1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <asm/pgalloc.h> 49 #include <asm/tlbflush.h> 50 #include "internal.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/filemap.h> 54 55 /* 56 * FIXME: remove all knowledge of the buffer layer from the core VM 57 */ 58 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 59 60 #include <asm/mman.h> 61 62 #include "swap.h" 63 64 /* 65 * Shared mappings implemented 30.11.1994. It's not fully working yet, 66 * though. 67 * 68 * Shared mappings now work. 15.8.1995 Bruno. 69 * 70 * finished 'unifying' the page and buffer cache and SMP-threaded the 71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 72 * 73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 74 */ 75 76 /* 77 * Lock ordering: 78 * 79 * ->i_mmap_rwsem (truncate_pagecache) 80 * ->private_lock (__free_pte->block_dirty_folio) 81 * ->swap_lock (exclusive_swap_page, others) 82 * ->i_pages lock 83 * 84 * ->i_rwsem 85 * ->invalidate_lock (acquired by fs in truncate path) 86 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 87 * 88 * ->mmap_lock 89 * ->i_mmap_rwsem 90 * ->page_table_lock or pte_lock (various, mainly in memory.c) 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 92 * 93 * ->mmap_lock 94 * ->invalidate_lock (filemap_fault) 95 * ->lock_page (filemap_fault, access_process_vm) 96 * 97 * ->i_rwsem (generic_perform_write) 98 * ->mmap_lock (fault_in_readable->do_page_fault) 99 * 100 * bdi->wb.list_lock 101 * sb_lock (fs/fs-writeback.c) 102 * ->i_pages lock (__sync_single_inode) 103 * 104 * ->i_mmap_rwsem 105 * ->anon_vma.lock (vma_merge) 106 * 107 * ->anon_vma.lock 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 109 * 110 * ->page_table_lock or pte_lock 111 * ->swap_lock (try_to_unmap_one) 112 * ->private_lock (try_to_unmap_one) 113 * ->i_pages lock (try_to_unmap_one) 114 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 116 * ->private_lock (page_remove_rmap->set_page_dirty) 117 * ->i_pages lock (page_remove_rmap->set_page_dirty) 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock) 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 122 * ->inode->i_lock (zap_pte_range->set_page_dirty) 123 * ->private_lock (zap_pte_range->block_dirty_folio) 124 */ 125 126 static void page_cache_delete(struct address_space *mapping, 127 struct folio *folio, void *shadow) 128 { 129 XA_STATE(xas, &mapping->i_pages, folio->index); 130 long nr = 1; 131 132 mapping_set_update(&xas, mapping); 133 134 /* hugetlb pages are represented by a single entry in the xarray */ 135 if (!folio_test_hugetlb(folio)) { 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 } 139 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 141 142 xas_store(&xas, shadow); 143 xas_init_marks(&xas); 144 145 folio->mapping = NULL; 146 /* Leave page->index set: truncation lookup relies upon it */ 147 mapping->nrpages -= nr; 148 } 149 150 static void filemap_unaccount_folio(struct address_space *mapping, 151 struct folio *folio) 152 { 153 long nr; 154 155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 164 int mapcount = page_mapcount(&folio->page); 165 166 if (folio_ref_count(folio) >= mapcount + 2) { 167 /* 168 * All vmas have already been torn down, so it's 169 * a good bet that actually the page is unmapped 170 * and we'd rather not leak it: if we're wrong, 171 * another bad page check should catch it later. 172 */ 173 page_mapcount_reset(&folio->page); 174 folio_ref_sub(folio, mapcount); 175 } 176 } 177 } 178 179 /* hugetlb folios do not participate in page cache accounting. */ 180 if (folio_test_hugetlb(folio)) 181 return; 182 183 nr = folio_nr_pages(folio); 184 185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 186 if (folio_test_swapbacked(folio)) { 187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 188 if (folio_test_pmd_mappable(folio)) 189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 190 } else if (folio_test_pmd_mappable(folio)) { 191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 192 filemap_nr_thps_dec(mapping); 193 } 194 195 /* 196 * At this point folio must be either written or cleaned by 197 * truncate. Dirty folio here signals a bug and loss of 198 * unwritten data - on ordinary filesystems. 199 * 200 * But it's harmless on in-memory filesystems like tmpfs; and can 201 * occur when a driver which did get_user_pages() sets page dirty 202 * before putting it, while the inode is being finally evicted. 203 * 204 * Below fixes dirty accounting after removing the folio entirely 205 * but leaves the dirty flag set: it has no effect for truncated 206 * folio and anyway will be cleared before returning folio to 207 * buddy allocator. 208 */ 209 if (WARN_ON_ONCE(folio_test_dirty(folio) && 210 mapping_can_writeback(mapping))) 211 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 212 } 213 214 /* 215 * Delete a page from the page cache and free it. Caller has to make 216 * sure the page is locked and that nobody else uses it - or that usage 217 * is safe. The caller must hold the i_pages lock. 218 */ 219 void __filemap_remove_folio(struct folio *folio, void *shadow) 220 { 221 struct address_space *mapping = folio->mapping; 222 223 trace_mm_filemap_delete_from_page_cache(folio); 224 filemap_unaccount_folio(mapping, folio); 225 page_cache_delete(mapping, folio, shadow); 226 } 227 228 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 229 { 230 void (*free_folio)(struct folio *); 231 int refs = 1; 232 233 free_folio = mapping->a_ops->free_folio; 234 if (free_folio) 235 free_folio(folio); 236 237 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 238 refs = folio_nr_pages(folio); 239 folio_put_refs(folio, refs); 240 } 241 242 /** 243 * filemap_remove_folio - Remove folio from page cache. 244 * @folio: The folio. 245 * 246 * This must be called only on folios that are locked and have been 247 * verified to be in the page cache. It will never put the folio into 248 * the free list because the caller has a reference on the page. 249 */ 250 void filemap_remove_folio(struct folio *folio) 251 { 252 struct address_space *mapping = folio->mapping; 253 254 BUG_ON(!folio_test_locked(folio)); 255 spin_lock(&mapping->host->i_lock); 256 xa_lock_irq(&mapping->i_pages); 257 __filemap_remove_folio(folio, NULL); 258 xa_unlock_irq(&mapping->i_pages); 259 if (mapping_shrinkable(mapping)) 260 inode_add_lru(mapping->host); 261 spin_unlock(&mapping->host->i_lock); 262 263 filemap_free_folio(mapping, folio); 264 } 265 266 /* 267 * page_cache_delete_batch - delete several folios from page cache 268 * @mapping: the mapping to which folios belong 269 * @fbatch: batch of folios to delete 270 * 271 * The function walks over mapping->i_pages and removes folios passed in 272 * @fbatch from the mapping. The function expects @fbatch to be sorted 273 * by page index and is optimised for it to be dense. 274 * It tolerates holes in @fbatch (mapping entries at those indices are not 275 * modified). 276 * 277 * The function expects the i_pages lock to be held. 278 */ 279 static void page_cache_delete_batch(struct address_space *mapping, 280 struct folio_batch *fbatch) 281 { 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 283 long total_pages = 0; 284 int i = 0; 285 struct folio *folio; 286 287 mapping_set_update(&xas, mapping); 288 xas_for_each(&xas, folio, ULONG_MAX) { 289 if (i >= folio_batch_count(fbatch)) 290 break; 291 292 /* A swap/dax/shadow entry got inserted? Skip it. */ 293 if (xa_is_value(folio)) 294 continue; 295 /* 296 * A page got inserted in our range? Skip it. We have our 297 * pages locked so they are protected from being removed. 298 * If we see a page whose index is higher than ours, it 299 * means our page has been removed, which shouldn't be 300 * possible because we're holding the PageLock. 301 */ 302 if (folio != fbatch->folios[i]) { 303 VM_BUG_ON_FOLIO(folio->index > 304 fbatch->folios[i]->index, folio); 305 continue; 306 } 307 308 WARN_ON_ONCE(!folio_test_locked(folio)); 309 310 folio->mapping = NULL; 311 /* Leave folio->index set: truncation lookup relies on it */ 312 313 i++; 314 xas_store(&xas, NULL); 315 total_pages += folio_nr_pages(folio); 316 } 317 mapping->nrpages -= total_pages; 318 } 319 320 void delete_from_page_cache_batch(struct address_space *mapping, 321 struct folio_batch *fbatch) 322 { 323 int i; 324 325 if (!folio_batch_count(fbatch)) 326 return; 327 328 spin_lock(&mapping->host->i_lock); 329 xa_lock_irq(&mapping->i_pages); 330 for (i = 0; i < folio_batch_count(fbatch); i++) { 331 struct folio *folio = fbatch->folios[i]; 332 333 trace_mm_filemap_delete_from_page_cache(folio); 334 filemap_unaccount_folio(mapping, folio); 335 } 336 page_cache_delete_batch(mapping, fbatch); 337 xa_unlock_irq(&mapping->i_pages); 338 if (mapping_shrinkable(mapping)) 339 inode_add_lru(mapping->host); 340 spin_unlock(&mapping->host->i_lock); 341 342 for (i = 0; i < folio_batch_count(fbatch); i++) 343 filemap_free_folio(mapping, fbatch->folios[i]); 344 } 345 346 int filemap_check_errors(struct address_space *mapping) 347 { 348 int ret = 0; 349 /* Check for outstanding write errors */ 350 if (test_bit(AS_ENOSPC, &mapping->flags) && 351 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 352 ret = -ENOSPC; 353 if (test_bit(AS_EIO, &mapping->flags) && 354 test_and_clear_bit(AS_EIO, &mapping->flags)) 355 ret = -EIO; 356 return ret; 357 } 358 EXPORT_SYMBOL(filemap_check_errors); 359 360 static int filemap_check_and_keep_errors(struct address_space *mapping) 361 { 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_EIO, &mapping->flags)) 364 return -EIO; 365 if (test_bit(AS_ENOSPC, &mapping->flags)) 366 return -ENOSPC; 367 return 0; 368 } 369 370 /** 371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 372 * @mapping: address space structure to write 373 * @wbc: the writeback_control controlling the writeout 374 * 375 * Call writepages on the mapping using the provided wbc to control the 376 * writeout. 377 * 378 * Return: %0 on success, negative error code otherwise. 379 */ 380 int filemap_fdatawrite_wbc(struct address_space *mapping, 381 struct writeback_control *wbc) 382 { 383 int ret; 384 385 if (!mapping_can_writeback(mapping) || 386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 387 return 0; 388 389 wbc_attach_fdatawrite_inode(wbc, mapping->host); 390 ret = do_writepages(mapping, wbc); 391 wbc_detach_inode(wbc); 392 return ret; 393 } 394 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 395 396 /** 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 398 * @mapping: address space structure to write 399 * @start: offset in bytes where the range starts 400 * @end: offset in bytes where the range ends (inclusive) 401 * @sync_mode: enable synchronous operation 402 * 403 * Start writeback against all of a mapping's dirty pages that lie 404 * within the byte offsets <start, end> inclusive. 405 * 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 407 * opposed to a regular memory cleansing writeback. The difference between 408 * these two operations is that if a dirty page/buffer is encountered, it must 409 * be waited upon, and not just skipped over. 410 * 411 * Return: %0 on success, negative error code otherwise. 412 */ 413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 414 loff_t end, int sync_mode) 415 { 416 struct writeback_control wbc = { 417 .sync_mode = sync_mode, 418 .nr_to_write = LONG_MAX, 419 .range_start = start, 420 .range_end = end, 421 }; 422 423 return filemap_fdatawrite_wbc(mapping, &wbc); 424 } 425 426 static inline int __filemap_fdatawrite(struct address_space *mapping, 427 int sync_mode) 428 { 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 430 } 431 432 int filemap_fdatawrite(struct address_space *mapping) 433 { 434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 435 } 436 EXPORT_SYMBOL(filemap_fdatawrite); 437 438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 439 loff_t end) 440 { 441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite_range); 444 445 /** 446 * filemap_flush - mostly a non-blocking flush 447 * @mapping: target address_space 448 * 449 * This is a mostly non-blocking flush. Not suitable for data-integrity 450 * purposes - I/O may not be started against all dirty pages. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_flush(struct address_space *mapping) 455 { 456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 457 } 458 EXPORT_SYMBOL(filemap_flush); 459 460 /** 461 * filemap_range_has_page - check if a page exists in range. 462 * @mapping: address space within which to check 463 * @start_byte: offset in bytes where the range starts 464 * @end_byte: offset in bytes where the range ends (inclusive) 465 * 466 * Find at least one page in the range supplied, usually used to check if 467 * direct writing in this range will trigger a writeback. 468 * 469 * Return: %true if at least one page exists in the specified range, 470 * %false otherwise. 471 */ 472 bool filemap_range_has_page(struct address_space *mapping, 473 loff_t start_byte, loff_t end_byte) 474 { 475 struct folio *folio; 476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 477 pgoff_t max = end_byte >> PAGE_SHIFT; 478 479 if (end_byte < start_byte) 480 return false; 481 482 rcu_read_lock(); 483 for (;;) { 484 folio = xas_find(&xas, max); 485 if (xas_retry(&xas, folio)) 486 continue; 487 /* Shadow entries don't count */ 488 if (xa_is_value(folio)) 489 continue; 490 /* 491 * We don't need to try to pin this page; we're about to 492 * release the RCU lock anyway. It is enough to know that 493 * there was a page here recently. 494 */ 495 break; 496 } 497 rcu_read_unlock(); 498 499 return folio != NULL; 500 } 501 EXPORT_SYMBOL(filemap_range_has_page); 502 503 static void __filemap_fdatawait_range(struct address_space *mapping, 504 loff_t start_byte, loff_t end_byte) 505 { 506 pgoff_t index = start_byte >> PAGE_SHIFT; 507 pgoff_t end = end_byte >> PAGE_SHIFT; 508 struct folio_batch fbatch; 509 unsigned nr_folios; 510 511 folio_batch_init(&fbatch); 512 513 while (index <= end) { 514 unsigned i; 515 516 nr_folios = filemap_get_folios_tag(mapping, &index, end, 517 PAGECACHE_TAG_WRITEBACK, &fbatch); 518 519 if (!nr_folios) 520 break; 521 522 for (i = 0; i < nr_folios; i++) { 523 struct folio *folio = fbatch.folios[i]; 524 525 folio_wait_writeback(folio); 526 folio_clear_error(folio); 527 } 528 folio_batch_release(&fbatch); 529 cond_resched(); 530 } 531 } 532 533 /** 534 * filemap_fdatawait_range - wait for writeback to complete 535 * @mapping: address space structure to wait for 536 * @start_byte: offset in bytes where the range starts 537 * @end_byte: offset in bytes where the range ends (inclusive) 538 * 539 * Walk the list of under-writeback pages of the given address space 540 * in the given range and wait for all of them. Check error status of 541 * the address space and return it. 542 * 543 * Since the error status of the address space is cleared by this function, 544 * callers are responsible for checking the return value and handling and/or 545 * reporting the error. 546 * 547 * Return: error status of the address space. 548 */ 549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 550 loff_t end_byte) 551 { 552 __filemap_fdatawait_range(mapping, start_byte, end_byte); 553 return filemap_check_errors(mapping); 554 } 555 EXPORT_SYMBOL(filemap_fdatawait_range); 556 557 /** 558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 559 * @mapping: address space structure to wait for 560 * @start_byte: offset in bytes where the range starts 561 * @end_byte: offset in bytes where the range ends (inclusive) 562 * 563 * Walk the list of under-writeback pages of the given address space in the 564 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 565 * this function does not clear error status of the address space. 566 * 567 * Use this function if callers don't handle errors themselves. Expected 568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 569 * fsfreeze(8) 570 */ 571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 572 loff_t start_byte, loff_t end_byte) 573 { 574 __filemap_fdatawait_range(mapping, start_byte, end_byte); 575 return filemap_check_and_keep_errors(mapping); 576 } 577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 578 579 /** 580 * file_fdatawait_range - wait for writeback to complete 581 * @file: file pointing to address space structure to wait for 582 * @start_byte: offset in bytes where the range starts 583 * @end_byte: offset in bytes where the range ends (inclusive) 584 * 585 * Walk the list of under-writeback pages of the address space that file 586 * refers to, in the given range and wait for all of them. Check error 587 * status of the address space vs. the file->f_wb_err cursor and return it. 588 * 589 * Since the error status of the file is advanced by this function, 590 * callers are responsible for checking the return value and handling and/or 591 * reporting the error. 592 * 593 * Return: error status of the address space vs. the file->f_wb_err cursor. 594 */ 595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 596 { 597 struct address_space *mapping = file->f_mapping; 598 599 __filemap_fdatawait_range(mapping, start_byte, end_byte); 600 return file_check_and_advance_wb_err(file); 601 } 602 EXPORT_SYMBOL(file_fdatawait_range); 603 604 /** 605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 606 * @mapping: address space structure to wait for 607 * 608 * Walk the list of under-writeback pages of the given address space 609 * and wait for all of them. Unlike filemap_fdatawait(), this function 610 * does not clear error status of the address space. 611 * 612 * Use this function if callers don't handle errors themselves. Expected 613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 614 * fsfreeze(8) 615 * 616 * Return: error status of the address space. 617 */ 618 int filemap_fdatawait_keep_errors(struct address_space *mapping) 619 { 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 621 return filemap_check_and_keep_errors(mapping); 622 } 623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 624 625 /* Returns true if writeback might be needed or already in progress. */ 626 static bool mapping_needs_writeback(struct address_space *mapping) 627 { 628 return mapping->nrpages; 629 } 630 631 bool filemap_range_has_writeback(struct address_space *mapping, 632 loff_t start_byte, loff_t end_byte) 633 { 634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 635 pgoff_t max = end_byte >> PAGE_SHIFT; 636 struct folio *folio; 637 638 if (end_byte < start_byte) 639 return false; 640 641 rcu_read_lock(); 642 xas_for_each(&xas, folio, max) { 643 if (xas_retry(&xas, folio)) 644 continue; 645 if (xa_is_value(folio)) 646 continue; 647 if (folio_test_dirty(folio) || folio_test_locked(folio) || 648 folio_test_writeback(folio)) 649 break; 650 } 651 rcu_read_unlock(); 652 return folio != NULL; 653 } 654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 655 656 /** 657 * filemap_write_and_wait_range - write out & wait on a file range 658 * @mapping: the address_space for the pages 659 * @lstart: offset in bytes where the range starts 660 * @lend: offset in bytes where the range ends (inclusive) 661 * 662 * Write out and wait upon file offsets lstart->lend, inclusive. 663 * 664 * Note that @lend is inclusive (describes the last byte to be written) so 665 * that this function can be used to write to the very end-of-file (end = -1). 666 * 667 * Return: error status of the address space. 668 */ 669 int filemap_write_and_wait_range(struct address_space *mapping, 670 loff_t lstart, loff_t lend) 671 { 672 int err = 0, err2; 673 674 if (lend < lstart) 675 return 0; 676 677 if (mapping_needs_writeback(mapping)) { 678 err = __filemap_fdatawrite_range(mapping, lstart, lend, 679 WB_SYNC_ALL); 680 /* 681 * Even if the above returned error, the pages may be 682 * written partially (e.g. -ENOSPC), so we wait for it. 683 * But the -EIO is special case, it may indicate the worst 684 * thing (e.g. bug) happened, so we avoid waiting for it. 685 */ 686 if (err != -EIO) 687 __filemap_fdatawait_range(mapping, lstart, lend); 688 } 689 err2 = filemap_check_errors(mapping); 690 if (!err) 691 err = err2; 692 return err; 693 } 694 EXPORT_SYMBOL(filemap_write_and_wait_range); 695 696 void __filemap_set_wb_err(struct address_space *mapping, int err) 697 { 698 errseq_t eseq = errseq_set(&mapping->wb_err, err); 699 700 trace_filemap_set_wb_err(mapping, eseq); 701 } 702 EXPORT_SYMBOL(__filemap_set_wb_err); 703 704 /** 705 * file_check_and_advance_wb_err - report wb error (if any) that was previously 706 * and advance wb_err to current one 707 * @file: struct file on which the error is being reported 708 * 709 * When userland calls fsync (or something like nfsd does the equivalent), we 710 * want to report any writeback errors that occurred since the last fsync (or 711 * since the file was opened if there haven't been any). 712 * 713 * Grab the wb_err from the mapping. If it matches what we have in the file, 714 * then just quickly return 0. The file is all caught up. 715 * 716 * If it doesn't match, then take the mapping value, set the "seen" flag in 717 * it and try to swap it into place. If it works, or another task beat us 718 * to it with the new value, then update the f_wb_err and return the error 719 * portion. The error at this point must be reported via proper channels 720 * (a'la fsync, or NFS COMMIT operation, etc.). 721 * 722 * While we handle mapping->wb_err with atomic operations, the f_wb_err 723 * value is protected by the f_lock since we must ensure that it reflects 724 * the latest value swapped in for this file descriptor. 725 * 726 * Return: %0 on success, negative error code otherwise. 727 */ 728 int file_check_and_advance_wb_err(struct file *file) 729 { 730 int err = 0; 731 errseq_t old = READ_ONCE(file->f_wb_err); 732 struct address_space *mapping = file->f_mapping; 733 734 /* Locklessly handle the common case where nothing has changed */ 735 if (errseq_check(&mapping->wb_err, old)) { 736 /* Something changed, must use slow path */ 737 spin_lock(&file->f_lock); 738 old = file->f_wb_err; 739 err = errseq_check_and_advance(&mapping->wb_err, 740 &file->f_wb_err); 741 trace_file_check_and_advance_wb_err(file, old); 742 spin_unlock(&file->f_lock); 743 } 744 745 /* 746 * We're mostly using this function as a drop in replacement for 747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 748 * that the legacy code would have had on these flags. 749 */ 750 clear_bit(AS_EIO, &mapping->flags); 751 clear_bit(AS_ENOSPC, &mapping->flags); 752 return err; 753 } 754 EXPORT_SYMBOL(file_check_and_advance_wb_err); 755 756 /** 757 * file_write_and_wait_range - write out & wait on a file range 758 * @file: file pointing to address_space with pages 759 * @lstart: offset in bytes where the range starts 760 * @lend: offset in bytes where the range ends (inclusive) 761 * 762 * Write out and wait upon file offsets lstart->lend, inclusive. 763 * 764 * Note that @lend is inclusive (describes the last byte to be written) so 765 * that this function can be used to write to the very end-of-file (end = -1). 766 * 767 * After writing out and waiting on the data, we check and advance the 768 * f_wb_err cursor to the latest value, and return any errors detected there. 769 * 770 * Return: %0 on success, negative error code otherwise. 771 */ 772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 773 { 774 int err = 0, err2; 775 struct address_space *mapping = file->f_mapping; 776 777 if (lend < lstart) 778 return 0; 779 780 if (mapping_needs_writeback(mapping)) { 781 err = __filemap_fdatawrite_range(mapping, lstart, lend, 782 WB_SYNC_ALL); 783 /* See comment of filemap_write_and_wait() */ 784 if (err != -EIO) 785 __filemap_fdatawait_range(mapping, lstart, lend); 786 } 787 err2 = file_check_and_advance_wb_err(file); 788 if (!err) 789 err = err2; 790 return err; 791 } 792 EXPORT_SYMBOL(file_write_and_wait_range); 793 794 /** 795 * replace_page_cache_folio - replace a pagecache folio with a new one 796 * @old: folio to be replaced 797 * @new: folio to replace with 798 * 799 * This function replaces a folio in the pagecache with a new one. On 800 * success it acquires the pagecache reference for the new folio and 801 * drops it for the old folio. Both the old and new folios must be 802 * locked. This function does not add the new folio to the LRU, the 803 * caller must do that. 804 * 805 * The remove + add is atomic. This function cannot fail. 806 */ 807 void replace_page_cache_folio(struct folio *old, struct folio *new) 808 { 809 struct address_space *mapping = old->mapping; 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 816 VM_BUG_ON_FOLIO(new->mapping, new); 817 818 folio_get(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(old, new); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!folio_test_hugetlb(old)) 830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 831 if (!folio_test_hugetlb(new)) 832 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 833 if (folio_test_swapbacked(old)) 834 __lruvec_stat_sub_folio(old, NR_SHMEM); 835 if (folio_test_swapbacked(new)) 836 __lruvec_stat_add_folio(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (free_folio) 839 free_folio(old); 840 folio_put(old); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 void *alloced_shadow = NULL; 850 int alloced_order = 0; 851 bool charged = false; 852 long nr = 1; 853 854 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 855 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 856 mapping_set_update(&xas, mapping); 857 858 if (!huge) { 859 int error = mem_cgroup_charge(folio, NULL, gfp); 860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 861 if (error) 862 return error; 863 charged = true; 864 xas_set_order(&xas, index, folio_order(folio)); 865 nr = folio_nr_pages(folio); 866 } 867 868 gfp &= GFP_RECLAIM_MASK; 869 folio_ref_add(folio, nr); 870 folio->mapping = mapping; 871 folio->index = xas.xa_index; 872 873 for (;;) { 874 int order = -1, split_order = 0; 875 void *entry, *old = NULL; 876 877 xas_lock_irq(&xas); 878 xas_for_each_conflict(&xas, entry) { 879 old = entry; 880 if (!xa_is_value(entry)) { 881 xas_set_err(&xas, -EEXIST); 882 goto unlock; 883 } 884 /* 885 * If a larger entry exists, 886 * it will be the first and only entry iterated. 887 */ 888 if (order == -1) 889 order = xas_get_order(&xas); 890 } 891 892 /* entry may have changed before we re-acquire the lock */ 893 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 894 xas_destroy(&xas); 895 alloced_order = 0; 896 } 897 898 if (old) { 899 if (order > 0 && order > folio_order(folio)) { 900 /* How to handle large swap entries? */ 901 BUG_ON(shmem_mapping(mapping)); 902 if (!alloced_order) { 903 split_order = order; 904 goto unlock; 905 } 906 xas_split(&xas, old, order); 907 xas_reset(&xas); 908 } 909 if (shadowp) 910 *shadowp = old; 911 } 912 913 xas_store(&xas, folio); 914 if (xas_error(&xas)) 915 goto unlock; 916 917 mapping->nrpages += nr; 918 919 /* hugetlb pages do not participate in page cache accounting */ 920 if (!huge) { 921 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 922 if (folio_test_pmd_mappable(folio)) 923 __lruvec_stat_mod_folio(folio, 924 NR_FILE_THPS, nr); 925 } 926 927 unlock: 928 xas_unlock_irq(&xas); 929 930 /* split needed, alloc here and retry. */ 931 if (split_order) { 932 xas_split_alloc(&xas, old, split_order, gfp); 933 if (xas_error(&xas)) 934 goto error; 935 alloced_shadow = old; 936 alloced_order = split_order; 937 xas_reset(&xas); 938 continue; 939 } 940 941 if (!xas_nomem(&xas, gfp)) 942 break; 943 } 944 945 if (xas_error(&xas)) 946 goto error; 947 948 trace_mm_filemap_add_to_page_cache(folio); 949 return 0; 950 error: 951 if (charged) 952 mem_cgroup_uncharge(folio); 953 folio->mapping = NULL; 954 /* Leave page->index set: truncation relies upon it */ 955 folio_put_refs(folio, nr); 956 return xas_error(&xas); 957 } 958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 959 960 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 961 pgoff_t index, gfp_t gfp) 962 { 963 void *shadow = NULL; 964 int ret; 965 966 __folio_set_locked(folio); 967 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 968 if (unlikely(ret)) 969 __folio_clear_locked(folio); 970 else { 971 /* 972 * The folio might have been evicted from cache only 973 * recently, in which case it should be activated like 974 * any other repeatedly accessed folio. 975 * The exception is folios getting rewritten; evicting other 976 * data from the working set, only to cache data that will 977 * get overwritten with something else, is a waste of memory. 978 */ 979 WARN_ON_ONCE(folio_test_active(folio)); 980 if (!(gfp & __GFP_WRITE) && shadow) 981 workingset_refault(folio, shadow); 982 folio_add_lru(folio); 983 } 984 return ret; 985 } 986 EXPORT_SYMBOL_GPL(filemap_add_folio); 987 988 #ifdef CONFIG_NUMA 989 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 990 { 991 int n; 992 struct folio *folio; 993 994 if (cpuset_do_page_mem_spread()) { 995 unsigned int cpuset_mems_cookie; 996 do { 997 cpuset_mems_cookie = read_mems_allowed_begin(); 998 n = cpuset_mem_spread_node(); 999 folio = __folio_alloc_node(gfp, order, n); 1000 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1001 1002 return folio; 1003 } 1004 return folio_alloc(gfp, order); 1005 } 1006 EXPORT_SYMBOL(filemap_alloc_folio); 1007 #endif 1008 1009 /* 1010 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1011 * 1012 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1013 * 1014 * @mapping1: the first mapping to lock 1015 * @mapping2: the second mapping to lock 1016 */ 1017 void filemap_invalidate_lock_two(struct address_space *mapping1, 1018 struct address_space *mapping2) 1019 { 1020 if (mapping1 > mapping2) 1021 swap(mapping1, mapping2); 1022 if (mapping1) 1023 down_write(&mapping1->invalidate_lock); 1024 if (mapping2 && mapping1 != mapping2) 1025 down_write_nested(&mapping2->invalidate_lock, 1); 1026 } 1027 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1028 1029 /* 1030 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1031 * 1032 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1033 * 1034 * @mapping1: the first mapping to unlock 1035 * @mapping2: the second mapping to unlock 1036 */ 1037 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1038 struct address_space *mapping2) 1039 { 1040 if (mapping1) 1041 up_write(&mapping1->invalidate_lock); 1042 if (mapping2 && mapping1 != mapping2) 1043 up_write(&mapping2->invalidate_lock); 1044 } 1045 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1046 1047 /* 1048 * In order to wait for pages to become available there must be 1049 * waitqueues associated with pages. By using a hash table of 1050 * waitqueues where the bucket discipline is to maintain all 1051 * waiters on the same queue and wake all when any of the pages 1052 * become available, and for the woken contexts to check to be 1053 * sure the appropriate page became available, this saves space 1054 * at a cost of "thundering herd" phenomena during rare hash 1055 * collisions. 1056 */ 1057 #define PAGE_WAIT_TABLE_BITS 8 1058 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1059 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1060 1061 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1062 { 1063 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1064 } 1065 1066 void __init pagecache_init(void) 1067 { 1068 int i; 1069 1070 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1071 init_waitqueue_head(&folio_wait_table[i]); 1072 1073 page_writeback_init(); 1074 } 1075 1076 /* 1077 * The page wait code treats the "wait->flags" somewhat unusually, because 1078 * we have multiple different kinds of waits, not just the usual "exclusive" 1079 * one. 1080 * 1081 * We have: 1082 * 1083 * (a) no special bits set: 1084 * 1085 * We're just waiting for the bit to be released, and when a waker 1086 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1087 * and remove it from the wait queue. 1088 * 1089 * Simple and straightforward. 1090 * 1091 * (b) WQ_FLAG_EXCLUSIVE: 1092 * 1093 * The waiter is waiting to get the lock, and only one waiter should 1094 * be woken up to avoid any thundering herd behavior. We'll set the 1095 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1096 * 1097 * This is the traditional exclusive wait. 1098 * 1099 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1100 * 1101 * The waiter is waiting to get the bit, and additionally wants the 1102 * lock to be transferred to it for fair lock behavior. If the lock 1103 * cannot be taken, we stop walking the wait queue without waking 1104 * the waiter. 1105 * 1106 * This is the "fair lock handoff" case, and in addition to setting 1107 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1108 * that it now has the lock. 1109 */ 1110 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1111 { 1112 unsigned int flags; 1113 struct wait_page_key *key = arg; 1114 struct wait_page_queue *wait_page 1115 = container_of(wait, struct wait_page_queue, wait); 1116 1117 if (!wake_page_match(wait_page, key)) 1118 return 0; 1119 1120 /* 1121 * If it's a lock handoff wait, we get the bit for it, and 1122 * stop walking (and do not wake it up) if we can't. 1123 */ 1124 flags = wait->flags; 1125 if (flags & WQ_FLAG_EXCLUSIVE) { 1126 if (test_bit(key->bit_nr, &key->folio->flags)) 1127 return -1; 1128 if (flags & WQ_FLAG_CUSTOM) { 1129 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1130 return -1; 1131 flags |= WQ_FLAG_DONE; 1132 } 1133 } 1134 1135 /* 1136 * We are holding the wait-queue lock, but the waiter that 1137 * is waiting for this will be checking the flags without 1138 * any locking. 1139 * 1140 * So update the flags atomically, and wake up the waiter 1141 * afterwards to avoid any races. This store-release pairs 1142 * with the load-acquire in folio_wait_bit_common(). 1143 */ 1144 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1145 wake_up_state(wait->private, mode); 1146 1147 /* 1148 * Ok, we have successfully done what we're waiting for, 1149 * and we can unconditionally remove the wait entry. 1150 * 1151 * Note that this pairs with the "finish_wait()" in the 1152 * waiter, and has to be the absolute last thing we do. 1153 * After this list_del_init(&wait->entry) the wait entry 1154 * might be de-allocated and the process might even have 1155 * exited. 1156 */ 1157 list_del_init_careful(&wait->entry); 1158 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1159 } 1160 1161 static void folio_wake_bit(struct folio *folio, int bit_nr) 1162 { 1163 wait_queue_head_t *q = folio_waitqueue(folio); 1164 struct wait_page_key key; 1165 unsigned long flags; 1166 wait_queue_entry_t bookmark; 1167 1168 key.folio = folio; 1169 key.bit_nr = bit_nr; 1170 key.page_match = 0; 1171 1172 bookmark.flags = 0; 1173 bookmark.private = NULL; 1174 bookmark.func = NULL; 1175 INIT_LIST_HEAD(&bookmark.entry); 1176 1177 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1179 1180 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1181 /* 1182 * Take a breather from holding the lock, 1183 * allow pages that finish wake up asynchronously 1184 * to acquire the lock and remove themselves 1185 * from wait queue 1186 */ 1187 spin_unlock_irqrestore(&q->lock, flags); 1188 cpu_relax(); 1189 spin_lock_irqsave(&q->lock, flags); 1190 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1191 } 1192 1193 /* 1194 * It's possible to miss clearing waiters here, when we woke our page 1195 * waiters, but the hashed waitqueue has waiters for other pages on it. 1196 * That's okay, it's a rare case. The next waker will clear it. 1197 * 1198 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1199 * other), the flag may be cleared in the course of freeing the page; 1200 * but that is not required for correctness. 1201 */ 1202 if (!waitqueue_active(q) || !key.page_match) 1203 folio_clear_waiters(folio); 1204 1205 spin_unlock_irqrestore(&q->lock, flags); 1206 } 1207 1208 static void folio_wake(struct folio *folio, int bit) 1209 { 1210 if (!folio_test_waiters(folio)) 1211 return; 1212 folio_wake_bit(folio, bit); 1213 } 1214 1215 /* 1216 * A choice of three behaviors for folio_wait_bit_common(): 1217 */ 1218 enum behavior { 1219 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1220 * __folio_lock() waiting on then setting PG_locked. 1221 */ 1222 SHARED, /* Hold ref to page and check the bit when woken, like 1223 * folio_wait_writeback() waiting on PG_writeback. 1224 */ 1225 DROP, /* Drop ref to page before wait, no check when woken, 1226 * like folio_put_wait_locked() on PG_locked. 1227 */ 1228 }; 1229 1230 /* 1231 * Attempt to check (or get) the folio flag, and mark us done 1232 * if successful. 1233 */ 1234 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1235 struct wait_queue_entry *wait) 1236 { 1237 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1238 if (test_and_set_bit(bit_nr, &folio->flags)) 1239 return false; 1240 } else if (test_bit(bit_nr, &folio->flags)) 1241 return false; 1242 1243 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1244 return true; 1245 } 1246 1247 /* How many times do we accept lock stealing from under a waiter? */ 1248 int sysctl_page_lock_unfairness = 5; 1249 1250 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1251 int state, enum behavior behavior) 1252 { 1253 wait_queue_head_t *q = folio_waitqueue(folio); 1254 int unfairness = sysctl_page_lock_unfairness; 1255 struct wait_page_queue wait_page; 1256 wait_queue_entry_t *wait = &wait_page.wait; 1257 bool thrashing = false; 1258 unsigned long pflags; 1259 bool in_thrashing; 1260 1261 if (bit_nr == PG_locked && 1262 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1263 delayacct_thrashing_start(&in_thrashing); 1264 psi_memstall_enter(&pflags); 1265 thrashing = true; 1266 } 1267 1268 init_wait(wait); 1269 wait->func = wake_page_function; 1270 wait_page.folio = folio; 1271 wait_page.bit_nr = bit_nr; 1272 1273 repeat: 1274 wait->flags = 0; 1275 if (behavior == EXCLUSIVE) { 1276 wait->flags = WQ_FLAG_EXCLUSIVE; 1277 if (--unfairness < 0) 1278 wait->flags |= WQ_FLAG_CUSTOM; 1279 } 1280 1281 /* 1282 * Do one last check whether we can get the 1283 * page bit synchronously. 1284 * 1285 * Do the folio_set_waiters() marking before that 1286 * to let any waker we _just_ missed know they 1287 * need to wake us up (otherwise they'll never 1288 * even go to the slow case that looks at the 1289 * page queue), and add ourselves to the wait 1290 * queue if we need to sleep. 1291 * 1292 * This part needs to be done under the queue 1293 * lock to avoid races. 1294 */ 1295 spin_lock_irq(&q->lock); 1296 folio_set_waiters(folio); 1297 if (!folio_trylock_flag(folio, bit_nr, wait)) 1298 __add_wait_queue_entry_tail(q, wait); 1299 spin_unlock_irq(&q->lock); 1300 1301 /* 1302 * From now on, all the logic will be based on 1303 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1304 * see whether the page bit testing has already 1305 * been done by the wake function. 1306 * 1307 * We can drop our reference to the folio. 1308 */ 1309 if (behavior == DROP) 1310 folio_put(folio); 1311 1312 /* 1313 * Note that until the "finish_wait()", or until 1314 * we see the WQ_FLAG_WOKEN flag, we need to 1315 * be very careful with the 'wait->flags', because 1316 * we may race with a waker that sets them. 1317 */ 1318 for (;;) { 1319 unsigned int flags; 1320 1321 set_current_state(state); 1322 1323 /* Loop until we've been woken or interrupted */ 1324 flags = smp_load_acquire(&wait->flags); 1325 if (!(flags & WQ_FLAG_WOKEN)) { 1326 if (signal_pending_state(state, current)) 1327 break; 1328 1329 io_schedule(); 1330 continue; 1331 } 1332 1333 /* If we were non-exclusive, we're done */ 1334 if (behavior != EXCLUSIVE) 1335 break; 1336 1337 /* If the waker got the lock for us, we're done */ 1338 if (flags & WQ_FLAG_DONE) 1339 break; 1340 1341 /* 1342 * Otherwise, if we're getting the lock, we need to 1343 * try to get it ourselves. 1344 * 1345 * And if that fails, we'll have to retry this all. 1346 */ 1347 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1348 goto repeat; 1349 1350 wait->flags |= WQ_FLAG_DONE; 1351 break; 1352 } 1353 1354 /* 1355 * If a signal happened, this 'finish_wait()' may remove the last 1356 * waiter from the wait-queues, but the folio waiters bit will remain 1357 * set. That's ok. The next wakeup will take care of it, and trying 1358 * to do it here would be difficult and prone to races. 1359 */ 1360 finish_wait(q, wait); 1361 1362 if (thrashing) { 1363 delayacct_thrashing_end(&in_thrashing); 1364 psi_memstall_leave(&pflags); 1365 } 1366 1367 /* 1368 * NOTE! The wait->flags weren't stable until we've done the 1369 * 'finish_wait()', and we could have exited the loop above due 1370 * to a signal, and had a wakeup event happen after the signal 1371 * test but before the 'finish_wait()'. 1372 * 1373 * So only after the finish_wait() can we reliably determine 1374 * if we got woken up or not, so we can now figure out the final 1375 * return value based on that state without races. 1376 * 1377 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1378 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1379 */ 1380 if (behavior == EXCLUSIVE) 1381 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1382 1383 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1384 } 1385 1386 #ifdef CONFIG_MIGRATION 1387 /** 1388 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1389 * @entry: migration swap entry. 1390 * @ptl: already locked ptl. This function will drop the lock. 1391 * 1392 * Wait for a migration entry referencing the given page to be removed. This is 1393 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1394 * this can be called without taking a reference on the page. Instead this 1395 * should be called while holding the ptl for the migration entry referencing 1396 * the page. 1397 * 1398 * Returns after unlocking the ptl. 1399 * 1400 * This follows the same logic as folio_wait_bit_common() so see the comments 1401 * there. 1402 */ 1403 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1404 __releases(ptl) 1405 { 1406 struct wait_page_queue wait_page; 1407 wait_queue_entry_t *wait = &wait_page.wait; 1408 bool thrashing = false; 1409 unsigned long pflags; 1410 bool in_thrashing; 1411 wait_queue_head_t *q; 1412 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1413 1414 q = folio_waitqueue(folio); 1415 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1416 delayacct_thrashing_start(&in_thrashing); 1417 psi_memstall_enter(&pflags); 1418 thrashing = true; 1419 } 1420 1421 init_wait(wait); 1422 wait->func = wake_page_function; 1423 wait_page.folio = folio; 1424 wait_page.bit_nr = PG_locked; 1425 wait->flags = 0; 1426 1427 spin_lock_irq(&q->lock); 1428 folio_set_waiters(folio); 1429 if (!folio_trylock_flag(folio, PG_locked, wait)) 1430 __add_wait_queue_entry_tail(q, wait); 1431 spin_unlock_irq(&q->lock); 1432 1433 /* 1434 * If a migration entry exists for the page the migration path must hold 1435 * a valid reference to the page, and it must take the ptl to remove the 1436 * migration entry. So the page is valid until the ptl is dropped. 1437 */ 1438 spin_unlock(ptl); 1439 1440 for (;;) { 1441 unsigned int flags; 1442 1443 set_current_state(TASK_UNINTERRUPTIBLE); 1444 1445 /* Loop until we've been woken or interrupted */ 1446 flags = smp_load_acquire(&wait->flags); 1447 if (!(flags & WQ_FLAG_WOKEN)) { 1448 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1449 break; 1450 1451 io_schedule(); 1452 continue; 1453 } 1454 break; 1455 } 1456 1457 finish_wait(q, wait); 1458 1459 if (thrashing) { 1460 delayacct_thrashing_end(&in_thrashing); 1461 psi_memstall_leave(&pflags); 1462 } 1463 } 1464 #endif 1465 1466 void folio_wait_bit(struct folio *folio, int bit_nr) 1467 { 1468 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1469 } 1470 EXPORT_SYMBOL(folio_wait_bit); 1471 1472 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1473 { 1474 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1475 } 1476 EXPORT_SYMBOL(folio_wait_bit_killable); 1477 1478 /** 1479 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1480 * @folio: The folio to wait for. 1481 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1482 * 1483 * The caller should hold a reference on @folio. They expect the page to 1484 * become unlocked relatively soon, but do not wish to hold up migration 1485 * (for example) by holding the reference while waiting for the folio to 1486 * come unlocked. After this function returns, the caller should not 1487 * dereference @folio. 1488 * 1489 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1490 */ 1491 static int folio_put_wait_locked(struct folio *folio, int state) 1492 { 1493 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1494 } 1495 1496 /** 1497 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1498 * @folio: Folio defining the wait queue of interest 1499 * @waiter: Waiter to add to the queue 1500 * 1501 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1502 */ 1503 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1504 { 1505 wait_queue_head_t *q = folio_waitqueue(folio); 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&q->lock, flags); 1509 __add_wait_queue_entry_tail(q, waiter); 1510 folio_set_waiters(folio); 1511 spin_unlock_irqrestore(&q->lock, flags); 1512 } 1513 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1514 1515 #ifndef clear_bit_unlock_is_negative_byte 1516 1517 /* 1518 * PG_waiters is the high bit in the same byte as PG_lock. 1519 * 1520 * On x86 (and on many other architectures), we can clear PG_lock and 1521 * test the sign bit at the same time. But if the architecture does 1522 * not support that special operation, we just do this all by hand 1523 * instead. 1524 * 1525 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1526 * being cleared, but a memory barrier should be unnecessary since it is 1527 * in the same byte as PG_locked. 1528 */ 1529 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1530 { 1531 clear_bit_unlock(nr, mem); 1532 /* smp_mb__after_atomic(); */ 1533 return test_bit(PG_waiters, mem); 1534 } 1535 1536 #endif 1537 1538 /** 1539 * folio_unlock - Unlock a locked folio. 1540 * @folio: The folio. 1541 * 1542 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1543 * 1544 * Context: May be called from interrupt or process context. May not be 1545 * called from NMI context. 1546 */ 1547 void folio_unlock(struct folio *folio) 1548 { 1549 /* Bit 7 allows x86 to check the byte's sign bit */ 1550 BUILD_BUG_ON(PG_waiters != 7); 1551 BUILD_BUG_ON(PG_locked > 7); 1552 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1553 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1554 folio_wake_bit(folio, PG_locked); 1555 } 1556 EXPORT_SYMBOL(folio_unlock); 1557 1558 /** 1559 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1560 * @folio: The folio. 1561 * 1562 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1563 * it. The folio reference held for PG_private_2 being set is released. 1564 * 1565 * This is, for example, used when a netfs folio is being written to a local 1566 * disk cache, thereby allowing writes to the cache for the same folio to be 1567 * serialised. 1568 */ 1569 void folio_end_private_2(struct folio *folio) 1570 { 1571 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1572 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1573 folio_wake_bit(folio, PG_private_2); 1574 folio_put(folio); 1575 } 1576 EXPORT_SYMBOL(folio_end_private_2); 1577 1578 /** 1579 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1580 * @folio: The folio to wait on. 1581 * 1582 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1583 */ 1584 void folio_wait_private_2(struct folio *folio) 1585 { 1586 while (folio_test_private_2(folio)) 1587 folio_wait_bit(folio, PG_private_2); 1588 } 1589 EXPORT_SYMBOL(folio_wait_private_2); 1590 1591 /** 1592 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1593 * @folio: The folio to wait on. 1594 * 1595 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1596 * fatal signal is received by the calling task. 1597 * 1598 * Return: 1599 * - 0 if successful. 1600 * - -EINTR if a fatal signal was encountered. 1601 */ 1602 int folio_wait_private_2_killable(struct folio *folio) 1603 { 1604 int ret = 0; 1605 1606 while (folio_test_private_2(folio)) { 1607 ret = folio_wait_bit_killable(folio, PG_private_2); 1608 if (ret < 0) 1609 break; 1610 } 1611 1612 return ret; 1613 } 1614 EXPORT_SYMBOL(folio_wait_private_2_killable); 1615 1616 /** 1617 * folio_end_writeback - End writeback against a folio. 1618 * @folio: The folio. 1619 */ 1620 void folio_end_writeback(struct folio *folio) 1621 { 1622 /* 1623 * folio_test_clear_reclaim() could be used here but it is an 1624 * atomic operation and overkill in this particular case. Failing 1625 * to shuffle a folio marked for immediate reclaim is too mild 1626 * a gain to justify taking an atomic operation penalty at the 1627 * end of every folio writeback. 1628 */ 1629 if (folio_test_reclaim(folio)) { 1630 folio_clear_reclaim(folio); 1631 folio_rotate_reclaimable(folio); 1632 } 1633 1634 /* 1635 * Writeback does not hold a folio reference of its own, relying 1636 * on truncation to wait for the clearing of PG_writeback. 1637 * But here we must make sure that the folio is not freed and 1638 * reused before the folio_wake(). 1639 */ 1640 folio_get(folio); 1641 if (!__folio_end_writeback(folio)) 1642 BUG(); 1643 1644 smp_mb__after_atomic(); 1645 folio_wake(folio, PG_writeback); 1646 acct_reclaim_writeback(folio); 1647 folio_put(folio); 1648 } 1649 EXPORT_SYMBOL(folio_end_writeback); 1650 1651 /** 1652 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1653 * @folio: The folio to lock 1654 */ 1655 void __folio_lock(struct folio *folio) 1656 { 1657 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1658 EXCLUSIVE); 1659 } 1660 EXPORT_SYMBOL(__folio_lock); 1661 1662 int __folio_lock_killable(struct folio *folio) 1663 { 1664 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1668 1669 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1670 { 1671 struct wait_queue_head *q = folio_waitqueue(folio); 1672 int ret = 0; 1673 1674 wait->folio = folio; 1675 wait->bit_nr = PG_locked; 1676 1677 spin_lock_irq(&q->lock); 1678 __add_wait_queue_entry_tail(q, &wait->wait); 1679 folio_set_waiters(folio); 1680 ret = !folio_trylock(folio); 1681 /* 1682 * If we were successful now, we know we're still on the 1683 * waitqueue as we're still under the lock. This means it's 1684 * safe to remove and return success, we know the callback 1685 * isn't going to trigger. 1686 */ 1687 if (!ret) 1688 __remove_wait_queue(q, &wait->wait); 1689 else 1690 ret = -EIOCBQUEUED; 1691 spin_unlock_irq(&q->lock); 1692 return ret; 1693 } 1694 1695 /* 1696 * Return values: 1697 * 0 - folio is locked. 1698 * non-zero - folio is not locked. 1699 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1700 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1701 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1702 * 1703 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1704 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1705 */ 1706 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1707 { 1708 unsigned int flags = vmf->flags; 1709 1710 if (fault_flag_allow_retry_first(flags)) { 1711 /* 1712 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1713 * released even though returning VM_FAULT_RETRY. 1714 */ 1715 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1716 return VM_FAULT_RETRY; 1717 1718 release_fault_lock(vmf); 1719 if (flags & FAULT_FLAG_KILLABLE) 1720 folio_wait_locked_killable(folio); 1721 else 1722 folio_wait_locked(folio); 1723 return VM_FAULT_RETRY; 1724 } 1725 if (flags & FAULT_FLAG_KILLABLE) { 1726 bool ret; 1727 1728 ret = __folio_lock_killable(folio); 1729 if (ret) { 1730 release_fault_lock(vmf); 1731 return VM_FAULT_RETRY; 1732 } 1733 } else { 1734 __folio_lock(folio); 1735 } 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * page_cache_next_miss() - Find the next gap in the page cache. 1742 * @mapping: Mapping. 1743 * @index: Index. 1744 * @max_scan: Maximum range to search. 1745 * 1746 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1747 * gap with the lowest index. 1748 * 1749 * This function may be called under the rcu_read_lock. However, this will 1750 * not atomically search a snapshot of the cache at a single point in time. 1751 * For example, if a gap is created at index 5, then subsequently a gap is 1752 * created at index 10, page_cache_next_miss covering both indices may 1753 * return 10 if called under the rcu_read_lock. 1754 * 1755 * Return: The index of the gap if found, otherwise an index outside the 1756 * range specified (in which case 'return - index >= max_scan' will be true). 1757 * In the rare case of index wrap-around, 0 will be returned. 1758 */ 1759 pgoff_t page_cache_next_miss(struct address_space *mapping, 1760 pgoff_t index, unsigned long max_scan) 1761 { 1762 XA_STATE(xas, &mapping->i_pages, index); 1763 1764 while (max_scan--) { 1765 void *entry = xas_next(&xas); 1766 if (!entry || xa_is_value(entry)) 1767 break; 1768 if (xas.xa_index == 0) 1769 break; 1770 } 1771 1772 return xas.xa_index; 1773 } 1774 EXPORT_SYMBOL(page_cache_next_miss); 1775 1776 /** 1777 * page_cache_prev_miss() - Find the previous gap in the page cache. 1778 * @mapping: Mapping. 1779 * @index: Index. 1780 * @max_scan: Maximum range to search. 1781 * 1782 * Search the range [max(index - max_scan + 1, 0), index] for the 1783 * gap with the highest index. 1784 * 1785 * This function may be called under the rcu_read_lock. However, this will 1786 * not atomically search a snapshot of the cache at a single point in time. 1787 * For example, if a gap is created at index 10, then subsequently a gap is 1788 * created at index 5, page_cache_prev_miss() covering both indices may 1789 * return 5 if called under the rcu_read_lock. 1790 * 1791 * Return: The index of the gap if found, otherwise an index outside the 1792 * range specified (in which case 'index - return >= max_scan' will be true). 1793 * In the rare case of wrap-around, ULONG_MAX will be returned. 1794 */ 1795 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1796 pgoff_t index, unsigned long max_scan) 1797 { 1798 XA_STATE(xas, &mapping->i_pages, index); 1799 1800 while (max_scan--) { 1801 void *entry = xas_prev(&xas); 1802 if (!entry || xa_is_value(entry)) 1803 break; 1804 if (xas.xa_index == ULONG_MAX) 1805 break; 1806 } 1807 1808 return xas.xa_index; 1809 } 1810 EXPORT_SYMBOL(page_cache_prev_miss); 1811 1812 /* 1813 * Lockless page cache protocol: 1814 * On the lookup side: 1815 * 1. Load the folio from i_pages 1816 * 2. Increment the refcount if it's not zero 1817 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1818 * 1819 * On the removal side: 1820 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1821 * B. Remove the page from i_pages 1822 * C. Return the page to the page allocator 1823 * 1824 * This means that any page may have its reference count temporarily 1825 * increased by a speculative page cache (or fast GUP) lookup as it can 1826 * be allocated by another user before the RCU grace period expires. 1827 * Because the refcount temporarily acquired here may end up being the 1828 * last refcount on the page, any page allocation must be freeable by 1829 * folio_put(). 1830 */ 1831 1832 /* 1833 * filemap_get_entry - Get a page cache entry. 1834 * @mapping: the address_space to search 1835 * @index: The page cache index. 1836 * 1837 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1838 * it is returned with an increased refcount. If it is a shadow entry 1839 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1840 * it is returned without further action. 1841 * 1842 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1843 */ 1844 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1845 { 1846 XA_STATE(xas, &mapping->i_pages, index); 1847 struct folio *folio; 1848 1849 rcu_read_lock(); 1850 repeat: 1851 xas_reset(&xas); 1852 folio = xas_load(&xas); 1853 if (xas_retry(&xas, folio)) 1854 goto repeat; 1855 /* 1856 * A shadow entry of a recently evicted page, or a swap entry from 1857 * shmem/tmpfs. Return it without attempting to raise page count. 1858 */ 1859 if (!folio || xa_is_value(folio)) 1860 goto out; 1861 1862 if (!folio_try_get(folio)) 1863 goto repeat; 1864 1865 if (unlikely(folio != xas_reload(&xas))) { 1866 folio_put(folio); 1867 goto repeat; 1868 } 1869 out: 1870 rcu_read_unlock(); 1871 1872 return folio; 1873 } 1874 1875 /** 1876 * __filemap_get_folio - Find and get a reference to a folio. 1877 * @mapping: The address_space to search. 1878 * @index: The page index. 1879 * @fgp_flags: %FGP flags modify how the folio is returned. 1880 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1881 * 1882 * Looks up the page cache entry at @mapping & @index. 1883 * 1884 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1885 * if the %GFP flags specified for %FGP_CREAT are atomic. 1886 * 1887 * If this function returns a folio, it is returned with an increased refcount. 1888 * 1889 * Return: The found folio or an ERR_PTR() otherwise. 1890 */ 1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1892 fgf_t fgp_flags, gfp_t gfp) 1893 { 1894 struct folio *folio; 1895 1896 repeat: 1897 folio = filemap_get_entry(mapping, index); 1898 if (xa_is_value(folio)) 1899 folio = NULL; 1900 if (!folio) 1901 goto no_page; 1902 1903 if (fgp_flags & FGP_LOCK) { 1904 if (fgp_flags & FGP_NOWAIT) { 1905 if (!folio_trylock(folio)) { 1906 folio_put(folio); 1907 return ERR_PTR(-EAGAIN); 1908 } 1909 } else { 1910 folio_lock(folio); 1911 } 1912 1913 /* Has the page been truncated? */ 1914 if (unlikely(folio->mapping != mapping)) { 1915 folio_unlock(folio); 1916 folio_put(folio); 1917 goto repeat; 1918 } 1919 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1920 } 1921 1922 if (fgp_flags & FGP_ACCESSED) 1923 folio_mark_accessed(folio); 1924 else if (fgp_flags & FGP_WRITE) { 1925 /* Clear idle flag for buffer write */ 1926 if (folio_test_idle(folio)) 1927 folio_clear_idle(folio); 1928 } 1929 1930 if (fgp_flags & FGP_STABLE) 1931 folio_wait_stable(folio); 1932 no_page: 1933 if (!folio && (fgp_flags & FGP_CREAT)) { 1934 unsigned order = FGF_GET_ORDER(fgp_flags); 1935 int err; 1936 1937 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1938 gfp |= __GFP_WRITE; 1939 if (fgp_flags & FGP_NOFS) 1940 gfp &= ~__GFP_FS; 1941 if (fgp_flags & FGP_NOWAIT) { 1942 gfp &= ~GFP_KERNEL; 1943 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1944 } 1945 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1946 fgp_flags |= FGP_LOCK; 1947 1948 if (!mapping_large_folio_support(mapping)) 1949 order = 0; 1950 if (order > MAX_PAGECACHE_ORDER) 1951 order = MAX_PAGECACHE_ORDER; 1952 /* If we're not aligned, allocate a smaller folio */ 1953 if (index & ((1UL << order) - 1)) 1954 order = __ffs(index); 1955 1956 do { 1957 gfp_t alloc_gfp = gfp; 1958 1959 err = -ENOMEM; 1960 if (order > 0) 1961 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1962 folio = filemap_alloc_folio(alloc_gfp, order); 1963 if (!folio) 1964 continue; 1965 1966 /* Init accessed so avoid atomic mark_page_accessed later */ 1967 if (fgp_flags & FGP_ACCESSED) 1968 __folio_set_referenced(folio); 1969 1970 err = filemap_add_folio(mapping, folio, index, gfp); 1971 if (!err) 1972 break; 1973 folio_put(folio); 1974 folio = NULL; 1975 } while (order-- > 0); 1976 1977 if (err == -EEXIST) 1978 goto repeat; 1979 if (err) 1980 return ERR_PTR(err); 1981 /* 1982 * filemap_add_folio locks the page, and for mmap 1983 * we expect an unlocked page. 1984 */ 1985 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1986 folio_unlock(folio); 1987 } 1988 1989 if (!folio) 1990 return ERR_PTR(-ENOENT); 1991 return folio; 1992 } 1993 EXPORT_SYMBOL(__filemap_get_folio); 1994 1995 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1996 xa_mark_t mark) 1997 { 1998 struct folio *folio; 1999 2000 retry: 2001 if (mark == XA_PRESENT) 2002 folio = xas_find(xas, max); 2003 else 2004 folio = xas_find_marked(xas, max, mark); 2005 2006 if (xas_retry(xas, folio)) 2007 goto retry; 2008 /* 2009 * A shadow entry of a recently evicted page, a swap 2010 * entry from shmem/tmpfs or a DAX entry. Return it 2011 * without attempting to raise page count. 2012 */ 2013 if (!folio || xa_is_value(folio)) 2014 return folio; 2015 2016 if (!folio_try_get(folio)) 2017 goto reset; 2018 2019 if (unlikely(folio != xas_reload(xas))) { 2020 folio_put(folio); 2021 goto reset; 2022 } 2023 2024 return folio; 2025 reset: 2026 xas_reset(xas); 2027 goto retry; 2028 } 2029 2030 /** 2031 * find_get_entries - gang pagecache lookup 2032 * @mapping: The address_space to search 2033 * @start: The starting page cache index 2034 * @end: The final page index (inclusive). 2035 * @fbatch: Where the resulting entries are placed. 2036 * @indices: The cache indices corresponding to the entries in @entries 2037 * 2038 * find_get_entries() will search for and return a batch of entries in 2039 * the mapping. The entries are placed in @fbatch. find_get_entries() 2040 * takes a reference on any actual folios it returns. 2041 * 2042 * The entries have ascending indexes. The indices may not be consecutive 2043 * due to not-present entries or large folios. 2044 * 2045 * Any shadow entries of evicted folios, or swap entries from 2046 * shmem/tmpfs, are included in the returned array. 2047 * 2048 * Return: The number of entries which were found. 2049 */ 2050 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2051 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2052 { 2053 XA_STATE(xas, &mapping->i_pages, *start); 2054 struct folio *folio; 2055 2056 rcu_read_lock(); 2057 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2058 indices[fbatch->nr] = xas.xa_index; 2059 if (!folio_batch_add(fbatch, folio)) 2060 break; 2061 } 2062 rcu_read_unlock(); 2063 2064 if (folio_batch_count(fbatch)) { 2065 unsigned long nr = 1; 2066 int idx = folio_batch_count(fbatch) - 1; 2067 2068 folio = fbatch->folios[idx]; 2069 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2070 nr = folio_nr_pages(folio); 2071 *start = indices[idx] + nr; 2072 } 2073 return folio_batch_count(fbatch); 2074 } 2075 2076 /** 2077 * find_lock_entries - Find a batch of pagecache entries. 2078 * @mapping: The address_space to search. 2079 * @start: The starting page cache index. 2080 * @end: The final page index (inclusive). 2081 * @fbatch: Where the resulting entries are placed. 2082 * @indices: The cache indices of the entries in @fbatch. 2083 * 2084 * find_lock_entries() will return a batch of entries from @mapping. 2085 * Swap, shadow and DAX entries are included. Folios are returned 2086 * locked and with an incremented refcount. Folios which are locked 2087 * by somebody else or under writeback are skipped. Folios which are 2088 * partially outside the range are not returned. 2089 * 2090 * The entries have ascending indexes. The indices may not be consecutive 2091 * due to not-present entries, large folios, folios which could not be 2092 * locked or folios under writeback. 2093 * 2094 * Return: The number of entries which were found. 2095 */ 2096 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2097 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2098 { 2099 XA_STATE(xas, &mapping->i_pages, *start); 2100 struct folio *folio; 2101 2102 rcu_read_lock(); 2103 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2104 if (!xa_is_value(folio)) { 2105 if (folio->index < *start) 2106 goto put; 2107 if (folio_next_index(folio) - 1 > end) 2108 goto put; 2109 if (!folio_trylock(folio)) 2110 goto put; 2111 if (folio->mapping != mapping || 2112 folio_test_writeback(folio)) 2113 goto unlock; 2114 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2115 folio); 2116 } 2117 indices[fbatch->nr] = xas.xa_index; 2118 if (!folio_batch_add(fbatch, folio)) 2119 break; 2120 continue; 2121 unlock: 2122 folio_unlock(folio); 2123 put: 2124 folio_put(folio); 2125 } 2126 rcu_read_unlock(); 2127 2128 if (folio_batch_count(fbatch)) { 2129 unsigned long nr = 1; 2130 int idx = folio_batch_count(fbatch) - 1; 2131 2132 folio = fbatch->folios[idx]; 2133 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2134 nr = folio_nr_pages(folio); 2135 *start = indices[idx] + nr; 2136 } 2137 return folio_batch_count(fbatch); 2138 } 2139 2140 /** 2141 * filemap_get_folios - Get a batch of folios 2142 * @mapping: The address_space to search 2143 * @start: The starting page index 2144 * @end: The final page index (inclusive) 2145 * @fbatch: The batch to fill. 2146 * 2147 * Search for and return a batch of folios in the mapping starting at 2148 * index @start and up to index @end (inclusive). The folios are returned 2149 * in @fbatch with an elevated reference count. 2150 * 2151 * The first folio may start before @start; if it does, it will contain 2152 * @start. The final folio may extend beyond @end; if it does, it will 2153 * contain @end. The folios have ascending indices. There may be gaps 2154 * between the folios if there are indices which have no folio in the 2155 * page cache. If folios are added to or removed from the page cache 2156 * while this is running, they may or may not be found by this call. 2157 * 2158 * Return: The number of folios which were found. 2159 * We also update @start to index the next folio for the traversal. 2160 */ 2161 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2162 pgoff_t end, struct folio_batch *fbatch) 2163 { 2164 XA_STATE(xas, &mapping->i_pages, *start); 2165 struct folio *folio; 2166 2167 rcu_read_lock(); 2168 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2169 /* Skip over shadow, swap and DAX entries */ 2170 if (xa_is_value(folio)) 2171 continue; 2172 if (!folio_batch_add(fbatch, folio)) { 2173 unsigned long nr = folio_nr_pages(folio); 2174 2175 if (folio_test_hugetlb(folio)) 2176 nr = 1; 2177 *start = folio->index + nr; 2178 goto out; 2179 } 2180 } 2181 2182 /* 2183 * We come here when there is no page beyond @end. We take care to not 2184 * overflow the index @start as it confuses some of the callers. This 2185 * breaks the iteration when there is a page at index -1 but that is 2186 * already broken anyway. 2187 */ 2188 if (end == (pgoff_t)-1) 2189 *start = (pgoff_t)-1; 2190 else 2191 *start = end + 1; 2192 out: 2193 rcu_read_unlock(); 2194 2195 return folio_batch_count(fbatch); 2196 } 2197 EXPORT_SYMBOL(filemap_get_folios); 2198 2199 /** 2200 * filemap_get_folios_contig - Get a batch of contiguous folios 2201 * @mapping: The address_space to search 2202 * @start: The starting page index 2203 * @end: The final page index (inclusive) 2204 * @fbatch: The batch to fill 2205 * 2206 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2207 * except the returned folios are guaranteed to be contiguous. This may 2208 * not return all contiguous folios if the batch gets filled up. 2209 * 2210 * Return: The number of folios found. 2211 * Also update @start to be positioned for traversal of the next folio. 2212 */ 2213 2214 unsigned filemap_get_folios_contig(struct address_space *mapping, 2215 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2216 { 2217 XA_STATE(xas, &mapping->i_pages, *start); 2218 unsigned long nr; 2219 struct folio *folio; 2220 2221 rcu_read_lock(); 2222 2223 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2224 folio = xas_next(&xas)) { 2225 if (xas_retry(&xas, folio)) 2226 continue; 2227 /* 2228 * If the entry has been swapped out, we can stop looking. 2229 * No current caller is looking for DAX entries. 2230 */ 2231 if (xa_is_value(folio)) 2232 goto update_start; 2233 2234 if (!folio_try_get(folio)) 2235 goto retry; 2236 2237 if (unlikely(folio != xas_reload(&xas))) 2238 goto put_folio; 2239 2240 if (!folio_batch_add(fbatch, folio)) { 2241 nr = folio_nr_pages(folio); 2242 2243 if (folio_test_hugetlb(folio)) 2244 nr = 1; 2245 *start = folio->index + nr; 2246 goto out; 2247 } 2248 continue; 2249 put_folio: 2250 folio_put(folio); 2251 2252 retry: 2253 xas_reset(&xas); 2254 } 2255 2256 update_start: 2257 nr = folio_batch_count(fbatch); 2258 2259 if (nr) { 2260 folio = fbatch->folios[nr - 1]; 2261 if (folio_test_hugetlb(folio)) 2262 *start = folio->index + 1; 2263 else 2264 *start = folio_next_index(folio); 2265 } 2266 out: 2267 rcu_read_unlock(); 2268 return folio_batch_count(fbatch); 2269 } 2270 EXPORT_SYMBOL(filemap_get_folios_contig); 2271 2272 /** 2273 * filemap_get_folios_tag - Get a batch of folios matching @tag 2274 * @mapping: The address_space to search 2275 * @start: The starting page index 2276 * @end: The final page index (inclusive) 2277 * @tag: The tag index 2278 * @fbatch: The batch to fill 2279 * 2280 * Same as filemap_get_folios(), but only returning folios tagged with @tag. 2281 * 2282 * Return: The number of folios found. 2283 * Also update @start to index the next folio for traversal. 2284 */ 2285 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2286 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2287 { 2288 XA_STATE(xas, &mapping->i_pages, *start); 2289 struct folio *folio; 2290 2291 rcu_read_lock(); 2292 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2293 /* 2294 * Shadow entries should never be tagged, but this iteration 2295 * is lockless so there is a window for page reclaim to evict 2296 * a page we saw tagged. Skip over it. 2297 */ 2298 if (xa_is_value(folio)) 2299 continue; 2300 if (!folio_batch_add(fbatch, folio)) { 2301 unsigned long nr = folio_nr_pages(folio); 2302 2303 if (folio_test_hugetlb(folio)) 2304 nr = 1; 2305 *start = folio->index + nr; 2306 goto out; 2307 } 2308 } 2309 /* 2310 * We come here when there is no page beyond @end. We take care to not 2311 * overflow the index @start as it confuses some of the callers. This 2312 * breaks the iteration when there is a page at index -1 but that is 2313 * already broke anyway. 2314 */ 2315 if (end == (pgoff_t)-1) 2316 *start = (pgoff_t)-1; 2317 else 2318 *start = end + 1; 2319 out: 2320 rcu_read_unlock(); 2321 2322 return folio_batch_count(fbatch); 2323 } 2324 EXPORT_SYMBOL(filemap_get_folios_tag); 2325 2326 /* 2327 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2328 * a _large_ part of the i/o request. Imagine the worst scenario: 2329 * 2330 * ---R__________________________________________B__________ 2331 * ^ reading here ^ bad block(assume 4k) 2332 * 2333 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2334 * => failing the whole request => read(R) => read(R+1) => 2335 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2336 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2337 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2338 * 2339 * It is going insane. Fix it by quickly scaling down the readahead size. 2340 */ 2341 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2342 { 2343 ra->ra_pages /= 4; 2344 } 2345 2346 /* 2347 * filemap_get_read_batch - Get a batch of folios for read 2348 * 2349 * Get a batch of folios which represent a contiguous range of bytes in 2350 * the file. No exceptional entries will be returned. If @index is in 2351 * the middle of a folio, the entire folio will be returned. The last 2352 * folio in the batch may have the readahead flag set or the uptodate flag 2353 * clear so that the caller can take the appropriate action. 2354 */ 2355 static void filemap_get_read_batch(struct address_space *mapping, 2356 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2357 { 2358 XA_STATE(xas, &mapping->i_pages, index); 2359 struct folio *folio; 2360 2361 rcu_read_lock(); 2362 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2363 if (xas_retry(&xas, folio)) 2364 continue; 2365 if (xas.xa_index > max || xa_is_value(folio)) 2366 break; 2367 if (xa_is_sibling(folio)) 2368 break; 2369 if (!folio_try_get(folio)) 2370 goto retry; 2371 2372 if (unlikely(folio != xas_reload(&xas))) 2373 goto put_folio; 2374 2375 if (!folio_batch_add(fbatch, folio)) 2376 break; 2377 if (!folio_test_uptodate(folio)) 2378 break; 2379 if (folio_test_readahead(folio)) 2380 break; 2381 xas_advance(&xas, folio_next_index(folio) - 1); 2382 continue; 2383 put_folio: 2384 folio_put(folio); 2385 retry: 2386 xas_reset(&xas); 2387 } 2388 rcu_read_unlock(); 2389 } 2390 2391 static int filemap_read_folio(struct file *file, filler_t filler, 2392 struct folio *folio) 2393 { 2394 bool workingset = folio_test_workingset(folio); 2395 unsigned long pflags; 2396 int error; 2397 2398 /* 2399 * A previous I/O error may have been due to temporary failures, 2400 * eg. multipath errors. PG_error will be set again if read_folio 2401 * fails. 2402 */ 2403 folio_clear_error(folio); 2404 2405 /* Start the actual read. The read will unlock the page. */ 2406 if (unlikely(workingset)) 2407 psi_memstall_enter(&pflags); 2408 error = filler(file, folio); 2409 if (unlikely(workingset)) 2410 psi_memstall_leave(&pflags); 2411 if (error) 2412 return error; 2413 2414 error = folio_wait_locked_killable(folio); 2415 if (error) 2416 return error; 2417 if (folio_test_uptodate(folio)) 2418 return 0; 2419 if (file) 2420 shrink_readahead_size_eio(&file->f_ra); 2421 return -EIO; 2422 } 2423 2424 static bool filemap_range_uptodate(struct address_space *mapping, 2425 loff_t pos, size_t count, struct folio *folio, 2426 bool need_uptodate) 2427 { 2428 if (folio_test_uptodate(folio)) 2429 return true; 2430 /* pipes can't handle partially uptodate pages */ 2431 if (need_uptodate) 2432 return false; 2433 if (!mapping->a_ops->is_partially_uptodate) 2434 return false; 2435 if (mapping->host->i_blkbits >= folio_shift(folio)) 2436 return false; 2437 2438 if (folio_pos(folio) > pos) { 2439 count -= folio_pos(folio) - pos; 2440 pos = 0; 2441 } else { 2442 pos -= folio_pos(folio); 2443 } 2444 2445 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2446 } 2447 2448 static int filemap_update_page(struct kiocb *iocb, 2449 struct address_space *mapping, size_t count, 2450 struct folio *folio, bool need_uptodate) 2451 { 2452 int error; 2453 2454 if (iocb->ki_flags & IOCB_NOWAIT) { 2455 if (!filemap_invalidate_trylock_shared(mapping)) 2456 return -EAGAIN; 2457 } else { 2458 filemap_invalidate_lock_shared(mapping); 2459 } 2460 2461 if (!folio_trylock(folio)) { 2462 error = -EAGAIN; 2463 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2464 goto unlock_mapping; 2465 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2466 filemap_invalidate_unlock_shared(mapping); 2467 /* 2468 * This is where we usually end up waiting for a 2469 * previously submitted readahead to finish. 2470 */ 2471 folio_put_wait_locked(folio, TASK_KILLABLE); 2472 return AOP_TRUNCATED_PAGE; 2473 } 2474 error = __folio_lock_async(folio, iocb->ki_waitq); 2475 if (error) 2476 goto unlock_mapping; 2477 } 2478 2479 error = AOP_TRUNCATED_PAGE; 2480 if (!folio->mapping) 2481 goto unlock; 2482 2483 error = 0; 2484 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2485 need_uptodate)) 2486 goto unlock; 2487 2488 error = -EAGAIN; 2489 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2490 goto unlock; 2491 2492 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2493 folio); 2494 goto unlock_mapping; 2495 unlock: 2496 folio_unlock(folio); 2497 unlock_mapping: 2498 filemap_invalidate_unlock_shared(mapping); 2499 if (error == AOP_TRUNCATED_PAGE) 2500 folio_put(folio); 2501 return error; 2502 } 2503 2504 static int filemap_create_folio(struct file *file, 2505 struct address_space *mapping, pgoff_t index, 2506 struct folio_batch *fbatch) 2507 { 2508 struct folio *folio; 2509 int error; 2510 2511 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2512 if (!folio) 2513 return -ENOMEM; 2514 2515 /* 2516 * Protect against truncate / hole punch. Grabbing invalidate_lock 2517 * here assures we cannot instantiate and bring uptodate new 2518 * pagecache folios after evicting page cache during truncate 2519 * and before actually freeing blocks. Note that we could 2520 * release invalidate_lock after inserting the folio into 2521 * the page cache as the locked folio would then be enough to 2522 * synchronize with hole punching. But there are code paths 2523 * such as filemap_update_page() filling in partially uptodate 2524 * pages or ->readahead() that need to hold invalidate_lock 2525 * while mapping blocks for IO so let's hold the lock here as 2526 * well to keep locking rules simple. 2527 */ 2528 filemap_invalidate_lock_shared(mapping); 2529 error = filemap_add_folio(mapping, folio, index, 2530 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2531 if (error == -EEXIST) 2532 error = AOP_TRUNCATED_PAGE; 2533 if (error) 2534 goto error; 2535 2536 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2537 if (error) 2538 goto error; 2539 2540 filemap_invalidate_unlock_shared(mapping); 2541 folio_batch_add(fbatch, folio); 2542 return 0; 2543 error: 2544 filemap_invalidate_unlock_shared(mapping); 2545 folio_put(folio); 2546 return error; 2547 } 2548 2549 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2550 struct address_space *mapping, struct folio *folio, 2551 pgoff_t last_index) 2552 { 2553 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2554 2555 if (iocb->ki_flags & IOCB_NOIO) 2556 return -EAGAIN; 2557 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2558 return 0; 2559 } 2560 2561 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2562 struct folio_batch *fbatch, bool need_uptodate) 2563 { 2564 struct file *filp = iocb->ki_filp; 2565 struct address_space *mapping = filp->f_mapping; 2566 struct file_ra_state *ra = &filp->f_ra; 2567 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2568 pgoff_t last_index; 2569 struct folio *folio; 2570 int err = 0; 2571 2572 /* "last_index" is the index of the page beyond the end of the read */ 2573 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2574 retry: 2575 if (fatal_signal_pending(current)) 2576 return -EINTR; 2577 2578 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2579 if (!folio_batch_count(fbatch)) { 2580 if (iocb->ki_flags & IOCB_NOIO) 2581 return -EAGAIN; 2582 page_cache_sync_readahead(mapping, ra, filp, index, 2583 last_index - index); 2584 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2585 } 2586 if (!folio_batch_count(fbatch)) { 2587 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2588 return -EAGAIN; 2589 err = filemap_create_folio(filp, mapping, 2590 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2591 if (err == AOP_TRUNCATED_PAGE) 2592 goto retry; 2593 return err; 2594 } 2595 2596 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2597 if (folio_test_readahead(folio)) { 2598 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2599 if (err) 2600 goto err; 2601 } 2602 if (!folio_test_uptodate(folio)) { 2603 if ((iocb->ki_flags & IOCB_WAITQ) && 2604 folio_batch_count(fbatch) > 1) 2605 iocb->ki_flags |= IOCB_NOWAIT; 2606 err = filemap_update_page(iocb, mapping, count, folio, 2607 need_uptodate); 2608 if (err) 2609 goto err; 2610 } 2611 2612 return 0; 2613 err: 2614 if (err < 0) 2615 folio_put(folio); 2616 if (likely(--fbatch->nr)) 2617 return 0; 2618 if (err == AOP_TRUNCATED_PAGE) 2619 goto retry; 2620 return err; 2621 } 2622 2623 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2624 { 2625 unsigned int shift = folio_shift(folio); 2626 2627 return (pos1 >> shift == pos2 >> shift); 2628 } 2629 2630 /** 2631 * filemap_read - Read data from the page cache. 2632 * @iocb: The iocb to read. 2633 * @iter: Destination for the data. 2634 * @already_read: Number of bytes already read by the caller. 2635 * 2636 * Copies data from the page cache. If the data is not currently present, 2637 * uses the readahead and read_folio address_space operations to fetch it. 2638 * 2639 * Return: Total number of bytes copied, including those already read by 2640 * the caller. If an error happens before any bytes are copied, returns 2641 * a negative error number. 2642 */ 2643 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2644 ssize_t already_read) 2645 { 2646 struct file *filp = iocb->ki_filp; 2647 struct file_ra_state *ra = &filp->f_ra; 2648 struct address_space *mapping = filp->f_mapping; 2649 struct inode *inode = mapping->host; 2650 struct folio_batch fbatch; 2651 int i, error = 0; 2652 bool writably_mapped; 2653 loff_t isize, end_offset; 2654 loff_t last_pos = ra->prev_pos; 2655 2656 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2657 return 0; 2658 if (unlikely(!iov_iter_count(iter))) 2659 return 0; 2660 2661 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2662 folio_batch_init(&fbatch); 2663 2664 do { 2665 cond_resched(); 2666 2667 /* 2668 * If we've already successfully copied some data, then we 2669 * can no longer safely return -EIOCBQUEUED. Hence mark 2670 * an async read NOWAIT at that point. 2671 */ 2672 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2673 iocb->ki_flags |= IOCB_NOWAIT; 2674 2675 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2676 break; 2677 2678 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2679 if (error < 0) 2680 break; 2681 2682 /* 2683 * i_size must be checked after we know the pages are Uptodate. 2684 * 2685 * Checking i_size after the check allows us to calculate 2686 * the correct value for "nr", which means the zero-filled 2687 * part of the page is not copied back to userspace (unless 2688 * another truncate extends the file - this is desired though). 2689 */ 2690 isize = i_size_read(inode); 2691 if (unlikely(iocb->ki_pos >= isize)) 2692 goto put_folios; 2693 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2694 2695 /* 2696 * Pairs with a barrier in 2697 * block_write_end()->mark_buffer_dirty() or other page 2698 * dirtying routines like iomap_write_end() to ensure 2699 * changes to page contents are visible before we see 2700 * increased inode size. 2701 */ 2702 smp_rmb(); 2703 2704 /* 2705 * Once we start copying data, we don't want to be touching any 2706 * cachelines that might be contended: 2707 */ 2708 writably_mapped = mapping_writably_mapped(mapping); 2709 2710 /* 2711 * When a read accesses the same folio several times, only 2712 * mark it as accessed the first time. 2713 */ 2714 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2715 fbatch.folios[0])) 2716 folio_mark_accessed(fbatch.folios[0]); 2717 2718 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2719 struct folio *folio = fbatch.folios[i]; 2720 size_t fsize = folio_size(folio); 2721 size_t offset = iocb->ki_pos & (fsize - 1); 2722 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2723 fsize - offset); 2724 size_t copied; 2725 2726 if (end_offset < folio_pos(folio)) 2727 break; 2728 if (i > 0) 2729 folio_mark_accessed(folio); 2730 /* 2731 * If users can be writing to this folio using arbitrary 2732 * virtual addresses, take care of potential aliasing 2733 * before reading the folio on the kernel side. 2734 */ 2735 if (writably_mapped) 2736 flush_dcache_folio(folio); 2737 2738 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2739 2740 already_read += copied; 2741 iocb->ki_pos += copied; 2742 last_pos = iocb->ki_pos; 2743 2744 if (copied < bytes) { 2745 error = -EFAULT; 2746 break; 2747 } 2748 } 2749 put_folios: 2750 for (i = 0; i < folio_batch_count(&fbatch); i++) 2751 folio_put(fbatch.folios[i]); 2752 folio_batch_init(&fbatch); 2753 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2754 2755 file_accessed(filp); 2756 ra->prev_pos = last_pos; 2757 return already_read ? already_read : error; 2758 } 2759 EXPORT_SYMBOL_GPL(filemap_read); 2760 2761 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2762 { 2763 struct address_space *mapping = iocb->ki_filp->f_mapping; 2764 loff_t pos = iocb->ki_pos; 2765 loff_t end = pos + count - 1; 2766 2767 if (iocb->ki_flags & IOCB_NOWAIT) { 2768 if (filemap_range_needs_writeback(mapping, pos, end)) 2769 return -EAGAIN; 2770 return 0; 2771 } 2772 2773 return filemap_write_and_wait_range(mapping, pos, end); 2774 } 2775 2776 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2777 { 2778 struct address_space *mapping = iocb->ki_filp->f_mapping; 2779 loff_t pos = iocb->ki_pos; 2780 loff_t end = pos + count - 1; 2781 int ret; 2782 2783 if (iocb->ki_flags & IOCB_NOWAIT) { 2784 /* we could block if there are any pages in the range */ 2785 if (filemap_range_has_page(mapping, pos, end)) 2786 return -EAGAIN; 2787 } else { 2788 ret = filemap_write_and_wait_range(mapping, pos, end); 2789 if (ret) 2790 return ret; 2791 } 2792 2793 /* 2794 * After a write we want buffered reads to be sure to go to disk to get 2795 * the new data. We invalidate clean cached page from the region we're 2796 * about to write. We do this *before* the write so that we can return 2797 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2798 */ 2799 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2800 end >> PAGE_SHIFT); 2801 } 2802 2803 /** 2804 * generic_file_read_iter - generic filesystem read routine 2805 * @iocb: kernel I/O control block 2806 * @iter: destination for the data read 2807 * 2808 * This is the "read_iter()" routine for all filesystems 2809 * that can use the page cache directly. 2810 * 2811 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2812 * be returned when no data can be read without waiting for I/O requests 2813 * to complete; it doesn't prevent readahead. 2814 * 2815 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2816 * requests shall be made for the read or for readahead. When no data 2817 * can be read, -EAGAIN shall be returned. When readahead would be 2818 * triggered, a partial, possibly empty read shall be returned. 2819 * 2820 * Return: 2821 * * number of bytes copied, even for partial reads 2822 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2823 */ 2824 ssize_t 2825 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2826 { 2827 size_t count = iov_iter_count(iter); 2828 ssize_t retval = 0; 2829 2830 if (!count) 2831 return 0; /* skip atime */ 2832 2833 if (iocb->ki_flags & IOCB_DIRECT) { 2834 struct file *file = iocb->ki_filp; 2835 struct address_space *mapping = file->f_mapping; 2836 struct inode *inode = mapping->host; 2837 2838 retval = kiocb_write_and_wait(iocb, count); 2839 if (retval < 0) 2840 return retval; 2841 file_accessed(file); 2842 2843 retval = mapping->a_ops->direct_IO(iocb, iter); 2844 if (retval >= 0) { 2845 iocb->ki_pos += retval; 2846 count -= retval; 2847 } 2848 if (retval != -EIOCBQUEUED) 2849 iov_iter_revert(iter, count - iov_iter_count(iter)); 2850 2851 /* 2852 * Btrfs can have a short DIO read if we encounter 2853 * compressed extents, so if there was an error, or if 2854 * we've already read everything we wanted to, or if 2855 * there was a short read because we hit EOF, go ahead 2856 * and return. Otherwise fallthrough to buffered io for 2857 * the rest of the read. Buffered reads will not work for 2858 * DAX files, so don't bother trying. 2859 */ 2860 if (retval < 0 || !count || IS_DAX(inode)) 2861 return retval; 2862 if (iocb->ki_pos >= i_size_read(inode)) 2863 return retval; 2864 } 2865 2866 return filemap_read(iocb, iter, retval); 2867 } 2868 EXPORT_SYMBOL(generic_file_read_iter); 2869 2870 /* 2871 * Splice subpages from a folio into a pipe. 2872 */ 2873 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2874 struct folio *folio, loff_t fpos, size_t size) 2875 { 2876 struct page *page; 2877 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2878 2879 page = folio_page(folio, offset / PAGE_SIZE); 2880 size = min(size, folio_size(folio) - offset); 2881 offset %= PAGE_SIZE; 2882 2883 while (spliced < size && 2884 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2885 struct pipe_buffer *buf = pipe_head_buf(pipe); 2886 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2887 2888 *buf = (struct pipe_buffer) { 2889 .ops = &page_cache_pipe_buf_ops, 2890 .page = page, 2891 .offset = offset, 2892 .len = part, 2893 }; 2894 folio_get(folio); 2895 pipe->head++; 2896 page++; 2897 spliced += part; 2898 offset = 0; 2899 } 2900 2901 return spliced; 2902 } 2903 2904 /** 2905 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2906 * @in: The file to read from 2907 * @ppos: Pointer to the file position to read from 2908 * @pipe: The pipe to splice into 2909 * @len: The amount to splice 2910 * @flags: The SPLICE_F_* flags 2911 * 2912 * This function gets folios from a file's pagecache and splices them into the 2913 * pipe. Readahead will be called as necessary to fill more folios. This may 2914 * be used for blockdevs also. 2915 * 2916 * Return: On success, the number of bytes read will be returned and *@ppos 2917 * will be updated if appropriate; 0 will be returned if there is no more data 2918 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2919 * other negative error code will be returned on error. A short read may occur 2920 * if the pipe has insufficient space, we reach the end of the data or we hit a 2921 * hole. 2922 */ 2923 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2924 struct pipe_inode_info *pipe, 2925 size_t len, unsigned int flags) 2926 { 2927 struct folio_batch fbatch; 2928 struct kiocb iocb; 2929 size_t total_spliced = 0, used, npages; 2930 loff_t isize, end_offset; 2931 bool writably_mapped; 2932 int i, error = 0; 2933 2934 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2935 return 0; 2936 2937 init_sync_kiocb(&iocb, in); 2938 iocb.ki_pos = *ppos; 2939 2940 /* Work out how much data we can actually add into the pipe */ 2941 used = pipe_occupancy(pipe->head, pipe->tail); 2942 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2943 len = min_t(size_t, len, npages * PAGE_SIZE); 2944 2945 folio_batch_init(&fbatch); 2946 2947 do { 2948 cond_resched(); 2949 2950 if (*ppos >= i_size_read(in->f_mapping->host)) 2951 break; 2952 2953 iocb.ki_pos = *ppos; 2954 error = filemap_get_pages(&iocb, len, &fbatch, true); 2955 if (error < 0) 2956 break; 2957 2958 /* 2959 * i_size must be checked after we know the pages are Uptodate. 2960 * 2961 * Checking i_size after the check allows us to calculate 2962 * the correct value for "nr", which means the zero-filled 2963 * part of the page is not copied back to userspace (unless 2964 * another truncate extends the file - this is desired though). 2965 */ 2966 isize = i_size_read(in->f_mapping->host); 2967 if (unlikely(*ppos >= isize)) 2968 break; 2969 end_offset = min_t(loff_t, isize, *ppos + len); 2970 2971 /* 2972 * Once we start copying data, we don't want to be touching any 2973 * cachelines that might be contended: 2974 */ 2975 writably_mapped = mapping_writably_mapped(in->f_mapping); 2976 2977 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2978 struct folio *folio = fbatch.folios[i]; 2979 size_t n; 2980 2981 if (folio_pos(folio) >= end_offset) 2982 goto out; 2983 folio_mark_accessed(folio); 2984 2985 /* 2986 * If users can be writing to this folio using arbitrary 2987 * virtual addresses, take care of potential aliasing 2988 * before reading the folio on the kernel side. 2989 */ 2990 if (writably_mapped) 2991 flush_dcache_folio(folio); 2992 2993 n = min_t(loff_t, len, isize - *ppos); 2994 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2995 if (!n) 2996 goto out; 2997 len -= n; 2998 total_spliced += n; 2999 *ppos += n; 3000 in->f_ra.prev_pos = *ppos; 3001 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3002 goto out; 3003 } 3004 3005 folio_batch_release(&fbatch); 3006 } while (len); 3007 3008 out: 3009 folio_batch_release(&fbatch); 3010 file_accessed(in); 3011 3012 return total_spliced ? total_spliced : error; 3013 } 3014 EXPORT_SYMBOL(filemap_splice_read); 3015 3016 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3017 struct address_space *mapping, struct folio *folio, 3018 loff_t start, loff_t end, bool seek_data) 3019 { 3020 const struct address_space_operations *ops = mapping->a_ops; 3021 size_t offset, bsz = i_blocksize(mapping->host); 3022 3023 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3024 return seek_data ? start : end; 3025 if (!ops->is_partially_uptodate) 3026 return seek_data ? end : start; 3027 3028 xas_pause(xas); 3029 rcu_read_unlock(); 3030 folio_lock(folio); 3031 if (unlikely(folio->mapping != mapping)) 3032 goto unlock; 3033 3034 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3035 3036 do { 3037 if (ops->is_partially_uptodate(folio, offset, bsz) == 3038 seek_data) 3039 break; 3040 start = (start + bsz) & ~(bsz - 1); 3041 offset += bsz; 3042 } while (offset < folio_size(folio)); 3043 unlock: 3044 folio_unlock(folio); 3045 rcu_read_lock(); 3046 return start; 3047 } 3048 3049 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3050 { 3051 if (xa_is_value(folio)) 3052 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 3053 return folio_size(folio); 3054 } 3055 3056 /** 3057 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3058 * @mapping: Address space to search. 3059 * @start: First byte to consider. 3060 * @end: Limit of search (exclusive). 3061 * @whence: Either SEEK_HOLE or SEEK_DATA. 3062 * 3063 * If the page cache knows which blocks contain holes and which blocks 3064 * contain data, your filesystem can use this function to implement 3065 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3066 * entirely memory-based such as tmpfs, and filesystems which support 3067 * unwritten extents. 3068 * 3069 * Return: The requested offset on success, or -ENXIO if @whence specifies 3070 * SEEK_DATA and there is no data after @start. There is an implicit hole 3071 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3072 * and @end contain data. 3073 */ 3074 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3075 loff_t end, int whence) 3076 { 3077 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3078 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3079 bool seek_data = (whence == SEEK_DATA); 3080 struct folio *folio; 3081 3082 if (end <= start) 3083 return -ENXIO; 3084 3085 rcu_read_lock(); 3086 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3087 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3088 size_t seek_size; 3089 3090 if (start < pos) { 3091 if (!seek_data) 3092 goto unlock; 3093 start = pos; 3094 } 3095 3096 seek_size = seek_folio_size(&xas, folio); 3097 pos = round_up((u64)pos + 1, seek_size); 3098 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3099 seek_data); 3100 if (start < pos) 3101 goto unlock; 3102 if (start >= end) 3103 break; 3104 if (seek_size > PAGE_SIZE) 3105 xas_set(&xas, pos >> PAGE_SHIFT); 3106 if (!xa_is_value(folio)) 3107 folio_put(folio); 3108 } 3109 if (seek_data) 3110 start = -ENXIO; 3111 unlock: 3112 rcu_read_unlock(); 3113 if (folio && !xa_is_value(folio)) 3114 folio_put(folio); 3115 if (start > end) 3116 return end; 3117 return start; 3118 } 3119 3120 #ifdef CONFIG_MMU 3121 #define MMAP_LOTSAMISS (100) 3122 /* 3123 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3124 * @vmf - the vm_fault for this fault. 3125 * @folio - the folio to lock. 3126 * @fpin - the pointer to the file we may pin (or is already pinned). 3127 * 3128 * This works similar to lock_folio_or_retry in that it can drop the 3129 * mmap_lock. It differs in that it actually returns the folio locked 3130 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3131 * to drop the mmap_lock then fpin will point to the pinned file and 3132 * needs to be fput()'ed at a later point. 3133 */ 3134 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3135 struct file **fpin) 3136 { 3137 if (folio_trylock(folio)) 3138 return 1; 3139 3140 /* 3141 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3142 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3143 * is supposed to work. We have way too many special cases.. 3144 */ 3145 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3146 return 0; 3147 3148 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3149 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3150 if (__folio_lock_killable(folio)) { 3151 /* 3152 * We didn't have the right flags to drop the mmap_lock, 3153 * but all fault_handlers only check for fatal signals 3154 * if we return VM_FAULT_RETRY, so we need to drop the 3155 * mmap_lock here and return 0 if we don't have a fpin. 3156 */ 3157 if (*fpin == NULL) 3158 mmap_read_unlock(vmf->vma->vm_mm); 3159 return 0; 3160 } 3161 } else 3162 __folio_lock(folio); 3163 3164 return 1; 3165 } 3166 3167 /* 3168 * Synchronous readahead happens when we don't even find a page in the page 3169 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3170 * to drop the mmap sem we return the file that was pinned in order for us to do 3171 * that. If we didn't pin a file then we return NULL. The file that is 3172 * returned needs to be fput()'ed when we're done with it. 3173 */ 3174 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3175 { 3176 struct file *file = vmf->vma->vm_file; 3177 struct file_ra_state *ra = &file->f_ra; 3178 struct address_space *mapping = file->f_mapping; 3179 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3180 struct file *fpin = NULL; 3181 unsigned long vm_flags = vmf->vma->vm_flags; 3182 unsigned int mmap_miss; 3183 3184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3185 /* Use the readahead code, even if readahead is disabled */ 3186 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3187 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3188 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3189 ra->size = HPAGE_PMD_NR; 3190 /* 3191 * Fetch two PMD folios, so we get the chance to actually 3192 * readahead, unless we've been told not to. 3193 */ 3194 if (!(vm_flags & VM_RAND_READ)) 3195 ra->size *= 2; 3196 ra->async_size = HPAGE_PMD_NR; 3197 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3198 return fpin; 3199 } 3200 #endif 3201 3202 /* If we don't want any read-ahead, don't bother */ 3203 if (vm_flags & VM_RAND_READ) 3204 return fpin; 3205 if (!ra->ra_pages) 3206 return fpin; 3207 3208 if (vm_flags & VM_SEQ_READ) { 3209 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3210 page_cache_sync_ra(&ractl, ra->ra_pages); 3211 return fpin; 3212 } 3213 3214 /* Avoid banging the cache line if not needed */ 3215 mmap_miss = READ_ONCE(ra->mmap_miss); 3216 if (mmap_miss < MMAP_LOTSAMISS * 10) 3217 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3218 3219 /* 3220 * Do we miss much more than hit in this file? If so, 3221 * stop bothering with read-ahead. It will only hurt. 3222 */ 3223 if (mmap_miss > MMAP_LOTSAMISS) 3224 return fpin; 3225 3226 /* 3227 * mmap read-around 3228 */ 3229 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3230 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3231 ra->size = ra->ra_pages; 3232 ra->async_size = ra->ra_pages / 4; 3233 ractl._index = ra->start; 3234 page_cache_ra_order(&ractl, ra, 0); 3235 return fpin; 3236 } 3237 3238 /* 3239 * Asynchronous readahead happens when we find the page and PG_readahead, 3240 * so we want to possibly extend the readahead further. We return the file that 3241 * was pinned if we have to drop the mmap_lock in order to do IO. 3242 */ 3243 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3244 struct folio *folio) 3245 { 3246 struct file *file = vmf->vma->vm_file; 3247 struct file_ra_state *ra = &file->f_ra; 3248 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3249 struct file *fpin = NULL; 3250 unsigned int mmap_miss; 3251 3252 /* If we don't want any read-ahead, don't bother */ 3253 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3254 return fpin; 3255 3256 mmap_miss = READ_ONCE(ra->mmap_miss); 3257 if (mmap_miss) 3258 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3259 3260 if (folio_test_readahead(folio)) { 3261 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3262 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3263 } 3264 return fpin; 3265 } 3266 3267 /** 3268 * filemap_fault - read in file data for page fault handling 3269 * @vmf: struct vm_fault containing details of the fault 3270 * 3271 * filemap_fault() is invoked via the vma operations vector for a 3272 * mapped memory region to read in file data during a page fault. 3273 * 3274 * The goto's are kind of ugly, but this streamlines the normal case of having 3275 * it in the page cache, and handles the special cases reasonably without 3276 * having a lot of duplicated code. 3277 * 3278 * vma->vm_mm->mmap_lock must be held on entry. 3279 * 3280 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3281 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3282 * 3283 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3284 * has not been released. 3285 * 3286 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3287 * 3288 * Return: bitwise-OR of %VM_FAULT_ codes. 3289 */ 3290 vm_fault_t filemap_fault(struct vm_fault *vmf) 3291 { 3292 int error; 3293 struct file *file = vmf->vma->vm_file; 3294 struct file *fpin = NULL; 3295 struct address_space *mapping = file->f_mapping; 3296 struct inode *inode = mapping->host; 3297 pgoff_t max_idx, index = vmf->pgoff; 3298 struct folio *folio; 3299 vm_fault_t ret = 0; 3300 bool mapping_locked = false; 3301 3302 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3303 if (unlikely(index >= max_idx)) 3304 return VM_FAULT_SIGBUS; 3305 3306 /* 3307 * Do we have something in the page cache already? 3308 */ 3309 folio = filemap_get_folio(mapping, index); 3310 if (likely(!IS_ERR(folio))) { 3311 /* 3312 * We found the page, so try async readahead before waiting for 3313 * the lock. 3314 */ 3315 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3316 fpin = do_async_mmap_readahead(vmf, folio); 3317 if (unlikely(!folio_test_uptodate(folio))) { 3318 filemap_invalidate_lock_shared(mapping); 3319 mapping_locked = true; 3320 } 3321 } else { 3322 /* No page in the page cache at all */ 3323 count_vm_event(PGMAJFAULT); 3324 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3325 ret = VM_FAULT_MAJOR; 3326 fpin = do_sync_mmap_readahead(vmf); 3327 retry_find: 3328 /* 3329 * See comment in filemap_create_folio() why we need 3330 * invalidate_lock 3331 */ 3332 if (!mapping_locked) { 3333 filemap_invalidate_lock_shared(mapping); 3334 mapping_locked = true; 3335 } 3336 folio = __filemap_get_folio(mapping, index, 3337 FGP_CREAT|FGP_FOR_MMAP, 3338 vmf->gfp_mask); 3339 if (IS_ERR(folio)) { 3340 if (fpin) 3341 goto out_retry; 3342 filemap_invalidate_unlock_shared(mapping); 3343 return VM_FAULT_OOM; 3344 } 3345 } 3346 3347 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3348 goto out_retry; 3349 3350 /* Did it get truncated? */ 3351 if (unlikely(folio->mapping != mapping)) { 3352 folio_unlock(folio); 3353 folio_put(folio); 3354 goto retry_find; 3355 } 3356 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3357 3358 /* 3359 * We have a locked page in the page cache, now we need to check 3360 * that it's up-to-date. If not, it is going to be due to an error. 3361 */ 3362 if (unlikely(!folio_test_uptodate(folio))) { 3363 /* 3364 * The page was in cache and uptodate and now it is not. 3365 * Strange but possible since we didn't hold the page lock all 3366 * the time. Let's drop everything get the invalidate lock and 3367 * try again. 3368 */ 3369 if (!mapping_locked) { 3370 folio_unlock(folio); 3371 folio_put(folio); 3372 goto retry_find; 3373 } 3374 goto page_not_uptodate; 3375 } 3376 3377 /* 3378 * We've made it this far and we had to drop our mmap_lock, now is the 3379 * time to return to the upper layer and have it re-find the vma and 3380 * redo the fault. 3381 */ 3382 if (fpin) { 3383 folio_unlock(folio); 3384 goto out_retry; 3385 } 3386 if (mapping_locked) 3387 filemap_invalidate_unlock_shared(mapping); 3388 3389 /* 3390 * Found the page and have a reference on it. 3391 * We must recheck i_size under page lock. 3392 */ 3393 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3394 if (unlikely(index >= max_idx)) { 3395 folio_unlock(folio); 3396 folio_put(folio); 3397 return VM_FAULT_SIGBUS; 3398 } 3399 3400 vmf->page = folio_file_page(folio, index); 3401 return ret | VM_FAULT_LOCKED; 3402 3403 page_not_uptodate: 3404 /* 3405 * Umm, take care of errors if the page isn't up-to-date. 3406 * Try to re-read it _once_. We do this synchronously, 3407 * because there really aren't any performance issues here 3408 * and we need to check for errors. 3409 */ 3410 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3411 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3412 if (fpin) 3413 goto out_retry; 3414 folio_put(folio); 3415 3416 if (!error || error == AOP_TRUNCATED_PAGE) 3417 goto retry_find; 3418 filemap_invalidate_unlock_shared(mapping); 3419 3420 return VM_FAULT_SIGBUS; 3421 3422 out_retry: 3423 /* 3424 * We dropped the mmap_lock, we need to return to the fault handler to 3425 * re-find the vma and come back and find our hopefully still populated 3426 * page. 3427 */ 3428 if (!IS_ERR(folio)) 3429 folio_put(folio); 3430 if (mapping_locked) 3431 filemap_invalidate_unlock_shared(mapping); 3432 if (fpin) 3433 fput(fpin); 3434 return ret | VM_FAULT_RETRY; 3435 } 3436 EXPORT_SYMBOL(filemap_fault); 3437 3438 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3439 pgoff_t start) 3440 { 3441 struct mm_struct *mm = vmf->vma->vm_mm; 3442 3443 /* Huge page is mapped? No need to proceed. */ 3444 if (pmd_trans_huge(*vmf->pmd)) { 3445 folio_unlock(folio); 3446 folio_put(folio); 3447 return true; 3448 } 3449 3450 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3451 struct page *page = folio_file_page(folio, start); 3452 vm_fault_t ret = do_set_pmd(vmf, page); 3453 if (!ret) { 3454 /* The page is mapped successfully, reference consumed. */ 3455 folio_unlock(folio); 3456 return true; 3457 } 3458 } 3459 3460 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3461 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3462 3463 return false; 3464 } 3465 3466 static struct folio *next_uptodate_folio(struct xa_state *xas, 3467 struct address_space *mapping, pgoff_t end_pgoff) 3468 { 3469 struct folio *folio = xas_next_entry(xas, end_pgoff); 3470 unsigned long max_idx; 3471 3472 do { 3473 if (!folio) 3474 return NULL; 3475 if (xas_retry(xas, folio)) 3476 continue; 3477 if (xa_is_value(folio)) 3478 continue; 3479 if (folio_test_locked(folio)) 3480 continue; 3481 if (!folio_try_get(folio)) 3482 continue; 3483 /* Has the page moved or been split? */ 3484 if (unlikely(folio != xas_reload(xas))) 3485 goto skip; 3486 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3487 goto skip; 3488 if (!folio_trylock(folio)) 3489 goto skip; 3490 if (folio->mapping != mapping) 3491 goto unlock; 3492 if (!folio_test_uptodate(folio)) 3493 goto unlock; 3494 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3495 if (xas->xa_index >= max_idx) 3496 goto unlock; 3497 return folio; 3498 unlock: 3499 folio_unlock(folio); 3500 skip: 3501 folio_put(folio); 3502 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3503 3504 return NULL; 3505 } 3506 3507 /* 3508 * Map page range [start_page, start_page + nr_pages) of folio. 3509 * start_page is gotten from start by folio_page(folio, start) 3510 */ 3511 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3512 struct folio *folio, unsigned long start, 3513 unsigned long addr, unsigned int nr_pages, 3514 unsigned int *mmap_miss) 3515 { 3516 vm_fault_t ret = 0; 3517 struct page *page = folio_page(folio, start); 3518 unsigned int count = 0; 3519 pte_t *old_ptep = vmf->pte; 3520 3521 do { 3522 if (PageHWPoison(page + count)) 3523 goto skip; 3524 3525 (*mmap_miss)++; 3526 3527 /* 3528 * NOTE: If there're PTE markers, we'll leave them to be 3529 * handled in the specific fault path, and it'll prohibit the 3530 * fault-around logic. 3531 */ 3532 if (!pte_none(vmf->pte[count])) 3533 goto skip; 3534 3535 count++; 3536 continue; 3537 skip: 3538 if (count) { 3539 set_pte_range(vmf, folio, page, count, addr); 3540 folio_ref_add(folio, count); 3541 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3542 ret = VM_FAULT_NOPAGE; 3543 } 3544 3545 count++; 3546 page += count; 3547 vmf->pte += count; 3548 addr += count * PAGE_SIZE; 3549 count = 0; 3550 } while (--nr_pages > 0); 3551 3552 if (count) { 3553 set_pte_range(vmf, folio, page, count, addr); 3554 folio_ref_add(folio, count); 3555 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3556 ret = VM_FAULT_NOPAGE; 3557 } 3558 3559 vmf->pte = old_ptep; 3560 3561 return ret; 3562 } 3563 3564 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3565 struct folio *folio, unsigned long addr, 3566 unsigned int *mmap_miss) 3567 { 3568 vm_fault_t ret = 0; 3569 struct page *page = &folio->page; 3570 3571 if (PageHWPoison(page)) 3572 return ret; 3573 3574 (*mmap_miss)++; 3575 3576 /* 3577 * NOTE: If there're PTE markers, we'll leave them to be 3578 * handled in the specific fault path, and it'll prohibit 3579 * the fault-around logic. 3580 */ 3581 if (!pte_none(ptep_get(vmf->pte))) 3582 return ret; 3583 3584 if (vmf->address == addr) 3585 ret = VM_FAULT_NOPAGE; 3586 3587 set_pte_range(vmf, folio, page, 1, addr); 3588 folio_ref_inc(folio); 3589 3590 return ret; 3591 } 3592 3593 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3594 pgoff_t start_pgoff, pgoff_t end_pgoff) 3595 { 3596 struct vm_area_struct *vma = vmf->vma; 3597 struct file *file = vma->vm_file; 3598 struct address_space *mapping = file->f_mapping; 3599 pgoff_t last_pgoff = start_pgoff; 3600 unsigned long addr; 3601 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3602 struct folio *folio; 3603 vm_fault_t ret = 0; 3604 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved; 3605 3606 rcu_read_lock(); 3607 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3608 if (!folio) 3609 goto out; 3610 3611 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3612 ret = VM_FAULT_NOPAGE; 3613 goto out; 3614 } 3615 3616 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3617 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3618 if (!vmf->pte) { 3619 folio_unlock(folio); 3620 folio_put(folio); 3621 goto out; 3622 } 3623 do { 3624 unsigned long end; 3625 3626 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3627 vmf->pte += xas.xa_index - last_pgoff; 3628 last_pgoff = xas.xa_index; 3629 end = folio->index + folio_nr_pages(folio) - 1; 3630 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3631 3632 if (!folio_test_large(folio)) 3633 ret |= filemap_map_order0_folio(vmf, 3634 folio, addr, &mmap_miss); 3635 else 3636 ret |= filemap_map_folio_range(vmf, folio, 3637 xas.xa_index - folio->index, addr, 3638 nr_pages, &mmap_miss); 3639 3640 folio_unlock(folio); 3641 folio_put(folio); 3642 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3643 pte_unmap_unlock(vmf->pte, vmf->ptl); 3644 out: 3645 rcu_read_unlock(); 3646 3647 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3648 if (mmap_miss >= mmap_miss_saved) 3649 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3650 else 3651 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3652 3653 return ret; 3654 } 3655 EXPORT_SYMBOL(filemap_map_pages); 3656 3657 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3658 { 3659 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3660 struct folio *folio = page_folio(vmf->page); 3661 vm_fault_t ret = VM_FAULT_LOCKED; 3662 3663 sb_start_pagefault(mapping->host->i_sb); 3664 file_update_time(vmf->vma->vm_file); 3665 folio_lock(folio); 3666 if (folio->mapping != mapping) { 3667 folio_unlock(folio); 3668 ret = VM_FAULT_NOPAGE; 3669 goto out; 3670 } 3671 /* 3672 * We mark the folio dirty already here so that when freeze is in 3673 * progress, we are guaranteed that writeback during freezing will 3674 * see the dirty folio and writeprotect it again. 3675 */ 3676 folio_mark_dirty(folio); 3677 folio_wait_stable(folio); 3678 out: 3679 sb_end_pagefault(mapping->host->i_sb); 3680 return ret; 3681 } 3682 3683 const struct vm_operations_struct generic_file_vm_ops = { 3684 .fault = filemap_fault, 3685 .map_pages = filemap_map_pages, 3686 .page_mkwrite = filemap_page_mkwrite, 3687 }; 3688 3689 /* This is used for a general mmap of a disk file */ 3690 3691 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3692 { 3693 struct address_space *mapping = file->f_mapping; 3694 3695 if (!mapping->a_ops->read_folio) 3696 return -ENOEXEC; 3697 file_accessed(file); 3698 vma->vm_ops = &generic_file_vm_ops; 3699 return 0; 3700 } 3701 3702 /* 3703 * This is for filesystems which do not implement ->writepage. 3704 */ 3705 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3706 { 3707 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3708 return -EINVAL; 3709 return generic_file_mmap(file, vma); 3710 } 3711 #else 3712 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3713 { 3714 return VM_FAULT_SIGBUS; 3715 } 3716 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3717 { 3718 return -ENOSYS; 3719 } 3720 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3721 { 3722 return -ENOSYS; 3723 } 3724 #endif /* CONFIG_MMU */ 3725 3726 EXPORT_SYMBOL(filemap_page_mkwrite); 3727 EXPORT_SYMBOL(generic_file_mmap); 3728 EXPORT_SYMBOL(generic_file_readonly_mmap); 3729 3730 static struct folio *do_read_cache_folio(struct address_space *mapping, 3731 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3732 { 3733 struct folio *folio; 3734 int err; 3735 3736 if (!filler) 3737 filler = mapping->a_ops->read_folio; 3738 repeat: 3739 folio = filemap_get_folio(mapping, index); 3740 if (IS_ERR(folio)) { 3741 folio = filemap_alloc_folio(gfp, 0); 3742 if (!folio) 3743 return ERR_PTR(-ENOMEM); 3744 err = filemap_add_folio(mapping, folio, index, gfp); 3745 if (unlikely(err)) { 3746 folio_put(folio); 3747 if (err == -EEXIST) 3748 goto repeat; 3749 /* Presumably ENOMEM for xarray node */ 3750 return ERR_PTR(err); 3751 } 3752 3753 goto filler; 3754 } 3755 if (folio_test_uptodate(folio)) 3756 goto out; 3757 3758 if (!folio_trylock(folio)) { 3759 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3760 goto repeat; 3761 } 3762 3763 /* Folio was truncated from mapping */ 3764 if (!folio->mapping) { 3765 folio_unlock(folio); 3766 folio_put(folio); 3767 goto repeat; 3768 } 3769 3770 /* Someone else locked and filled the page in a very small window */ 3771 if (folio_test_uptodate(folio)) { 3772 folio_unlock(folio); 3773 goto out; 3774 } 3775 3776 filler: 3777 err = filemap_read_folio(file, filler, folio); 3778 if (err) { 3779 folio_put(folio); 3780 if (err == AOP_TRUNCATED_PAGE) 3781 goto repeat; 3782 return ERR_PTR(err); 3783 } 3784 3785 out: 3786 folio_mark_accessed(folio); 3787 return folio; 3788 } 3789 3790 /** 3791 * read_cache_folio - Read into page cache, fill it if needed. 3792 * @mapping: The address_space to read from. 3793 * @index: The index to read. 3794 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3795 * @file: Passed to filler function, may be NULL if not required. 3796 * 3797 * Read one page into the page cache. If it succeeds, the folio returned 3798 * will contain @index, but it may not be the first page of the folio. 3799 * 3800 * If the filler function returns an error, it will be returned to the 3801 * caller. 3802 * 3803 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3804 * Return: An uptodate folio on success, ERR_PTR() on failure. 3805 */ 3806 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3807 filler_t filler, struct file *file) 3808 { 3809 return do_read_cache_folio(mapping, index, filler, file, 3810 mapping_gfp_mask(mapping)); 3811 } 3812 EXPORT_SYMBOL(read_cache_folio); 3813 3814 /** 3815 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3816 * @mapping: The address_space for the folio. 3817 * @index: The index that the allocated folio will contain. 3818 * @gfp: The page allocator flags to use if allocating. 3819 * 3820 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3821 * any new memory allocations done using the specified allocation flags. 3822 * 3823 * The most likely error from this function is EIO, but ENOMEM is 3824 * possible and so is EINTR. If ->read_folio returns another error, 3825 * that will be returned to the caller. 3826 * 3827 * The function expects mapping->invalidate_lock to be already held. 3828 * 3829 * Return: Uptodate folio on success, ERR_PTR() on failure. 3830 */ 3831 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3832 pgoff_t index, gfp_t gfp) 3833 { 3834 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3835 } 3836 EXPORT_SYMBOL(mapping_read_folio_gfp); 3837 3838 static struct page *do_read_cache_page(struct address_space *mapping, 3839 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3840 { 3841 struct folio *folio; 3842 3843 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3844 if (IS_ERR(folio)) 3845 return &folio->page; 3846 return folio_file_page(folio, index); 3847 } 3848 3849 struct page *read_cache_page(struct address_space *mapping, 3850 pgoff_t index, filler_t *filler, struct file *file) 3851 { 3852 return do_read_cache_page(mapping, index, filler, file, 3853 mapping_gfp_mask(mapping)); 3854 } 3855 EXPORT_SYMBOL(read_cache_page); 3856 3857 /** 3858 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3859 * @mapping: the page's address_space 3860 * @index: the page index 3861 * @gfp: the page allocator flags to use if allocating 3862 * 3863 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3864 * any new page allocations done using the specified allocation flags. 3865 * 3866 * If the page does not get brought uptodate, return -EIO. 3867 * 3868 * The function expects mapping->invalidate_lock to be already held. 3869 * 3870 * Return: up to date page on success, ERR_PTR() on failure. 3871 */ 3872 struct page *read_cache_page_gfp(struct address_space *mapping, 3873 pgoff_t index, 3874 gfp_t gfp) 3875 { 3876 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3877 } 3878 EXPORT_SYMBOL(read_cache_page_gfp); 3879 3880 /* 3881 * Warn about a page cache invalidation failure during a direct I/O write. 3882 */ 3883 static void dio_warn_stale_pagecache(struct file *filp) 3884 { 3885 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3886 char pathname[128]; 3887 char *path; 3888 3889 errseq_set(&filp->f_mapping->wb_err, -EIO); 3890 if (__ratelimit(&_rs)) { 3891 path = file_path(filp, pathname, sizeof(pathname)); 3892 if (IS_ERR(path)) 3893 path = "(unknown)"; 3894 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3895 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3896 current->comm); 3897 } 3898 } 3899 3900 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3901 { 3902 struct address_space *mapping = iocb->ki_filp->f_mapping; 3903 3904 if (mapping->nrpages && 3905 invalidate_inode_pages2_range(mapping, 3906 iocb->ki_pos >> PAGE_SHIFT, 3907 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3908 dio_warn_stale_pagecache(iocb->ki_filp); 3909 } 3910 3911 ssize_t 3912 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3913 { 3914 struct address_space *mapping = iocb->ki_filp->f_mapping; 3915 size_t write_len = iov_iter_count(from); 3916 ssize_t written; 3917 3918 /* 3919 * If a page can not be invalidated, return 0 to fall back 3920 * to buffered write. 3921 */ 3922 written = kiocb_invalidate_pages(iocb, write_len); 3923 if (written) { 3924 if (written == -EBUSY) 3925 return 0; 3926 return written; 3927 } 3928 3929 written = mapping->a_ops->direct_IO(iocb, from); 3930 3931 /* 3932 * Finally, try again to invalidate clean pages which might have been 3933 * cached by non-direct readahead, or faulted in by get_user_pages() 3934 * if the source of the write was an mmap'ed region of the file 3935 * we're writing. Either one is a pretty crazy thing to do, 3936 * so we don't support it 100%. If this invalidation 3937 * fails, tough, the write still worked... 3938 * 3939 * Most of the time we do not need this since dio_complete() will do 3940 * the invalidation for us. However there are some file systems that 3941 * do not end up with dio_complete() being called, so let's not break 3942 * them by removing it completely. 3943 * 3944 * Noticeable example is a blkdev_direct_IO(). 3945 * 3946 * Skip invalidation for async writes or if mapping has no pages. 3947 */ 3948 if (written > 0) { 3949 struct inode *inode = mapping->host; 3950 loff_t pos = iocb->ki_pos; 3951 3952 kiocb_invalidate_post_direct_write(iocb, written); 3953 pos += written; 3954 write_len -= written; 3955 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3956 i_size_write(inode, pos); 3957 mark_inode_dirty(inode); 3958 } 3959 iocb->ki_pos = pos; 3960 } 3961 if (written != -EIOCBQUEUED) 3962 iov_iter_revert(from, write_len - iov_iter_count(from)); 3963 return written; 3964 } 3965 EXPORT_SYMBOL(generic_file_direct_write); 3966 3967 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3968 { 3969 struct file *file = iocb->ki_filp; 3970 loff_t pos = iocb->ki_pos; 3971 struct address_space *mapping = file->f_mapping; 3972 const struct address_space_operations *a_ops = mapping->a_ops; 3973 long status = 0; 3974 ssize_t written = 0; 3975 3976 do { 3977 struct page *page; 3978 unsigned long offset; /* Offset into pagecache page */ 3979 unsigned long bytes; /* Bytes to write to page */ 3980 size_t copied; /* Bytes copied from user */ 3981 void *fsdata = NULL; 3982 3983 offset = (pos & (PAGE_SIZE - 1)); 3984 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3985 iov_iter_count(i)); 3986 3987 again: 3988 /* 3989 * Bring in the user page that we will copy from _first_. 3990 * Otherwise there's a nasty deadlock on copying from the 3991 * same page as we're writing to, without it being marked 3992 * up-to-date. 3993 */ 3994 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3995 status = -EFAULT; 3996 break; 3997 } 3998 3999 if (fatal_signal_pending(current)) { 4000 status = -EINTR; 4001 break; 4002 } 4003 4004 status = a_ops->write_begin(file, mapping, pos, bytes, 4005 &page, &fsdata); 4006 if (unlikely(status < 0)) 4007 break; 4008 4009 if (mapping_writably_mapped(mapping)) 4010 flush_dcache_page(page); 4011 4012 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 4013 flush_dcache_page(page); 4014 4015 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4016 page, fsdata); 4017 if (unlikely(status != copied)) { 4018 iov_iter_revert(i, copied - max(status, 0L)); 4019 if (unlikely(status < 0)) 4020 break; 4021 } 4022 cond_resched(); 4023 4024 if (unlikely(status == 0)) { 4025 /* 4026 * A short copy made ->write_end() reject the 4027 * thing entirely. Might be memory poisoning 4028 * halfway through, might be a race with munmap, 4029 * might be severe memory pressure. 4030 */ 4031 if (copied) 4032 bytes = copied; 4033 goto again; 4034 } 4035 pos += status; 4036 written += status; 4037 4038 balance_dirty_pages_ratelimited(mapping); 4039 } while (iov_iter_count(i)); 4040 4041 if (!written) 4042 return status; 4043 iocb->ki_pos += written; 4044 return written; 4045 } 4046 EXPORT_SYMBOL(generic_perform_write); 4047 4048 /** 4049 * __generic_file_write_iter - write data to a file 4050 * @iocb: IO state structure (file, offset, etc.) 4051 * @from: iov_iter with data to write 4052 * 4053 * This function does all the work needed for actually writing data to a 4054 * file. It does all basic checks, removes SUID from the file, updates 4055 * modification times and calls proper subroutines depending on whether we 4056 * do direct IO or a standard buffered write. 4057 * 4058 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4059 * object which does not need locking at all. 4060 * 4061 * This function does *not* take care of syncing data in case of O_SYNC write. 4062 * A caller has to handle it. This is mainly due to the fact that we want to 4063 * avoid syncing under i_rwsem. 4064 * 4065 * Return: 4066 * * number of bytes written, even for truncated writes 4067 * * negative error code if no data has been written at all 4068 */ 4069 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4070 { 4071 struct file *file = iocb->ki_filp; 4072 struct address_space *mapping = file->f_mapping; 4073 struct inode *inode = mapping->host; 4074 ssize_t ret; 4075 4076 ret = file_remove_privs(file); 4077 if (ret) 4078 return ret; 4079 4080 ret = file_update_time(file); 4081 if (ret) 4082 return ret; 4083 4084 if (iocb->ki_flags & IOCB_DIRECT) { 4085 ret = generic_file_direct_write(iocb, from); 4086 /* 4087 * If the write stopped short of completing, fall back to 4088 * buffered writes. Some filesystems do this for writes to 4089 * holes, for example. For DAX files, a buffered write will 4090 * not succeed (even if it did, DAX does not handle dirty 4091 * page-cache pages correctly). 4092 */ 4093 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4094 return ret; 4095 return direct_write_fallback(iocb, from, ret, 4096 generic_perform_write(iocb, from)); 4097 } 4098 4099 return generic_perform_write(iocb, from); 4100 } 4101 EXPORT_SYMBOL(__generic_file_write_iter); 4102 4103 /** 4104 * generic_file_write_iter - write data to a file 4105 * @iocb: IO state structure 4106 * @from: iov_iter with data to write 4107 * 4108 * This is a wrapper around __generic_file_write_iter() to be used by most 4109 * filesystems. It takes care of syncing the file in case of O_SYNC file 4110 * and acquires i_rwsem as needed. 4111 * Return: 4112 * * negative error code if no data has been written at all of 4113 * vfs_fsync_range() failed for a synchronous write 4114 * * number of bytes written, even for truncated writes 4115 */ 4116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4117 { 4118 struct file *file = iocb->ki_filp; 4119 struct inode *inode = file->f_mapping->host; 4120 ssize_t ret; 4121 4122 inode_lock(inode); 4123 ret = generic_write_checks(iocb, from); 4124 if (ret > 0) 4125 ret = __generic_file_write_iter(iocb, from); 4126 inode_unlock(inode); 4127 4128 if (ret > 0) 4129 ret = generic_write_sync(iocb, ret); 4130 return ret; 4131 } 4132 EXPORT_SYMBOL(generic_file_write_iter); 4133 4134 /** 4135 * filemap_release_folio() - Release fs-specific metadata on a folio. 4136 * @folio: The folio which the kernel is trying to free. 4137 * @gfp: Memory allocation flags (and I/O mode). 4138 * 4139 * The address_space is trying to release any data attached to a folio 4140 * (presumably at folio->private). 4141 * 4142 * This will also be called if the private_2 flag is set on a page, 4143 * indicating that the folio has other metadata associated with it. 4144 * 4145 * The @gfp argument specifies whether I/O may be performed to release 4146 * this page (__GFP_IO), and whether the call may block 4147 * (__GFP_RECLAIM & __GFP_FS). 4148 * 4149 * Return: %true if the release was successful, otherwise %false. 4150 */ 4151 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4152 { 4153 struct address_space * const mapping = folio->mapping; 4154 4155 BUG_ON(!folio_test_locked(folio)); 4156 if (!folio_needs_release(folio)) 4157 return true; 4158 if (folio_test_writeback(folio)) 4159 return false; 4160 4161 if (mapping && mapping->a_ops->release_folio) 4162 return mapping->a_ops->release_folio(folio, gfp); 4163 return try_to_free_buffers(folio); 4164 } 4165 EXPORT_SYMBOL(filemap_release_folio); 4166 4167 #ifdef CONFIG_CACHESTAT_SYSCALL 4168 /** 4169 * filemap_cachestat() - compute the page cache statistics of a mapping 4170 * @mapping: The mapping to compute the statistics for. 4171 * @first_index: The starting page cache index. 4172 * @last_index: The final page index (inclusive). 4173 * @cs: the cachestat struct to write the result to. 4174 * 4175 * This will query the page cache statistics of a mapping in the 4176 * page range of [first_index, last_index] (inclusive). The statistics 4177 * queried include: number of dirty pages, number of pages marked for 4178 * writeback, and the number of (recently) evicted pages. 4179 */ 4180 static void filemap_cachestat(struct address_space *mapping, 4181 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4182 { 4183 XA_STATE(xas, &mapping->i_pages, first_index); 4184 struct folio *folio; 4185 4186 rcu_read_lock(); 4187 xas_for_each(&xas, folio, last_index) { 4188 int order; 4189 unsigned long nr_pages; 4190 pgoff_t folio_first_index, folio_last_index; 4191 4192 /* 4193 * Don't deref the folio. It is not pinned, and might 4194 * get freed (and reused) underneath us. 4195 * 4196 * We *could* pin it, but that would be expensive for 4197 * what should be a fast and lightweight syscall. 4198 * 4199 * Instead, derive all information of interest from 4200 * the rcu-protected xarray. 4201 */ 4202 4203 if (xas_retry(&xas, folio)) 4204 continue; 4205 4206 order = xa_get_order(xas.xa, xas.xa_index); 4207 nr_pages = 1 << order; 4208 folio_first_index = round_down(xas.xa_index, 1 << order); 4209 folio_last_index = folio_first_index + nr_pages - 1; 4210 4211 /* Folios might straddle the range boundaries, only count covered pages */ 4212 if (folio_first_index < first_index) 4213 nr_pages -= first_index - folio_first_index; 4214 4215 if (folio_last_index > last_index) 4216 nr_pages -= folio_last_index - last_index; 4217 4218 if (xa_is_value(folio)) { 4219 /* page is evicted */ 4220 void *shadow = (void *)folio; 4221 bool workingset; /* not used */ 4222 4223 cs->nr_evicted += nr_pages; 4224 4225 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4226 if (shmem_mapping(mapping)) { 4227 /* shmem file - in swap cache */ 4228 swp_entry_t swp = radix_to_swp_entry(folio); 4229 4230 /* swapin error results in poisoned entry */ 4231 if (non_swap_entry(swp)) 4232 goto resched; 4233 4234 /* 4235 * Getting a swap entry from the shmem 4236 * inode means we beat 4237 * shmem_unuse(). rcu_read_lock() 4238 * ensures swapoff waits for us before 4239 * freeing the swapper space. However, 4240 * we can race with swapping and 4241 * invalidation, so there might not be 4242 * a shadow in the swapcache (yet). 4243 */ 4244 shadow = get_shadow_from_swap_cache(swp); 4245 if (!shadow) 4246 goto resched; 4247 } 4248 #endif 4249 if (workingset_test_recent(shadow, true, &workingset)) 4250 cs->nr_recently_evicted += nr_pages; 4251 4252 goto resched; 4253 } 4254 4255 /* page is in cache */ 4256 cs->nr_cache += nr_pages; 4257 4258 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4259 cs->nr_dirty += nr_pages; 4260 4261 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4262 cs->nr_writeback += nr_pages; 4263 4264 resched: 4265 if (need_resched()) { 4266 xas_pause(&xas); 4267 cond_resched_rcu(); 4268 } 4269 } 4270 rcu_read_unlock(); 4271 } 4272 4273 /* 4274 * The cachestat(2) system call. 4275 * 4276 * cachestat() returns the page cache statistics of a file in the 4277 * bytes range specified by `off` and `len`: number of cached pages, 4278 * number of dirty pages, number of pages marked for writeback, 4279 * number of evicted pages, and number of recently evicted pages. 4280 * 4281 * An evicted page is a page that is previously in the page cache 4282 * but has been evicted since. A page is recently evicted if its last 4283 * eviction was recent enough that its reentry to the cache would 4284 * indicate that it is actively being used by the system, and that 4285 * there is memory pressure on the system. 4286 * 4287 * `off` and `len` must be non-negative integers. If `len` > 0, 4288 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4289 * we will query in the range from `off` to the end of the file. 4290 * 4291 * The `flags` argument is unused for now, but is included for future 4292 * extensibility. User should pass 0 (i.e no flag specified). 4293 * 4294 * Currently, hugetlbfs is not supported. 4295 * 4296 * Because the status of a page can change after cachestat() checks it 4297 * but before it returns to the application, the returned values may 4298 * contain stale information. 4299 * 4300 * return values: 4301 * zero - success 4302 * -EFAULT - cstat or cstat_range points to an illegal address 4303 * -EINVAL - invalid flags 4304 * -EBADF - invalid file descriptor 4305 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4306 */ 4307 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4308 struct cachestat_range __user *, cstat_range, 4309 struct cachestat __user *, cstat, unsigned int, flags) 4310 { 4311 struct fd f = fdget(fd); 4312 struct address_space *mapping; 4313 struct cachestat_range csr; 4314 struct cachestat cs; 4315 pgoff_t first_index, last_index; 4316 4317 if (!f.file) 4318 return -EBADF; 4319 4320 if (copy_from_user(&csr, cstat_range, 4321 sizeof(struct cachestat_range))) { 4322 fdput(f); 4323 return -EFAULT; 4324 } 4325 4326 /* hugetlbfs is not supported */ 4327 if (is_file_hugepages(f.file)) { 4328 fdput(f); 4329 return -EOPNOTSUPP; 4330 } 4331 4332 if (flags != 0) { 4333 fdput(f); 4334 return -EINVAL; 4335 } 4336 4337 first_index = csr.off >> PAGE_SHIFT; 4338 last_index = 4339 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4340 memset(&cs, 0, sizeof(struct cachestat)); 4341 mapping = f.file->f_mapping; 4342 filemap_cachestat(mapping, first_index, last_index, &cs); 4343 fdput(f); 4344 4345 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4346 return -EFAULT; 4347 4348 return 0; 4349 } 4350 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4351