1698 		goto retry;
1699 	}
1700 	if (PageUptodate(page)) {
1701 		unlock_page(page);
1702 		goto out;
1703 	}
1704 	err = filler(data, page);
1705 	if (err < 0) {
1706 		page_cache_release(page);
1707 		return ERR_PTR(err);
1708 	}
1709 out:
1710 	mark_page_accessed(page);
1711 	return page;
1712 }
1713 EXPORT_SYMBOL(read_cache_page_async);
1714 
1715 /**
1716  * read_cache_page - read into page cache, fill it if needed
1717  * @mapping:	the page's address_space
1718  * @index:	the page index
1719  * @filler:	function to perform the read
1720  * @data:	destination for read data
1721  *
1722  * Read into the page cache. If a page already exists, and PageUptodate() is
1723  * not set, try to fill the page then wait for it to become unlocked.
1724  *
1725  * If the page does not get brought uptodate, return -EIO.
1726  */
1727 struct page *read_cache_page(struct address_space *mapping,
1728 				pgoff_t index,
1729 				int (*filler)(void *,struct page*),
1730 				void *data)
1731 {
1732 	struct page *page;
1733 
1734 	page = read_cache_page_async(mapping, index, filler, data);
1735 	if (IS_ERR(page))
1736 		goto out;
1737 	wait_on_page_locked(page);
1738 	if (!PageUptodate(page)) {
1739 		page_cache_release(page);
1740 		page = ERR_PTR(-EIO);
1741 	}
1742  out:
1743 	return page;
1744 }
1745 EXPORT_SYMBOL(read_cache_page);
1746 
1747 /*
1748  * The logic we want is
1749  *
1750  *	if suid or (sgid and xgrp)
1751  *		remove privs
1752  */
1753 int should_remove_suid(struct dentry *dentry)
1754 {
1755 	mode_t mode = dentry->d_inode->i_mode;
1756 	int kill = 0;
1757 
1758 	/* suid always must be killed */
1759 	if (unlikely(mode & S_ISUID))
1760 		kill = ATTR_KILL_SUID;
1761 
1762 	/*
1763 	 * sgid without any exec bits is just a mandatory locking mark; leave
1764 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1765 	 */
1766 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1767 		kill |= ATTR_KILL_SGID;
1768 
1769 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1770 		return kill;
1771 
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(should_remove_suid);
1775 
1776 static int __remove_suid(struct dentry *dentry, int kill)
1777 {
1778 	struct iattr newattrs;
1779 
1780 	newattrs.ia_valid = ATTR_FORCE | kill;
1781 	return notify_change(dentry, &newattrs);
1782 }
1783 
1784 int file_remove_suid(struct file *file)
1785 {
1786 	struct dentry *dentry = file->f_path.dentry;
1787 	int killsuid = should_remove_suid(dentry);
1788 	int killpriv = security_inode_need_killpriv(dentry);
1789 	int error = 0;
1790 
1791 	if (killpriv < 0)
1792 		return killpriv;
1793 	if (killpriv)
1794 		error = security_inode_killpriv(dentry);
1795 	if (!error && killsuid)
1796 		error = __remove_suid(dentry, killsuid);
1797 
1798 	return error;
1799 }
1800 EXPORT_SYMBOL(file_remove_suid);
1801 
1802 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1803 			const struct iovec *iov, size_t base, size_t bytes)
1804 {
1805 	size_t copied = 0, left = 0;
1806 
1807 	while (bytes) {
1808 		char __user *buf = iov->iov_base + base;
1809 		int copy = min(bytes, iov->iov_len - base);
1810 
1811 		base = 0;
1812 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1813 		copied += copy;
1814 		bytes -= copy;
1815 		vaddr += copy;
1816 		iov++;
1817 
1818 		if (unlikely(left))
1819 			break;
1820 	}
1821 	return copied - left;
1822 }
1823 
1824 /*
1825  * Copy as much as we can into the page and return the number of bytes which
1826  * were successfully copied.  If a fault is encountered then return the number of
1827  * bytes which were copied.
1828  */
1829 size_t iov_iter_copy_from_user_atomic(struct page *page,
1830 		struct iov_iter *i, unsigned long offset, size_t bytes)
1831 {
1832 	char *kaddr;
1833 	size_t copied;
1834 
1835 	BUG_ON(!in_atomic());
1836 	kaddr = kmap_atomic(page, KM_USER0);
1837 	if (likely(i->nr_segs == 1)) {
1838 		int left;
1839 		char __user *buf = i->iov->iov_base + i->iov_offset;
1840 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1841 		copied = bytes - left;
1842 	} else {
1843 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1844 						i->iov, i->iov_offset, bytes);
1845 	}
1846 	kunmap_atomic(kaddr, KM_USER0);
1847 
1848 	return copied;
1849 }
1850 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1851 
1852 /*
1853  * This has the same sideeffects and return value as
1854  * iov_iter_copy_from_user_atomic().
1855  * The difference is that it attempts to resolve faults.
1856  * Page must not be locked.
1857  */
1858 size_t iov_iter_copy_from_user(struct page *page,
1859 		struct iov_iter *i, unsigned long offset, size_t bytes)
1860 {
1861 	char *kaddr;
1862 	size_t copied;
1863 
1864 	kaddr = kmap(page);
1865 	if (likely(i->nr_segs == 1)) {
1866 		int left;
1867 		char __user *buf = i->iov->iov_base + i->iov_offset;
1868 		left = __copy_from_user(kaddr + offset, buf, bytes);
1869 		copied = bytes - left;
1870 	} else {
1871 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1872 						i->iov, i->iov_offset, bytes);
1873 	}
1874 	kunmap(page);
1875 	return copied;
1876 }
1877 EXPORT_SYMBOL(iov_iter_copy_from_user);
1878 
1879 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1880 {
1881 	BUG_ON(i->count < bytes);
1882 
1883 	if (likely(i->nr_segs == 1)) {
1884 		i->iov_offset += bytes;
1885 		i->count -= bytes;
1886 	} else {
1887 		const struct iovec *iov = i->iov;
1888 		size_t base = i->iov_offset;
1889 
1890 		/*
1891 		 * The !iov->iov_len check ensures we skip over unlikely
1892 		 * zero-length segments (without overruning the iovec).
1893 		 */
1894 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1895 			int copy;
1896 
1897 			copy = min(bytes, iov->iov_len - base);
1898 			BUG_ON(!i->count || i->count < copy);
1899 			i->count -= copy;
1900 			bytes -= copy;
1901 			base += copy;
1902 			if (iov->iov_len == base) {
1903 				iov++;
1904 				base = 0;
1905 			}
1906 		}
1907 		i->iov = iov;
1908 		i->iov_offset = base;
1909 	}
1910 }
1911 EXPORT_SYMBOL(iov_iter_advance);
1912 
1913 /*
1914  * Fault in the first iovec of the given iov_iter, to a maximum length
1915  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1916  * accessed (ie. because it is an invalid address).
1917  *
1918  * writev-intensive code may want this to prefault several iovecs -- that
1919  * would be possible (callers must not rely on the fact that _only_ the
1920  * first iovec will be faulted with the current implementation).
1921  */
1922 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1923 {
1924 	char __user *buf = i->iov->iov_base + i->iov_offset;
1925 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1926 	return fault_in_pages_readable(buf, bytes);
1927 }
1928 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1929 
1930 /*
1931  * Return the count of just the current iov_iter segment.
1932  */
1933 size_t iov_iter_single_seg_count(struct iov_iter *i)
1934 {
1935 	const struct iovec *iov = i->iov;
1936 	if (i->nr_segs == 1)
1937 		return i->count;
1938 	else
1939 		return min(i->count, iov->iov_len - i->iov_offset);
1940 }
1941 EXPORT_SYMBOL(iov_iter_single_seg_count);
1942 
1943 /*
1944  * Performs necessary checks before doing a write
1945  *
1946  * Can adjust writing position or amount of bytes to write.
1947  * Returns appropriate error code that caller should return or
1948  * zero in case that write should be allowed.
1949  */
1950 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1951 {
1952 	struct inode *inode = file->f_mapping->host;
1953 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1954 
1955         if (unlikely(*pos < 0))
1956                 return -EINVAL;
1957 
1958 	if (!isblk) {
1959 		/* FIXME: this is for backwards compatibility with 2.4 */
1960 		if (file->f_flags & O_APPEND)
1961                         *pos = i_size_read(inode);
1962 
1963 		if (limit != RLIM_INFINITY) {
1964 			if (*pos >= limit) {
1965 				send_sig(SIGXFSZ, current, 0);
1966 				return -EFBIG;
1967 			}
1968 			if (*count > limit - (typeof(limit))*pos) {
1969 				*count = limit - (typeof(limit))*pos;
1970 			}
1971 		}
1972 	}
1973 
1974 	/*
1975 	 * LFS rule
1976 	 */
1977 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1978 				!(file->f_flags & O_LARGEFILE))) {
1979 		if (*pos >= MAX_NON_LFS) {
1980 			return -EFBIG;
1981 		}
1982 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1983 			*count = MAX_NON_LFS - (unsigned long)*pos;
1984 		}
1985 	}
1986 
1987 	/*
1988 	 * Are we about to exceed the fs block limit ?
1989 	 *
1990 	 * If we have written data it becomes a short write.  If we have
1991 	 * exceeded without writing data we send a signal and return EFBIG.
1992 	 * Linus frestrict idea will clean these up nicely..
1993 	 */
1994 	if (likely(!isblk)) {
1995 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1996 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1997 				return -EFBIG;
1998 			}
1999 			/* zero-length writes at ->s_maxbytes are OK */
2000 		}
2001 
2002 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2003 			*count = inode->i_sb->s_maxbytes - *pos;
2004 	} else {
2005 #ifdef CONFIG_BLOCK
2006 		loff_t isize;
2007 		if (bdev_read_only(I_BDEV(inode)))
2008 			return -EPERM;
2009 		isize = i_size_read(inode);
2010 		if (*pos >= isize) {
2011 			if (*count || *pos > isize)
2012 				return -ENOSPC;
2013 		}
2014 
2015 		if (*pos + *count > isize)
2016 			*count = isize - *pos;
2017 #else
2018 		return -EPERM;
2019 #endif
2020 	}
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL(generic_write_checks);
2024 
2025 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2026 				loff_t pos, unsigned len, unsigned flags,
2027 				struct page **pagep, void **fsdata)
2028 {
2029 	const struct address_space_operations *aops = mapping->a_ops;
2030 
2031 	return aops->write_begin(file, mapping, pos, len, flags,
2032 							pagep, fsdata);
2033 }
2034 EXPORT_SYMBOL(pagecache_write_begin);
2035 
2036 int pagecache_write_end(struct file *file, struct address_space *mapping,
2037 				loff_t pos, unsigned len, unsigned copied,
2038 				struct page *page, void *fsdata)
2039 {
2040 	const struct address_space_operations *aops = mapping->a_ops;
2041 
2042 	mark_page_accessed(page);
2043 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2044 }
2045 EXPORT_SYMBOL(pagecache_write_end);
2046 
2047 ssize_t
2048 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2049 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2050 		size_t count, size_t ocount)
2051 {
2052 	struct file	*file = iocb->ki_filp;
2053 	struct address_space *mapping = file->f_mapping;
2054 	struct inode	*inode = mapping->host;
2055 	ssize_t		written;
2056 	size_t		write_len;
2057 	pgoff_t		end;
2058 
2059 	if (count != ocount)
2060 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2061 
2062 	write_len = iov_length(iov, *nr_segs);
2063 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2064 
2065 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2066 	if (written)
2067 		goto out;
2068 
2069 	/*
2070 	 * After a write we want buffered reads to be sure to go to disk to get
2071 	 * the new data.  We invalidate clean cached page from the region we're
2072 	 * about to write.  We do this *before* the write so that we can return
2073 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2074 	 */
2075 	if (mapping->nrpages) {
2076 		written = invalidate_inode_pages2_range(mapping,
2077 					pos >> PAGE_CACHE_SHIFT, end);
2078 		/*
2079 		 * If a page can not be invalidated, return 0 to fall back
2080 		 * to buffered write.
2081 		 */
2082 		if (written) {
2083 			if (written == -EBUSY)
2084 				return 0;
2085 			goto out;
2086 		}
2087 	}
2088 
2089 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2090 
2091 	/*
2092 	 * Finally, try again to invalidate clean pages which might have been
2093 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2094 	 * if the source of the write was an mmap'ed region of the file
2095 	 * we're writing.  Either one is a pretty crazy thing to do,
2096 	 * so we don't support it 100%.  If this invalidation
2097 	 * fails, tough, the write still worked...
2098 	 */
2099 	if (mapping->nrpages) {
2100 		invalidate_inode_pages2_range(mapping,
2101 					      pos >> PAGE_CACHE_SHIFT, end);
2102 	}
2103 
2104 	if (written > 0) {
2105 		loff_t end = pos + written;
2106 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2107 			i_size_write(inode,  end);
2108 			mark_inode_dirty(inode);
2109 		}
2110 		*ppos = end;
2111 	}
2112 out:
2113 	return written;
2114 }
2115 EXPORT_SYMBOL(generic_file_direct_write);
2116 
2117 /*
2118  * Find or create a page at the given pagecache position. Return the locked
2119  * page. This function is specifically for buffered writes.
2120  */
2121 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2122 					pgoff_t index, unsigned flags)
2123 {
2124 	int status;
2125 	struct page *page;
2126 	gfp_t gfp_notmask = 0;
2127 	if (flags & AOP_FLAG_NOFS)
2128 		gfp_notmask = __GFP_FS;
2129 repeat:
2130 	page = find_lock_page(mapping, index);
2131 	if (likely(page))
2132 		return page;
2133 
2134 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2135 	if (!page)
2136 		return NULL;
2137 	status = add_to_page_cache_lru(page, mapping, index,
2138 						GFP_KERNEL & ~gfp_notmask);
2139 	if (unlikely(status)) {
2140 		page_cache_release(page);
2141 		if (status == -EEXIST)
2142 			goto repeat;
2143 		return NULL;
2144 	}
2145 	return page;
2146 }
2147 EXPORT_SYMBOL(grab_cache_page_write_begin);
2148 
2149 static ssize_t generic_perform_write(struct file *file,
2150 				struct iov_iter *i, loff_t pos)
2151 {
2152 	struct address_space *mapping = file->f_mapping;
2153 	const struct address_space_operations *a_ops = mapping->a_ops;
2154 	long status = 0;
2155 	ssize_t written = 0;
2156 	unsigned int flags = 0;
2157 
2158 	/*
2159 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2160 	 */
2161 	if (segment_eq(get_fs(), KERNEL_DS))
2162 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2163 
2164 	do {
2165 		struct page *page;
2166 		pgoff_t index;		/* Pagecache index for current page */
2167 		unsigned long offset;	/* Offset into pagecache page */
2168 		unsigned long bytes;	/* Bytes to write to page */
2169 		size_t copied;		/* Bytes copied from user */
2170 		void *fsdata;
2171 
2172 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2173 		index = pos >> PAGE_CACHE_SHIFT;
2174 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2175 						iov_iter_count(i));
2176 
2177 again:
2178 
2179 		/*
2180 		 * Bring in the user page that we will copy from _first_.
2181 		 * Otherwise there's a nasty deadlock on copying from the
2182 		 * same page as we're writing to, without it being marked
2183 		 * up-to-date.
2184 		 *
2185 		 * Not only is this an optimisation, but it is also required
2186 		 * to check that the address is actually valid, when atomic
2187 		 * usercopies are used, below.
2188 		 */
2189 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2190 			status = -EFAULT;
2191 			break;
2192 		}
2193 
2194 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2195 						&page, &fsdata);
2196 		if (unlikely(status))
2197 			break;
2198 
2199 		pagefault_disable();
2200 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2201 		pagefault_enable();
2202 		flush_dcache_page(page);
2203 
2204 		mark_page_accessed(page);
2205 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2206 						page, fsdata);
2207 		if (unlikely(status < 0))
2208 			break;
2209 		copied = status;
2210 
2211 		cond_resched();
2212 
2213 		iov_iter_advance(i, copied);
2214 		if (unlikely(copied == 0)) {
2215 			/*
2216 			 * If we were unable to copy any data at all, we must
2217 			 * fall back to a single segment length write.
2218 			 *
2219 			 * If we didn't fallback here, we could livelock
2220 			 * because not all segments in the iov can be copied at
2221 			 * once without a pagefault.
2222 			 */
2223 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2224 						iov_iter_single_seg_count(i));
2225 			goto again;
2226 		}
2227 		pos += copied;
2228 		written += copied;
2229 
2230 		balance_dirty_pages_ratelimited(mapping);
2231 
2232 	} while (iov_iter_count(i));
2233 
2234 	return written ? written : status;
2235 }
2236 
2237 ssize_t
2238 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2239 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2240 		size_t count, ssize_t written)
2241 {
2242 	struct file *file = iocb->ki_filp;
2243 	ssize_t status;
2244 	struct iov_iter i;
2245 
2246 	iov_iter_init(&i, iov, nr_segs, count, written);
2247 	status = generic_perform_write(file, &i, pos);
2248 
2249 	if (likely(status >= 0)) {
2250 		written += status;
2251 		*ppos = pos + status;
2252   	}
2253 
2254 	return written ? written : status;
2255 }
2256 EXPORT_SYMBOL(generic_file_buffered_write);
2257 
2258 /**
2259  * __generic_file_aio_write - write data to a file
2260  * @iocb:	IO state structure (file, offset, etc.)
2261  * @iov:	vector with data to write
2262  * @nr_segs:	number of segments in the vector
2263  * @ppos:	position where to write
2264  *
2265  * This function does all the work needed for actually writing data to a
2266  * file. It does all basic checks, removes SUID from the file, updates
2267  * modification times and calls proper subroutines depending on whether we
2268  * do direct IO or a standard buffered write.
2269  *
2270  * It expects i_mutex to be grabbed unless we work on a block device or similar
2271  * object which does not need locking at all.
2272  *
2273  * This function does *not* take care of syncing data in case of O_SYNC write.
2274  * A caller has to handle it. This is mainly due to the fact that we want to
2275  * avoid syncing under i_mutex.
2276  */
2277 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2278 				 unsigned long nr_segs, loff_t *ppos)
2279 {
2280 	struct file *file = iocb->ki_filp;
2281 	struct address_space * mapping = file->f_mapping;
2282 	size_t ocount;		/* original count */
2283 	size_t count;		/* after file limit checks */
2284 	struct inode 	*inode = mapping->host;
2285 	loff_t		pos;
2286 	ssize_t		written;
2287 	ssize_t		err;
2288 
2289 	ocount = 0;
2290 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2291 	if (err)
2292 		return err;
2293 
2294 	count = ocount;
2295 	pos = *ppos;
2296 
2297 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2298 
2299 	/* We can write back this queue in page reclaim */
2300 	current->backing_dev_info = mapping->backing_dev_info;
2301 	written = 0;
2302 
2303 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2304 	if (err)
2305 		goto out;
2306 
2307 	if (count == 0)
2308 		goto out;
2309 
2310 	err = file_remove_suid(file);
2311 	if (err)
2312 		goto out;
2313 
2314 	file_update_time(file);
2315 
2316 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2317 	if (unlikely(file->f_flags & O_DIRECT)) {
2318 		loff_t endbyte;
2319 		ssize_t written_buffered;
2320 
2321 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2322 							ppos, count, ocount);
2323 		if (written < 0 || written == count)
2324 			goto out;
2325 		/*
2326 		 * direct-io write to a hole: fall through to buffered I/O
2327 		 * for completing the rest of the request.
2328 		 */
2329 		pos += written;
2330 		count -= written;
2331 		written_buffered = generic_file_buffered_write(iocb, iov,
2332 						nr_segs, pos, ppos, count,
2333 						written);
2334 		/*
2335 		 * If generic_file_buffered_write() retuned a synchronous error
2336 		 * then we want to return the number of bytes which were
2337 		 * direct-written, or the error code if that was zero.  Note
2338 		 * that this differs from normal direct-io semantics, which
2339 		 * will return -EFOO even if some bytes were written.
2340 		 */
2341 		if (written_buffered < 0) {
2342 			err = written_buffered;
2343 			goto out;
2344 		}
2345 
2346 		/*
2347 		 * We need to ensure that the page cache pages are written to
2348 		 * disk and invalidated to preserve the expected O_DIRECT
2349 		 * semantics.
2350 		 */
2351 		endbyte = pos + written_buffered - written - 1;
2352 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2353 		if (err == 0) {
2354 			written = written_buffered;
2355 			invalidate_mapping_pages(mapping,
2356 						 pos >> PAGE_CACHE_SHIFT,
2357 						 endbyte >> PAGE_CACHE_SHIFT);
2358 		} else {
2359 			/*
2360 			 * We don't know how much we wrote, so just return
2361 			 * the number of bytes which were direct-written
2362 			 */
2363 		}
2364 	} else {
2365 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2366 				pos, ppos, count, written);
2367 	}
2368 out:
2369 	current->backing_dev_info = NULL;
2370 	return written ? written : err;
2371 }
2372 EXPORT_SYMBOL(__generic_file_aio_write);
2373 
2374 /**
2375  * generic_file_aio_write - write data to a file
2376  * @iocb:	IO state structure
2377  * @iov:	vector with data to write
2378  * @nr_segs:	number of segments in the vector
2379  * @pos:	position in file where to write
2380  *
2381  * This is a wrapper around __generic_file_aio_write() to be used by most
2382  * filesystems. It takes care of syncing the file in case of O_SYNC file
2383  * and acquires i_mutex as needed.
2384  */
2385 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2386 		unsigned long nr_segs, loff_t pos)
2387 {
2388 	struct file *file = iocb->ki_filp;
2389 	struct inode *inode = file->f_mapping->host;
2390 	ssize_t ret;
2391 
2392 	BUG_ON(iocb->ki_pos != pos);
2393 
2394 	mutex_lock(&inode->i_mutex);
2395 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2396 	mutex_unlock(&inode->i_mutex);
2397 
2398 	if (ret > 0 || ret == -EIOCBQUEUED) {
2399 		ssize_t err;
2400 
2401 		err = generic_write_sync(file, pos, ret);
2402 		if (err < 0 && ret > 0)
2403 			ret = err;
2404 	}
2405 	return ret;
2406 }
2407 EXPORT_SYMBOL(generic_file_aio_write);
2408 
2409 /**
2410  * try_to_release_page() - release old fs-specific metadata on a page
2411  *
2412  * @page: the page which the kernel is trying to free
2413  * @gfp_mask: memory allocation flags (and I/O mode)
2414  *
2415  * The address_space is to try to release any data against the page
2416  * (presumably at page->private).  If the release was successful, return `1'.
2417  * Otherwise return zero.
2418  *
2419  * This may also be called if PG_fscache is set on a page, indicating that the
2420  * page is known to the local caching routines.
2421  *
2422  * The @gfp_mask argument specifies whether I/O may be performed to release
2423  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2424  *
2425  */
2426 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2427 {
2428 	struct address_space * const mapping = page->mapping;
2429 
2430 	BUG_ON(!PageLocked(page));
2431 	if (PageWriteback(page))
2432 		return 0;
2433 
2434 	if (mapping && mapping->a_ops->releasepage)
2435 		return mapping->a_ops->releasepage(page, gfp_mask);
2436 	return try_to_free_buffers(page);
2437 }
2438 
2439 EXPORT_SYMBOL(try_to_release_page);
2440