1 /* 2 * DMA Pool allocator 3 * 4 * Copyright 2001 David Brownell 5 * Copyright 2007 Intel Corporation 6 * Author: Matthew Wilcox <willy@linux.intel.com> 7 * 8 * This software may be redistributed and/or modified under the terms of 9 * the GNU General Public License ("GPL") version 2 as published by the 10 * Free Software Foundation. 11 * 12 * This allocator returns small blocks of a given size which are DMA-able by 13 * the given device. It uses the dma_alloc_coherent page allocator to get 14 * new pages, then splits them up into blocks of the required size. 15 * Many older drivers still have their own code to do this. 16 * 17 * The current design of this allocator is fairly simple. The pool is 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 19 * allocated pages. Each page in the page_list is split into blocks of at 20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 21 * list of free blocks within the page. Used blocks aren't tracked, but we 22 * keep a count of how many are currently allocated from each page. 23 */ 24 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmapool.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/export.h> 31 #include <linux/mutex.h> 32 #include <linux/poison.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/stat.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/types.h> 39 #include <linux/wait.h> 40 41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 42 #define DMAPOOL_DEBUG 1 43 #endif 44 45 struct dma_pool { /* the pool */ 46 struct list_head page_list; 47 spinlock_t lock; 48 size_t size; 49 struct device *dev; 50 size_t allocation; 51 size_t boundary; 52 char name[32]; 53 struct list_head pools; 54 }; 55 56 struct dma_page { /* cacheable header for 'allocation' bytes */ 57 struct list_head page_list; 58 void *vaddr; 59 dma_addr_t dma; 60 unsigned int in_use; 61 unsigned int offset; 62 }; 63 64 static DEFINE_MUTEX(pools_lock); 65 static DEFINE_MUTEX(pools_reg_lock); 66 67 static ssize_t 68 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 69 { 70 unsigned temp; 71 unsigned size; 72 char *next; 73 struct dma_page *page; 74 struct dma_pool *pool; 75 76 next = buf; 77 size = PAGE_SIZE; 78 79 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 80 size -= temp; 81 next += temp; 82 83 mutex_lock(&pools_lock); 84 list_for_each_entry(pool, &dev->dma_pools, pools) { 85 unsigned pages = 0; 86 unsigned blocks = 0; 87 88 spin_lock_irq(&pool->lock); 89 list_for_each_entry(page, &pool->page_list, page_list) { 90 pages++; 91 blocks += page->in_use; 92 } 93 spin_unlock_irq(&pool->lock); 94 95 /* per-pool info, no real statistics yet */ 96 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n", 97 pool->name, blocks, 98 pages * (pool->allocation / pool->size), 99 pool->size, pages); 100 size -= temp; 101 next += temp; 102 } 103 mutex_unlock(&pools_lock); 104 105 return PAGE_SIZE - size; 106 } 107 108 static DEVICE_ATTR(pools, 0444, show_pools, NULL); 109 110 /** 111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 112 * @name: name of pool, for diagnostics 113 * @dev: device that will be doing the DMA 114 * @size: size of the blocks in this pool. 115 * @align: alignment requirement for blocks; must be a power of two 116 * @boundary: returned blocks won't cross this power of two boundary 117 * Context: not in_interrupt() 118 * 119 * Given one of these pools, dma_pool_alloc() 120 * may be used to allocate memory. Such memory will all have "consistent" 121 * DMA mappings, accessible by the device and its driver without using 122 * cache flushing primitives. The actual size of blocks allocated may be 123 * larger than requested because of alignment. 124 * 125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 126 * cross that size boundary. This is useful for devices which have 127 * addressing restrictions on individual DMA transfers, such as not crossing 128 * boundaries of 4KBytes. 129 * 130 * Return: a dma allocation pool with the requested characteristics, or 131 * %NULL if one can't be created. 132 */ 133 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 134 size_t size, size_t align, size_t boundary) 135 { 136 struct dma_pool *retval; 137 size_t allocation; 138 bool empty = false; 139 140 if (align == 0) 141 align = 1; 142 else if (align & (align - 1)) 143 return NULL; 144 145 if (size == 0) 146 return NULL; 147 else if (size < 4) 148 size = 4; 149 150 if ((size % align) != 0) 151 size = ALIGN(size, align); 152 153 allocation = max_t(size_t, size, PAGE_SIZE); 154 155 if (!boundary) 156 boundary = allocation; 157 else if ((boundary < size) || (boundary & (boundary - 1))) 158 return NULL; 159 160 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 161 if (!retval) 162 return retval; 163 164 strlcpy(retval->name, name, sizeof(retval->name)); 165 166 retval->dev = dev; 167 168 INIT_LIST_HEAD(&retval->page_list); 169 spin_lock_init(&retval->lock); 170 retval->size = size; 171 retval->boundary = boundary; 172 retval->allocation = allocation; 173 174 INIT_LIST_HEAD(&retval->pools); 175 176 /* 177 * pools_lock ensures that the ->dma_pools list does not get corrupted. 178 * pools_reg_lock ensures that there is not a race between 179 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 180 * when the first invocation of dma_pool_create() failed on 181 * device_create_file() and the second assumes that it has been done (I 182 * know it is a short window). 183 */ 184 mutex_lock(&pools_reg_lock); 185 mutex_lock(&pools_lock); 186 if (list_empty(&dev->dma_pools)) 187 empty = true; 188 list_add(&retval->pools, &dev->dma_pools); 189 mutex_unlock(&pools_lock); 190 if (empty) { 191 int err; 192 193 err = device_create_file(dev, &dev_attr_pools); 194 if (err) { 195 mutex_lock(&pools_lock); 196 list_del(&retval->pools); 197 mutex_unlock(&pools_lock); 198 mutex_unlock(&pools_reg_lock); 199 kfree(retval); 200 return NULL; 201 } 202 } 203 mutex_unlock(&pools_reg_lock); 204 return retval; 205 } 206 EXPORT_SYMBOL(dma_pool_create); 207 208 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 209 { 210 unsigned int offset = 0; 211 unsigned int next_boundary = pool->boundary; 212 213 do { 214 unsigned int next = offset + pool->size; 215 if (unlikely((next + pool->size) >= next_boundary)) { 216 next = next_boundary; 217 next_boundary += pool->boundary; 218 } 219 *(int *)(page->vaddr + offset) = next; 220 offset = next; 221 } while (offset < pool->allocation); 222 } 223 224 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 225 { 226 struct dma_page *page; 227 228 page = kmalloc(sizeof(*page), mem_flags); 229 if (!page) 230 return NULL; 231 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 232 &page->dma, mem_flags); 233 if (page->vaddr) { 234 #ifdef DMAPOOL_DEBUG 235 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 236 #endif 237 pool_initialise_page(pool, page); 238 page->in_use = 0; 239 page->offset = 0; 240 } else { 241 kfree(page); 242 page = NULL; 243 } 244 return page; 245 } 246 247 static inline bool is_page_busy(struct dma_page *page) 248 { 249 return page->in_use != 0; 250 } 251 252 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 253 { 254 dma_addr_t dma = page->dma; 255 256 #ifdef DMAPOOL_DEBUG 257 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 258 #endif 259 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 260 list_del(&page->page_list); 261 kfree(page); 262 } 263 264 /** 265 * dma_pool_destroy - destroys a pool of dma memory blocks. 266 * @pool: dma pool that will be destroyed 267 * Context: !in_interrupt() 268 * 269 * Caller guarantees that no more memory from the pool is in use, 270 * and that nothing will try to use the pool after this call. 271 */ 272 void dma_pool_destroy(struct dma_pool *pool) 273 { 274 bool empty = false; 275 276 if (unlikely(!pool)) 277 return; 278 279 mutex_lock(&pools_reg_lock); 280 mutex_lock(&pools_lock); 281 list_del(&pool->pools); 282 if (pool->dev && list_empty(&pool->dev->dma_pools)) 283 empty = true; 284 mutex_unlock(&pools_lock); 285 if (empty) 286 device_remove_file(pool->dev, &dev_attr_pools); 287 mutex_unlock(&pools_reg_lock); 288 289 while (!list_empty(&pool->page_list)) { 290 struct dma_page *page; 291 page = list_entry(pool->page_list.next, 292 struct dma_page, page_list); 293 if (is_page_busy(page)) { 294 if (pool->dev) 295 dev_err(pool->dev, 296 "dma_pool_destroy %s, %p busy\n", 297 pool->name, page->vaddr); 298 else 299 pr_err("dma_pool_destroy %s, %p busy\n", 300 pool->name, page->vaddr); 301 /* leak the still-in-use consistent memory */ 302 list_del(&page->page_list); 303 kfree(page); 304 } else 305 pool_free_page(pool, page); 306 } 307 308 kfree(pool); 309 } 310 EXPORT_SYMBOL(dma_pool_destroy); 311 312 /** 313 * dma_pool_alloc - get a block of consistent memory 314 * @pool: dma pool that will produce the block 315 * @mem_flags: GFP_* bitmask 316 * @handle: pointer to dma address of block 317 * 318 * Return: the kernel virtual address of a currently unused block, 319 * and reports its dma address through the handle. 320 * If such a memory block can't be allocated, %NULL is returned. 321 */ 322 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 323 dma_addr_t *handle) 324 { 325 unsigned long flags; 326 struct dma_page *page; 327 size_t offset; 328 void *retval; 329 330 might_sleep_if(gfpflags_allow_blocking(mem_flags)); 331 332 spin_lock_irqsave(&pool->lock, flags); 333 list_for_each_entry(page, &pool->page_list, page_list) { 334 if (page->offset < pool->allocation) 335 goto ready; 336 } 337 338 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ 339 spin_unlock_irqrestore(&pool->lock, flags); 340 341 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 342 if (!page) 343 return NULL; 344 345 spin_lock_irqsave(&pool->lock, flags); 346 347 list_add(&page->page_list, &pool->page_list); 348 ready: 349 page->in_use++; 350 offset = page->offset; 351 page->offset = *(int *)(page->vaddr + offset); 352 retval = offset + page->vaddr; 353 *handle = offset + page->dma; 354 #ifdef DMAPOOL_DEBUG 355 { 356 int i; 357 u8 *data = retval; 358 /* page->offset is stored in first 4 bytes */ 359 for (i = sizeof(page->offset); i < pool->size; i++) { 360 if (data[i] == POOL_POISON_FREED) 361 continue; 362 if (pool->dev) 363 dev_err(pool->dev, 364 "dma_pool_alloc %s, %p (corrupted)\n", 365 pool->name, retval); 366 else 367 pr_err("dma_pool_alloc %s, %p (corrupted)\n", 368 pool->name, retval); 369 370 /* 371 * Dump the first 4 bytes even if they are not 372 * POOL_POISON_FREED 373 */ 374 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 375 data, pool->size, 1); 376 break; 377 } 378 } 379 if (!(mem_flags & __GFP_ZERO)) 380 memset(retval, POOL_POISON_ALLOCATED, pool->size); 381 #endif 382 spin_unlock_irqrestore(&pool->lock, flags); 383 384 if (mem_flags & __GFP_ZERO) 385 memset(retval, 0, pool->size); 386 387 return retval; 388 } 389 EXPORT_SYMBOL(dma_pool_alloc); 390 391 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 392 { 393 struct dma_page *page; 394 395 list_for_each_entry(page, &pool->page_list, page_list) { 396 if (dma < page->dma) 397 continue; 398 if ((dma - page->dma) < pool->allocation) 399 return page; 400 } 401 return NULL; 402 } 403 404 /** 405 * dma_pool_free - put block back into dma pool 406 * @pool: the dma pool holding the block 407 * @vaddr: virtual address of block 408 * @dma: dma address of block 409 * 410 * Caller promises neither device nor driver will again touch this block 411 * unless it is first re-allocated. 412 */ 413 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 414 { 415 struct dma_page *page; 416 unsigned long flags; 417 unsigned int offset; 418 419 spin_lock_irqsave(&pool->lock, flags); 420 page = pool_find_page(pool, dma); 421 if (!page) { 422 spin_unlock_irqrestore(&pool->lock, flags); 423 if (pool->dev) 424 dev_err(pool->dev, 425 "dma_pool_free %s, %p/%lx (bad dma)\n", 426 pool->name, vaddr, (unsigned long)dma); 427 else 428 pr_err("dma_pool_free %s, %p/%lx (bad dma)\n", 429 pool->name, vaddr, (unsigned long)dma); 430 return; 431 } 432 433 offset = vaddr - page->vaddr; 434 #ifdef DMAPOOL_DEBUG 435 if ((dma - page->dma) != offset) { 436 spin_unlock_irqrestore(&pool->lock, flags); 437 if (pool->dev) 438 dev_err(pool->dev, 439 "dma_pool_free %s, %p (bad vaddr)/%pad\n", 440 pool->name, vaddr, &dma); 441 else 442 pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n", 443 pool->name, vaddr, &dma); 444 return; 445 } 446 { 447 unsigned int chain = page->offset; 448 while (chain < pool->allocation) { 449 if (chain != offset) { 450 chain = *(int *)(page->vaddr + chain); 451 continue; 452 } 453 spin_unlock_irqrestore(&pool->lock, flags); 454 if (pool->dev) 455 dev_err(pool->dev, "dma_pool_free %s, dma %pad already free\n", 456 pool->name, &dma); 457 else 458 pr_err("dma_pool_free %s, dma %pad already free\n", 459 pool->name, &dma); 460 return; 461 } 462 } 463 memset(vaddr, POOL_POISON_FREED, pool->size); 464 #endif 465 466 page->in_use--; 467 *(int *)vaddr = page->offset; 468 page->offset = offset; 469 /* 470 * Resist a temptation to do 471 * if (!is_page_busy(page)) pool_free_page(pool, page); 472 * Better have a few empty pages hang around. 473 */ 474 spin_unlock_irqrestore(&pool->lock, flags); 475 } 476 EXPORT_SYMBOL(dma_pool_free); 477 478 /* 479 * Managed DMA pool 480 */ 481 static void dmam_pool_release(struct device *dev, void *res) 482 { 483 struct dma_pool *pool = *(struct dma_pool **)res; 484 485 dma_pool_destroy(pool); 486 } 487 488 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 489 { 490 return *(struct dma_pool **)res == match_data; 491 } 492 493 /** 494 * dmam_pool_create - Managed dma_pool_create() 495 * @name: name of pool, for diagnostics 496 * @dev: device that will be doing the DMA 497 * @size: size of the blocks in this pool. 498 * @align: alignment requirement for blocks; must be a power of two 499 * @allocation: returned blocks won't cross this boundary (or zero) 500 * 501 * Managed dma_pool_create(). DMA pool created with this function is 502 * automatically destroyed on driver detach. 503 * 504 * Return: a managed dma allocation pool with the requested 505 * characteristics, or %NULL if one can't be created. 506 */ 507 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 508 size_t size, size_t align, size_t allocation) 509 { 510 struct dma_pool **ptr, *pool; 511 512 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 513 if (!ptr) 514 return NULL; 515 516 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 517 if (pool) 518 devres_add(dev, ptr); 519 else 520 devres_free(ptr); 521 522 return pool; 523 } 524 EXPORT_SYMBOL(dmam_pool_create); 525 526 /** 527 * dmam_pool_destroy - Managed dma_pool_destroy() 528 * @pool: dma pool that will be destroyed 529 * 530 * Managed dma_pool_destroy(). 531 */ 532 void dmam_pool_destroy(struct dma_pool *pool) 533 { 534 struct device *dev = pool->dev; 535 536 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 537 } 538 EXPORT_SYMBOL(dmam_pool_destroy); 539