xref: /openbmc/linux/mm/dmapool.c (revision c4c11dd1)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
40 
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
43 #endif
44 
45 struct dma_pool {		/* the pool */
46 	struct list_head page_list;
47 	spinlock_t lock;
48 	size_t size;
49 	struct device *dev;
50 	size_t allocation;
51 	size_t boundary;
52 	char name[32];
53 	struct list_head pools;
54 };
55 
56 struct dma_page {		/* cacheable header for 'allocation' bytes */
57 	struct list_head page_list;
58 	void *vaddr;
59 	dma_addr_t dma;
60 	unsigned int in_use;
61 	unsigned int offset;
62 };
63 
64 static DEFINE_MUTEX(pools_lock);
65 
66 static ssize_t
67 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
68 {
69 	unsigned temp;
70 	unsigned size;
71 	char *next;
72 	struct dma_page *page;
73 	struct dma_pool *pool;
74 
75 	next = buf;
76 	size = PAGE_SIZE;
77 
78 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
79 	size -= temp;
80 	next += temp;
81 
82 	mutex_lock(&pools_lock);
83 	list_for_each_entry(pool, &dev->dma_pools, pools) {
84 		unsigned pages = 0;
85 		unsigned blocks = 0;
86 
87 		spin_lock_irq(&pool->lock);
88 		list_for_each_entry(page, &pool->page_list, page_list) {
89 			pages++;
90 			blocks += page->in_use;
91 		}
92 		spin_unlock_irq(&pool->lock);
93 
94 		/* per-pool info, no real statistics yet */
95 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
96 				 pool->name, blocks,
97 				 pages * (pool->allocation / pool->size),
98 				 pool->size, pages);
99 		size -= temp;
100 		next += temp;
101 	}
102 	mutex_unlock(&pools_lock);
103 
104 	return PAGE_SIZE - size;
105 }
106 
107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
108 
109 /**
110  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111  * @name: name of pool, for diagnostics
112  * @dev: device that will be doing the DMA
113  * @size: size of the blocks in this pool.
114  * @align: alignment requirement for blocks; must be a power of two
115  * @boundary: returned blocks won't cross this power of two boundary
116  * Context: !in_interrupt()
117  *
118  * Returns a dma allocation pool with the requested characteristics, or
119  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
120  * may be used to allocate memory.  Such memory will all have "consistent"
121  * DMA mappings, accessible by the device and its driver without using
122  * cache flushing primitives.  The actual size of blocks allocated may be
123  * larger than requested because of alignment.
124  *
125  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126  * cross that size boundary.  This is useful for devices which have
127  * addressing restrictions on individual DMA transfers, such as not crossing
128  * boundaries of 4KBytes.
129  */
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 				 size_t size, size_t align, size_t boundary)
132 {
133 	struct dma_pool *retval;
134 	size_t allocation;
135 
136 	if (align == 0) {
137 		align = 1;
138 	} else if (align & (align - 1)) {
139 		return NULL;
140 	}
141 
142 	if (size == 0) {
143 		return NULL;
144 	} else if (size < 4) {
145 		size = 4;
146 	}
147 
148 	if ((size % align) != 0)
149 		size = ALIGN(size, align);
150 
151 	allocation = max_t(size_t, size, PAGE_SIZE);
152 
153 	if (!boundary) {
154 		boundary = allocation;
155 	} else if ((boundary < size) || (boundary & (boundary - 1))) {
156 		return NULL;
157 	}
158 
159 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160 	if (!retval)
161 		return retval;
162 
163 	strlcpy(retval->name, name, sizeof(retval->name));
164 
165 	retval->dev = dev;
166 
167 	INIT_LIST_HEAD(&retval->page_list);
168 	spin_lock_init(&retval->lock);
169 	retval->size = size;
170 	retval->boundary = boundary;
171 	retval->allocation = allocation;
172 
173 	if (dev) {
174 		int ret;
175 
176 		mutex_lock(&pools_lock);
177 		if (list_empty(&dev->dma_pools))
178 			ret = device_create_file(dev, &dev_attr_pools);
179 		else
180 			ret = 0;
181 		/* note:  not currently insisting "name" be unique */
182 		if (!ret)
183 			list_add(&retval->pools, &dev->dma_pools);
184 		else {
185 			kfree(retval);
186 			retval = NULL;
187 		}
188 		mutex_unlock(&pools_lock);
189 	} else
190 		INIT_LIST_HEAD(&retval->pools);
191 
192 	return retval;
193 }
194 EXPORT_SYMBOL(dma_pool_create);
195 
196 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
197 {
198 	unsigned int offset = 0;
199 	unsigned int next_boundary = pool->boundary;
200 
201 	do {
202 		unsigned int next = offset + pool->size;
203 		if (unlikely((next + pool->size) >= next_boundary)) {
204 			next = next_boundary;
205 			next_boundary += pool->boundary;
206 		}
207 		*(int *)(page->vaddr + offset) = next;
208 		offset = next;
209 	} while (offset < pool->allocation);
210 }
211 
212 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
213 {
214 	struct dma_page *page;
215 
216 	page = kmalloc(sizeof(*page), mem_flags);
217 	if (!page)
218 		return NULL;
219 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
220 					 &page->dma, mem_flags);
221 	if (page->vaddr) {
222 #ifdef	DMAPOOL_DEBUG
223 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
224 #endif
225 		pool_initialise_page(pool, page);
226 		page->in_use = 0;
227 		page->offset = 0;
228 	} else {
229 		kfree(page);
230 		page = NULL;
231 	}
232 	return page;
233 }
234 
235 static inline int is_page_busy(struct dma_page *page)
236 {
237 	return page->in_use != 0;
238 }
239 
240 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
241 {
242 	dma_addr_t dma = page->dma;
243 
244 #ifdef	DMAPOOL_DEBUG
245 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
246 #endif
247 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
248 	list_del(&page->page_list);
249 	kfree(page);
250 }
251 
252 /**
253  * dma_pool_destroy - destroys a pool of dma memory blocks.
254  * @pool: dma pool that will be destroyed
255  * Context: !in_interrupt()
256  *
257  * Caller guarantees that no more memory from the pool is in use,
258  * and that nothing will try to use the pool after this call.
259  */
260 void dma_pool_destroy(struct dma_pool *pool)
261 {
262 	mutex_lock(&pools_lock);
263 	list_del(&pool->pools);
264 	if (pool->dev && list_empty(&pool->dev->dma_pools))
265 		device_remove_file(pool->dev, &dev_attr_pools);
266 	mutex_unlock(&pools_lock);
267 
268 	while (!list_empty(&pool->page_list)) {
269 		struct dma_page *page;
270 		page = list_entry(pool->page_list.next,
271 				  struct dma_page, page_list);
272 		if (is_page_busy(page)) {
273 			if (pool->dev)
274 				dev_err(pool->dev,
275 					"dma_pool_destroy %s, %p busy\n",
276 					pool->name, page->vaddr);
277 			else
278 				printk(KERN_ERR
279 				       "dma_pool_destroy %s, %p busy\n",
280 				       pool->name, page->vaddr);
281 			/* leak the still-in-use consistent memory */
282 			list_del(&page->page_list);
283 			kfree(page);
284 		} else
285 			pool_free_page(pool, page);
286 	}
287 
288 	kfree(pool);
289 }
290 EXPORT_SYMBOL(dma_pool_destroy);
291 
292 /**
293  * dma_pool_alloc - get a block of consistent memory
294  * @pool: dma pool that will produce the block
295  * @mem_flags: GFP_* bitmask
296  * @handle: pointer to dma address of block
297  *
298  * This returns the kernel virtual address of a currently unused block,
299  * and reports its dma address through the handle.
300  * If such a memory block can't be allocated, %NULL is returned.
301  */
302 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
303 		     dma_addr_t *handle)
304 {
305 	unsigned long flags;
306 	struct dma_page *page;
307 	size_t offset;
308 	void *retval;
309 
310 	might_sleep_if(mem_flags & __GFP_WAIT);
311 
312 	spin_lock_irqsave(&pool->lock, flags);
313 	list_for_each_entry(page, &pool->page_list, page_list) {
314 		if (page->offset < pool->allocation)
315 			goto ready;
316 	}
317 
318 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
319 	spin_unlock_irqrestore(&pool->lock, flags);
320 
321 	page = pool_alloc_page(pool, mem_flags);
322 	if (!page)
323 		return NULL;
324 
325 	spin_lock_irqsave(&pool->lock, flags);
326 
327 	list_add(&page->page_list, &pool->page_list);
328  ready:
329 	page->in_use++;
330 	offset = page->offset;
331 	page->offset = *(int *)(page->vaddr + offset);
332 	retval = offset + page->vaddr;
333 	*handle = offset + page->dma;
334 #ifdef	DMAPOOL_DEBUG
335 	{
336 		int i;
337 		u8 *data = retval;
338 		/* page->offset is stored in first 4 bytes */
339 		for (i = sizeof(page->offset); i < pool->size; i++) {
340 			if (data[i] == POOL_POISON_FREED)
341 				continue;
342 			if (pool->dev)
343 				dev_err(pool->dev,
344 					"dma_pool_alloc %s, %p (corruped)\n",
345 					pool->name, retval);
346 			else
347 				pr_err("dma_pool_alloc %s, %p (corruped)\n",
348 					pool->name, retval);
349 
350 			/*
351 			 * Dump the first 4 bytes even if they are not
352 			 * POOL_POISON_FREED
353 			 */
354 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
355 					data, pool->size, 1);
356 			break;
357 		}
358 	}
359 	memset(retval, POOL_POISON_ALLOCATED, pool->size);
360 #endif
361 	spin_unlock_irqrestore(&pool->lock, flags);
362 	return retval;
363 }
364 EXPORT_SYMBOL(dma_pool_alloc);
365 
366 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
367 {
368 	struct dma_page *page;
369 
370 	list_for_each_entry(page, &pool->page_list, page_list) {
371 		if (dma < page->dma)
372 			continue;
373 		if (dma < (page->dma + pool->allocation))
374 			return page;
375 	}
376 	return NULL;
377 }
378 
379 /**
380  * dma_pool_free - put block back into dma pool
381  * @pool: the dma pool holding the block
382  * @vaddr: virtual address of block
383  * @dma: dma address of block
384  *
385  * Caller promises neither device nor driver will again touch this block
386  * unless it is first re-allocated.
387  */
388 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
389 {
390 	struct dma_page *page;
391 	unsigned long flags;
392 	unsigned int offset;
393 
394 	spin_lock_irqsave(&pool->lock, flags);
395 	page = pool_find_page(pool, dma);
396 	if (!page) {
397 		spin_unlock_irqrestore(&pool->lock, flags);
398 		if (pool->dev)
399 			dev_err(pool->dev,
400 				"dma_pool_free %s, %p/%lx (bad dma)\n",
401 				pool->name, vaddr, (unsigned long)dma);
402 		else
403 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
404 			       pool->name, vaddr, (unsigned long)dma);
405 		return;
406 	}
407 
408 	offset = vaddr - page->vaddr;
409 #ifdef	DMAPOOL_DEBUG
410 	if ((dma - page->dma) != offset) {
411 		spin_unlock_irqrestore(&pool->lock, flags);
412 		if (pool->dev)
413 			dev_err(pool->dev,
414 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
415 				pool->name, vaddr, (unsigned long long)dma);
416 		else
417 			printk(KERN_ERR
418 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
419 			       pool->name, vaddr, (unsigned long long)dma);
420 		return;
421 	}
422 	{
423 		unsigned int chain = page->offset;
424 		while (chain < pool->allocation) {
425 			if (chain != offset) {
426 				chain = *(int *)(page->vaddr + chain);
427 				continue;
428 			}
429 			spin_unlock_irqrestore(&pool->lock, flags);
430 			if (pool->dev)
431 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
432 					"already free\n", pool->name,
433 					(unsigned long long)dma);
434 			else
435 				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
436 					"already free\n", pool->name,
437 					(unsigned long long)dma);
438 			return;
439 		}
440 	}
441 	memset(vaddr, POOL_POISON_FREED, pool->size);
442 #endif
443 
444 	page->in_use--;
445 	*(int *)vaddr = page->offset;
446 	page->offset = offset;
447 	/*
448 	 * Resist a temptation to do
449 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
450 	 * Better have a few empty pages hang around.
451 	 */
452 	spin_unlock_irqrestore(&pool->lock, flags);
453 }
454 EXPORT_SYMBOL(dma_pool_free);
455 
456 /*
457  * Managed DMA pool
458  */
459 static void dmam_pool_release(struct device *dev, void *res)
460 {
461 	struct dma_pool *pool = *(struct dma_pool **)res;
462 
463 	dma_pool_destroy(pool);
464 }
465 
466 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
467 {
468 	return *(struct dma_pool **)res == match_data;
469 }
470 
471 /**
472  * dmam_pool_create - Managed dma_pool_create()
473  * @name: name of pool, for diagnostics
474  * @dev: device that will be doing the DMA
475  * @size: size of the blocks in this pool.
476  * @align: alignment requirement for blocks; must be a power of two
477  * @allocation: returned blocks won't cross this boundary (or zero)
478  *
479  * Managed dma_pool_create().  DMA pool created with this function is
480  * automatically destroyed on driver detach.
481  */
482 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
483 				  size_t size, size_t align, size_t allocation)
484 {
485 	struct dma_pool **ptr, *pool;
486 
487 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
488 	if (!ptr)
489 		return NULL;
490 
491 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
492 	if (pool)
493 		devres_add(dev, ptr);
494 	else
495 		devres_free(ptr);
496 
497 	return pool;
498 }
499 EXPORT_SYMBOL(dmam_pool_create);
500 
501 /**
502  * dmam_pool_destroy - Managed dma_pool_destroy()
503  * @pool: dma pool that will be destroyed
504  *
505  * Managed dma_pool_destroy().
506  */
507 void dmam_pool_destroy(struct dma_pool *pool)
508 {
509 	struct device *dev = pool->dev;
510 
511 	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
512 	dma_pool_destroy(pool);
513 }
514 EXPORT_SYMBOL(dmam_pool_destroy);
515