1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMA Pool allocator 4 * 5 * Copyright 2001 David Brownell 6 * Copyright 2007 Intel Corporation 7 * Author: Matthew Wilcox <willy@linux.intel.com> 8 * 9 * This allocator returns small blocks of a given size which are DMA-able by 10 * the given device. It uses the dma_alloc_coherent page allocator to get 11 * new pages, then splits them up into blocks of the required size. 12 * Many older drivers still have their own code to do this. 13 * 14 * The current design of this allocator is fairly simple. The pool is 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 16 * allocated pages. Each page in the page_list is split into blocks of at 17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 18 * list of free blocks within the page. Used blocks aren't tracked, but we 19 * keep a count of how many are currently allocated from each page. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmapool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/export.h> 28 #include <linux/mutex.h> 29 #include <linux/poison.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/slab.h> 33 #include <linux/stat.h> 34 #include <linux/spinlock.h> 35 #include <linux/string.h> 36 #include <linux/types.h> 37 #include <linux/wait.h> 38 39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 40 #define DMAPOOL_DEBUG 1 41 #endif 42 43 struct dma_pool { /* the pool */ 44 struct list_head page_list; 45 spinlock_t lock; 46 size_t size; 47 struct device *dev; 48 size_t allocation; 49 size_t boundary; 50 char name[32]; 51 struct list_head pools; 52 }; 53 54 struct dma_page { /* cacheable header for 'allocation' bytes */ 55 struct list_head page_list; 56 void *vaddr; 57 dma_addr_t dma; 58 unsigned int in_use; 59 unsigned int offset; 60 }; 61 62 static DEFINE_MUTEX(pools_lock); 63 static DEFINE_MUTEX(pools_reg_lock); 64 65 static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf) 66 { 67 unsigned temp; 68 unsigned size; 69 char *next; 70 struct dma_page *page; 71 struct dma_pool *pool; 72 73 next = buf; 74 size = PAGE_SIZE; 75 76 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 77 size -= temp; 78 next += temp; 79 80 mutex_lock(&pools_lock); 81 list_for_each_entry(pool, &dev->dma_pools, pools) { 82 unsigned pages = 0; 83 unsigned blocks = 0; 84 85 spin_lock_irq(&pool->lock); 86 list_for_each_entry(page, &pool->page_list, page_list) { 87 pages++; 88 blocks += page->in_use; 89 } 90 spin_unlock_irq(&pool->lock); 91 92 /* per-pool info, no real statistics yet */ 93 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n", 94 pool->name, blocks, 95 pages * (pool->allocation / pool->size), 96 pool->size, pages); 97 size -= temp; 98 next += temp; 99 } 100 mutex_unlock(&pools_lock); 101 102 return PAGE_SIZE - size; 103 } 104 105 static DEVICE_ATTR_RO(pools); 106 107 /** 108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 109 * @name: name of pool, for diagnostics 110 * @dev: device that will be doing the DMA 111 * @size: size of the blocks in this pool. 112 * @align: alignment requirement for blocks; must be a power of two 113 * @boundary: returned blocks won't cross this power of two boundary 114 * Context: not in_interrupt() 115 * 116 * Given one of these pools, dma_pool_alloc() 117 * may be used to allocate memory. Such memory will all have "consistent" 118 * DMA mappings, accessible by the device and its driver without using 119 * cache flushing primitives. The actual size of blocks allocated may be 120 * larger than requested because of alignment. 121 * 122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 123 * cross that size boundary. This is useful for devices which have 124 * addressing restrictions on individual DMA transfers, such as not crossing 125 * boundaries of 4KBytes. 126 * 127 * Return: a dma allocation pool with the requested characteristics, or 128 * %NULL if one can't be created. 129 */ 130 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 131 size_t size, size_t align, size_t boundary) 132 { 133 struct dma_pool *retval; 134 size_t allocation; 135 bool empty = false; 136 137 if (align == 0) 138 align = 1; 139 else if (align & (align - 1)) 140 return NULL; 141 142 if (size == 0) 143 return NULL; 144 else if (size < 4) 145 size = 4; 146 147 size = ALIGN(size, align); 148 allocation = max_t(size_t, size, PAGE_SIZE); 149 150 if (!boundary) 151 boundary = allocation; 152 else if ((boundary < size) || (boundary & (boundary - 1))) 153 return NULL; 154 155 retval = kmalloc(sizeof(*retval), GFP_KERNEL); 156 if (!retval) 157 return retval; 158 159 strscpy(retval->name, name, sizeof(retval->name)); 160 161 retval->dev = dev; 162 163 INIT_LIST_HEAD(&retval->page_list); 164 spin_lock_init(&retval->lock); 165 retval->size = size; 166 retval->boundary = boundary; 167 retval->allocation = allocation; 168 169 INIT_LIST_HEAD(&retval->pools); 170 171 /* 172 * pools_lock ensures that the ->dma_pools list does not get corrupted. 173 * pools_reg_lock ensures that there is not a race between 174 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 175 * when the first invocation of dma_pool_create() failed on 176 * device_create_file() and the second assumes that it has been done (I 177 * know it is a short window). 178 */ 179 mutex_lock(&pools_reg_lock); 180 mutex_lock(&pools_lock); 181 if (list_empty(&dev->dma_pools)) 182 empty = true; 183 list_add(&retval->pools, &dev->dma_pools); 184 mutex_unlock(&pools_lock); 185 if (empty) { 186 int err; 187 188 err = device_create_file(dev, &dev_attr_pools); 189 if (err) { 190 mutex_lock(&pools_lock); 191 list_del(&retval->pools); 192 mutex_unlock(&pools_lock); 193 mutex_unlock(&pools_reg_lock); 194 kfree(retval); 195 return NULL; 196 } 197 } 198 mutex_unlock(&pools_reg_lock); 199 return retval; 200 } 201 EXPORT_SYMBOL(dma_pool_create); 202 203 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 204 { 205 unsigned int offset = 0; 206 unsigned int next_boundary = pool->boundary; 207 208 do { 209 unsigned int next = offset + pool->size; 210 if (unlikely((next + pool->size) >= next_boundary)) { 211 next = next_boundary; 212 next_boundary += pool->boundary; 213 } 214 *(int *)(page->vaddr + offset) = next; 215 offset = next; 216 } while (offset < pool->allocation); 217 } 218 219 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 220 { 221 struct dma_page *page; 222 223 page = kmalloc(sizeof(*page), mem_flags); 224 if (!page) 225 return NULL; 226 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 227 &page->dma, mem_flags); 228 if (page->vaddr) { 229 #ifdef DMAPOOL_DEBUG 230 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 231 #endif 232 pool_initialise_page(pool, page); 233 page->in_use = 0; 234 page->offset = 0; 235 } else { 236 kfree(page); 237 page = NULL; 238 } 239 return page; 240 } 241 242 static inline bool is_page_busy(struct dma_page *page) 243 { 244 return page->in_use != 0; 245 } 246 247 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 248 { 249 dma_addr_t dma = page->dma; 250 251 #ifdef DMAPOOL_DEBUG 252 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 253 #endif 254 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 255 list_del(&page->page_list); 256 kfree(page); 257 } 258 259 /** 260 * dma_pool_destroy - destroys a pool of dma memory blocks. 261 * @pool: dma pool that will be destroyed 262 * Context: !in_interrupt() 263 * 264 * Caller guarantees that no more memory from the pool is in use, 265 * and that nothing will try to use the pool after this call. 266 */ 267 void dma_pool_destroy(struct dma_pool *pool) 268 { 269 struct dma_page *page, *tmp; 270 bool empty = false; 271 272 if (unlikely(!pool)) 273 return; 274 275 mutex_lock(&pools_reg_lock); 276 mutex_lock(&pools_lock); 277 list_del(&pool->pools); 278 if (pool->dev && list_empty(&pool->dev->dma_pools)) 279 empty = true; 280 mutex_unlock(&pools_lock); 281 if (empty) 282 device_remove_file(pool->dev, &dev_attr_pools); 283 mutex_unlock(&pools_reg_lock); 284 285 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { 286 if (is_page_busy(page)) { 287 if (pool->dev) 288 dev_err(pool->dev, "%s %s, %p busy\n", __func__, 289 pool->name, page->vaddr); 290 else 291 pr_err("%s %s, %p busy\n", __func__, 292 pool->name, page->vaddr); 293 /* leak the still-in-use consistent memory */ 294 list_del(&page->page_list); 295 kfree(page); 296 } else 297 pool_free_page(pool, page); 298 } 299 300 kfree(pool); 301 } 302 EXPORT_SYMBOL(dma_pool_destroy); 303 304 /** 305 * dma_pool_alloc - get a block of consistent memory 306 * @pool: dma pool that will produce the block 307 * @mem_flags: GFP_* bitmask 308 * @handle: pointer to dma address of block 309 * 310 * Return: the kernel virtual address of a currently unused block, 311 * and reports its dma address through the handle. 312 * If such a memory block can't be allocated, %NULL is returned. 313 */ 314 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 315 dma_addr_t *handle) 316 { 317 unsigned long flags; 318 struct dma_page *page; 319 size_t offset; 320 void *retval; 321 322 might_alloc(mem_flags); 323 324 spin_lock_irqsave(&pool->lock, flags); 325 list_for_each_entry(page, &pool->page_list, page_list) { 326 if (page->offset < pool->allocation) 327 goto ready; 328 } 329 330 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ 331 spin_unlock_irqrestore(&pool->lock, flags); 332 333 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 334 if (!page) 335 return NULL; 336 337 spin_lock_irqsave(&pool->lock, flags); 338 339 list_add(&page->page_list, &pool->page_list); 340 ready: 341 page->in_use++; 342 offset = page->offset; 343 page->offset = *(int *)(page->vaddr + offset); 344 retval = offset + page->vaddr; 345 *handle = offset + page->dma; 346 #ifdef DMAPOOL_DEBUG 347 { 348 int i; 349 u8 *data = retval; 350 /* page->offset is stored in first 4 bytes */ 351 for (i = sizeof(page->offset); i < pool->size; i++) { 352 if (data[i] == POOL_POISON_FREED) 353 continue; 354 if (pool->dev) 355 dev_err(pool->dev, "%s %s, %p (corrupted)\n", 356 __func__, pool->name, retval); 357 else 358 pr_err("%s %s, %p (corrupted)\n", 359 __func__, pool->name, retval); 360 361 /* 362 * Dump the first 4 bytes even if they are not 363 * POOL_POISON_FREED 364 */ 365 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 366 data, pool->size, 1); 367 break; 368 } 369 } 370 if (!(mem_flags & __GFP_ZERO)) 371 memset(retval, POOL_POISON_ALLOCATED, pool->size); 372 #endif 373 spin_unlock_irqrestore(&pool->lock, flags); 374 375 if (want_init_on_alloc(mem_flags)) 376 memset(retval, 0, pool->size); 377 378 return retval; 379 } 380 EXPORT_SYMBOL(dma_pool_alloc); 381 382 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 383 { 384 struct dma_page *page; 385 386 list_for_each_entry(page, &pool->page_list, page_list) { 387 if (dma < page->dma) 388 continue; 389 if ((dma - page->dma) < pool->allocation) 390 return page; 391 } 392 return NULL; 393 } 394 395 /** 396 * dma_pool_free - put block back into dma pool 397 * @pool: the dma pool holding the block 398 * @vaddr: virtual address of block 399 * @dma: dma address of block 400 * 401 * Caller promises neither device nor driver will again touch this block 402 * unless it is first re-allocated. 403 */ 404 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 405 { 406 struct dma_page *page; 407 unsigned long flags; 408 unsigned int offset; 409 410 spin_lock_irqsave(&pool->lock, flags); 411 page = pool_find_page(pool, dma); 412 if (!page) { 413 spin_unlock_irqrestore(&pool->lock, flags); 414 if (pool->dev) 415 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n", 416 __func__, pool->name, vaddr, &dma); 417 else 418 pr_err("%s %s, %p/%pad (bad dma)\n", 419 __func__, pool->name, vaddr, &dma); 420 return; 421 } 422 423 offset = vaddr - page->vaddr; 424 if (want_init_on_free()) 425 memset(vaddr, 0, pool->size); 426 #ifdef DMAPOOL_DEBUG 427 if ((dma - page->dma) != offset) { 428 spin_unlock_irqrestore(&pool->lock, flags); 429 if (pool->dev) 430 dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n", 431 __func__, pool->name, vaddr, &dma); 432 else 433 pr_err("%s %s, %p (bad vaddr)/%pad\n", 434 __func__, pool->name, vaddr, &dma); 435 return; 436 } 437 { 438 unsigned int chain = page->offset; 439 while (chain < pool->allocation) { 440 if (chain != offset) { 441 chain = *(int *)(page->vaddr + chain); 442 continue; 443 } 444 spin_unlock_irqrestore(&pool->lock, flags); 445 if (pool->dev) 446 dev_err(pool->dev, "%s %s, dma %pad already free\n", 447 __func__, pool->name, &dma); 448 else 449 pr_err("%s %s, dma %pad already free\n", 450 __func__, pool->name, &dma); 451 return; 452 } 453 } 454 memset(vaddr, POOL_POISON_FREED, pool->size); 455 #endif 456 457 page->in_use--; 458 *(int *)vaddr = page->offset; 459 page->offset = offset; 460 /* 461 * Resist a temptation to do 462 * if (!is_page_busy(page)) pool_free_page(pool, page); 463 * Better have a few empty pages hang around. 464 */ 465 spin_unlock_irqrestore(&pool->lock, flags); 466 } 467 EXPORT_SYMBOL(dma_pool_free); 468 469 /* 470 * Managed DMA pool 471 */ 472 static void dmam_pool_release(struct device *dev, void *res) 473 { 474 struct dma_pool *pool = *(struct dma_pool **)res; 475 476 dma_pool_destroy(pool); 477 } 478 479 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 480 { 481 return *(struct dma_pool **)res == match_data; 482 } 483 484 /** 485 * dmam_pool_create - Managed dma_pool_create() 486 * @name: name of pool, for diagnostics 487 * @dev: device that will be doing the DMA 488 * @size: size of the blocks in this pool. 489 * @align: alignment requirement for blocks; must be a power of two 490 * @allocation: returned blocks won't cross this boundary (or zero) 491 * 492 * Managed dma_pool_create(). DMA pool created with this function is 493 * automatically destroyed on driver detach. 494 * 495 * Return: a managed dma allocation pool with the requested 496 * characteristics, or %NULL if one can't be created. 497 */ 498 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 499 size_t size, size_t align, size_t allocation) 500 { 501 struct dma_pool **ptr, *pool; 502 503 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 504 if (!ptr) 505 return NULL; 506 507 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 508 if (pool) 509 devres_add(dev, ptr); 510 else 511 devres_free(ptr); 512 513 return pool; 514 } 515 EXPORT_SYMBOL(dmam_pool_create); 516 517 /** 518 * dmam_pool_destroy - Managed dma_pool_destroy() 519 * @pool: dma pool that will be destroyed 520 * 521 * Managed dma_pool_destroy(). 522 */ 523 void dmam_pool_destroy(struct dma_pool *pool) 524 { 525 struct device *dev = pool->dev; 526 527 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 528 } 529 EXPORT_SYMBOL(dmam_pool_destroy); 530