xref: /openbmc/linux/mm/dmapool.c (revision 94c7b6fc)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
40 
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
43 #endif
44 
45 struct dma_pool {		/* the pool */
46 	struct list_head page_list;
47 	spinlock_t lock;
48 	size_t size;
49 	struct device *dev;
50 	size_t allocation;
51 	size_t boundary;
52 	char name[32];
53 	struct list_head pools;
54 };
55 
56 struct dma_page {		/* cacheable header for 'allocation' bytes */
57 	struct list_head page_list;
58 	void *vaddr;
59 	dma_addr_t dma;
60 	unsigned int in_use;
61 	unsigned int offset;
62 };
63 
64 static DEFINE_MUTEX(pools_lock);
65 
66 static ssize_t
67 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
68 {
69 	unsigned temp;
70 	unsigned size;
71 	char *next;
72 	struct dma_page *page;
73 	struct dma_pool *pool;
74 
75 	next = buf;
76 	size = PAGE_SIZE;
77 
78 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
79 	size -= temp;
80 	next += temp;
81 
82 	mutex_lock(&pools_lock);
83 	list_for_each_entry(pool, &dev->dma_pools, pools) {
84 		unsigned pages = 0;
85 		unsigned blocks = 0;
86 
87 		spin_lock_irq(&pool->lock);
88 		list_for_each_entry(page, &pool->page_list, page_list) {
89 			pages++;
90 			blocks += page->in_use;
91 		}
92 		spin_unlock_irq(&pool->lock);
93 
94 		/* per-pool info, no real statistics yet */
95 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
96 				 pool->name, blocks,
97 				 pages * (pool->allocation / pool->size),
98 				 pool->size, pages);
99 		size -= temp;
100 		next += temp;
101 	}
102 	mutex_unlock(&pools_lock);
103 
104 	return PAGE_SIZE - size;
105 }
106 
107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
108 
109 /**
110  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111  * @name: name of pool, for diagnostics
112  * @dev: device that will be doing the DMA
113  * @size: size of the blocks in this pool.
114  * @align: alignment requirement for blocks; must be a power of two
115  * @boundary: returned blocks won't cross this power of two boundary
116  * Context: !in_interrupt()
117  *
118  * Returns a dma allocation pool with the requested characteristics, or
119  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
120  * may be used to allocate memory.  Such memory will all have "consistent"
121  * DMA mappings, accessible by the device and its driver without using
122  * cache flushing primitives.  The actual size of blocks allocated may be
123  * larger than requested because of alignment.
124  *
125  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126  * cross that size boundary.  This is useful for devices which have
127  * addressing restrictions on individual DMA transfers, such as not crossing
128  * boundaries of 4KBytes.
129  */
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 				 size_t size, size_t align, size_t boundary)
132 {
133 	struct dma_pool *retval;
134 	size_t allocation;
135 
136 	if (align == 0) {
137 		align = 1;
138 	} else if (align & (align - 1)) {
139 		return NULL;
140 	}
141 
142 	if (size == 0) {
143 		return NULL;
144 	} else if (size < 4) {
145 		size = 4;
146 	}
147 
148 	if ((size % align) != 0)
149 		size = ALIGN(size, align);
150 
151 	allocation = max_t(size_t, size, PAGE_SIZE);
152 
153 	if (!boundary) {
154 		boundary = allocation;
155 	} else if ((boundary < size) || (boundary & (boundary - 1))) {
156 		return NULL;
157 	}
158 
159 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160 	if (!retval)
161 		return retval;
162 
163 	strlcpy(retval->name, name, sizeof(retval->name));
164 
165 	retval->dev = dev;
166 
167 	INIT_LIST_HEAD(&retval->page_list);
168 	spin_lock_init(&retval->lock);
169 	retval->size = size;
170 	retval->boundary = boundary;
171 	retval->allocation = allocation;
172 
173 	INIT_LIST_HEAD(&retval->pools);
174 
175 	mutex_lock(&pools_lock);
176 	if (list_empty(&dev->dma_pools) &&
177 	    device_create_file(dev, &dev_attr_pools)) {
178 		kfree(retval);
179 		return NULL;
180 	} else
181 		list_add(&retval->pools, &dev->dma_pools);
182 	mutex_unlock(&pools_lock);
183 
184 	return retval;
185 }
186 EXPORT_SYMBOL(dma_pool_create);
187 
188 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
189 {
190 	unsigned int offset = 0;
191 	unsigned int next_boundary = pool->boundary;
192 
193 	do {
194 		unsigned int next = offset + pool->size;
195 		if (unlikely((next + pool->size) >= next_boundary)) {
196 			next = next_boundary;
197 			next_boundary += pool->boundary;
198 		}
199 		*(int *)(page->vaddr + offset) = next;
200 		offset = next;
201 	} while (offset < pool->allocation);
202 }
203 
204 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
205 {
206 	struct dma_page *page;
207 
208 	page = kmalloc(sizeof(*page), mem_flags);
209 	if (!page)
210 		return NULL;
211 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
212 					 &page->dma, mem_flags);
213 	if (page->vaddr) {
214 #ifdef	DMAPOOL_DEBUG
215 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
216 #endif
217 		pool_initialise_page(pool, page);
218 		page->in_use = 0;
219 		page->offset = 0;
220 	} else {
221 		kfree(page);
222 		page = NULL;
223 	}
224 	return page;
225 }
226 
227 static inline int is_page_busy(struct dma_page *page)
228 {
229 	return page->in_use != 0;
230 }
231 
232 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
233 {
234 	dma_addr_t dma = page->dma;
235 
236 #ifdef	DMAPOOL_DEBUG
237 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
238 #endif
239 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
240 	list_del(&page->page_list);
241 	kfree(page);
242 }
243 
244 /**
245  * dma_pool_destroy - destroys a pool of dma memory blocks.
246  * @pool: dma pool that will be destroyed
247  * Context: !in_interrupt()
248  *
249  * Caller guarantees that no more memory from the pool is in use,
250  * and that nothing will try to use the pool after this call.
251  */
252 void dma_pool_destroy(struct dma_pool *pool)
253 {
254 	mutex_lock(&pools_lock);
255 	list_del(&pool->pools);
256 	if (pool->dev && list_empty(&pool->dev->dma_pools))
257 		device_remove_file(pool->dev, &dev_attr_pools);
258 	mutex_unlock(&pools_lock);
259 
260 	while (!list_empty(&pool->page_list)) {
261 		struct dma_page *page;
262 		page = list_entry(pool->page_list.next,
263 				  struct dma_page, page_list);
264 		if (is_page_busy(page)) {
265 			if (pool->dev)
266 				dev_err(pool->dev,
267 					"dma_pool_destroy %s, %p busy\n",
268 					pool->name, page->vaddr);
269 			else
270 				printk(KERN_ERR
271 				       "dma_pool_destroy %s, %p busy\n",
272 				       pool->name, page->vaddr);
273 			/* leak the still-in-use consistent memory */
274 			list_del(&page->page_list);
275 			kfree(page);
276 		} else
277 			pool_free_page(pool, page);
278 	}
279 
280 	kfree(pool);
281 }
282 EXPORT_SYMBOL(dma_pool_destroy);
283 
284 /**
285  * dma_pool_alloc - get a block of consistent memory
286  * @pool: dma pool that will produce the block
287  * @mem_flags: GFP_* bitmask
288  * @handle: pointer to dma address of block
289  *
290  * This returns the kernel virtual address of a currently unused block,
291  * and reports its dma address through the handle.
292  * If such a memory block can't be allocated, %NULL is returned.
293  */
294 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
295 		     dma_addr_t *handle)
296 {
297 	unsigned long flags;
298 	struct dma_page *page;
299 	size_t offset;
300 	void *retval;
301 
302 	might_sleep_if(mem_flags & __GFP_WAIT);
303 
304 	spin_lock_irqsave(&pool->lock, flags);
305 	list_for_each_entry(page, &pool->page_list, page_list) {
306 		if (page->offset < pool->allocation)
307 			goto ready;
308 	}
309 
310 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
311 	spin_unlock_irqrestore(&pool->lock, flags);
312 
313 	page = pool_alloc_page(pool, mem_flags);
314 	if (!page)
315 		return NULL;
316 
317 	spin_lock_irqsave(&pool->lock, flags);
318 
319 	list_add(&page->page_list, &pool->page_list);
320  ready:
321 	page->in_use++;
322 	offset = page->offset;
323 	page->offset = *(int *)(page->vaddr + offset);
324 	retval = offset + page->vaddr;
325 	*handle = offset + page->dma;
326 #ifdef	DMAPOOL_DEBUG
327 	{
328 		int i;
329 		u8 *data = retval;
330 		/* page->offset is stored in first 4 bytes */
331 		for (i = sizeof(page->offset); i < pool->size; i++) {
332 			if (data[i] == POOL_POISON_FREED)
333 				continue;
334 			if (pool->dev)
335 				dev_err(pool->dev,
336 					"dma_pool_alloc %s, %p (corrupted)\n",
337 					pool->name, retval);
338 			else
339 				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
340 					pool->name, retval);
341 
342 			/*
343 			 * Dump the first 4 bytes even if they are not
344 			 * POOL_POISON_FREED
345 			 */
346 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
347 					data, pool->size, 1);
348 			break;
349 		}
350 	}
351 	memset(retval, POOL_POISON_ALLOCATED, pool->size);
352 #endif
353 	spin_unlock_irqrestore(&pool->lock, flags);
354 	return retval;
355 }
356 EXPORT_SYMBOL(dma_pool_alloc);
357 
358 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
359 {
360 	struct dma_page *page;
361 
362 	list_for_each_entry(page, &pool->page_list, page_list) {
363 		if (dma < page->dma)
364 			continue;
365 		if (dma < (page->dma + pool->allocation))
366 			return page;
367 	}
368 	return NULL;
369 }
370 
371 /**
372  * dma_pool_free - put block back into dma pool
373  * @pool: the dma pool holding the block
374  * @vaddr: virtual address of block
375  * @dma: dma address of block
376  *
377  * Caller promises neither device nor driver will again touch this block
378  * unless it is first re-allocated.
379  */
380 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
381 {
382 	struct dma_page *page;
383 	unsigned long flags;
384 	unsigned int offset;
385 
386 	spin_lock_irqsave(&pool->lock, flags);
387 	page = pool_find_page(pool, dma);
388 	if (!page) {
389 		spin_unlock_irqrestore(&pool->lock, flags);
390 		if (pool->dev)
391 			dev_err(pool->dev,
392 				"dma_pool_free %s, %p/%lx (bad dma)\n",
393 				pool->name, vaddr, (unsigned long)dma);
394 		else
395 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
396 			       pool->name, vaddr, (unsigned long)dma);
397 		return;
398 	}
399 
400 	offset = vaddr - page->vaddr;
401 #ifdef	DMAPOOL_DEBUG
402 	if ((dma - page->dma) != offset) {
403 		spin_unlock_irqrestore(&pool->lock, flags);
404 		if (pool->dev)
405 			dev_err(pool->dev,
406 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
407 				pool->name, vaddr, (unsigned long long)dma);
408 		else
409 			printk(KERN_ERR
410 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
411 			       pool->name, vaddr, (unsigned long long)dma);
412 		return;
413 	}
414 	{
415 		unsigned int chain = page->offset;
416 		while (chain < pool->allocation) {
417 			if (chain != offset) {
418 				chain = *(int *)(page->vaddr + chain);
419 				continue;
420 			}
421 			spin_unlock_irqrestore(&pool->lock, flags);
422 			if (pool->dev)
423 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
424 					"already free\n", pool->name,
425 					(unsigned long long)dma);
426 			else
427 				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
428 					"already free\n", pool->name,
429 					(unsigned long long)dma);
430 			return;
431 		}
432 	}
433 	memset(vaddr, POOL_POISON_FREED, pool->size);
434 #endif
435 
436 	page->in_use--;
437 	*(int *)vaddr = page->offset;
438 	page->offset = offset;
439 	/*
440 	 * Resist a temptation to do
441 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
442 	 * Better have a few empty pages hang around.
443 	 */
444 	spin_unlock_irqrestore(&pool->lock, flags);
445 }
446 EXPORT_SYMBOL(dma_pool_free);
447 
448 /*
449  * Managed DMA pool
450  */
451 static void dmam_pool_release(struct device *dev, void *res)
452 {
453 	struct dma_pool *pool = *(struct dma_pool **)res;
454 
455 	dma_pool_destroy(pool);
456 }
457 
458 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
459 {
460 	return *(struct dma_pool **)res == match_data;
461 }
462 
463 /**
464  * dmam_pool_create - Managed dma_pool_create()
465  * @name: name of pool, for diagnostics
466  * @dev: device that will be doing the DMA
467  * @size: size of the blocks in this pool.
468  * @align: alignment requirement for blocks; must be a power of two
469  * @allocation: returned blocks won't cross this boundary (or zero)
470  *
471  * Managed dma_pool_create().  DMA pool created with this function is
472  * automatically destroyed on driver detach.
473  */
474 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
475 				  size_t size, size_t align, size_t allocation)
476 {
477 	struct dma_pool **ptr, *pool;
478 
479 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
480 	if (!ptr)
481 		return NULL;
482 
483 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
484 	if (pool)
485 		devres_add(dev, ptr);
486 	else
487 		devres_free(ptr);
488 
489 	return pool;
490 }
491 EXPORT_SYMBOL(dmam_pool_create);
492 
493 /**
494  * dmam_pool_destroy - Managed dma_pool_destroy()
495  * @pool: dma pool that will be destroyed
496  *
497  * Managed dma_pool_destroy().
498  */
499 void dmam_pool_destroy(struct dma_pool *pool)
500 {
501 	struct device *dev = pool->dev;
502 
503 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
504 }
505 EXPORT_SYMBOL(dmam_pool_destroy);
506