xref: /openbmc/linux/mm/filemap.c (revision e8769509)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54 
55 /*
56  * FIXME: remove all knowledge of the buffer layer from the core VM
57  */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 
60 #include <asm/mman.h>
61 
62 #include "swap.h"
63 
64 /*
65  * Shared mappings implemented 30.11.1994. It's not fully working yet,
66  * though.
67  *
68  * Shared mappings now work. 15.8.1995  Bruno.
69  *
70  * finished 'unifying' the page and buffer cache and SMP-threaded the
71  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72  *
73  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74  */
75 
76 /*
77  * Lock ordering:
78  *
79  *  ->i_mmap_rwsem		(truncate_pagecache)
80  *    ->private_lock		(__free_pte->block_dirty_folio)
81  *      ->swap_lock		(exclusive_swap_page, others)
82  *        ->i_pages lock
83  *
84  *  ->i_rwsem
85  *    ->invalidate_lock		(acquired by fs in truncate path)
86  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
87  *
88  *  ->mmap_lock
89  *    ->i_mmap_rwsem
90  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
91  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
92  *
93  *  ->mmap_lock
94  *    ->invalidate_lock		(filemap_fault)
95  *      ->lock_page		(filemap_fault, access_process_vm)
96  *
97  *  ->i_rwsem			(generic_perform_write)
98  *    ->mmap_lock		(fault_in_readable->do_page_fault)
99  *
100  *  bdi->wb.list_lock
101  *    sb_lock			(fs/fs-writeback.c)
102  *    ->i_pages lock		(__sync_single_inode)
103  *
104  *  ->i_mmap_rwsem
105  *    ->anon_vma.lock		(vma_merge)
106  *
107  *  ->anon_vma.lock
108  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
109  *
110  *  ->page_table_lock or pte_lock
111  *    ->swap_lock		(try_to_unmap_one)
112  *    ->private_lock		(try_to_unmap_one)
113  *    ->i_pages lock		(try_to_unmap_one)
114  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
115  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
116  *    ->private_lock		(page_remove_rmap->set_page_dirty)
117  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
118  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
119  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
120  *    ->memcg->move_lock	(page_remove_rmap->folio_memcg_lock)
121  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
122  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
123  *    ->private_lock		(zap_pte_range->block_dirty_folio)
124  */
125 
126 static void page_cache_delete(struct address_space *mapping,
127 				   struct folio *folio, void *shadow)
128 {
129 	XA_STATE(xas, &mapping->i_pages, folio->index);
130 	long nr = 1;
131 
132 	mapping_set_update(&xas, mapping);
133 
134 	/* hugetlb pages are represented by a single entry in the xarray */
135 	if (!folio_test_hugetlb(folio)) {
136 		xas_set_order(&xas, folio->index, folio_order(folio));
137 		nr = folio_nr_pages(folio);
138 	}
139 
140 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	folio->mapping = NULL;
146 	/* Leave page->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 		struct folio *folio)
152 {
153 	long nr;
154 
155 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
158 			 current->comm, folio_pfn(folio));
159 		dump_page(&folio->page, "still mapped when deleted");
160 		dump_stack();
161 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162 
163 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 			int mapcount = page_mapcount(&folio->page);
165 
166 			if (folio_ref_count(folio) >= mapcount + 2) {
167 				/*
168 				 * All vmas have already been torn down, so it's
169 				 * a good bet that actually the page is unmapped
170 				 * and we'd rather not leak it: if we're wrong,
171 				 * another bad page check should catch it later.
172 				 */
173 				page_mapcount_reset(&folio->page);
174 				folio_ref_sub(folio, mapcount);
175 			}
176 		}
177 	}
178 
179 	/* hugetlb folios do not participate in page cache accounting. */
180 	if (folio_test_hugetlb(folio))
181 		return;
182 
183 	nr = folio_nr_pages(folio);
184 
185 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 	if (folio_test_swapbacked(folio)) {
187 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 		if (folio_test_pmd_mappable(folio))
189 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 	} else if (folio_test_pmd_mappable(folio)) {
191 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 		filemap_nr_thps_dec(mapping);
193 	}
194 
195 	/*
196 	 * At this point folio must be either written or cleaned by
197 	 * truncate.  Dirty folio here signals a bug and loss of
198 	 * unwritten data - on ordinary filesystems.
199 	 *
200 	 * But it's harmless on in-memory filesystems like tmpfs; and can
201 	 * occur when a driver which did get_user_pages() sets page dirty
202 	 * before putting it, while the inode is being finally evicted.
203 	 *
204 	 * Below fixes dirty accounting after removing the folio entirely
205 	 * but leaves the dirty flag set: it has no effect for truncated
206 	 * folio and anyway will be cleared before returning folio to
207 	 * buddy allocator.
208 	 */
209 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 			 mapping_can_writeback(mapping)))
211 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213 
214 /*
215  * Delete a page from the page cache and free it. Caller has to make
216  * sure the page is locked and that nobody else uses it - or that usage
217  * is safe.  The caller must hold the i_pages lock.
218  */
219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 	struct address_space *mapping = folio->mapping;
222 
223 	trace_mm_filemap_delete_from_page_cache(folio);
224 	filemap_unaccount_folio(mapping, folio);
225 	page_cache_delete(mapping, folio, shadow);
226 }
227 
228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 	void (*free_folio)(struct folio *);
231 	int refs = 1;
232 
233 	free_folio = mapping->a_ops->free_folio;
234 	if (free_folio)
235 		free_folio(folio);
236 
237 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 		refs = folio_nr_pages(folio);
239 	folio_put_refs(folio, refs);
240 }
241 
242 /**
243  * filemap_remove_folio - Remove folio from page cache.
244  * @folio: The folio.
245  *
246  * This must be called only on folios that are locked and have been
247  * verified to be in the page cache.  It will never put the folio into
248  * the free list because the caller has a reference on the page.
249  */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 	struct address_space *mapping = folio->mapping;
253 
254 	BUG_ON(!folio_test_locked(folio));
255 	spin_lock(&mapping->host->i_lock);
256 	xa_lock_irq(&mapping->i_pages);
257 	__filemap_remove_folio(folio, NULL);
258 	xa_unlock_irq(&mapping->i_pages);
259 	if (mapping_shrinkable(mapping))
260 		inode_add_lru(mapping->host);
261 	spin_unlock(&mapping->host->i_lock);
262 
263 	filemap_free_folio(mapping, folio);
264 }
265 
266 /*
267  * page_cache_delete_batch - delete several folios from page cache
268  * @mapping: the mapping to which folios belong
269  * @fbatch: batch of folios to delete
270  *
271  * The function walks over mapping->i_pages and removes folios passed in
272  * @fbatch from the mapping. The function expects @fbatch to be sorted
273  * by page index and is optimised for it to be dense.
274  * It tolerates holes in @fbatch (mapping entries at those indices are not
275  * modified).
276  *
277  * The function expects the i_pages lock to be held.
278  */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 			     struct folio_batch *fbatch)
281 {
282 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 	long total_pages = 0;
284 	int i = 0;
285 	struct folio *folio;
286 
287 	mapping_set_update(&xas, mapping);
288 	xas_for_each(&xas, folio, ULONG_MAX) {
289 		if (i >= folio_batch_count(fbatch))
290 			break;
291 
292 		/* A swap/dax/shadow entry got inserted? Skip it. */
293 		if (xa_is_value(folio))
294 			continue;
295 		/*
296 		 * A page got inserted in our range? Skip it. We have our
297 		 * pages locked so they are protected from being removed.
298 		 * If we see a page whose index is higher than ours, it
299 		 * means our page has been removed, which shouldn't be
300 		 * possible because we're holding the PageLock.
301 		 */
302 		if (folio != fbatch->folios[i]) {
303 			VM_BUG_ON_FOLIO(folio->index >
304 					fbatch->folios[i]->index, folio);
305 			continue;
306 		}
307 
308 		WARN_ON_ONCE(!folio_test_locked(folio));
309 
310 		folio->mapping = NULL;
311 		/* Leave folio->index set: truncation lookup relies on it */
312 
313 		i++;
314 		xas_store(&xas, NULL);
315 		total_pages += folio_nr_pages(folio);
316 	}
317 	mapping->nrpages -= total_pages;
318 }
319 
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 				  struct folio_batch *fbatch)
322 {
323 	int i;
324 
325 	if (!folio_batch_count(fbatch))
326 		return;
327 
328 	spin_lock(&mapping->host->i_lock);
329 	xa_lock_irq(&mapping->i_pages);
330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
331 		struct folio *folio = fbatch->folios[i];
332 
333 		trace_mm_filemap_delete_from_page_cache(folio);
334 		filemap_unaccount_folio(mapping, folio);
335 	}
336 	page_cache_delete_batch(mapping, fbatch);
337 	xa_unlock_irq(&mapping->i_pages);
338 	if (mapping_shrinkable(mapping))
339 		inode_add_lru(mapping->host);
340 	spin_unlock(&mapping->host->i_lock);
341 
342 	for (i = 0; i < folio_batch_count(fbatch); i++)
343 		filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345 
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 	int ret = 0;
349 	/* Check for outstanding write errors */
350 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 		ret = -ENOSPC;
353 	if (test_bit(AS_EIO, &mapping->flags) &&
354 	    test_and_clear_bit(AS_EIO, &mapping->flags))
355 		ret = -EIO;
356 	return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359 
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_EIO, &mapping->flags))
364 		return -EIO;
365 	if (test_bit(AS_ENOSPC, &mapping->flags))
366 		return -ENOSPC;
367 	return 0;
368 }
369 
370 /**
371  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372  * @mapping:	address space structure to write
373  * @wbc:	the writeback_control controlling the writeout
374  *
375  * Call writepages on the mapping using the provided wbc to control the
376  * writeout.
377  *
378  * Return: %0 on success, negative error code otherwise.
379  */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 			   struct writeback_control *wbc)
382 {
383 	int ret;
384 
385 	if (!mapping_can_writeback(mapping) ||
386 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 		return 0;
388 
389 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 	ret = do_writepages(mapping, wbc);
391 	wbc_detach_inode(wbc);
392 	return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395 
396 /**
397  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398  * @mapping:	address space structure to write
399  * @start:	offset in bytes where the range starts
400  * @end:	offset in bytes where the range ends (inclusive)
401  * @sync_mode:	enable synchronous operation
402  *
403  * Start writeback against all of a mapping's dirty pages that lie
404  * within the byte offsets <start, end> inclusive.
405  *
406  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407  * opposed to a regular memory cleansing writeback.  The difference between
408  * these two operations is that if a dirty page/buffer is encountered, it must
409  * be waited upon, and not just skipped over.
410  *
411  * Return: %0 on success, negative error code otherwise.
412  */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 				loff_t end, int sync_mode)
415 {
416 	struct writeback_control wbc = {
417 		.sync_mode = sync_mode,
418 		.nr_to_write = LONG_MAX,
419 		.range_start = start,
420 		.range_end = end,
421 	};
422 
423 	return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct folio *folio;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		folio = xas_find(&xas, max);
485 		if (xas_retry(&xas, folio))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(folio))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct folio_batch fbatch;
509 	unsigned nr_folios;
510 
511 	folio_batch_init(&fbatch);
512 
513 	while (index <= end) {
514 		unsigned i;
515 
516 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 				PAGECACHE_TAG_WRITEBACK, &fbatch);
518 
519 		if (!nr_folios)
520 			break;
521 
522 		for (i = 0; i < nr_folios; i++) {
523 			struct folio *folio = fbatch.folios[i];
524 
525 			folio_wait_writeback(folio);
526 			folio_clear_error(folio);
527 		}
528 		folio_batch_release(&fbatch);
529 		cond_resched();
530 	}
531 }
532 
533 /**
534  * filemap_fdatawait_range - wait for writeback to complete
535  * @mapping:		address space structure to wait for
536  * @start_byte:		offset in bytes where the range starts
537  * @end_byte:		offset in bytes where the range ends (inclusive)
538  *
539  * Walk the list of under-writeback pages of the given address space
540  * in the given range and wait for all of them.  Check error status of
541  * the address space and return it.
542  *
543  * Since the error status of the address space is cleared by this function,
544  * callers are responsible for checking the return value and handling and/or
545  * reporting the error.
546  *
547  * Return: error status of the address space.
548  */
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 			    loff_t end_byte)
551 {
552 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
553 	return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556 
557 /**
558  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559  * @mapping:		address space structure to wait for
560  * @start_byte:		offset in bytes where the range starts
561  * @end_byte:		offset in bytes where the range ends (inclusive)
562  *
563  * Walk the list of under-writeback pages of the given address space in the
564  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
565  * this function does not clear error status of the address space.
566  *
567  * Use this function if callers don't handle errors themselves.  Expected
568  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569  * fsfreeze(8)
570  */
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 		loff_t start_byte, loff_t end_byte)
573 {
574 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
575 	return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578 
579 /**
580  * file_fdatawait_range - wait for writeback to complete
581  * @file:		file pointing to address space structure to wait for
582  * @start_byte:		offset in bytes where the range starts
583  * @end_byte:		offset in bytes where the range ends (inclusive)
584  *
585  * Walk the list of under-writeback pages of the address space that file
586  * refers to, in the given range and wait for all of them.  Check error
587  * status of the address space vs. the file->f_wb_err cursor and return it.
588  *
589  * Since the error status of the file is advanced by this function,
590  * callers are responsible for checking the return value and handling and/or
591  * reporting the error.
592  *
593  * Return: error status of the address space vs. the file->f_wb_err cursor.
594  */
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 	struct address_space *mapping = file->f_mapping;
598 
599 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
600 	return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603 
604 /**
605  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606  * @mapping: address space structure to wait for
607  *
608  * Walk the list of under-writeback pages of the given address space
609  * and wait for all of them.  Unlike filemap_fdatawait(), this function
610  * does not clear error status of the address space.
611  *
612  * Use this function if callers don't handle errors themselves.  Expected
613  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614  * fsfreeze(8)
615  *
616  * Return: error status of the address space.
617  */
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 	return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 	return mapping->nrpages;
629 }
630 
631 bool filemap_range_has_writeback(struct address_space *mapping,
632 				 loff_t start_byte, loff_t end_byte)
633 {
634 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 	pgoff_t max = end_byte >> PAGE_SHIFT;
636 	struct folio *folio;
637 
638 	if (end_byte < start_byte)
639 		return false;
640 
641 	rcu_read_lock();
642 	xas_for_each(&xas, folio, max) {
643 		if (xas_retry(&xas, folio))
644 			continue;
645 		if (xa_is_value(folio))
646 			continue;
647 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 				folio_test_writeback(folio))
649 			break;
650 	}
651 	rcu_read_unlock();
652 	return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655 
656 /**
657  * filemap_write_and_wait_range - write out & wait on a file range
658  * @mapping:	the address_space for the pages
659  * @lstart:	offset in bytes where the range starts
660  * @lend:	offset in bytes where the range ends (inclusive)
661  *
662  * Write out and wait upon file offsets lstart->lend, inclusive.
663  *
664  * Note that @lend is inclusive (describes the last byte to be written) so
665  * that this function can be used to write to the very end-of-file (end = -1).
666  *
667  * Return: error status of the address space.
668  */
669 int filemap_write_and_wait_range(struct address_space *mapping,
670 				 loff_t lstart, loff_t lend)
671 {
672 	int err = 0, err2;
673 
674 	if (lend < lstart)
675 		return 0;
676 
677 	if (mapping_needs_writeback(mapping)) {
678 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 						 WB_SYNC_ALL);
680 		/*
681 		 * Even if the above returned error, the pages may be
682 		 * written partially (e.g. -ENOSPC), so we wait for it.
683 		 * But the -EIO is special case, it may indicate the worst
684 		 * thing (e.g. bug) happened, so we avoid waiting for it.
685 		 */
686 		if (err != -EIO)
687 			__filemap_fdatawait_range(mapping, lstart, lend);
688 	}
689 	err2 = filemap_check_errors(mapping);
690 	if (!err)
691 		err = err2;
692 	return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695 
696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
699 
700 	trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703 
704 /**
705  * file_check_and_advance_wb_err - report wb error (if any) that was previously
706  * 				   and advance wb_err to current one
707  * @file: struct file on which the error is being reported
708  *
709  * When userland calls fsync (or something like nfsd does the equivalent), we
710  * want to report any writeback errors that occurred since the last fsync (or
711  * since the file was opened if there haven't been any).
712  *
713  * Grab the wb_err from the mapping. If it matches what we have in the file,
714  * then just quickly return 0. The file is all caught up.
715  *
716  * If it doesn't match, then take the mapping value, set the "seen" flag in
717  * it and try to swap it into place. If it works, or another task beat us
718  * to it with the new value, then update the f_wb_err and return the error
719  * portion. The error at this point must be reported via proper channels
720  * (a'la fsync, or NFS COMMIT operation, etc.).
721  *
722  * While we handle mapping->wb_err with atomic operations, the f_wb_err
723  * value is protected by the f_lock since we must ensure that it reflects
724  * the latest value swapped in for this file descriptor.
725  *
726  * Return: %0 on success, negative error code otherwise.
727  */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 	int err = 0;
731 	errseq_t old = READ_ONCE(file->f_wb_err);
732 	struct address_space *mapping = file->f_mapping;
733 
734 	/* Locklessly handle the common case where nothing has changed */
735 	if (errseq_check(&mapping->wb_err, old)) {
736 		/* Something changed, must use slow path */
737 		spin_lock(&file->f_lock);
738 		old = file->f_wb_err;
739 		err = errseq_check_and_advance(&mapping->wb_err,
740 						&file->f_wb_err);
741 		trace_file_check_and_advance_wb_err(file, old);
742 		spin_unlock(&file->f_lock);
743 	}
744 
745 	/*
746 	 * We're mostly using this function as a drop in replacement for
747 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 	 * that the legacy code would have had on these flags.
749 	 */
750 	clear_bit(AS_EIO, &mapping->flags);
751 	clear_bit(AS_ENOSPC, &mapping->flags);
752 	return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755 
756 /**
757  * file_write_and_wait_range - write out & wait on a file range
758  * @file:	file pointing to address_space with pages
759  * @lstart:	offset in bytes where the range starts
760  * @lend:	offset in bytes where the range ends (inclusive)
761  *
762  * Write out and wait upon file offsets lstart->lend, inclusive.
763  *
764  * Note that @lend is inclusive (describes the last byte to be written) so
765  * that this function can be used to write to the very end-of-file (end = -1).
766  *
767  * After writing out and waiting on the data, we check and advance the
768  * f_wb_err cursor to the latest value, and return any errors detected there.
769  *
770  * Return: %0 on success, negative error code otherwise.
771  */
772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 	int err = 0, err2;
775 	struct address_space *mapping = file->f_mapping;
776 
777 	if (lend < lstart)
778 		return 0;
779 
780 	if (mapping_needs_writeback(mapping)) {
781 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 						 WB_SYNC_ALL);
783 		/* See comment of filemap_write_and_wait() */
784 		if (err != -EIO)
785 			__filemap_fdatawait_range(mapping, lstart, lend);
786 	}
787 	err2 = file_check_and_advance_wb_err(file);
788 	if (!err)
789 		err = err2;
790 	return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793 
794 /**
795  * replace_page_cache_folio - replace a pagecache folio with a new one
796  * @old:	folio to be replaced
797  * @new:	folio to replace with
798  *
799  * This function replaces a folio in the pagecache with a new one.  On
800  * success it acquires the pagecache reference for the new folio and
801  * drops it for the old folio.  Both the old and new folios must be
802  * locked.  This function does not add the new folio to the LRU, the
803  * caller must do that.
804  *
805  * The remove + add is atomic.  This function cannot fail.
806  */
807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 	struct address_space *mapping = old->mapping;
810 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 	pgoff_t offset = old->index;
812 	XA_STATE(xas, &mapping->i_pages, offset);
813 
814 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 	VM_BUG_ON_FOLIO(new->mapping, new);
817 
818 	folio_get(new);
819 	new->mapping = mapping;
820 	new->index = offset;
821 
822 	mem_cgroup_migrate(old, new);
823 
824 	xas_lock_irq(&xas);
825 	xas_store(&xas, new);
826 
827 	old->mapping = NULL;
828 	/* hugetlb pages do not participate in page cache accounting. */
829 	if (!folio_test_hugetlb(old))
830 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 	if (!folio_test_hugetlb(new))
832 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 	if (folio_test_swapbacked(old))
834 		__lruvec_stat_sub_folio(old, NR_SHMEM);
835 	if (folio_test_swapbacked(new))
836 		__lruvec_stat_add_folio(new, NR_SHMEM);
837 	xas_unlock_irq(&xas);
838 	if (free_folio)
839 		free_folio(old);
840 	folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843 
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 	XA_STATE(xas, &mapping->i_pages, index);
848 	int huge = folio_test_hugetlb(folio);
849 	void *alloced_shadow = NULL;
850 	int alloced_order = 0;
851 	bool charged = false;
852 	long nr = 1;
853 
854 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
855 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
856 	mapping_set_update(&xas, mapping);
857 
858 	if (!huge) {
859 		int error = mem_cgroup_charge(folio, NULL, gfp);
860 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 		if (error)
862 			return error;
863 		charged = true;
864 		xas_set_order(&xas, index, folio_order(folio));
865 		nr = folio_nr_pages(folio);
866 	}
867 
868 	gfp &= GFP_RECLAIM_MASK;
869 	folio_ref_add(folio, nr);
870 	folio->mapping = mapping;
871 	folio->index = xas.xa_index;
872 
873 	for (;;) {
874 		int order = -1, split_order = 0;
875 		void *entry, *old = NULL;
876 
877 		xas_lock_irq(&xas);
878 		xas_for_each_conflict(&xas, entry) {
879 			old = entry;
880 			if (!xa_is_value(entry)) {
881 				xas_set_err(&xas, -EEXIST);
882 				goto unlock;
883 			}
884 			/*
885 			 * If a larger entry exists,
886 			 * it will be the first and only entry iterated.
887 			 */
888 			if (order == -1)
889 				order = xas_get_order(&xas);
890 		}
891 
892 		/* entry may have changed before we re-acquire the lock */
893 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
894 			xas_destroy(&xas);
895 			alloced_order = 0;
896 		}
897 
898 		if (old) {
899 			if (order > 0 && order > folio_order(folio)) {
900 				/* How to handle large swap entries? */
901 				BUG_ON(shmem_mapping(mapping));
902 				if (!alloced_order) {
903 					split_order = order;
904 					goto unlock;
905 				}
906 				xas_split(&xas, old, order);
907 				xas_reset(&xas);
908 			}
909 			if (shadowp)
910 				*shadowp = old;
911 		}
912 
913 		xas_store(&xas, folio);
914 		if (xas_error(&xas))
915 			goto unlock;
916 
917 		mapping->nrpages += nr;
918 
919 		/* hugetlb pages do not participate in page cache accounting */
920 		if (!huge) {
921 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
922 			if (folio_test_pmd_mappable(folio))
923 				__lruvec_stat_mod_folio(folio,
924 						NR_FILE_THPS, nr);
925 		}
926 
927 unlock:
928 		xas_unlock_irq(&xas);
929 
930 		/* split needed, alloc here and retry. */
931 		if (split_order) {
932 			xas_split_alloc(&xas, old, split_order, gfp);
933 			if (xas_error(&xas))
934 				goto error;
935 			alloced_shadow = old;
936 			alloced_order = split_order;
937 			xas_reset(&xas);
938 			continue;
939 		}
940 
941 		if (!xas_nomem(&xas, gfp))
942 			break;
943 	}
944 
945 	if (xas_error(&xas))
946 		goto error;
947 
948 	trace_mm_filemap_add_to_page_cache(folio);
949 	return 0;
950 error:
951 	if (charged)
952 		mem_cgroup_uncharge(folio);
953 	folio->mapping = NULL;
954 	/* Leave page->index set: truncation relies upon it */
955 	folio_put_refs(folio, nr);
956 	return xas_error(&xas);
957 }
958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
959 
960 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
961 				pgoff_t index, gfp_t gfp)
962 {
963 	void *shadow = NULL;
964 	int ret;
965 
966 	__folio_set_locked(folio);
967 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
968 	if (unlikely(ret))
969 		__folio_clear_locked(folio);
970 	else {
971 		/*
972 		 * The folio might have been evicted from cache only
973 		 * recently, in which case it should be activated like
974 		 * any other repeatedly accessed folio.
975 		 * The exception is folios getting rewritten; evicting other
976 		 * data from the working set, only to cache data that will
977 		 * get overwritten with something else, is a waste of memory.
978 		 */
979 		WARN_ON_ONCE(folio_test_active(folio));
980 		if (!(gfp & __GFP_WRITE) && shadow)
981 			workingset_refault(folio, shadow);
982 		folio_add_lru(folio);
983 	}
984 	return ret;
985 }
986 EXPORT_SYMBOL_GPL(filemap_add_folio);
987 
988 #ifdef CONFIG_NUMA
989 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
990 {
991 	int n;
992 	struct folio *folio;
993 
994 	if (cpuset_do_page_mem_spread()) {
995 		unsigned int cpuset_mems_cookie;
996 		do {
997 			cpuset_mems_cookie = read_mems_allowed_begin();
998 			n = cpuset_mem_spread_node();
999 			folio = __folio_alloc_node(gfp, order, n);
1000 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1001 
1002 		return folio;
1003 	}
1004 	return folio_alloc(gfp, order);
1005 }
1006 EXPORT_SYMBOL(filemap_alloc_folio);
1007 #endif
1008 
1009 /*
1010  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1011  *
1012  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1013  *
1014  * @mapping1: the first mapping to lock
1015  * @mapping2: the second mapping to lock
1016  */
1017 void filemap_invalidate_lock_two(struct address_space *mapping1,
1018 				 struct address_space *mapping2)
1019 {
1020 	if (mapping1 > mapping2)
1021 		swap(mapping1, mapping2);
1022 	if (mapping1)
1023 		down_write(&mapping1->invalidate_lock);
1024 	if (mapping2 && mapping1 != mapping2)
1025 		down_write_nested(&mapping2->invalidate_lock, 1);
1026 }
1027 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1028 
1029 /*
1030  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1031  *
1032  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1033  *
1034  * @mapping1: the first mapping to unlock
1035  * @mapping2: the second mapping to unlock
1036  */
1037 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1038 				   struct address_space *mapping2)
1039 {
1040 	if (mapping1)
1041 		up_write(&mapping1->invalidate_lock);
1042 	if (mapping2 && mapping1 != mapping2)
1043 		up_write(&mapping2->invalidate_lock);
1044 }
1045 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1046 
1047 /*
1048  * In order to wait for pages to become available there must be
1049  * waitqueues associated with pages. By using a hash table of
1050  * waitqueues where the bucket discipline is to maintain all
1051  * waiters on the same queue and wake all when any of the pages
1052  * become available, and for the woken contexts to check to be
1053  * sure the appropriate page became available, this saves space
1054  * at a cost of "thundering herd" phenomena during rare hash
1055  * collisions.
1056  */
1057 #define PAGE_WAIT_TABLE_BITS 8
1058 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1059 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1060 
1061 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1062 {
1063 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1064 }
1065 
1066 void __init pagecache_init(void)
1067 {
1068 	int i;
1069 
1070 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1071 		init_waitqueue_head(&folio_wait_table[i]);
1072 
1073 	page_writeback_init();
1074 }
1075 
1076 /*
1077  * The page wait code treats the "wait->flags" somewhat unusually, because
1078  * we have multiple different kinds of waits, not just the usual "exclusive"
1079  * one.
1080  *
1081  * We have:
1082  *
1083  *  (a) no special bits set:
1084  *
1085  *	We're just waiting for the bit to be released, and when a waker
1086  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1087  *	and remove it from the wait queue.
1088  *
1089  *	Simple and straightforward.
1090  *
1091  *  (b) WQ_FLAG_EXCLUSIVE:
1092  *
1093  *	The waiter is waiting to get the lock, and only one waiter should
1094  *	be woken up to avoid any thundering herd behavior. We'll set the
1095  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1096  *
1097  *	This is the traditional exclusive wait.
1098  *
1099  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1100  *
1101  *	The waiter is waiting to get the bit, and additionally wants the
1102  *	lock to be transferred to it for fair lock behavior. If the lock
1103  *	cannot be taken, we stop walking the wait queue without waking
1104  *	the waiter.
1105  *
1106  *	This is the "fair lock handoff" case, and in addition to setting
1107  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1108  *	that it now has the lock.
1109  */
1110 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1111 {
1112 	unsigned int flags;
1113 	struct wait_page_key *key = arg;
1114 	struct wait_page_queue *wait_page
1115 		= container_of(wait, struct wait_page_queue, wait);
1116 
1117 	if (!wake_page_match(wait_page, key))
1118 		return 0;
1119 
1120 	/*
1121 	 * If it's a lock handoff wait, we get the bit for it, and
1122 	 * stop walking (and do not wake it up) if we can't.
1123 	 */
1124 	flags = wait->flags;
1125 	if (flags & WQ_FLAG_EXCLUSIVE) {
1126 		if (test_bit(key->bit_nr, &key->folio->flags))
1127 			return -1;
1128 		if (flags & WQ_FLAG_CUSTOM) {
1129 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1130 				return -1;
1131 			flags |= WQ_FLAG_DONE;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * We are holding the wait-queue lock, but the waiter that
1137 	 * is waiting for this will be checking the flags without
1138 	 * any locking.
1139 	 *
1140 	 * So update the flags atomically, and wake up the waiter
1141 	 * afterwards to avoid any races. This store-release pairs
1142 	 * with the load-acquire in folio_wait_bit_common().
1143 	 */
1144 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1145 	wake_up_state(wait->private, mode);
1146 
1147 	/*
1148 	 * Ok, we have successfully done what we're waiting for,
1149 	 * and we can unconditionally remove the wait entry.
1150 	 *
1151 	 * Note that this pairs with the "finish_wait()" in the
1152 	 * waiter, and has to be the absolute last thing we do.
1153 	 * After this list_del_init(&wait->entry) the wait entry
1154 	 * might be de-allocated and the process might even have
1155 	 * exited.
1156 	 */
1157 	list_del_init_careful(&wait->entry);
1158 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1159 }
1160 
1161 static void folio_wake_bit(struct folio *folio, int bit_nr)
1162 {
1163 	wait_queue_head_t *q = folio_waitqueue(folio);
1164 	struct wait_page_key key;
1165 	unsigned long flags;
1166 	wait_queue_entry_t bookmark;
1167 
1168 	key.folio = folio;
1169 	key.bit_nr = bit_nr;
1170 	key.page_match = 0;
1171 
1172 	bookmark.flags = 0;
1173 	bookmark.private = NULL;
1174 	bookmark.func = NULL;
1175 	INIT_LIST_HEAD(&bookmark.entry);
1176 
1177 	spin_lock_irqsave(&q->lock, flags);
1178 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1179 
1180 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1181 		/*
1182 		 * Take a breather from holding the lock,
1183 		 * allow pages that finish wake up asynchronously
1184 		 * to acquire the lock and remove themselves
1185 		 * from wait queue
1186 		 */
1187 		spin_unlock_irqrestore(&q->lock, flags);
1188 		cpu_relax();
1189 		spin_lock_irqsave(&q->lock, flags);
1190 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1191 	}
1192 
1193 	/*
1194 	 * It's possible to miss clearing waiters here, when we woke our page
1195 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1196 	 * That's okay, it's a rare case. The next waker will clear it.
1197 	 *
1198 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1199 	 * other), the flag may be cleared in the course of freeing the page;
1200 	 * but that is not required for correctness.
1201 	 */
1202 	if (!waitqueue_active(q) || !key.page_match)
1203 		folio_clear_waiters(folio);
1204 
1205 	spin_unlock_irqrestore(&q->lock, flags);
1206 }
1207 
1208 static void folio_wake(struct folio *folio, int bit)
1209 {
1210 	if (!folio_test_waiters(folio))
1211 		return;
1212 	folio_wake_bit(folio, bit);
1213 }
1214 
1215 /*
1216  * A choice of three behaviors for folio_wait_bit_common():
1217  */
1218 enum behavior {
1219 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1220 			 * __folio_lock() waiting on then setting PG_locked.
1221 			 */
1222 	SHARED,		/* Hold ref to page and check the bit when woken, like
1223 			 * folio_wait_writeback() waiting on PG_writeback.
1224 			 */
1225 	DROP,		/* Drop ref to page before wait, no check when woken,
1226 			 * like folio_put_wait_locked() on PG_locked.
1227 			 */
1228 };
1229 
1230 /*
1231  * Attempt to check (or get) the folio flag, and mark us done
1232  * if successful.
1233  */
1234 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1235 					struct wait_queue_entry *wait)
1236 {
1237 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1238 		if (test_and_set_bit(bit_nr, &folio->flags))
1239 			return false;
1240 	} else if (test_bit(bit_nr, &folio->flags))
1241 		return false;
1242 
1243 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1244 	return true;
1245 }
1246 
1247 /* How many times do we accept lock stealing from under a waiter? */
1248 int sysctl_page_lock_unfairness = 5;
1249 
1250 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1251 		int state, enum behavior behavior)
1252 {
1253 	wait_queue_head_t *q = folio_waitqueue(folio);
1254 	int unfairness = sysctl_page_lock_unfairness;
1255 	struct wait_page_queue wait_page;
1256 	wait_queue_entry_t *wait = &wait_page.wait;
1257 	bool thrashing = false;
1258 	unsigned long pflags;
1259 	bool in_thrashing;
1260 
1261 	if (bit_nr == PG_locked &&
1262 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1263 		delayacct_thrashing_start(&in_thrashing);
1264 		psi_memstall_enter(&pflags);
1265 		thrashing = true;
1266 	}
1267 
1268 	init_wait(wait);
1269 	wait->func = wake_page_function;
1270 	wait_page.folio = folio;
1271 	wait_page.bit_nr = bit_nr;
1272 
1273 repeat:
1274 	wait->flags = 0;
1275 	if (behavior == EXCLUSIVE) {
1276 		wait->flags = WQ_FLAG_EXCLUSIVE;
1277 		if (--unfairness < 0)
1278 			wait->flags |= WQ_FLAG_CUSTOM;
1279 	}
1280 
1281 	/*
1282 	 * Do one last check whether we can get the
1283 	 * page bit synchronously.
1284 	 *
1285 	 * Do the folio_set_waiters() marking before that
1286 	 * to let any waker we _just_ missed know they
1287 	 * need to wake us up (otherwise they'll never
1288 	 * even go to the slow case that looks at the
1289 	 * page queue), and add ourselves to the wait
1290 	 * queue if we need to sleep.
1291 	 *
1292 	 * This part needs to be done under the queue
1293 	 * lock to avoid races.
1294 	 */
1295 	spin_lock_irq(&q->lock);
1296 	folio_set_waiters(folio);
1297 	if (!folio_trylock_flag(folio, bit_nr, wait))
1298 		__add_wait_queue_entry_tail(q, wait);
1299 	spin_unlock_irq(&q->lock);
1300 
1301 	/*
1302 	 * From now on, all the logic will be based on
1303 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1304 	 * see whether the page bit testing has already
1305 	 * been done by the wake function.
1306 	 *
1307 	 * We can drop our reference to the folio.
1308 	 */
1309 	if (behavior == DROP)
1310 		folio_put(folio);
1311 
1312 	/*
1313 	 * Note that until the "finish_wait()", or until
1314 	 * we see the WQ_FLAG_WOKEN flag, we need to
1315 	 * be very careful with the 'wait->flags', because
1316 	 * we may race with a waker that sets them.
1317 	 */
1318 	for (;;) {
1319 		unsigned int flags;
1320 
1321 		set_current_state(state);
1322 
1323 		/* Loop until we've been woken or interrupted */
1324 		flags = smp_load_acquire(&wait->flags);
1325 		if (!(flags & WQ_FLAG_WOKEN)) {
1326 			if (signal_pending_state(state, current))
1327 				break;
1328 
1329 			io_schedule();
1330 			continue;
1331 		}
1332 
1333 		/* If we were non-exclusive, we're done */
1334 		if (behavior != EXCLUSIVE)
1335 			break;
1336 
1337 		/* If the waker got the lock for us, we're done */
1338 		if (flags & WQ_FLAG_DONE)
1339 			break;
1340 
1341 		/*
1342 		 * Otherwise, if we're getting the lock, we need to
1343 		 * try to get it ourselves.
1344 		 *
1345 		 * And if that fails, we'll have to retry this all.
1346 		 */
1347 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1348 			goto repeat;
1349 
1350 		wait->flags |= WQ_FLAG_DONE;
1351 		break;
1352 	}
1353 
1354 	/*
1355 	 * If a signal happened, this 'finish_wait()' may remove the last
1356 	 * waiter from the wait-queues, but the folio waiters bit will remain
1357 	 * set. That's ok. The next wakeup will take care of it, and trying
1358 	 * to do it here would be difficult and prone to races.
1359 	 */
1360 	finish_wait(q, wait);
1361 
1362 	if (thrashing) {
1363 		delayacct_thrashing_end(&in_thrashing);
1364 		psi_memstall_leave(&pflags);
1365 	}
1366 
1367 	/*
1368 	 * NOTE! The wait->flags weren't stable until we've done the
1369 	 * 'finish_wait()', and we could have exited the loop above due
1370 	 * to a signal, and had a wakeup event happen after the signal
1371 	 * test but before the 'finish_wait()'.
1372 	 *
1373 	 * So only after the finish_wait() can we reliably determine
1374 	 * if we got woken up or not, so we can now figure out the final
1375 	 * return value based on that state without races.
1376 	 *
1377 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1378 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1379 	 */
1380 	if (behavior == EXCLUSIVE)
1381 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1382 
1383 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1384 }
1385 
1386 #ifdef CONFIG_MIGRATION
1387 /**
1388  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1389  * @entry: migration swap entry.
1390  * @ptl: already locked ptl. This function will drop the lock.
1391  *
1392  * Wait for a migration entry referencing the given page to be removed. This is
1393  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1394  * this can be called without taking a reference on the page. Instead this
1395  * should be called while holding the ptl for the migration entry referencing
1396  * the page.
1397  *
1398  * Returns after unlocking the ptl.
1399  *
1400  * This follows the same logic as folio_wait_bit_common() so see the comments
1401  * there.
1402  */
1403 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1404 	__releases(ptl)
1405 {
1406 	struct wait_page_queue wait_page;
1407 	wait_queue_entry_t *wait = &wait_page.wait;
1408 	bool thrashing = false;
1409 	unsigned long pflags;
1410 	bool in_thrashing;
1411 	wait_queue_head_t *q;
1412 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1413 
1414 	q = folio_waitqueue(folio);
1415 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1416 		delayacct_thrashing_start(&in_thrashing);
1417 		psi_memstall_enter(&pflags);
1418 		thrashing = true;
1419 	}
1420 
1421 	init_wait(wait);
1422 	wait->func = wake_page_function;
1423 	wait_page.folio = folio;
1424 	wait_page.bit_nr = PG_locked;
1425 	wait->flags = 0;
1426 
1427 	spin_lock_irq(&q->lock);
1428 	folio_set_waiters(folio);
1429 	if (!folio_trylock_flag(folio, PG_locked, wait))
1430 		__add_wait_queue_entry_tail(q, wait);
1431 	spin_unlock_irq(&q->lock);
1432 
1433 	/*
1434 	 * If a migration entry exists for the page the migration path must hold
1435 	 * a valid reference to the page, and it must take the ptl to remove the
1436 	 * migration entry. So the page is valid until the ptl is dropped.
1437 	 */
1438 	spin_unlock(ptl);
1439 
1440 	for (;;) {
1441 		unsigned int flags;
1442 
1443 		set_current_state(TASK_UNINTERRUPTIBLE);
1444 
1445 		/* Loop until we've been woken or interrupted */
1446 		flags = smp_load_acquire(&wait->flags);
1447 		if (!(flags & WQ_FLAG_WOKEN)) {
1448 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1449 				break;
1450 
1451 			io_schedule();
1452 			continue;
1453 		}
1454 		break;
1455 	}
1456 
1457 	finish_wait(q, wait);
1458 
1459 	if (thrashing) {
1460 		delayacct_thrashing_end(&in_thrashing);
1461 		psi_memstall_leave(&pflags);
1462 	}
1463 }
1464 #endif
1465 
1466 void folio_wait_bit(struct folio *folio, int bit_nr)
1467 {
1468 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1469 }
1470 EXPORT_SYMBOL(folio_wait_bit);
1471 
1472 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1473 {
1474 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1475 }
1476 EXPORT_SYMBOL(folio_wait_bit_killable);
1477 
1478 /**
1479  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1480  * @folio: The folio to wait for.
1481  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1482  *
1483  * The caller should hold a reference on @folio.  They expect the page to
1484  * become unlocked relatively soon, but do not wish to hold up migration
1485  * (for example) by holding the reference while waiting for the folio to
1486  * come unlocked.  After this function returns, the caller should not
1487  * dereference @folio.
1488  *
1489  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1490  */
1491 static int folio_put_wait_locked(struct folio *folio, int state)
1492 {
1493 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1494 }
1495 
1496 /**
1497  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1498  * @folio: Folio defining the wait queue of interest
1499  * @waiter: Waiter to add to the queue
1500  *
1501  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1502  */
1503 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1504 {
1505 	wait_queue_head_t *q = folio_waitqueue(folio);
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&q->lock, flags);
1509 	__add_wait_queue_entry_tail(q, waiter);
1510 	folio_set_waiters(folio);
1511 	spin_unlock_irqrestore(&q->lock, flags);
1512 }
1513 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1514 
1515 #ifndef clear_bit_unlock_is_negative_byte
1516 
1517 /*
1518  * PG_waiters is the high bit in the same byte as PG_lock.
1519  *
1520  * On x86 (and on many other architectures), we can clear PG_lock and
1521  * test the sign bit at the same time. But if the architecture does
1522  * not support that special operation, we just do this all by hand
1523  * instead.
1524  *
1525  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1526  * being cleared, but a memory barrier should be unnecessary since it is
1527  * in the same byte as PG_locked.
1528  */
1529 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1530 {
1531 	clear_bit_unlock(nr, mem);
1532 	/* smp_mb__after_atomic(); */
1533 	return test_bit(PG_waiters, mem);
1534 }
1535 
1536 #endif
1537 
1538 /**
1539  * folio_unlock - Unlock a locked folio.
1540  * @folio: The folio.
1541  *
1542  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1543  *
1544  * Context: May be called from interrupt or process context.  May not be
1545  * called from NMI context.
1546  */
1547 void folio_unlock(struct folio *folio)
1548 {
1549 	/* Bit 7 allows x86 to check the byte's sign bit */
1550 	BUILD_BUG_ON(PG_waiters != 7);
1551 	BUILD_BUG_ON(PG_locked > 7);
1552 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1553 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1554 		folio_wake_bit(folio, PG_locked);
1555 }
1556 EXPORT_SYMBOL(folio_unlock);
1557 
1558 /**
1559  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1560  * @folio: The folio.
1561  *
1562  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1563  * it.  The folio reference held for PG_private_2 being set is released.
1564  *
1565  * This is, for example, used when a netfs folio is being written to a local
1566  * disk cache, thereby allowing writes to the cache for the same folio to be
1567  * serialised.
1568  */
1569 void folio_end_private_2(struct folio *folio)
1570 {
1571 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1572 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1573 	folio_wake_bit(folio, PG_private_2);
1574 	folio_put(folio);
1575 }
1576 EXPORT_SYMBOL(folio_end_private_2);
1577 
1578 /**
1579  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1580  * @folio: The folio to wait on.
1581  *
1582  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1583  */
1584 void folio_wait_private_2(struct folio *folio)
1585 {
1586 	while (folio_test_private_2(folio))
1587 		folio_wait_bit(folio, PG_private_2);
1588 }
1589 EXPORT_SYMBOL(folio_wait_private_2);
1590 
1591 /**
1592  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1593  * @folio: The folio to wait on.
1594  *
1595  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1596  * fatal signal is received by the calling task.
1597  *
1598  * Return:
1599  * - 0 if successful.
1600  * - -EINTR if a fatal signal was encountered.
1601  */
1602 int folio_wait_private_2_killable(struct folio *folio)
1603 {
1604 	int ret = 0;
1605 
1606 	while (folio_test_private_2(folio)) {
1607 		ret = folio_wait_bit_killable(folio, PG_private_2);
1608 		if (ret < 0)
1609 			break;
1610 	}
1611 
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL(folio_wait_private_2_killable);
1615 
1616 /**
1617  * folio_end_writeback - End writeback against a folio.
1618  * @folio: The folio.
1619  */
1620 void folio_end_writeback(struct folio *folio)
1621 {
1622 	/*
1623 	 * folio_test_clear_reclaim() could be used here but it is an
1624 	 * atomic operation and overkill in this particular case. Failing
1625 	 * to shuffle a folio marked for immediate reclaim is too mild
1626 	 * a gain to justify taking an atomic operation penalty at the
1627 	 * end of every folio writeback.
1628 	 */
1629 	if (folio_test_reclaim(folio)) {
1630 		folio_clear_reclaim(folio);
1631 		folio_rotate_reclaimable(folio);
1632 	}
1633 
1634 	/*
1635 	 * Writeback does not hold a folio reference of its own, relying
1636 	 * on truncation to wait for the clearing of PG_writeback.
1637 	 * But here we must make sure that the folio is not freed and
1638 	 * reused before the folio_wake().
1639 	 */
1640 	folio_get(folio);
1641 	if (!__folio_end_writeback(folio))
1642 		BUG();
1643 
1644 	smp_mb__after_atomic();
1645 	folio_wake(folio, PG_writeback);
1646 	acct_reclaim_writeback(folio);
1647 	folio_put(folio);
1648 }
1649 EXPORT_SYMBOL(folio_end_writeback);
1650 
1651 /**
1652  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1653  * @folio: The folio to lock
1654  */
1655 void __folio_lock(struct folio *folio)
1656 {
1657 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1658 				EXCLUSIVE);
1659 }
1660 EXPORT_SYMBOL(__folio_lock);
1661 
1662 int __folio_lock_killable(struct folio *folio)
1663 {
1664 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1665 					EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1668 
1669 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1670 {
1671 	struct wait_queue_head *q = folio_waitqueue(folio);
1672 	int ret = 0;
1673 
1674 	wait->folio = folio;
1675 	wait->bit_nr = PG_locked;
1676 
1677 	spin_lock_irq(&q->lock);
1678 	__add_wait_queue_entry_tail(q, &wait->wait);
1679 	folio_set_waiters(folio);
1680 	ret = !folio_trylock(folio);
1681 	/*
1682 	 * If we were successful now, we know we're still on the
1683 	 * waitqueue as we're still under the lock. This means it's
1684 	 * safe to remove and return success, we know the callback
1685 	 * isn't going to trigger.
1686 	 */
1687 	if (!ret)
1688 		__remove_wait_queue(q, &wait->wait);
1689 	else
1690 		ret = -EIOCBQUEUED;
1691 	spin_unlock_irq(&q->lock);
1692 	return ret;
1693 }
1694 
1695 /*
1696  * Return values:
1697  * 0 - folio is locked.
1698  * non-zero - folio is not locked.
1699  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1700  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1701  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1702  *
1703  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1704  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1705  */
1706 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1707 {
1708 	unsigned int flags = vmf->flags;
1709 
1710 	if (fault_flag_allow_retry_first(flags)) {
1711 		/*
1712 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1713 		 * released even though returning VM_FAULT_RETRY.
1714 		 */
1715 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1716 			return VM_FAULT_RETRY;
1717 
1718 		release_fault_lock(vmf);
1719 		if (flags & FAULT_FLAG_KILLABLE)
1720 			folio_wait_locked_killable(folio);
1721 		else
1722 			folio_wait_locked(folio);
1723 		return VM_FAULT_RETRY;
1724 	}
1725 	if (flags & FAULT_FLAG_KILLABLE) {
1726 		bool ret;
1727 
1728 		ret = __folio_lock_killable(folio);
1729 		if (ret) {
1730 			release_fault_lock(vmf);
1731 			return VM_FAULT_RETRY;
1732 		}
1733 	} else {
1734 		__folio_lock(folio);
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * page_cache_next_miss() - Find the next gap in the page cache.
1742  * @mapping: Mapping.
1743  * @index: Index.
1744  * @max_scan: Maximum range to search.
1745  *
1746  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1747  * gap with the lowest index.
1748  *
1749  * This function may be called under the rcu_read_lock.  However, this will
1750  * not atomically search a snapshot of the cache at a single point in time.
1751  * For example, if a gap is created at index 5, then subsequently a gap is
1752  * created at index 10, page_cache_next_miss covering both indices may
1753  * return 10 if called under the rcu_read_lock.
1754  *
1755  * Return: The index of the gap if found, otherwise an index outside the
1756  * range specified (in which case 'return - index >= max_scan' will be true).
1757  * In the rare case of index wrap-around, 0 will be returned.
1758  */
1759 pgoff_t page_cache_next_miss(struct address_space *mapping,
1760 			     pgoff_t index, unsigned long max_scan)
1761 {
1762 	XA_STATE(xas, &mapping->i_pages, index);
1763 
1764 	while (max_scan--) {
1765 		void *entry = xas_next(&xas);
1766 		if (!entry || xa_is_value(entry))
1767 			break;
1768 		if (xas.xa_index == 0)
1769 			break;
1770 	}
1771 
1772 	return xas.xa_index;
1773 }
1774 EXPORT_SYMBOL(page_cache_next_miss);
1775 
1776 /**
1777  * page_cache_prev_miss() - Find the previous gap in the page cache.
1778  * @mapping: Mapping.
1779  * @index: Index.
1780  * @max_scan: Maximum range to search.
1781  *
1782  * Search the range [max(index - max_scan + 1, 0), index] for the
1783  * gap with the highest index.
1784  *
1785  * This function may be called under the rcu_read_lock.  However, this will
1786  * not atomically search a snapshot of the cache at a single point in time.
1787  * For example, if a gap is created at index 10, then subsequently a gap is
1788  * created at index 5, page_cache_prev_miss() covering both indices may
1789  * return 5 if called under the rcu_read_lock.
1790  *
1791  * Return: The index of the gap if found, otherwise an index outside the
1792  * range specified (in which case 'index - return >= max_scan' will be true).
1793  * In the rare case of wrap-around, ULONG_MAX will be returned.
1794  */
1795 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1796 			     pgoff_t index, unsigned long max_scan)
1797 {
1798 	XA_STATE(xas, &mapping->i_pages, index);
1799 
1800 	while (max_scan--) {
1801 		void *entry = xas_prev(&xas);
1802 		if (!entry || xa_is_value(entry))
1803 			break;
1804 		if (xas.xa_index == ULONG_MAX)
1805 			break;
1806 	}
1807 
1808 	return xas.xa_index;
1809 }
1810 EXPORT_SYMBOL(page_cache_prev_miss);
1811 
1812 /*
1813  * Lockless page cache protocol:
1814  * On the lookup side:
1815  * 1. Load the folio from i_pages
1816  * 2. Increment the refcount if it's not zero
1817  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1818  *
1819  * On the removal side:
1820  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1821  * B. Remove the page from i_pages
1822  * C. Return the page to the page allocator
1823  *
1824  * This means that any page may have its reference count temporarily
1825  * increased by a speculative page cache (or fast GUP) lookup as it can
1826  * be allocated by another user before the RCU grace period expires.
1827  * Because the refcount temporarily acquired here may end up being the
1828  * last refcount on the page, any page allocation must be freeable by
1829  * folio_put().
1830  */
1831 
1832 /*
1833  * filemap_get_entry - Get a page cache entry.
1834  * @mapping: the address_space to search
1835  * @index: The page cache index.
1836  *
1837  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1838  * it is returned with an increased refcount.  If it is a shadow entry
1839  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1840  * it is returned without further action.
1841  *
1842  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1843  */
1844 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1845 {
1846 	XA_STATE(xas, &mapping->i_pages, index);
1847 	struct folio *folio;
1848 
1849 	rcu_read_lock();
1850 repeat:
1851 	xas_reset(&xas);
1852 	folio = xas_load(&xas);
1853 	if (xas_retry(&xas, folio))
1854 		goto repeat;
1855 	/*
1856 	 * A shadow entry of a recently evicted page, or a swap entry from
1857 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1858 	 */
1859 	if (!folio || xa_is_value(folio))
1860 		goto out;
1861 
1862 	if (!folio_try_get(folio))
1863 		goto repeat;
1864 
1865 	if (unlikely(folio != xas_reload(&xas))) {
1866 		folio_put(folio);
1867 		goto repeat;
1868 	}
1869 out:
1870 	rcu_read_unlock();
1871 
1872 	return folio;
1873 }
1874 
1875 /**
1876  * __filemap_get_folio - Find and get a reference to a folio.
1877  * @mapping: The address_space to search.
1878  * @index: The page index.
1879  * @fgp_flags: %FGP flags modify how the folio is returned.
1880  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1881  *
1882  * Looks up the page cache entry at @mapping & @index.
1883  *
1884  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1885  * if the %GFP flags specified for %FGP_CREAT are atomic.
1886  *
1887  * If this function returns a folio, it is returned with an increased refcount.
1888  *
1889  * Return: The found folio or an ERR_PTR() otherwise.
1890  */
1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1892 		fgf_t fgp_flags, gfp_t gfp)
1893 {
1894 	struct folio *folio;
1895 
1896 repeat:
1897 	folio = filemap_get_entry(mapping, index);
1898 	if (xa_is_value(folio))
1899 		folio = NULL;
1900 	if (!folio)
1901 		goto no_page;
1902 
1903 	if (fgp_flags & FGP_LOCK) {
1904 		if (fgp_flags & FGP_NOWAIT) {
1905 			if (!folio_trylock(folio)) {
1906 				folio_put(folio);
1907 				return ERR_PTR(-EAGAIN);
1908 			}
1909 		} else {
1910 			folio_lock(folio);
1911 		}
1912 
1913 		/* Has the page been truncated? */
1914 		if (unlikely(folio->mapping != mapping)) {
1915 			folio_unlock(folio);
1916 			folio_put(folio);
1917 			goto repeat;
1918 		}
1919 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1920 	}
1921 
1922 	if (fgp_flags & FGP_ACCESSED)
1923 		folio_mark_accessed(folio);
1924 	else if (fgp_flags & FGP_WRITE) {
1925 		/* Clear idle flag for buffer write */
1926 		if (folio_test_idle(folio))
1927 			folio_clear_idle(folio);
1928 	}
1929 
1930 	if (fgp_flags & FGP_STABLE)
1931 		folio_wait_stable(folio);
1932 no_page:
1933 	if (!folio && (fgp_flags & FGP_CREAT)) {
1934 		unsigned order = FGF_GET_ORDER(fgp_flags);
1935 		int err;
1936 
1937 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1938 			gfp |= __GFP_WRITE;
1939 		if (fgp_flags & FGP_NOFS)
1940 			gfp &= ~__GFP_FS;
1941 		if (fgp_flags & FGP_NOWAIT) {
1942 			gfp &= ~GFP_KERNEL;
1943 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1944 		}
1945 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1946 			fgp_flags |= FGP_LOCK;
1947 
1948 		if (!mapping_large_folio_support(mapping))
1949 			order = 0;
1950 		if (order > MAX_PAGECACHE_ORDER)
1951 			order = MAX_PAGECACHE_ORDER;
1952 		/* If we're not aligned, allocate a smaller folio */
1953 		if (index & ((1UL << order) - 1))
1954 			order = __ffs(index);
1955 
1956 		do {
1957 			gfp_t alloc_gfp = gfp;
1958 
1959 			err = -ENOMEM;
1960 			if (order > 0)
1961 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1962 			folio = filemap_alloc_folio(alloc_gfp, order);
1963 			if (!folio)
1964 				continue;
1965 
1966 			/* Init accessed so avoid atomic mark_page_accessed later */
1967 			if (fgp_flags & FGP_ACCESSED)
1968 				__folio_set_referenced(folio);
1969 
1970 			err = filemap_add_folio(mapping, folio, index, gfp);
1971 			if (!err)
1972 				break;
1973 			folio_put(folio);
1974 			folio = NULL;
1975 		} while (order-- > 0);
1976 
1977 		if (err == -EEXIST)
1978 			goto repeat;
1979 		if (err)
1980 			return ERR_PTR(err);
1981 		/*
1982 		 * filemap_add_folio locks the page, and for mmap
1983 		 * we expect an unlocked page.
1984 		 */
1985 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1986 			folio_unlock(folio);
1987 	}
1988 
1989 	if (!folio)
1990 		return ERR_PTR(-ENOENT);
1991 	return folio;
1992 }
1993 EXPORT_SYMBOL(__filemap_get_folio);
1994 
1995 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1996 		xa_mark_t mark)
1997 {
1998 	struct folio *folio;
1999 
2000 retry:
2001 	if (mark == XA_PRESENT)
2002 		folio = xas_find(xas, max);
2003 	else
2004 		folio = xas_find_marked(xas, max, mark);
2005 
2006 	if (xas_retry(xas, folio))
2007 		goto retry;
2008 	/*
2009 	 * A shadow entry of a recently evicted page, a swap
2010 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2011 	 * without attempting to raise page count.
2012 	 */
2013 	if (!folio || xa_is_value(folio))
2014 		return folio;
2015 
2016 	if (!folio_try_get(folio))
2017 		goto reset;
2018 
2019 	if (unlikely(folio != xas_reload(xas))) {
2020 		folio_put(folio);
2021 		goto reset;
2022 	}
2023 
2024 	return folio;
2025 reset:
2026 	xas_reset(xas);
2027 	goto retry;
2028 }
2029 
2030 /**
2031  * find_get_entries - gang pagecache lookup
2032  * @mapping:	The address_space to search
2033  * @start:	The starting page cache index
2034  * @end:	The final page index (inclusive).
2035  * @fbatch:	Where the resulting entries are placed.
2036  * @indices:	The cache indices corresponding to the entries in @entries
2037  *
2038  * find_get_entries() will search for and return a batch of entries in
2039  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2040  * takes a reference on any actual folios it returns.
2041  *
2042  * The entries have ascending indexes.  The indices may not be consecutive
2043  * due to not-present entries or large folios.
2044  *
2045  * Any shadow entries of evicted folios, or swap entries from
2046  * shmem/tmpfs, are included in the returned array.
2047  *
2048  * Return: The number of entries which were found.
2049  */
2050 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2051 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2052 {
2053 	XA_STATE(xas, &mapping->i_pages, *start);
2054 	struct folio *folio;
2055 
2056 	rcu_read_lock();
2057 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2058 		indices[fbatch->nr] = xas.xa_index;
2059 		if (!folio_batch_add(fbatch, folio))
2060 			break;
2061 	}
2062 	rcu_read_unlock();
2063 
2064 	if (folio_batch_count(fbatch)) {
2065 		unsigned long nr = 1;
2066 		int idx = folio_batch_count(fbatch) - 1;
2067 
2068 		folio = fbatch->folios[idx];
2069 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2070 			nr = folio_nr_pages(folio);
2071 		*start = indices[idx] + nr;
2072 	}
2073 	return folio_batch_count(fbatch);
2074 }
2075 
2076 /**
2077  * find_lock_entries - Find a batch of pagecache entries.
2078  * @mapping:	The address_space to search.
2079  * @start:	The starting page cache index.
2080  * @end:	The final page index (inclusive).
2081  * @fbatch:	Where the resulting entries are placed.
2082  * @indices:	The cache indices of the entries in @fbatch.
2083  *
2084  * find_lock_entries() will return a batch of entries from @mapping.
2085  * Swap, shadow and DAX entries are included.  Folios are returned
2086  * locked and with an incremented refcount.  Folios which are locked
2087  * by somebody else or under writeback are skipped.  Folios which are
2088  * partially outside the range are not returned.
2089  *
2090  * The entries have ascending indexes.  The indices may not be consecutive
2091  * due to not-present entries, large folios, folios which could not be
2092  * locked or folios under writeback.
2093  *
2094  * Return: The number of entries which were found.
2095  */
2096 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2097 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2098 {
2099 	XA_STATE(xas, &mapping->i_pages, *start);
2100 	struct folio *folio;
2101 
2102 	rcu_read_lock();
2103 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2104 		if (!xa_is_value(folio)) {
2105 			if (folio->index < *start)
2106 				goto put;
2107 			if (folio_next_index(folio) - 1 > end)
2108 				goto put;
2109 			if (!folio_trylock(folio))
2110 				goto put;
2111 			if (folio->mapping != mapping ||
2112 			    folio_test_writeback(folio))
2113 				goto unlock;
2114 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2115 					folio);
2116 		}
2117 		indices[fbatch->nr] = xas.xa_index;
2118 		if (!folio_batch_add(fbatch, folio))
2119 			break;
2120 		continue;
2121 unlock:
2122 		folio_unlock(folio);
2123 put:
2124 		folio_put(folio);
2125 	}
2126 	rcu_read_unlock();
2127 
2128 	if (folio_batch_count(fbatch)) {
2129 		unsigned long nr = 1;
2130 		int idx = folio_batch_count(fbatch) - 1;
2131 
2132 		folio = fbatch->folios[idx];
2133 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2134 			nr = folio_nr_pages(folio);
2135 		*start = indices[idx] + nr;
2136 	}
2137 	return folio_batch_count(fbatch);
2138 }
2139 
2140 /**
2141  * filemap_get_folios - Get a batch of folios
2142  * @mapping:	The address_space to search
2143  * @start:	The starting page index
2144  * @end:	The final page index (inclusive)
2145  * @fbatch:	The batch to fill.
2146  *
2147  * Search for and return a batch of folios in the mapping starting at
2148  * index @start and up to index @end (inclusive).  The folios are returned
2149  * in @fbatch with an elevated reference count.
2150  *
2151  * The first folio may start before @start; if it does, it will contain
2152  * @start.  The final folio may extend beyond @end; if it does, it will
2153  * contain @end.  The folios have ascending indices.  There may be gaps
2154  * between the folios if there are indices which have no folio in the
2155  * page cache.  If folios are added to or removed from the page cache
2156  * while this is running, they may or may not be found by this call.
2157  *
2158  * Return: The number of folios which were found.
2159  * We also update @start to index the next folio for the traversal.
2160  */
2161 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2162 		pgoff_t end, struct folio_batch *fbatch)
2163 {
2164 	XA_STATE(xas, &mapping->i_pages, *start);
2165 	struct folio *folio;
2166 
2167 	rcu_read_lock();
2168 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2169 		/* Skip over shadow, swap and DAX entries */
2170 		if (xa_is_value(folio))
2171 			continue;
2172 		if (!folio_batch_add(fbatch, folio)) {
2173 			unsigned long nr = folio_nr_pages(folio);
2174 
2175 			if (folio_test_hugetlb(folio))
2176 				nr = 1;
2177 			*start = folio->index + nr;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * We come here when there is no page beyond @end. We take care to not
2184 	 * overflow the index @start as it confuses some of the callers. This
2185 	 * breaks the iteration when there is a page at index -1 but that is
2186 	 * already broken anyway.
2187 	 */
2188 	if (end == (pgoff_t)-1)
2189 		*start = (pgoff_t)-1;
2190 	else
2191 		*start = end + 1;
2192 out:
2193 	rcu_read_unlock();
2194 
2195 	return folio_batch_count(fbatch);
2196 }
2197 EXPORT_SYMBOL(filemap_get_folios);
2198 
2199 /**
2200  * filemap_get_folios_contig - Get a batch of contiguous folios
2201  * @mapping:	The address_space to search
2202  * @start:	The starting page index
2203  * @end:	The final page index (inclusive)
2204  * @fbatch:	The batch to fill
2205  *
2206  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2207  * except the returned folios are guaranteed to be contiguous. This may
2208  * not return all contiguous folios if the batch gets filled up.
2209  *
2210  * Return: The number of folios found.
2211  * Also update @start to be positioned for traversal of the next folio.
2212  */
2213 
2214 unsigned filemap_get_folios_contig(struct address_space *mapping,
2215 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2216 {
2217 	XA_STATE(xas, &mapping->i_pages, *start);
2218 	unsigned long nr;
2219 	struct folio *folio;
2220 
2221 	rcu_read_lock();
2222 
2223 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2224 			folio = xas_next(&xas)) {
2225 		if (xas_retry(&xas, folio))
2226 			continue;
2227 		/*
2228 		 * If the entry has been swapped out, we can stop looking.
2229 		 * No current caller is looking for DAX entries.
2230 		 */
2231 		if (xa_is_value(folio))
2232 			goto update_start;
2233 
2234 		if (!folio_try_get(folio))
2235 			goto retry;
2236 
2237 		if (unlikely(folio != xas_reload(&xas)))
2238 			goto put_folio;
2239 
2240 		if (!folio_batch_add(fbatch, folio)) {
2241 			nr = folio_nr_pages(folio);
2242 
2243 			if (folio_test_hugetlb(folio))
2244 				nr = 1;
2245 			*start = folio->index + nr;
2246 			goto out;
2247 		}
2248 		continue;
2249 put_folio:
2250 		folio_put(folio);
2251 
2252 retry:
2253 		xas_reset(&xas);
2254 	}
2255 
2256 update_start:
2257 	nr = folio_batch_count(fbatch);
2258 
2259 	if (nr) {
2260 		folio = fbatch->folios[nr - 1];
2261 		if (folio_test_hugetlb(folio))
2262 			*start = folio->index + 1;
2263 		else
2264 			*start = folio_next_index(folio);
2265 	}
2266 out:
2267 	rcu_read_unlock();
2268 	return folio_batch_count(fbatch);
2269 }
2270 EXPORT_SYMBOL(filemap_get_folios_contig);
2271 
2272 /**
2273  * filemap_get_folios_tag - Get a batch of folios matching @tag
2274  * @mapping:    The address_space to search
2275  * @start:      The starting page index
2276  * @end:        The final page index (inclusive)
2277  * @tag:        The tag index
2278  * @fbatch:     The batch to fill
2279  *
2280  * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2281  *
2282  * Return: The number of folios found.
2283  * Also update @start to index the next folio for traversal.
2284  */
2285 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2286 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2287 {
2288 	XA_STATE(xas, &mapping->i_pages, *start);
2289 	struct folio *folio;
2290 
2291 	rcu_read_lock();
2292 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2293 		/*
2294 		 * Shadow entries should never be tagged, but this iteration
2295 		 * is lockless so there is a window for page reclaim to evict
2296 		 * a page we saw tagged. Skip over it.
2297 		 */
2298 		if (xa_is_value(folio))
2299 			continue;
2300 		if (!folio_batch_add(fbatch, folio)) {
2301 			unsigned long nr = folio_nr_pages(folio);
2302 
2303 			if (folio_test_hugetlb(folio))
2304 				nr = 1;
2305 			*start = folio->index + nr;
2306 			goto out;
2307 		}
2308 	}
2309 	/*
2310 	 * We come here when there is no page beyond @end. We take care to not
2311 	 * overflow the index @start as it confuses some of the callers. This
2312 	 * breaks the iteration when there is a page at index -1 but that is
2313 	 * already broke anyway.
2314 	 */
2315 	if (end == (pgoff_t)-1)
2316 		*start = (pgoff_t)-1;
2317 	else
2318 		*start = end + 1;
2319 out:
2320 	rcu_read_unlock();
2321 
2322 	return folio_batch_count(fbatch);
2323 }
2324 EXPORT_SYMBOL(filemap_get_folios_tag);
2325 
2326 /*
2327  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2328  * a _large_ part of the i/o request. Imagine the worst scenario:
2329  *
2330  *      ---R__________________________________________B__________
2331  *         ^ reading here                             ^ bad block(assume 4k)
2332  *
2333  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2334  * => failing the whole request => read(R) => read(R+1) =>
2335  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2336  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2337  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2338  *
2339  * It is going insane. Fix it by quickly scaling down the readahead size.
2340  */
2341 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2342 {
2343 	ra->ra_pages /= 4;
2344 }
2345 
2346 /*
2347  * filemap_get_read_batch - Get a batch of folios for read
2348  *
2349  * Get a batch of folios which represent a contiguous range of bytes in
2350  * the file.  No exceptional entries will be returned.  If @index is in
2351  * the middle of a folio, the entire folio will be returned.  The last
2352  * folio in the batch may have the readahead flag set or the uptodate flag
2353  * clear so that the caller can take the appropriate action.
2354  */
2355 static void filemap_get_read_batch(struct address_space *mapping,
2356 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2357 {
2358 	XA_STATE(xas, &mapping->i_pages, index);
2359 	struct folio *folio;
2360 
2361 	rcu_read_lock();
2362 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2363 		if (xas_retry(&xas, folio))
2364 			continue;
2365 		if (xas.xa_index > max || xa_is_value(folio))
2366 			break;
2367 		if (xa_is_sibling(folio))
2368 			break;
2369 		if (!folio_try_get(folio))
2370 			goto retry;
2371 
2372 		if (unlikely(folio != xas_reload(&xas)))
2373 			goto put_folio;
2374 
2375 		if (!folio_batch_add(fbatch, folio))
2376 			break;
2377 		if (!folio_test_uptodate(folio))
2378 			break;
2379 		if (folio_test_readahead(folio))
2380 			break;
2381 		xas_advance(&xas, folio_next_index(folio) - 1);
2382 		continue;
2383 put_folio:
2384 		folio_put(folio);
2385 retry:
2386 		xas_reset(&xas);
2387 	}
2388 	rcu_read_unlock();
2389 }
2390 
2391 static int filemap_read_folio(struct file *file, filler_t filler,
2392 		struct folio *folio)
2393 {
2394 	bool workingset = folio_test_workingset(folio);
2395 	unsigned long pflags;
2396 	int error;
2397 
2398 	/*
2399 	 * A previous I/O error may have been due to temporary failures,
2400 	 * eg. multipath errors.  PG_error will be set again if read_folio
2401 	 * fails.
2402 	 */
2403 	folio_clear_error(folio);
2404 
2405 	/* Start the actual read. The read will unlock the page. */
2406 	if (unlikely(workingset))
2407 		psi_memstall_enter(&pflags);
2408 	error = filler(file, folio);
2409 	if (unlikely(workingset))
2410 		psi_memstall_leave(&pflags);
2411 	if (error)
2412 		return error;
2413 
2414 	error = folio_wait_locked_killable(folio);
2415 	if (error)
2416 		return error;
2417 	if (folio_test_uptodate(folio))
2418 		return 0;
2419 	if (file)
2420 		shrink_readahead_size_eio(&file->f_ra);
2421 	return -EIO;
2422 }
2423 
2424 static bool filemap_range_uptodate(struct address_space *mapping,
2425 		loff_t pos, size_t count, struct folio *folio,
2426 		bool need_uptodate)
2427 {
2428 	if (folio_test_uptodate(folio))
2429 		return true;
2430 	/* pipes can't handle partially uptodate pages */
2431 	if (need_uptodate)
2432 		return false;
2433 	if (!mapping->a_ops->is_partially_uptodate)
2434 		return false;
2435 	if (mapping->host->i_blkbits >= folio_shift(folio))
2436 		return false;
2437 
2438 	if (folio_pos(folio) > pos) {
2439 		count -= folio_pos(folio) - pos;
2440 		pos = 0;
2441 	} else {
2442 		pos -= folio_pos(folio);
2443 	}
2444 
2445 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2446 }
2447 
2448 static int filemap_update_page(struct kiocb *iocb,
2449 		struct address_space *mapping, size_t count,
2450 		struct folio *folio, bool need_uptodate)
2451 {
2452 	int error;
2453 
2454 	if (iocb->ki_flags & IOCB_NOWAIT) {
2455 		if (!filemap_invalidate_trylock_shared(mapping))
2456 			return -EAGAIN;
2457 	} else {
2458 		filemap_invalidate_lock_shared(mapping);
2459 	}
2460 
2461 	if (!folio_trylock(folio)) {
2462 		error = -EAGAIN;
2463 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2464 			goto unlock_mapping;
2465 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2466 			filemap_invalidate_unlock_shared(mapping);
2467 			/*
2468 			 * This is where we usually end up waiting for a
2469 			 * previously submitted readahead to finish.
2470 			 */
2471 			folio_put_wait_locked(folio, TASK_KILLABLE);
2472 			return AOP_TRUNCATED_PAGE;
2473 		}
2474 		error = __folio_lock_async(folio, iocb->ki_waitq);
2475 		if (error)
2476 			goto unlock_mapping;
2477 	}
2478 
2479 	error = AOP_TRUNCATED_PAGE;
2480 	if (!folio->mapping)
2481 		goto unlock;
2482 
2483 	error = 0;
2484 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2485 				   need_uptodate))
2486 		goto unlock;
2487 
2488 	error = -EAGAIN;
2489 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2490 		goto unlock;
2491 
2492 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2493 			folio);
2494 	goto unlock_mapping;
2495 unlock:
2496 	folio_unlock(folio);
2497 unlock_mapping:
2498 	filemap_invalidate_unlock_shared(mapping);
2499 	if (error == AOP_TRUNCATED_PAGE)
2500 		folio_put(folio);
2501 	return error;
2502 }
2503 
2504 static int filemap_create_folio(struct file *file,
2505 		struct address_space *mapping, pgoff_t index,
2506 		struct folio_batch *fbatch)
2507 {
2508 	struct folio *folio;
2509 	int error;
2510 
2511 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2512 	if (!folio)
2513 		return -ENOMEM;
2514 
2515 	/*
2516 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2517 	 * here assures we cannot instantiate and bring uptodate new
2518 	 * pagecache folios after evicting page cache during truncate
2519 	 * and before actually freeing blocks.	Note that we could
2520 	 * release invalidate_lock after inserting the folio into
2521 	 * the page cache as the locked folio would then be enough to
2522 	 * synchronize with hole punching. But there are code paths
2523 	 * such as filemap_update_page() filling in partially uptodate
2524 	 * pages or ->readahead() that need to hold invalidate_lock
2525 	 * while mapping blocks for IO so let's hold the lock here as
2526 	 * well to keep locking rules simple.
2527 	 */
2528 	filemap_invalidate_lock_shared(mapping);
2529 	error = filemap_add_folio(mapping, folio, index,
2530 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2531 	if (error == -EEXIST)
2532 		error = AOP_TRUNCATED_PAGE;
2533 	if (error)
2534 		goto error;
2535 
2536 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2537 	if (error)
2538 		goto error;
2539 
2540 	filemap_invalidate_unlock_shared(mapping);
2541 	folio_batch_add(fbatch, folio);
2542 	return 0;
2543 error:
2544 	filemap_invalidate_unlock_shared(mapping);
2545 	folio_put(folio);
2546 	return error;
2547 }
2548 
2549 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2550 		struct address_space *mapping, struct folio *folio,
2551 		pgoff_t last_index)
2552 {
2553 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2554 
2555 	if (iocb->ki_flags & IOCB_NOIO)
2556 		return -EAGAIN;
2557 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2558 	return 0;
2559 }
2560 
2561 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2562 		struct folio_batch *fbatch, bool need_uptodate)
2563 {
2564 	struct file *filp = iocb->ki_filp;
2565 	struct address_space *mapping = filp->f_mapping;
2566 	struct file_ra_state *ra = &filp->f_ra;
2567 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2568 	pgoff_t last_index;
2569 	struct folio *folio;
2570 	int err = 0;
2571 
2572 	/* "last_index" is the index of the page beyond the end of the read */
2573 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2574 retry:
2575 	if (fatal_signal_pending(current))
2576 		return -EINTR;
2577 
2578 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2579 	if (!folio_batch_count(fbatch)) {
2580 		if (iocb->ki_flags & IOCB_NOIO)
2581 			return -EAGAIN;
2582 		page_cache_sync_readahead(mapping, ra, filp, index,
2583 				last_index - index);
2584 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2585 	}
2586 	if (!folio_batch_count(fbatch)) {
2587 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2588 			return -EAGAIN;
2589 		err = filemap_create_folio(filp, mapping,
2590 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2591 		if (err == AOP_TRUNCATED_PAGE)
2592 			goto retry;
2593 		return err;
2594 	}
2595 
2596 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2597 	if (folio_test_readahead(folio)) {
2598 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2599 		if (err)
2600 			goto err;
2601 	}
2602 	if (!folio_test_uptodate(folio)) {
2603 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2604 		    folio_batch_count(fbatch) > 1)
2605 			iocb->ki_flags |= IOCB_NOWAIT;
2606 		err = filemap_update_page(iocb, mapping, count, folio,
2607 					  need_uptodate);
2608 		if (err)
2609 			goto err;
2610 	}
2611 
2612 	return 0;
2613 err:
2614 	if (err < 0)
2615 		folio_put(folio);
2616 	if (likely(--fbatch->nr))
2617 		return 0;
2618 	if (err == AOP_TRUNCATED_PAGE)
2619 		goto retry;
2620 	return err;
2621 }
2622 
2623 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2624 {
2625 	unsigned int shift = folio_shift(folio);
2626 
2627 	return (pos1 >> shift == pos2 >> shift);
2628 }
2629 
2630 /**
2631  * filemap_read - Read data from the page cache.
2632  * @iocb: The iocb to read.
2633  * @iter: Destination for the data.
2634  * @already_read: Number of bytes already read by the caller.
2635  *
2636  * Copies data from the page cache.  If the data is not currently present,
2637  * uses the readahead and read_folio address_space operations to fetch it.
2638  *
2639  * Return: Total number of bytes copied, including those already read by
2640  * the caller.  If an error happens before any bytes are copied, returns
2641  * a negative error number.
2642  */
2643 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2644 		ssize_t already_read)
2645 {
2646 	struct file *filp = iocb->ki_filp;
2647 	struct file_ra_state *ra = &filp->f_ra;
2648 	struct address_space *mapping = filp->f_mapping;
2649 	struct inode *inode = mapping->host;
2650 	struct folio_batch fbatch;
2651 	int i, error = 0;
2652 	bool writably_mapped;
2653 	loff_t isize, end_offset;
2654 	loff_t last_pos = ra->prev_pos;
2655 
2656 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2657 		return 0;
2658 	if (unlikely(!iov_iter_count(iter)))
2659 		return 0;
2660 
2661 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2662 	folio_batch_init(&fbatch);
2663 
2664 	do {
2665 		cond_resched();
2666 
2667 		/*
2668 		 * If we've already successfully copied some data, then we
2669 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2670 		 * an async read NOWAIT at that point.
2671 		 */
2672 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2673 			iocb->ki_flags |= IOCB_NOWAIT;
2674 
2675 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2676 			break;
2677 
2678 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2679 		if (error < 0)
2680 			break;
2681 
2682 		/*
2683 		 * i_size must be checked after we know the pages are Uptodate.
2684 		 *
2685 		 * Checking i_size after the check allows us to calculate
2686 		 * the correct value for "nr", which means the zero-filled
2687 		 * part of the page is not copied back to userspace (unless
2688 		 * another truncate extends the file - this is desired though).
2689 		 */
2690 		isize = i_size_read(inode);
2691 		if (unlikely(iocb->ki_pos >= isize))
2692 			goto put_folios;
2693 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2694 
2695 		/*
2696 		 * Pairs with a barrier in
2697 		 * block_write_end()->mark_buffer_dirty() or other page
2698 		 * dirtying routines like iomap_write_end() to ensure
2699 		 * changes to page contents are visible before we see
2700 		 * increased inode size.
2701 		 */
2702 		smp_rmb();
2703 
2704 		/*
2705 		 * Once we start copying data, we don't want to be touching any
2706 		 * cachelines that might be contended:
2707 		 */
2708 		writably_mapped = mapping_writably_mapped(mapping);
2709 
2710 		/*
2711 		 * When a read accesses the same folio several times, only
2712 		 * mark it as accessed the first time.
2713 		 */
2714 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2715 				    fbatch.folios[0]))
2716 			folio_mark_accessed(fbatch.folios[0]);
2717 
2718 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2719 			struct folio *folio = fbatch.folios[i];
2720 			size_t fsize = folio_size(folio);
2721 			size_t offset = iocb->ki_pos & (fsize - 1);
2722 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2723 					     fsize - offset);
2724 			size_t copied;
2725 
2726 			if (end_offset < folio_pos(folio))
2727 				break;
2728 			if (i > 0)
2729 				folio_mark_accessed(folio);
2730 			/*
2731 			 * If users can be writing to this folio using arbitrary
2732 			 * virtual addresses, take care of potential aliasing
2733 			 * before reading the folio on the kernel side.
2734 			 */
2735 			if (writably_mapped)
2736 				flush_dcache_folio(folio);
2737 
2738 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2739 
2740 			already_read += copied;
2741 			iocb->ki_pos += copied;
2742 			last_pos = iocb->ki_pos;
2743 
2744 			if (copied < bytes) {
2745 				error = -EFAULT;
2746 				break;
2747 			}
2748 		}
2749 put_folios:
2750 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2751 			folio_put(fbatch.folios[i]);
2752 		folio_batch_init(&fbatch);
2753 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2754 
2755 	file_accessed(filp);
2756 	ra->prev_pos = last_pos;
2757 	return already_read ? already_read : error;
2758 }
2759 EXPORT_SYMBOL_GPL(filemap_read);
2760 
2761 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2762 {
2763 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2764 	loff_t pos = iocb->ki_pos;
2765 	loff_t end = pos + count - 1;
2766 
2767 	if (iocb->ki_flags & IOCB_NOWAIT) {
2768 		if (filemap_range_needs_writeback(mapping, pos, end))
2769 			return -EAGAIN;
2770 		return 0;
2771 	}
2772 
2773 	return filemap_write_and_wait_range(mapping, pos, end);
2774 }
2775 
2776 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2777 {
2778 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2779 	loff_t pos = iocb->ki_pos;
2780 	loff_t end = pos + count - 1;
2781 	int ret;
2782 
2783 	if (iocb->ki_flags & IOCB_NOWAIT) {
2784 		/* we could block if there are any pages in the range */
2785 		if (filemap_range_has_page(mapping, pos, end))
2786 			return -EAGAIN;
2787 	} else {
2788 		ret = filemap_write_and_wait_range(mapping, pos, end);
2789 		if (ret)
2790 			return ret;
2791 	}
2792 
2793 	/*
2794 	 * After a write we want buffered reads to be sure to go to disk to get
2795 	 * the new data.  We invalidate clean cached page from the region we're
2796 	 * about to write.  We do this *before* the write so that we can return
2797 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2798 	 */
2799 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2800 					     end >> PAGE_SHIFT);
2801 }
2802 
2803 /**
2804  * generic_file_read_iter - generic filesystem read routine
2805  * @iocb:	kernel I/O control block
2806  * @iter:	destination for the data read
2807  *
2808  * This is the "read_iter()" routine for all filesystems
2809  * that can use the page cache directly.
2810  *
2811  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2812  * be returned when no data can be read without waiting for I/O requests
2813  * to complete; it doesn't prevent readahead.
2814  *
2815  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2816  * requests shall be made for the read or for readahead.  When no data
2817  * can be read, -EAGAIN shall be returned.  When readahead would be
2818  * triggered, a partial, possibly empty read shall be returned.
2819  *
2820  * Return:
2821  * * number of bytes copied, even for partial reads
2822  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2823  */
2824 ssize_t
2825 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2826 {
2827 	size_t count = iov_iter_count(iter);
2828 	ssize_t retval = 0;
2829 
2830 	if (!count)
2831 		return 0; /* skip atime */
2832 
2833 	if (iocb->ki_flags & IOCB_DIRECT) {
2834 		struct file *file = iocb->ki_filp;
2835 		struct address_space *mapping = file->f_mapping;
2836 		struct inode *inode = mapping->host;
2837 
2838 		retval = kiocb_write_and_wait(iocb, count);
2839 		if (retval < 0)
2840 			return retval;
2841 		file_accessed(file);
2842 
2843 		retval = mapping->a_ops->direct_IO(iocb, iter);
2844 		if (retval >= 0) {
2845 			iocb->ki_pos += retval;
2846 			count -= retval;
2847 		}
2848 		if (retval != -EIOCBQUEUED)
2849 			iov_iter_revert(iter, count - iov_iter_count(iter));
2850 
2851 		/*
2852 		 * Btrfs can have a short DIO read if we encounter
2853 		 * compressed extents, so if there was an error, or if
2854 		 * we've already read everything we wanted to, or if
2855 		 * there was a short read because we hit EOF, go ahead
2856 		 * and return.  Otherwise fallthrough to buffered io for
2857 		 * the rest of the read.  Buffered reads will not work for
2858 		 * DAX files, so don't bother trying.
2859 		 */
2860 		if (retval < 0 || !count || IS_DAX(inode))
2861 			return retval;
2862 		if (iocb->ki_pos >= i_size_read(inode))
2863 			return retval;
2864 	}
2865 
2866 	return filemap_read(iocb, iter, retval);
2867 }
2868 EXPORT_SYMBOL(generic_file_read_iter);
2869 
2870 /*
2871  * Splice subpages from a folio into a pipe.
2872  */
2873 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2874 			      struct folio *folio, loff_t fpos, size_t size)
2875 {
2876 	struct page *page;
2877 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2878 
2879 	page = folio_page(folio, offset / PAGE_SIZE);
2880 	size = min(size, folio_size(folio) - offset);
2881 	offset %= PAGE_SIZE;
2882 
2883 	while (spliced < size &&
2884 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2885 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2886 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2887 
2888 		*buf = (struct pipe_buffer) {
2889 			.ops	= &page_cache_pipe_buf_ops,
2890 			.page	= page,
2891 			.offset	= offset,
2892 			.len	= part,
2893 		};
2894 		folio_get(folio);
2895 		pipe->head++;
2896 		page++;
2897 		spliced += part;
2898 		offset = 0;
2899 	}
2900 
2901 	return spliced;
2902 }
2903 
2904 /**
2905  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2906  * @in: The file to read from
2907  * @ppos: Pointer to the file position to read from
2908  * @pipe: The pipe to splice into
2909  * @len: The amount to splice
2910  * @flags: The SPLICE_F_* flags
2911  *
2912  * This function gets folios from a file's pagecache and splices them into the
2913  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2914  * be used for blockdevs also.
2915  *
2916  * Return: On success, the number of bytes read will be returned and *@ppos
2917  * will be updated if appropriate; 0 will be returned if there is no more data
2918  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2919  * other negative error code will be returned on error.  A short read may occur
2920  * if the pipe has insufficient space, we reach the end of the data or we hit a
2921  * hole.
2922  */
2923 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2924 			    struct pipe_inode_info *pipe,
2925 			    size_t len, unsigned int flags)
2926 {
2927 	struct folio_batch fbatch;
2928 	struct kiocb iocb;
2929 	size_t total_spliced = 0, used, npages;
2930 	loff_t isize, end_offset;
2931 	bool writably_mapped;
2932 	int i, error = 0;
2933 
2934 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2935 		return 0;
2936 
2937 	init_sync_kiocb(&iocb, in);
2938 	iocb.ki_pos = *ppos;
2939 
2940 	/* Work out how much data we can actually add into the pipe */
2941 	used = pipe_occupancy(pipe->head, pipe->tail);
2942 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2943 	len = min_t(size_t, len, npages * PAGE_SIZE);
2944 
2945 	folio_batch_init(&fbatch);
2946 
2947 	do {
2948 		cond_resched();
2949 
2950 		if (*ppos >= i_size_read(in->f_mapping->host))
2951 			break;
2952 
2953 		iocb.ki_pos = *ppos;
2954 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2955 		if (error < 0)
2956 			break;
2957 
2958 		/*
2959 		 * i_size must be checked after we know the pages are Uptodate.
2960 		 *
2961 		 * Checking i_size after the check allows us to calculate
2962 		 * the correct value for "nr", which means the zero-filled
2963 		 * part of the page is not copied back to userspace (unless
2964 		 * another truncate extends the file - this is desired though).
2965 		 */
2966 		isize = i_size_read(in->f_mapping->host);
2967 		if (unlikely(*ppos >= isize))
2968 			break;
2969 		end_offset = min_t(loff_t, isize, *ppos + len);
2970 
2971 		/*
2972 		 * Once we start copying data, we don't want to be touching any
2973 		 * cachelines that might be contended:
2974 		 */
2975 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2976 
2977 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2978 			struct folio *folio = fbatch.folios[i];
2979 			size_t n;
2980 
2981 			if (folio_pos(folio) >= end_offset)
2982 				goto out;
2983 			folio_mark_accessed(folio);
2984 
2985 			/*
2986 			 * If users can be writing to this folio using arbitrary
2987 			 * virtual addresses, take care of potential aliasing
2988 			 * before reading the folio on the kernel side.
2989 			 */
2990 			if (writably_mapped)
2991 				flush_dcache_folio(folio);
2992 
2993 			n = min_t(loff_t, len, isize - *ppos);
2994 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2995 			if (!n)
2996 				goto out;
2997 			len -= n;
2998 			total_spliced += n;
2999 			*ppos += n;
3000 			in->f_ra.prev_pos = *ppos;
3001 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3002 				goto out;
3003 		}
3004 
3005 		folio_batch_release(&fbatch);
3006 	} while (len);
3007 
3008 out:
3009 	folio_batch_release(&fbatch);
3010 	file_accessed(in);
3011 
3012 	return total_spliced ? total_spliced : error;
3013 }
3014 EXPORT_SYMBOL(filemap_splice_read);
3015 
3016 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3017 		struct address_space *mapping, struct folio *folio,
3018 		loff_t start, loff_t end, bool seek_data)
3019 {
3020 	const struct address_space_operations *ops = mapping->a_ops;
3021 	size_t offset, bsz = i_blocksize(mapping->host);
3022 
3023 	if (xa_is_value(folio) || folio_test_uptodate(folio))
3024 		return seek_data ? start : end;
3025 	if (!ops->is_partially_uptodate)
3026 		return seek_data ? end : start;
3027 
3028 	xas_pause(xas);
3029 	rcu_read_unlock();
3030 	folio_lock(folio);
3031 	if (unlikely(folio->mapping != mapping))
3032 		goto unlock;
3033 
3034 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3035 
3036 	do {
3037 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3038 							seek_data)
3039 			break;
3040 		start = (start + bsz) & ~(bsz - 1);
3041 		offset += bsz;
3042 	} while (offset < folio_size(folio));
3043 unlock:
3044 	folio_unlock(folio);
3045 	rcu_read_lock();
3046 	return start;
3047 }
3048 
3049 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3050 {
3051 	if (xa_is_value(folio))
3052 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3053 	return folio_size(folio);
3054 }
3055 
3056 /**
3057  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3058  * @mapping: Address space to search.
3059  * @start: First byte to consider.
3060  * @end: Limit of search (exclusive).
3061  * @whence: Either SEEK_HOLE or SEEK_DATA.
3062  *
3063  * If the page cache knows which blocks contain holes and which blocks
3064  * contain data, your filesystem can use this function to implement
3065  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3066  * entirely memory-based such as tmpfs, and filesystems which support
3067  * unwritten extents.
3068  *
3069  * Return: The requested offset on success, or -ENXIO if @whence specifies
3070  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3071  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3072  * and @end contain data.
3073  */
3074 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3075 		loff_t end, int whence)
3076 {
3077 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3078 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3079 	bool seek_data = (whence == SEEK_DATA);
3080 	struct folio *folio;
3081 
3082 	if (end <= start)
3083 		return -ENXIO;
3084 
3085 	rcu_read_lock();
3086 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3087 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3088 		size_t seek_size;
3089 
3090 		if (start < pos) {
3091 			if (!seek_data)
3092 				goto unlock;
3093 			start = pos;
3094 		}
3095 
3096 		seek_size = seek_folio_size(&xas, folio);
3097 		pos = round_up((u64)pos + 1, seek_size);
3098 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3099 				seek_data);
3100 		if (start < pos)
3101 			goto unlock;
3102 		if (start >= end)
3103 			break;
3104 		if (seek_size > PAGE_SIZE)
3105 			xas_set(&xas, pos >> PAGE_SHIFT);
3106 		if (!xa_is_value(folio))
3107 			folio_put(folio);
3108 	}
3109 	if (seek_data)
3110 		start = -ENXIO;
3111 unlock:
3112 	rcu_read_unlock();
3113 	if (folio && !xa_is_value(folio))
3114 		folio_put(folio);
3115 	if (start > end)
3116 		return end;
3117 	return start;
3118 }
3119 
3120 #ifdef CONFIG_MMU
3121 #define MMAP_LOTSAMISS  (100)
3122 /*
3123  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3124  * @vmf - the vm_fault for this fault.
3125  * @folio - the folio to lock.
3126  * @fpin - the pointer to the file we may pin (or is already pinned).
3127  *
3128  * This works similar to lock_folio_or_retry in that it can drop the
3129  * mmap_lock.  It differs in that it actually returns the folio locked
3130  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3131  * to drop the mmap_lock then fpin will point to the pinned file and
3132  * needs to be fput()'ed at a later point.
3133  */
3134 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3135 				     struct file **fpin)
3136 {
3137 	if (folio_trylock(folio))
3138 		return 1;
3139 
3140 	/*
3141 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3142 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3143 	 * is supposed to work. We have way too many special cases..
3144 	 */
3145 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3146 		return 0;
3147 
3148 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3149 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3150 		if (__folio_lock_killable(folio)) {
3151 			/*
3152 			 * We didn't have the right flags to drop the mmap_lock,
3153 			 * but all fault_handlers only check for fatal signals
3154 			 * if we return VM_FAULT_RETRY, so we need to drop the
3155 			 * mmap_lock here and return 0 if we don't have a fpin.
3156 			 */
3157 			if (*fpin == NULL)
3158 				mmap_read_unlock(vmf->vma->vm_mm);
3159 			return 0;
3160 		}
3161 	} else
3162 		__folio_lock(folio);
3163 
3164 	return 1;
3165 }
3166 
3167 /*
3168  * Synchronous readahead happens when we don't even find a page in the page
3169  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3170  * to drop the mmap sem we return the file that was pinned in order for us to do
3171  * that.  If we didn't pin a file then we return NULL.  The file that is
3172  * returned needs to be fput()'ed when we're done with it.
3173  */
3174 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3175 {
3176 	struct file *file = vmf->vma->vm_file;
3177 	struct file_ra_state *ra = &file->f_ra;
3178 	struct address_space *mapping = file->f_mapping;
3179 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3180 	struct file *fpin = NULL;
3181 	unsigned long vm_flags = vmf->vma->vm_flags;
3182 	unsigned int mmap_miss;
3183 
3184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3185 	/* Use the readahead code, even if readahead is disabled */
3186 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3187 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3188 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3189 		ra->size = HPAGE_PMD_NR;
3190 		/*
3191 		 * Fetch two PMD folios, so we get the chance to actually
3192 		 * readahead, unless we've been told not to.
3193 		 */
3194 		if (!(vm_flags & VM_RAND_READ))
3195 			ra->size *= 2;
3196 		ra->async_size = HPAGE_PMD_NR;
3197 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3198 		return fpin;
3199 	}
3200 #endif
3201 
3202 	/* If we don't want any read-ahead, don't bother */
3203 	if (vm_flags & VM_RAND_READ)
3204 		return fpin;
3205 	if (!ra->ra_pages)
3206 		return fpin;
3207 
3208 	if (vm_flags & VM_SEQ_READ) {
3209 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3210 		page_cache_sync_ra(&ractl, ra->ra_pages);
3211 		return fpin;
3212 	}
3213 
3214 	/* Avoid banging the cache line if not needed */
3215 	mmap_miss = READ_ONCE(ra->mmap_miss);
3216 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3217 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3218 
3219 	/*
3220 	 * Do we miss much more than hit in this file? If so,
3221 	 * stop bothering with read-ahead. It will only hurt.
3222 	 */
3223 	if (mmap_miss > MMAP_LOTSAMISS)
3224 		return fpin;
3225 
3226 	/*
3227 	 * mmap read-around
3228 	 */
3229 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3230 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3231 	ra->size = ra->ra_pages;
3232 	ra->async_size = ra->ra_pages / 4;
3233 	ractl._index = ra->start;
3234 	page_cache_ra_order(&ractl, ra, 0);
3235 	return fpin;
3236 }
3237 
3238 /*
3239  * Asynchronous readahead happens when we find the page and PG_readahead,
3240  * so we want to possibly extend the readahead further.  We return the file that
3241  * was pinned if we have to drop the mmap_lock in order to do IO.
3242  */
3243 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3244 					    struct folio *folio)
3245 {
3246 	struct file *file = vmf->vma->vm_file;
3247 	struct file_ra_state *ra = &file->f_ra;
3248 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3249 	struct file *fpin = NULL;
3250 	unsigned int mmap_miss;
3251 
3252 	/* If we don't want any read-ahead, don't bother */
3253 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3254 		return fpin;
3255 
3256 	mmap_miss = READ_ONCE(ra->mmap_miss);
3257 	if (mmap_miss)
3258 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3259 
3260 	if (folio_test_readahead(folio)) {
3261 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3262 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3263 	}
3264 	return fpin;
3265 }
3266 
3267 /**
3268  * filemap_fault - read in file data for page fault handling
3269  * @vmf:	struct vm_fault containing details of the fault
3270  *
3271  * filemap_fault() is invoked via the vma operations vector for a
3272  * mapped memory region to read in file data during a page fault.
3273  *
3274  * The goto's are kind of ugly, but this streamlines the normal case of having
3275  * it in the page cache, and handles the special cases reasonably without
3276  * having a lot of duplicated code.
3277  *
3278  * vma->vm_mm->mmap_lock must be held on entry.
3279  *
3280  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3281  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3282  *
3283  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3284  * has not been released.
3285  *
3286  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3287  *
3288  * Return: bitwise-OR of %VM_FAULT_ codes.
3289  */
3290 vm_fault_t filemap_fault(struct vm_fault *vmf)
3291 {
3292 	int error;
3293 	struct file *file = vmf->vma->vm_file;
3294 	struct file *fpin = NULL;
3295 	struct address_space *mapping = file->f_mapping;
3296 	struct inode *inode = mapping->host;
3297 	pgoff_t max_idx, index = vmf->pgoff;
3298 	struct folio *folio;
3299 	vm_fault_t ret = 0;
3300 	bool mapping_locked = false;
3301 
3302 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3303 	if (unlikely(index >= max_idx))
3304 		return VM_FAULT_SIGBUS;
3305 
3306 	/*
3307 	 * Do we have something in the page cache already?
3308 	 */
3309 	folio = filemap_get_folio(mapping, index);
3310 	if (likely(!IS_ERR(folio))) {
3311 		/*
3312 		 * We found the page, so try async readahead before waiting for
3313 		 * the lock.
3314 		 */
3315 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3316 			fpin = do_async_mmap_readahead(vmf, folio);
3317 		if (unlikely(!folio_test_uptodate(folio))) {
3318 			filemap_invalidate_lock_shared(mapping);
3319 			mapping_locked = true;
3320 		}
3321 	} else {
3322 		/* No page in the page cache at all */
3323 		count_vm_event(PGMAJFAULT);
3324 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3325 		ret = VM_FAULT_MAJOR;
3326 		fpin = do_sync_mmap_readahead(vmf);
3327 retry_find:
3328 		/*
3329 		 * See comment in filemap_create_folio() why we need
3330 		 * invalidate_lock
3331 		 */
3332 		if (!mapping_locked) {
3333 			filemap_invalidate_lock_shared(mapping);
3334 			mapping_locked = true;
3335 		}
3336 		folio = __filemap_get_folio(mapping, index,
3337 					  FGP_CREAT|FGP_FOR_MMAP,
3338 					  vmf->gfp_mask);
3339 		if (IS_ERR(folio)) {
3340 			if (fpin)
3341 				goto out_retry;
3342 			filemap_invalidate_unlock_shared(mapping);
3343 			return VM_FAULT_OOM;
3344 		}
3345 	}
3346 
3347 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3348 		goto out_retry;
3349 
3350 	/* Did it get truncated? */
3351 	if (unlikely(folio->mapping != mapping)) {
3352 		folio_unlock(folio);
3353 		folio_put(folio);
3354 		goto retry_find;
3355 	}
3356 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3357 
3358 	/*
3359 	 * We have a locked page in the page cache, now we need to check
3360 	 * that it's up-to-date. If not, it is going to be due to an error.
3361 	 */
3362 	if (unlikely(!folio_test_uptodate(folio))) {
3363 		/*
3364 		 * The page was in cache and uptodate and now it is not.
3365 		 * Strange but possible since we didn't hold the page lock all
3366 		 * the time. Let's drop everything get the invalidate lock and
3367 		 * try again.
3368 		 */
3369 		if (!mapping_locked) {
3370 			folio_unlock(folio);
3371 			folio_put(folio);
3372 			goto retry_find;
3373 		}
3374 		goto page_not_uptodate;
3375 	}
3376 
3377 	/*
3378 	 * We've made it this far and we had to drop our mmap_lock, now is the
3379 	 * time to return to the upper layer and have it re-find the vma and
3380 	 * redo the fault.
3381 	 */
3382 	if (fpin) {
3383 		folio_unlock(folio);
3384 		goto out_retry;
3385 	}
3386 	if (mapping_locked)
3387 		filemap_invalidate_unlock_shared(mapping);
3388 
3389 	/*
3390 	 * Found the page and have a reference on it.
3391 	 * We must recheck i_size under page lock.
3392 	 */
3393 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3394 	if (unlikely(index >= max_idx)) {
3395 		folio_unlock(folio);
3396 		folio_put(folio);
3397 		return VM_FAULT_SIGBUS;
3398 	}
3399 
3400 	vmf->page = folio_file_page(folio, index);
3401 	return ret | VM_FAULT_LOCKED;
3402 
3403 page_not_uptodate:
3404 	/*
3405 	 * Umm, take care of errors if the page isn't up-to-date.
3406 	 * Try to re-read it _once_. We do this synchronously,
3407 	 * because there really aren't any performance issues here
3408 	 * and we need to check for errors.
3409 	 */
3410 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3411 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3412 	if (fpin)
3413 		goto out_retry;
3414 	folio_put(folio);
3415 
3416 	if (!error || error == AOP_TRUNCATED_PAGE)
3417 		goto retry_find;
3418 	filemap_invalidate_unlock_shared(mapping);
3419 
3420 	return VM_FAULT_SIGBUS;
3421 
3422 out_retry:
3423 	/*
3424 	 * We dropped the mmap_lock, we need to return to the fault handler to
3425 	 * re-find the vma and come back and find our hopefully still populated
3426 	 * page.
3427 	 */
3428 	if (!IS_ERR(folio))
3429 		folio_put(folio);
3430 	if (mapping_locked)
3431 		filemap_invalidate_unlock_shared(mapping);
3432 	if (fpin)
3433 		fput(fpin);
3434 	return ret | VM_FAULT_RETRY;
3435 }
3436 EXPORT_SYMBOL(filemap_fault);
3437 
3438 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3439 		pgoff_t start)
3440 {
3441 	struct mm_struct *mm = vmf->vma->vm_mm;
3442 
3443 	/* Huge page is mapped? No need to proceed. */
3444 	if (pmd_trans_huge(*vmf->pmd)) {
3445 		folio_unlock(folio);
3446 		folio_put(folio);
3447 		return true;
3448 	}
3449 
3450 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3451 		struct page *page = folio_file_page(folio, start);
3452 		vm_fault_t ret = do_set_pmd(vmf, page);
3453 		if (!ret) {
3454 			/* The page is mapped successfully, reference consumed. */
3455 			folio_unlock(folio);
3456 			return true;
3457 		}
3458 	}
3459 
3460 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3461 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3462 
3463 	return false;
3464 }
3465 
3466 static struct folio *next_uptodate_folio(struct xa_state *xas,
3467 		struct address_space *mapping, pgoff_t end_pgoff)
3468 {
3469 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3470 	unsigned long max_idx;
3471 
3472 	do {
3473 		if (!folio)
3474 			return NULL;
3475 		if (xas_retry(xas, folio))
3476 			continue;
3477 		if (xa_is_value(folio))
3478 			continue;
3479 		if (folio_test_locked(folio))
3480 			continue;
3481 		if (!folio_try_get(folio))
3482 			continue;
3483 		/* Has the page moved or been split? */
3484 		if (unlikely(folio != xas_reload(xas)))
3485 			goto skip;
3486 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3487 			goto skip;
3488 		if (!folio_trylock(folio))
3489 			goto skip;
3490 		if (folio->mapping != mapping)
3491 			goto unlock;
3492 		if (!folio_test_uptodate(folio))
3493 			goto unlock;
3494 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3495 		if (xas->xa_index >= max_idx)
3496 			goto unlock;
3497 		return folio;
3498 unlock:
3499 		folio_unlock(folio);
3500 skip:
3501 		folio_put(folio);
3502 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3503 
3504 	return NULL;
3505 }
3506 
3507 /*
3508  * Map page range [start_page, start_page + nr_pages) of folio.
3509  * start_page is gotten from start by folio_page(folio, start)
3510  */
3511 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3512 			struct folio *folio, unsigned long start,
3513 			unsigned long addr, unsigned int nr_pages,
3514 			unsigned int *mmap_miss)
3515 {
3516 	vm_fault_t ret = 0;
3517 	struct page *page = folio_page(folio, start);
3518 	unsigned int count = 0;
3519 	pte_t *old_ptep = vmf->pte;
3520 
3521 	do {
3522 		if (PageHWPoison(page + count))
3523 			goto skip;
3524 
3525 		(*mmap_miss)++;
3526 
3527 		/*
3528 		 * NOTE: If there're PTE markers, we'll leave them to be
3529 		 * handled in the specific fault path, and it'll prohibit the
3530 		 * fault-around logic.
3531 		 */
3532 		if (!pte_none(vmf->pte[count]))
3533 			goto skip;
3534 
3535 		count++;
3536 		continue;
3537 skip:
3538 		if (count) {
3539 			set_pte_range(vmf, folio, page, count, addr);
3540 			folio_ref_add(folio, count);
3541 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3542 				ret = VM_FAULT_NOPAGE;
3543 		}
3544 
3545 		count++;
3546 		page += count;
3547 		vmf->pte += count;
3548 		addr += count * PAGE_SIZE;
3549 		count = 0;
3550 	} while (--nr_pages > 0);
3551 
3552 	if (count) {
3553 		set_pte_range(vmf, folio, page, count, addr);
3554 		folio_ref_add(folio, count);
3555 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3556 			ret = VM_FAULT_NOPAGE;
3557 	}
3558 
3559 	vmf->pte = old_ptep;
3560 
3561 	return ret;
3562 }
3563 
3564 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3565 		struct folio *folio, unsigned long addr,
3566 		unsigned int *mmap_miss)
3567 {
3568 	vm_fault_t ret = 0;
3569 	struct page *page = &folio->page;
3570 
3571 	if (PageHWPoison(page))
3572 		return ret;
3573 
3574 	(*mmap_miss)++;
3575 
3576 	/*
3577 	 * NOTE: If there're PTE markers, we'll leave them to be
3578 	 * handled in the specific fault path, and it'll prohibit
3579 	 * the fault-around logic.
3580 	 */
3581 	if (!pte_none(ptep_get(vmf->pte)))
3582 		return ret;
3583 
3584 	if (vmf->address == addr)
3585 		ret = VM_FAULT_NOPAGE;
3586 
3587 	set_pte_range(vmf, folio, page, 1, addr);
3588 	folio_ref_inc(folio);
3589 
3590 	return ret;
3591 }
3592 
3593 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3594 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3595 {
3596 	struct vm_area_struct *vma = vmf->vma;
3597 	struct file *file = vma->vm_file;
3598 	struct address_space *mapping = file->f_mapping;
3599 	pgoff_t last_pgoff = start_pgoff;
3600 	unsigned long addr;
3601 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3602 	struct folio *folio;
3603 	vm_fault_t ret = 0;
3604 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3605 
3606 	rcu_read_lock();
3607 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3608 	if (!folio)
3609 		goto out;
3610 
3611 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3612 		ret = VM_FAULT_NOPAGE;
3613 		goto out;
3614 	}
3615 
3616 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3617 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3618 	if (!vmf->pte) {
3619 		folio_unlock(folio);
3620 		folio_put(folio);
3621 		goto out;
3622 	}
3623 	do {
3624 		unsigned long end;
3625 
3626 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3627 		vmf->pte += xas.xa_index - last_pgoff;
3628 		last_pgoff = xas.xa_index;
3629 		end = folio->index + folio_nr_pages(folio) - 1;
3630 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3631 
3632 		if (!folio_test_large(folio))
3633 			ret |= filemap_map_order0_folio(vmf,
3634 					folio, addr, &mmap_miss);
3635 		else
3636 			ret |= filemap_map_folio_range(vmf, folio,
3637 					xas.xa_index - folio->index, addr,
3638 					nr_pages, &mmap_miss);
3639 
3640 		folio_unlock(folio);
3641 		folio_put(folio);
3642 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3643 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3644 out:
3645 	rcu_read_unlock();
3646 
3647 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3648 	if (mmap_miss >= mmap_miss_saved)
3649 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3650 	else
3651 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3652 
3653 	return ret;
3654 }
3655 EXPORT_SYMBOL(filemap_map_pages);
3656 
3657 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3658 {
3659 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3660 	struct folio *folio = page_folio(vmf->page);
3661 	vm_fault_t ret = VM_FAULT_LOCKED;
3662 
3663 	sb_start_pagefault(mapping->host->i_sb);
3664 	file_update_time(vmf->vma->vm_file);
3665 	folio_lock(folio);
3666 	if (folio->mapping != mapping) {
3667 		folio_unlock(folio);
3668 		ret = VM_FAULT_NOPAGE;
3669 		goto out;
3670 	}
3671 	/*
3672 	 * We mark the folio dirty already here so that when freeze is in
3673 	 * progress, we are guaranteed that writeback during freezing will
3674 	 * see the dirty folio and writeprotect it again.
3675 	 */
3676 	folio_mark_dirty(folio);
3677 	folio_wait_stable(folio);
3678 out:
3679 	sb_end_pagefault(mapping->host->i_sb);
3680 	return ret;
3681 }
3682 
3683 const struct vm_operations_struct generic_file_vm_ops = {
3684 	.fault		= filemap_fault,
3685 	.map_pages	= filemap_map_pages,
3686 	.page_mkwrite	= filemap_page_mkwrite,
3687 };
3688 
3689 /* This is used for a general mmap of a disk file */
3690 
3691 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3692 {
3693 	struct address_space *mapping = file->f_mapping;
3694 
3695 	if (!mapping->a_ops->read_folio)
3696 		return -ENOEXEC;
3697 	file_accessed(file);
3698 	vma->vm_ops = &generic_file_vm_ops;
3699 	return 0;
3700 }
3701 
3702 /*
3703  * This is for filesystems which do not implement ->writepage.
3704  */
3705 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3706 {
3707 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3708 		return -EINVAL;
3709 	return generic_file_mmap(file, vma);
3710 }
3711 #else
3712 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3713 {
3714 	return VM_FAULT_SIGBUS;
3715 }
3716 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3717 {
3718 	return -ENOSYS;
3719 }
3720 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3721 {
3722 	return -ENOSYS;
3723 }
3724 #endif /* CONFIG_MMU */
3725 
3726 EXPORT_SYMBOL(filemap_page_mkwrite);
3727 EXPORT_SYMBOL(generic_file_mmap);
3728 EXPORT_SYMBOL(generic_file_readonly_mmap);
3729 
3730 static struct folio *do_read_cache_folio(struct address_space *mapping,
3731 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3732 {
3733 	struct folio *folio;
3734 	int err;
3735 
3736 	if (!filler)
3737 		filler = mapping->a_ops->read_folio;
3738 repeat:
3739 	folio = filemap_get_folio(mapping, index);
3740 	if (IS_ERR(folio)) {
3741 		folio = filemap_alloc_folio(gfp, 0);
3742 		if (!folio)
3743 			return ERR_PTR(-ENOMEM);
3744 		err = filemap_add_folio(mapping, folio, index, gfp);
3745 		if (unlikely(err)) {
3746 			folio_put(folio);
3747 			if (err == -EEXIST)
3748 				goto repeat;
3749 			/* Presumably ENOMEM for xarray node */
3750 			return ERR_PTR(err);
3751 		}
3752 
3753 		goto filler;
3754 	}
3755 	if (folio_test_uptodate(folio))
3756 		goto out;
3757 
3758 	if (!folio_trylock(folio)) {
3759 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3760 		goto repeat;
3761 	}
3762 
3763 	/* Folio was truncated from mapping */
3764 	if (!folio->mapping) {
3765 		folio_unlock(folio);
3766 		folio_put(folio);
3767 		goto repeat;
3768 	}
3769 
3770 	/* Someone else locked and filled the page in a very small window */
3771 	if (folio_test_uptodate(folio)) {
3772 		folio_unlock(folio);
3773 		goto out;
3774 	}
3775 
3776 filler:
3777 	err = filemap_read_folio(file, filler, folio);
3778 	if (err) {
3779 		folio_put(folio);
3780 		if (err == AOP_TRUNCATED_PAGE)
3781 			goto repeat;
3782 		return ERR_PTR(err);
3783 	}
3784 
3785 out:
3786 	folio_mark_accessed(folio);
3787 	return folio;
3788 }
3789 
3790 /**
3791  * read_cache_folio - Read into page cache, fill it if needed.
3792  * @mapping: The address_space to read from.
3793  * @index: The index to read.
3794  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3795  * @file: Passed to filler function, may be NULL if not required.
3796  *
3797  * Read one page into the page cache.  If it succeeds, the folio returned
3798  * will contain @index, but it may not be the first page of the folio.
3799  *
3800  * If the filler function returns an error, it will be returned to the
3801  * caller.
3802  *
3803  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3804  * Return: An uptodate folio on success, ERR_PTR() on failure.
3805  */
3806 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3807 		filler_t filler, struct file *file)
3808 {
3809 	return do_read_cache_folio(mapping, index, filler, file,
3810 			mapping_gfp_mask(mapping));
3811 }
3812 EXPORT_SYMBOL(read_cache_folio);
3813 
3814 /**
3815  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3816  * @mapping:	The address_space for the folio.
3817  * @index:	The index that the allocated folio will contain.
3818  * @gfp:	The page allocator flags to use if allocating.
3819  *
3820  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3821  * any new memory allocations done using the specified allocation flags.
3822  *
3823  * The most likely error from this function is EIO, but ENOMEM is
3824  * possible and so is EINTR.  If ->read_folio returns another error,
3825  * that will be returned to the caller.
3826  *
3827  * The function expects mapping->invalidate_lock to be already held.
3828  *
3829  * Return: Uptodate folio on success, ERR_PTR() on failure.
3830  */
3831 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3832 		pgoff_t index, gfp_t gfp)
3833 {
3834 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3835 }
3836 EXPORT_SYMBOL(mapping_read_folio_gfp);
3837 
3838 static struct page *do_read_cache_page(struct address_space *mapping,
3839 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3840 {
3841 	struct folio *folio;
3842 
3843 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3844 	if (IS_ERR(folio))
3845 		return &folio->page;
3846 	return folio_file_page(folio, index);
3847 }
3848 
3849 struct page *read_cache_page(struct address_space *mapping,
3850 			pgoff_t index, filler_t *filler, struct file *file)
3851 {
3852 	return do_read_cache_page(mapping, index, filler, file,
3853 			mapping_gfp_mask(mapping));
3854 }
3855 EXPORT_SYMBOL(read_cache_page);
3856 
3857 /**
3858  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3859  * @mapping:	the page's address_space
3860  * @index:	the page index
3861  * @gfp:	the page allocator flags to use if allocating
3862  *
3863  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3864  * any new page allocations done using the specified allocation flags.
3865  *
3866  * If the page does not get brought uptodate, return -EIO.
3867  *
3868  * The function expects mapping->invalidate_lock to be already held.
3869  *
3870  * Return: up to date page on success, ERR_PTR() on failure.
3871  */
3872 struct page *read_cache_page_gfp(struct address_space *mapping,
3873 				pgoff_t index,
3874 				gfp_t gfp)
3875 {
3876 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3877 }
3878 EXPORT_SYMBOL(read_cache_page_gfp);
3879 
3880 /*
3881  * Warn about a page cache invalidation failure during a direct I/O write.
3882  */
3883 static void dio_warn_stale_pagecache(struct file *filp)
3884 {
3885 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3886 	char pathname[128];
3887 	char *path;
3888 
3889 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3890 	if (__ratelimit(&_rs)) {
3891 		path = file_path(filp, pathname, sizeof(pathname));
3892 		if (IS_ERR(path))
3893 			path = "(unknown)";
3894 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3895 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3896 			current->comm);
3897 	}
3898 }
3899 
3900 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3901 {
3902 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3903 
3904 	if (mapping->nrpages &&
3905 	    invalidate_inode_pages2_range(mapping,
3906 			iocb->ki_pos >> PAGE_SHIFT,
3907 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3908 		dio_warn_stale_pagecache(iocb->ki_filp);
3909 }
3910 
3911 ssize_t
3912 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3913 {
3914 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3915 	size_t write_len = iov_iter_count(from);
3916 	ssize_t written;
3917 
3918 	/*
3919 	 * If a page can not be invalidated, return 0 to fall back
3920 	 * to buffered write.
3921 	 */
3922 	written = kiocb_invalidate_pages(iocb, write_len);
3923 	if (written) {
3924 		if (written == -EBUSY)
3925 			return 0;
3926 		return written;
3927 	}
3928 
3929 	written = mapping->a_ops->direct_IO(iocb, from);
3930 
3931 	/*
3932 	 * Finally, try again to invalidate clean pages which might have been
3933 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3934 	 * if the source of the write was an mmap'ed region of the file
3935 	 * we're writing.  Either one is a pretty crazy thing to do,
3936 	 * so we don't support it 100%.  If this invalidation
3937 	 * fails, tough, the write still worked...
3938 	 *
3939 	 * Most of the time we do not need this since dio_complete() will do
3940 	 * the invalidation for us. However there are some file systems that
3941 	 * do not end up with dio_complete() being called, so let's not break
3942 	 * them by removing it completely.
3943 	 *
3944 	 * Noticeable example is a blkdev_direct_IO().
3945 	 *
3946 	 * Skip invalidation for async writes or if mapping has no pages.
3947 	 */
3948 	if (written > 0) {
3949 		struct inode *inode = mapping->host;
3950 		loff_t pos = iocb->ki_pos;
3951 
3952 		kiocb_invalidate_post_direct_write(iocb, written);
3953 		pos += written;
3954 		write_len -= written;
3955 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3956 			i_size_write(inode, pos);
3957 			mark_inode_dirty(inode);
3958 		}
3959 		iocb->ki_pos = pos;
3960 	}
3961 	if (written != -EIOCBQUEUED)
3962 		iov_iter_revert(from, write_len - iov_iter_count(from));
3963 	return written;
3964 }
3965 EXPORT_SYMBOL(generic_file_direct_write);
3966 
3967 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3968 {
3969 	struct file *file = iocb->ki_filp;
3970 	loff_t pos = iocb->ki_pos;
3971 	struct address_space *mapping = file->f_mapping;
3972 	const struct address_space_operations *a_ops = mapping->a_ops;
3973 	long status = 0;
3974 	ssize_t written = 0;
3975 
3976 	do {
3977 		struct page *page;
3978 		unsigned long offset;	/* Offset into pagecache page */
3979 		unsigned long bytes;	/* Bytes to write to page */
3980 		size_t copied;		/* Bytes copied from user */
3981 		void *fsdata = NULL;
3982 
3983 		offset = (pos & (PAGE_SIZE - 1));
3984 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3985 						iov_iter_count(i));
3986 
3987 again:
3988 		/*
3989 		 * Bring in the user page that we will copy from _first_.
3990 		 * Otherwise there's a nasty deadlock on copying from the
3991 		 * same page as we're writing to, without it being marked
3992 		 * up-to-date.
3993 		 */
3994 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3995 			status = -EFAULT;
3996 			break;
3997 		}
3998 
3999 		if (fatal_signal_pending(current)) {
4000 			status = -EINTR;
4001 			break;
4002 		}
4003 
4004 		status = a_ops->write_begin(file, mapping, pos, bytes,
4005 						&page, &fsdata);
4006 		if (unlikely(status < 0))
4007 			break;
4008 
4009 		if (mapping_writably_mapped(mapping))
4010 			flush_dcache_page(page);
4011 
4012 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
4013 		flush_dcache_page(page);
4014 
4015 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4016 						page, fsdata);
4017 		if (unlikely(status != copied)) {
4018 			iov_iter_revert(i, copied - max(status, 0L));
4019 			if (unlikely(status < 0))
4020 				break;
4021 		}
4022 		cond_resched();
4023 
4024 		if (unlikely(status == 0)) {
4025 			/*
4026 			 * A short copy made ->write_end() reject the
4027 			 * thing entirely.  Might be memory poisoning
4028 			 * halfway through, might be a race with munmap,
4029 			 * might be severe memory pressure.
4030 			 */
4031 			if (copied)
4032 				bytes = copied;
4033 			goto again;
4034 		}
4035 		pos += status;
4036 		written += status;
4037 
4038 		balance_dirty_pages_ratelimited(mapping);
4039 	} while (iov_iter_count(i));
4040 
4041 	if (!written)
4042 		return status;
4043 	iocb->ki_pos += written;
4044 	return written;
4045 }
4046 EXPORT_SYMBOL(generic_perform_write);
4047 
4048 /**
4049  * __generic_file_write_iter - write data to a file
4050  * @iocb:	IO state structure (file, offset, etc.)
4051  * @from:	iov_iter with data to write
4052  *
4053  * This function does all the work needed for actually writing data to a
4054  * file. It does all basic checks, removes SUID from the file, updates
4055  * modification times and calls proper subroutines depending on whether we
4056  * do direct IO or a standard buffered write.
4057  *
4058  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4059  * object which does not need locking at all.
4060  *
4061  * This function does *not* take care of syncing data in case of O_SYNC write.
4062  * A caller has to handle it. This is mainly due to the fact that we want to
4063  * avoid syncing under i_rwsem.
4064  *
4065  * Return:
4066  * * number of bytes written, even for truncated writes
4067  * * negative error code if no data has been written at all
4068  */
4069 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4070 {
4071 	struct file *file = iocb->ki_filp;
4072 	struct address_space *mapping = file->f_mapping;
4073 	struct inode *inode = mapping->host;
4074 	ssize_t ret;
4075 
4076 	ret = file_remove_privs(file);
4077 	if (ret)
4078 		return ret;
4079 
4080 	ret = file_update_time(file);
4081 	if (ret)
4082 		return ret;
4083 
4084 	if (iocb->ki_flags & IOCB_DIRECT) {
4085 		ret = generic_file_direct_write(iocb, from);
4086 		/*
4087 		 * If the write stopped short of completing, fall back to
4088 		 * buffered writes.  Some filesystems do this for writes to
4089 		 * holes, for example.  For DAX files, a buffered write will
4090 		 * not succeed (even if it did, DAX does not handle dirty
4091 		 * page-cache pages correctly).
4092 		 */
4093 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4094 			return ret;
4095 		return direct_write_fallback(iocb, from, ret,
4096 				generic_perform_write(iocb, from));
4097 	}
4098 
4099 	return generic_perform_write(iocb, from);
4100 }
4101 EXPORT_SYMBOL(__generic_file_write_iter);
4102 
4103 /**
4104  * generic_file_write_iter - write data to a file
4105  * @iocb:	IO state structure
4106  * @from:	iov_iter with data to write
4107  *
4108  * This is a wrapper around __generic_file_write_iter() to be used by most
4109  * filesystems. It takes care of syncing the file in case of O_SYNC file
4110  * and acquires i_rwsem as needed.
4111  * Return:
4112  * * negative error code if no data has been written at all of
4113  *   vfs_fsync_range() failed for a synchronous write
4114  * * number of bytes written, even for truncated writes
4115  */
4116 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4117 {
4118 	struct file *file = iocb->ki_filp;
4119 	struct inode *inode = file->f_mapping->host;
4120 	ssize_t ret;
4121 
4122 	inode_lock(inode);
4123 	ret = generic_write_checks(iocb, from);
4124 	if (ret > 0)
4125 		ret = __generic_file_write_iter(iocb, from);
4126 	inode_unlock(inode);
4127 
4128 	if (ret > 0)
4129 		ret = generic_write_sync(iocb, ret);
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL(generic_file_write_iter);
4133 
4134 /**
4135  * filemap_release_folio() - Release fs-specific metadata on a folio.
4136  * @folio: The folio which the kernel is trying to free.
4137  * @gfp: Memory allocation flags (and I/O mode).
4138  *
4139  * The address_space is trying to release any data attached to a folio
4140  * (presumably at folio->private).
4141  *
4142  * This will also be called if the private_2 flag is set on a page,
4143  * indicating that the folio has other metadata associated with it.
4144  *
4145  * The @gfp argument specifies whether I/O may be performed to release
4146  * this page (__GFP_IO), and whether the call may block
4147  * (__GFP_RECLAIM & __GFP_FS).
4148  *
4149  * Return: %true if the release was successful, otherwise %false.
4150  */
4151 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4152 {
4153 	struct address_space * const mapping = folio->mapping;
4154 
4155 	BUG_ON(!folio_test_locked(folio));
4156 	if (!folio_needs_release(folio))
4157 		return true;
4158 	if (folio_test_writeback(folio))
4159 		return false;
4160 
4161 	if (mapping && mapping->a_ops->release_folio)
4162 		return mapping->a_ops->release_folio(folio, gfp);
4163 	return try_to_free_buffers(folio);
4164 }
4165 EXPORT_SYMBOL(filemap_release_folio);
4166 
4167 #ifdef CONFIG_CACHESTAT_SYSCALL
4168 /**
4169  * filemap_cachestat() - compute the page cache statistics of a mapping
4170  * @mapping:	The mapping to compute the statistics for.
4171  * @first_index:	The starting page cache index.
4172  * @last_index:	The final page index (inclusive).
4173  * @cs:	the cachestat struct to write the result to.
4174  *
4175  * This will query the page cache statistics of a mapping in the
4176  * page range of [first_index, last_index] (inclusive). The statistics
4177  * queried include: number of dirty pages, number of pages marked for
4178  * writeback, and the number of (recently) evicted pages.
4179  */
4180 static void filemap_cachestat(struct address_space *mapping,
4181 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4182 {
4183 	XA_STATE(xas, &mapping->i_pages, first_index);
4184 	struct folio *folio;
4185 
4186 	rcu_read_lock();
4187 	xas_for_each(&xas, folio, last_index) {
4188 		int order;
4189 		unsigned long nr_pages;
4190 		pgoff_t folio_first_index, folio_last_index;
4191 
4192 		/*
4193 		 * Don't deref the folio. It is not pinned, and might
4194 		 * get freed (and reused) underneath us.
4195 		 *
4196 		 * We *could* pin it, but that would be expensive for
4197 		 * what should be a fast and lightweight syscall.
4198 		 *
4199 		 * Instead, derive all information of interest from
4200 		 * the rcu-protected xarray.
4201 		 */
4202 
4203 		if (xas_retry(&xas, folio))
4204 			continue;
4205 
4206 		order = xa_get_order(xas.xa, xas.xa_index);
4207 		nr_pages = 1 << order;
4208 		folio_first_index = round_down(xas.xa_index, 1 << order);
4209 		folio_last_index = folio_first_index + nr_pages - 1;
4210 
4211 		/* Folios might straddle the range boundaries, only count covered pages */
4212 		if (folio_first_index < first_index)
4213 			nr_pages -= first_index - folio_first_index;
4214 
4215 		if (folio_last_index > last_index)
4216 			nr_pages -= folio_last_index - last_index;
4217 
4218 		if (xa_is_value(folio)) {
4219 			/* page is evicted */
4220 			void *shadow = (void *)folio;
4221 			bool workingset; /* not used */
4222 
4223 			cs->nr_evicted += nr_pages;
4224 
4225 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4226 			if (shmem_mapping(mapping)) {
4227 				/* shmem file - in swap cache */
4228 				swp_entry_t swp = radix_to_swp_entry(folio);
4229 
4230 				/* swapin error results in poisoned entry */
4231 				if (non_swap_entry(swp))
4232 					goto resched;
4233 
4234 				/*
4235 				 * Getting a swap entry from the shmem
4236 				 * inode means we beat
4237 				 * shmem_unuse(). rcu_read_lock()
4238 				 * ensures swapoff waits for us before
4239 				 * freeing the swapper space. However,
4240 				 * we can race with swapping and
4241 				 * invalidation, so there might not be
4242 				 * a shadow in the swapcache (yet).
4243 				 */
4244 				shadow = get_shadow_from_swap_cache(swp);
4245 				if (!shadow)
4246 					goto resched;
4247 			}
4248 #endif
4249 			if (workingset_test_recent(shadow, true, &workingset))
4250 				cs->nr_recently_evicted += nr_pages;
4251 
4252 			goto resched;
4253 		}
4254 
4255 		/* page is in cache */
4256 		cs->nr_cache += nr_pages;
4257 
4258 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4259 			cs->nr_dirty += nr_pages;
4260 
4261 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4262 			cs->nr_writeback += nr_pages;
4263 
4264 resched:
4265 		if (need_resched()) {
4266 			xas_pause(&xas);
4267 			cond_resched_rcu();
4268 		}
4269 	}
4270 	rcu_read_unlock();
4271 }
4272 
4273 /*
4274  * The cachestat(2) system call.
4275  *
4276  * cachestat() returns the page cache statistics of a file in the
4277  * bytes range specified by `off` and `len`: number of cached pages,
4278  * number of dirty pages, number of pages marked for writeback,
4279  * number of evicted pages, and number of recently evicted pages.
4280  *
4281  * An evicted page is a page that is previously in the page cache
4282  * but has been evicted since. A page is recently evicted if its last
4283  * eviction was recent enough that its reentry to the cache would
4284  * indicate that it is actively being used by the system, and that
4285  * there is memory pressure on the system.
4286  *
4287  * `off` and `len` must be non-negative integers. If `len` > 0,
4288  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4289  * we will query in the range from `off` to the end of the file.
4290  *
4291  * The `flags` argument is unused for now, but is included for future
4292  * extensibility. User should pass 0 (i.e no flag specified).
4293  *
4294  * Currently, hugetlbfs is not supported.
4295  *
4296  * Because the status of a page can change after cachestat() checks it
4297  * but before it returns to the application, the returned values may
4298  * contain stale information.
4299  *
4300  * return values:
4301  *  zero        - success
4302  *  -EFAULT     - cstat or cstat_range points to an illegal address
4303  *  -EINVAL     - invalid flags
4304  *  -EBADF      - invalid file descriptor
4305  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4306  */
4307 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4308 		struct cachestat_range __user *, cstat_range,
4309 		struct cachestat __user *, cstat, unsigned int, flags)
4310 {
4311 	struct fd f = fdget(fd);
4312 	struct address_space *mapping;
4313 	struct cachestat_range csr;
4314 	struct cachestat cs;
4315 	pgoff_t first_index, last_index;
4316 
4317 	if (!f.file)
4318 		return -EBADF;
4319 
4320 	if (copy_from_user(&csr, cstat_range,
4321 			sizeof(struct cachestat_range))) {
4322 		fdput(f);
4323 		return -EFAULT;
4324 	}
4325 
4326 	/* hugetlbfs is not supported */
4327 	if (is_file_hugepages(f.file)) {
4328 		fdput(f);
4329 		return -EOPNOTSUPP;
4330 	}
4331 
4332 	if (flags != 0) {
4333 		fdput(f);
4334 		return -EINVAL;
4335 	}
4336 
4337 	first_index = csr.off >> PAGE_SHIFT;
4338 	last_index =
4339 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4340 	memset(&cs, 0, sizeof(struct cachestat));
4341 	mapping = f.file->f_mapping;
4342 	filemap_cachestat(mapping, first_index, last_index, &cs);
4343 	fdput(f);
4344 
4345 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4346 		return -EFAULT;
4347 
4348 	return 0;
4349 }
4350 #endif /* CONFIG_CACHESTAT_SYSCALL */
4351