xref: /openbmc/linux/mm/dmapool.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA Pool allocator
4  *
5  * Copyright 2001 David Brownell
6  * Copyright 2007 Intel Corporation
7  *   Author: Matthew Wilcox <willy@linux.intel.com>
8  *
9  * This allocator returns small blocks of a given size which are DMA-able by
10  * the given device.  It uses the dma_alloc_coherent page allocator to get
11  * new pages, then splits them up into blocks of the required size.
12  * Many older drivers still have their own code to do this.
13  *
14  * The current design of this allocator is fairly simple.  The pool is
15  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16  * allocated pages.  Each page in the page_list is split into blocks of at
17  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
18  * list of free blocks within the page.  Used blocks aren't tracked, but we
19  * keep a count of how many are currently allocated from each page.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <linux/stat.h>
33 #include <linux/spinlock.h>
34 #include <linux/string.h>
35 #include <linux/types.h>
36 #include <linux/wait.h>
37 
38 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
39 #define DMAPOOL_DEBUG 1
40 #endif
41 
42 struct dma_pool {		/* the pool */
43 	struct list_head page_list;
44 	spinlock_t lock;
45 	size_t size;
46 	struct device *dev;
47 	size_t allocation;
48 	size_t boundary;
49 	char name[32];
50 	struct list_head pools;
51 };
52 
53 struct dma_page {		/* cacheable header for 'allocation' bytes */
54 	struct list_head page_list;
55 	void *vaddr;
56 	dma_addr_t dma;
57 	unsigned int in_use;
58 	unsigned int offset;
59 };
60 
61 static DEFINE_MUTEX(pools_lock);
62 static DEFINE_MUTEX(pools_reg_lock);
63 
64 static ssize_t
65 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
66 {
67 	unsigned temp;
68 	unsigned size;
69 	char *next;
70 	struct dma_page *page;
71 	struct dma_pool *pool;
72 
73 	next = buf;
74 	size = PAGE_SIZE;
75 
76 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
77 	size -= temp;
78 	next += temp;
79 
80 	mutex_lock(&pools_lock);
81 	list_for_each_entry(pool, &dev->dma_pools, pools) {
82 		unsigned pages = 0;
83 		unsigned blocks = 0;
84 
85 		spin_lock_irq(&pool->lock);
86 		list_for_each_entry(page, &pool->page_list, page_list) {
87 			pages++;
88 			blocks += page->in_use;
89 		}
90 		spin_unlock_irq(&pool->lock);
91 
92 		/* per-pool info, no real statistics yet */
93 		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
94 				 pool->name, blocks,
95 				 pages * (pool->allocation / pool->size),
96 				 pool->size, pages);
97 		size -= temp;
98 		next += temp;
99 	}
100 	mutex_unlock(&pools_lock);
101 
102 	return PAGE_SIZE - size;
103 }
104 
105 static DEVICE_ATTR(pools, 0444, show_pools, NULL);
106 
107 /**
108  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109  * @name: name of pool, for diagnostics
110  * @dev: device that will be doing the DMA
111  * @size: size of the blocks in this pool.
112  * @align: alignment requirement for blocks; must be a power of two
113  * @boundary: returned blocks won't cross this power of two boundary
114  * Context: not in_interrupt()
115  *
116  * Given one of these pools, dma_pool_alloc()
117  * may be used to allocate memory.  Such memory will all have "consistent"
118  * DMA mappings, accessible by the device and its driver without using
119  * cache flushing primitives.  The actual size of blocks allocated may be
120  * larger than requested because of alignment.
121  *
122  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123  * cross that size boundary.  This is useful for devices which have
124  * addressing restrictions on individual DMA transfers, such as not crossing
125  * boundaries of 4KBytes.
126  *
127  * Return: a dma allocation pool with the requested characteristics, or
128  * %NULL if one can't be created.
129  */
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 				 size_t size, size_t align, size_t boundary)
132 {
133 	struct dma_pool *retval;
134 	size_t allocation;
135 	bool empty = false;
136 
137 	if (align == 0)
138 		align = 1;
139 	else if (align & (align - 1))
140 		return NULL;
141 
142 	if (size == 0)
143 		return NULL;
144 	else if (size < 4)
145 		size = 4;
146 
147 	if ((size % align) != 0)
148 		size = ALIGN(size, align);
149 
150 	allocation = max_t(size_t, size, PAGE_SIZE);
151 
152 	if (!boundary)
153 		boundary = allocation;
154 	else if ((boundary < size) || (boundary & (boundary - 1)))
155 		return NULL;
156 
157 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
158 	if (!retval)
159 		return retval;
160 
161 	strlcpy(retval->name, name, sizeof(retval->name));
162 
163 	retval->dev = dev;
164 
165 	INIT_LIST_HEAD(&retval->page_list);
166 	spin_lock_init(&retval->lock);
167 	retval->size = size;
168 	retval->boundary = boundary;
169 	retval->allocation = allocation;
170 
171 	INIT_LIST_HEAD(&retval->pools);
172 
173 	/*
174 	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
175 	 * pools_reg_lock ensures that there is not a race between
176 	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
177 	 * when the first invocation of dma_pool_create() failed on
178 	 * device_create_file() and the second assumes that it has been done (I
179 	 * know it is a short window).
180 	 */
181 	mutex_lock(&pools_reg_lock);
182 	mutex_lock(&pools_lock);
183 	if (list_empty(&dev->dma_pools))
184 		empty = true;
185 	list_add(&retval->pools, &dev->dma_pools);
186 	mutex_unlock(&pools_lock);
187 	if (empty) {
188 		int err;
189 
190 		err = device_create_file(dev, &dev_attr_pools);
191 		if (err) {
192 			mutex_lock(&pools_lock);
193 			list_del(&retval->pools);
194 			mutex_unlock(&pools_lock);
195 			mutex_unlock(&pools_reg_lock);
196 			kfree(retval);
197 			return NULL;
198 		}
199 	}
200 	mutex_unlock(&pools_reg_lock);
201 	return retval;
202 }
203 EXPORT_SYMBOL(dma_pool_create);
204 
205 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
206 {
207 	unsigned int offset = 0;
208 	unsigned int next_boundary = pool->boundary;
209 
210 	do {
211 		unsigned int next = offset + pool->size;
212 		if (unlikely((next + pool->size) >= next_boundary)) {
213 			next = next_boundary;
214 			next_boundary += pool->boundary;
215 		}
216 		*(int *)(page->vaddr + offset) = next;
217 		offset = next;
218 	} while (offset < pool->allocation);
219 }
220 
221 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
222 {
223 	struct dma_page *page;
224 
225 	page = kmalloc(sizeof(*page), mem_flags);
226 	if (!page)
227 		return NULL;
228 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
229 					 &page->dma, mem_flags);
230 	if (page->vaddr) {
231 #ifdef	DMAPOOL_DEBUG
232 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
233 #endif
234 		pool_initialise_page(pool, page);
235 		page->in_use = 0;
236 		page->offset = 0;
237 	} else {
238 		kfree(page);
239 		page = NULL;
240 	}
241 	return page;
242 }
243 
244 static inline bool is_page_busy(struct dma_page *page)
245 {
246 	return page->in_use != 0;
247 }
248 
249 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
250 {
251 	dma_addr_t dma = page->dma;
252 
253 #ifdef	DMAPOOL_DEBUG
254 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
255 #endif
256 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
257 	list_del(&page->page_list);
258 	kfree(page);
259 }
260 
261 /**
262  * dma_pool_destroy - destroys a pool of dma memory blocks.
263  * @pool: dma pool that will be destroyed
264  * Context: !in_interrupt()
265  *
266  * Caller guarantees that no more memory from the pool is in use,
267  * and that nothing will try to use the pool after this call.
268  */
269 void dma_pool_destroy(struct dma_pool *pool)
270 {
271 	bool empty = false;
272 
273 	if (unlikely(!pool))
274 		return;
275 
276 	mutex_lock(&pools_reg_lock);
277 	mutex_lock(&pools_lock);
278 	list_del(&pool->pools);
279 	if (pool->dev && list_empty(&pool->dev->dma_pools))
280 		empty = true;
281 	mutex_unlock(&pools_lock);
282 	if (empty)
283 		device_remove_file(pool->dev, &dev_attr_pools);
284 	mutex_unlock(&pools_reg_lock);
285 
286 	while (!list_empty(&pool->page_list)) {
287 		struct dma_page *page;
288 		page = list_entry(pool->page_list.next,
289 				  struct dma_page, page_list);
290 		if (is_page_busy(page)) {
291 			if (pool->dev)
292 				dev_err(pool->dev,
293 					"dma_pool_destroy %s, %p busy\n",
294 					pool->name, page->vaddr);
295 			else
296 				pr_err("dma_pool_destroy %s, %p busy\n",
297 				       pool->name, page->vaddr);
298 			/* leak the still-in-use consistent memory */
299 			list_del(&page->page_list);
300 			kfree(page);
301 		} else
302 			pool_free_page(pool, page);
303 	}
304 
305 	kfree(pool);
306 }
307 EXPORT_SYMBOL(dma_pool_destroy);
308 
309 /**
310  * dma_pool_alloc - get a block of consistent memory
311  * @pool: dma pool that will produce the block
312  * @mem_flags: GFP_* bitmask
313  * @handle: pointer to dma address of block
314  *
315  * Return: the kernel virtual address of a currently unused block,
316  * and reports its dma address through the handle.
317  * If such a memory block can't be allocated, %NULL is returned.
318  */
319 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
320 		     dma_addr_t *handle)
321 {
322 	unsigned long flags;
323 	struct dma_page *page;
324 	size_t offset;
325 	void *retval;
326 
327 	might_sleep_if(gfpflags_allow_blocking(mem_flags));
328 
329 	spin_lock_irqsave(&pool->lock, flags);
330 	list_for_each_entry(page, &pool->page_list, page_list) {
331 		if (page->offset < pool->allocation)
332 			goto ready;
333 	}
334 
335 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
336 	spin_unlock_irqrestore(&pool->lock, flags);
337 
338 	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
339 	if (!page)
340 		return NULL;
341 
342 	spin_lock_irqsave(&pool->lock, flags);
343 
344 	list_add(&page->page_list, &pool->page_list);
345  ready:
346 	page->in_use++;
347 	offset = page->offset;
348 	page->offset = *(int *)(page->vaddr + offset);
349 	retval = offset + page->vaddr;
350 	*handle = offset + page->dma;
351 #ifdef	DMAPOOL_DEBUG
352 	{
353 		int i;
354 		u8 *data = retval;
355 		/* page->offset is stored in first 4 bytes */
356 		for (i = sizeof(page->offset); i < pool->size; i++) {
357 			if (data[i] == POOL_POISON_FREED)
358 				continue;
359 			if (pool->dev)
360 				dev_err(pool->dev,
361 					"dma_pool_alloc %s, %p (corrupted)\n",
362 					pool->name, retval);
363 			else
364 				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
365 					pool->name, retval);
366 
367 			/*
368 			 * Dump the first 4 bytes even if they are not
369 			 * POOL_POISON_FREED
370 			 */
371 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
372 					data, pool->size, 1);
373 			break;
374 		}
375 	}
376 	if (!(mem_flags & __GFP_ZERO))
377 		memset(retval, POOL_POISON_ALLOCATED, pool->size);
378 #endif
379 	spin_unlock_irqrestore(&pool->lock, flags);
380 
381 	if (want_init_on_alloc(mem_flags))
382 		memset(retval, 0, pool->size);
383 
384 	return retval;
385 }
386 EXPORT_SYMBOL(dma_pool_alloc);
387 
388 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
389 {
390 	struct dma_page *page;
391 
392 	list_for_each_entry(page, &pool->page_list, page_list) {
393 		if (dma < page->dma)
394 			continue;
395 		if ((dma - page->dma) < pool->allocation)
396 			return page;
397 	}
398 	return NULL;
399 }
400 
401 /**
402  * dma_pool_free - put block back into dma pool
403  * @pool: the dma pool holding the block
404  * @vaddr: virtual address of block
405  * @dma: dma address of block
406  *
407  * Caller promises neither device nor driver will again touch this block
408  * unless it is first re-allocated.
409  */
410 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
411 {
412 	struct dma_page *page;
413 	unsigned long flags;
414 	unsigned int offset;
415 
416 	spin_lock_irqsave(&pool->lock, flags);
417 	page = pool_find_page(pool, dma);
418 	if (!page) {
419 		spin_unlock_irqrestore(&pool->lock, flags);
420 		if (pool->dev)
421 			dev_err(pool->dev,
422 				"dma_pool_free %s, %p/%lx (bad dma)\n",
423 				pool->name, vaddr, (unsigned long)dma);
424 		else
425 			pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
426 			       pool->name, vaddr, (unsigned long)dma);
427 		return;
428 	}
429 
430 	offset = vaddr - page->vaddr;
431 	if (want_init_on_free())
432 		memset(vaddr, 0, pool->size);
433 #ifdef	DMAPOOL_DEBUG
434 	if ((dma - page->dma) != offset) {
435 		spin_unlock_irqrestore(&pool->lock, flags);
436 		if (pool->dev)
437 			dev_err(pool->dev,
438 				"dma_pool_free %s, %p (bad vaddr)/%pad\n",
439 				pool->name, vaddr, &dma);
440 		else
441 			pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
442 			       pool->name, vaddr, &dma);
443 		return;
444 	}
445 	{
446 		unsigned int chain = page->offset;
447 		while (chain < pool->allocation) {
448 			if (chain != offset) {
449 				chain = *(int *)(page->vaddr + chain);
450 				continue;
451 			}
452 			spin_unlock_irqrestore(&pool->lock, flags);
453 			if (pool->dev)
454 				dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n",
455 					pool->name, &dma);
456 			else
457 				pr_err("dma_pool_free %s, dma %pad already free\n",
458 				       pool->name, &dma);
459 			return;
460 		}
461 	}
462 	memset(vaddr, POOL_POISON_FREED, pool->size);
463 #endif
464 
465 	page->in_use--;
466 	*(int *)vaddr = page->offset;
467 	page->offset = offset;
468 	/*
469 	 * Resist a temptation to do
470 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
471 	 * Better have a few empty pages hang around.
472 	 */
473 	spin_unlock_irqrestore(&pool->lock, flags);
474 }
475 EXPORT_SYMBOL(dma_pool_free);
476 
477 /*
478  * Managed DMA pool
479  */
480 static void dmam_pool_release(struct device *dev, void *res)
481 {
482 	struct dma_pool *pool = *(struct dma_pool **)res;
483 
484 	dma_pool_destroy(pool);
485 }
486 
487 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
488 {
489 	return *(struct dma_pool **)res == match_data;
490 }
491 
492 /**
493  * dmam_pool_create - Managed dma_pool_create()
494  * @name: name of pool, for diagnostics
495  * @dev: device that will be doing the DMA
496  * @size: size of the blocks in this pool.
497  * @align: alignment requirement for blocks; must be a power of two
498  * @allocation: returned blocks won't cross this boundary (or zero)
499  *
500  * Managed dma_pool_create().  DMA pool created with this function is
501  * automatically destroyed on driver detach.
502  *
503  * Return: a managed dma allocation pool with the requested
504  * characteristics, or %NULL if one can't be created.
505  */
506 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
507 				  size_t size, size_t align, size_t allocation)
508 {
509 	struct dma_pool **ptr, *pool;
510 
511 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
512 	if (!ptr)
513 		return NULL;
514 
515 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
516 	if (pool)
517 		devres_add(dev, ptr);
518 	else
519 		devres_free(ptr);
520 
521 	return pool;
522 }
523 EXPORT_SYMBOL(dmam_pool_create);
524 
525 /**
526  * dmam_pool_destroy - Managed dma_pool_destroy()
527  * @pool: dma pool that will be destroyed
528  *
529  * Managed dma_pool_destroy().
530  */
531 void dmam_pool_destroy(struct dma_pool *pool)
532 {
533 	struct device *dev = pool->dev;
534 
535 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
536 }
537 EXPORT_SYMBOL(dmam_pool_destroy);
538