xref: /openbmc/linux/mm/dmapool.c (revision 63dc02bd)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
40 
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
43 #endif
44 
45 struct dma_pool {		/* the pool */
46 	struct list_head page_list;
47 	spinlock_t lock;
48 	size_t size;
49 	struct device *dev;
50 	size_t allocation;
51 	size_t boundary;
52 	char name[32];
53 	wait_queue_head_t waitq;
54 	struct list_head pools;
55 };
56 
57 struct dma_page {		/* cacheable header for 'allocation' bytes */
58 	struct list_head page_list;
59 	void *vaddr;
60 	dma_addr_t dma;
61 	unsigned int in_use;
62 	unsigned int offset;
63 };
64 
65 #define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
66 
67 static DEFINE_MUTEX(pools_lock);
68 
69 static ssize_t
70 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
71 {
72 	unsigned temp;
73 	unsigned size;
74 	char *next;
75 	struct dma_page *page;
76 	struct dma_pool *pool;
77 
78 	next = buf;
79 	size = PAGE_SIZE;
80 
81 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
82 	size -= temp;
83 	next += temp;
84 
85 	mutex_lock(&pools_lock);
86 	list_for_each_entry(pool, &dev->dma_pools, pools) {
87 		unsigned pages = 0;
88 		unsigned blocks = 0;
89 
90 		spin_lock_irq(&pool->lock);
91 		list_for_each_entry(page, &pool->page_list, page_list) {
92 			pages++;
93 			blocks += page->in_use;
94 		}
95 		spin_unlock_irq(&pool->lock);
96 
97 		/* per-pool info, no real statistics yet */
98 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
99 				 pool->name, blocks,
100 				 pages * (pool->allocation / pool->size),
101 				 pool->size, pages);
102 		size -= temp;
103 		next += temp;
104 	}
105 	mutex_unlock(&pools_lock);
106 
107 	return PAGE_SIZE - size;
108 }
109 
110 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
111 
112 /**
113  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
114  * @name: name of pool, for diagnostics
115  * @dev: device that will be doing the DMA
116  * @size: size of the blocks in this pool.
117  * @align: alignment requirement for blocks; must be a power of two
118  * @boundary: returned blocks won't cross this power of two boundary
119  * Context: !in_interrupt()
120  *
121  * Returns a dma allocation pool with the requested characteristics, or
122  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
123  * may be used to allocate memory.  Such memory will all have "consistent"
124  * DMA mappings, accessible by the device and its driver without using
125  * cache flushing primitives.  The actual size of blocks allocated may be
126  * larger than requested because of alignment.
127  *
128  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
129  * cross that size boundary.  This is useful for devices which have
130  * addressing restrictions on individual DMA transfers, such as not crossing
131  * boundaries of 4KBytes.
132  */
133 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
134 				 size_t size, size_t align, size_t boundary)
135 {
136 	struct dma_pool *retval;
137 	size_t allocation;
138 
139 	if (align == 0) {
140 		align = 1;
141 	} else if (align & (align - 1)) {
142 		return NULL;
143 	}
144 
145 	if (size == 0) {
146 		return NULL;
147 	} else if (size < 4) {
148 		size = 4;
149 	}
150 
151 	if ((size % align) != 0)
152 		size = ALIGN(size, align);
153 
154 	allocation = max_t(size_t, size, PAGE_SIZE);
155 
156 	if (!boundary) {
157 		boundary = allocation;
158 	} else if ((boundary < size) || (boundary & (boundary - 1))) {
159 		return NULL;
160 	}
161 
162 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
163 	if (!retval)
164 		return retval;
165 
166 	strlcpy(retval->name, name, sizeof(retval->name));
167 
168 	retval->dev = dev;
169 
170 	INIT_LIST_HEAD(&retval->page_list);
171 	spin_lock_init(&retval->lock);
172 	retval->size = size;
173 	retval->boundary = boundary;
174 	retval->allocation = allocation;
175 	init_waitqueue_head(&retval->waitq);
176 
177 	if (dev) {
178 		int ret;
179 
180 		mutex_lock(&pools_lock);
181 		if (list_empty(&dev->dma_pools))
182 			ret = device_create_file(dev, &dev_attr_pools);
183 		else
184 			ret = 0;
185 		/* note:  not currently insisting "name" be unique */
186 		if (!ret)
187 			list_add(&retval->pools, &dev->dma_pools);
188 		else {
189 			kfree(retval);
190 			retval = NULL;
191 		}
192 		mutex_unlock(&pools_lock);
193 	} else
194 		INIT_LIST_HEAD(&retval->pools);
195 
196 	return retval;
197 }
198 EXPORT_SYMBOL(dma_pool_create);
199 
200 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
201 {
202 	unsigned int offset = 0;
203 	unsigned int next_boundary = pool->boundary;
204 
205 	do {
206 		unsigned int next = offset + pool->size;
207 		if (unlikely((next + pool->size) >= next_boundary)) {
208 			next = next_boundary;
209 			next_boundary += pool->boundary;
210 		}
211 		*(int *)(page->vaddr + offset) = next;
212 		offset = next;
213 	} while (offset < pool->allocation);
214 }
215 
216 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
217 {
218 	struct dma_page *page;
219 
220 	page = kmalloc(sizeof(*page), mem_flags);
221 	if (!page)
222 		return NULL;
223 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
224 					 &page->dma, mem_flags);
225 	if (page->vaddr) {
226 #ifdef	DMAPOOL_DEBUG
227 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
228 #endif
229 		pool_initialise_page(pool, page);
230 		list_add(&page->page_list, &pool->page_list);
231 		page->in_use = 0;
232 		page->offset = 0;
233 	} else {
234 		kfree(page);
235 		page = NULL;
236 	}
237 	return page;
238 }
239 
240 static inline int is_page_busy(struct dma_page *page)
241 {
242 	return page->in_use != 0;
243 }
244 
245 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
246 {
247 	dma_addr_t dma = page->dma;
248 
249 #ifdef	DMAPOOL_DEBUG
250 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
251 #endif
252 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
253 	list_del(&page->page_list);
254 	kfree(page);
255 }
256 
257 /**
258  * dma_pool_destroy - destroys a pool of dma memory blocks.
259  * @pool: dma pool that will be destroyed
260  * Context: !in_interrupt()
261  *
262  * Caller guarantees that no more memory from the pool is in use,
263  * and that nothing will try to use the pool after this call.
264  */
265 void dma_pool_destroy(struct dma_pool *pool)
266 {
267 	mutex_lock(&pools_lock);
268 	list_del(&pool->pools);
269 	if (pool->dev && list_empty(&pool->dev->dma_pools))
270 		device_remove_file(pool->dev, &dev_attr_pools);
271 	mutex_unlock(&pools_lock);
272 
273 	while (!list_empty(&pool->page_list)) {
274 		struct dma_page *page;
275 		page = list_entry(pool->page_list.next,
276 				  struct dma_page, page_list);
277 		if (is_page_busy(page)) {
278 			if (pool->dev)
279 				dev_err(pool->dev,
280 					"dma_pool_destroy %s, %p busy\n",
281 					pool->name, page->vaddr);
282 			else
283 				printk(KERN_ERR
284 				       "dma_pool_destroy %s, %p busy\n",
285 				       pool->name, page->vaddr);
286 			/* leak the still-in-use consistent memory */
287 			list_del(&page->page_list);
288 			kfree(page);
289 		} else
290 			pool_free_page(pool, page);
291 	}
292 
293 	kfree(pool);
294 }
295 EXPORT_SYMBOL(dma_pool_destroy);
296 
297 /**
298  * dma_pool_alloc - get a block of consistent memory
299  * @pool: dma pool that will produce the block
300  * @mem_flags: GFP_* bitmask
301  * @handle: pointer to dma address of block
302  *
303  * This returns the kernel virtual address of a currently unused block,
304  * and reports its dma address through the handle.
305  * If such a memory block can't be allocated, %NULL is returned.
306  */
307 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
308 		     dma_addr_t *handle)
309 {
310 	unsigned long flags;
311 	struct dma_page *page;
312 	size_t offset;
313 	void *retval;
314 
315 	might_sleep_if(mem_flags & __GFP_WAIT);
316 
317 	spin_lock_irqsave(&pool->lock, flags);
318  restart:
319 	list_for_each_entry(page, &pool->page_list, page_list) {
320 		if (page->offset < pool->allocation)
321 			goto ready;
322 	}
323 	page = pool_alloc_page(pool, GFP_ATOMIC);
324 	if (!page) {
325 		if (mem_flags & __GFP_WAIT) {
326 			DECLARE_WAITQUEUE(wait, current);
327 
328 			__set_current_state(TASK_UNINTERRUPTIBLE);
329 			__add_wait_queue(&pool->waitq, &wait);
330 			spin_unlock_irqrestore(&pool->lock, flags);
331 
332 			schedule_timeout(POOL_TIMEOUT_JIFFIES);
333 
334 			spin_lock_irqsave(&pool->lock, flags);
335 			__remove_wait_queue(&pool->waitq, &wait);
336 			goto restart;
337 		}
338 		retval = NULL;
339 		goto done;
340 	}
341 
342  ready:
343 	page->in_use++;
344 	offset = page->offset;
345 	page->offset = *(int *)(page->vaddr + offset);
346 	retval = offset + page->vaddr;
347 	*handle = offset + page->dma;
348 #ifdef	DMAPOOL_DEBUG
349 	memset(retval, POOL_POISON_ALLOCATED, pool->size);
350 #endif
351  done:
352 	spin_unlock_irqrestore(&pool->lock, flags);
353 	return retval;
354 }
355 EXPORT_SYMBOL(dma_pool_alloc);
356 
357 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
358 {
359 	struct dma_page *page;
360 
361 	list_for_each_entry(page, &pool->page_list, page_list) {
362 		if (dma < page->dma)
363 			continue;
364 		if (dma < (page->dma + pool->allocation))
365 			return page;
366 	}
367 	return NULL;
368 }
369 
370 /**
371  * dma_pool_free - put block back into dma pool
372  * @pool: the dma pool holding the block
373  * @vaddr: virtual address of block
374  * @dma: dma address of block
375  *
376  * Caller promises neither device nor driver will again touch this block
377  * unless it is first re-allocated.
378  */
379 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
380 {
381 	struct dma_page *page;
382 	unsigned long flags;
383 	unsigned int offset;
384 
385 	spin_lock_irqsave(&pool->lock, flags);
386 	page = pool_find_page(pool, dma);
387 	if (!page) {
388 		spin_unlock_irqrestore(&pool->lock, flags);
389 		if (pool->dev)
390 			dev_err(pool->dev,
391 				"dma_pool_free %s, %p/%lx (bad dma)\n",
392 				pool->name, vaddr, (unsigned long)dma);
393 		else
394 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
395 			       pool->name, vaddr, (unsigned long)dma);
396 		return;
397 	}
398 
399 	offset = vaddr - page->vaddr;
400 #ifdef	DMAPOOL_DEBUG
401 	if ((dma - page->dma) != offset) {
402 		spin_unlock_irqrestore(&pool->lock, flags);
403 		if (pool->dev)
404 			dev_err(pool->dev,
405 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
406 				pool->name, vaddr, (unsigned long long)dma);
407 		else
408 			printk(KERN_ERR
409 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
410 			       pool->name, vaddr, (unsigned long long)dma);
411 		return;
412 	}
413 	{
414 		unsigned int chain = page->offset;
415 		while (chain < pool->allocation) {
416 			if (chain != offset) {
417 				chain = *(int *)(page->vaddr + chain);
418 				continue;
419 			}
420 			spin_unlock_irqrestore(&pool->lock, flags);
421 			if (pool->dev)
422 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
423 					"already free\n", pool->name,
424 					(unsigned long long)dma);
425 			else
426 				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
427 					"already free\n", pool->name,
428 					(unsigned long long)dma);
429 			return;
430 		}
431 	}
432 	memset(vaddr, POOL_POISON_FREED, pool->size);
433 #endif
434 
435 	page->in_use--;
436 	*(int *)vaddr = page->offset;
437 	page->offset = offset;
438 	if (waitqueue_active(&pool->waitq))
439 		wake_up_locked(&pool->waitq);
440 	/*
441 	 * Resist a temptation to do
442 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
443 	 * Better have a few empty pages hang around.
444 	 */
445 	spin_unlock_irqrestore(&pool->lock, flags);
446 }
447 EXPORT_SYMBOL(dma_pool_free);
448 
449 /*
450  * Managed DMA pool
451  */
452 static void dmam_pool_release(struct device *dev, void *res)
453 {
454 	struct dma_pool *pool = *(struct dma_pool **)res;
455 
456 	dma_pool_destroy(pool);
457 }
458 
459 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
460 {
461 	return *(struct dma_pool **)res == match_data;
462 }
463 
464 /**
465  * dmam_pool_create - Managed dma_pool_create()
466  * @name: name of pool, for diagnostics
467  * @dev: device that will be doing the DMA
468  * @size: size of the blocks in this pool.
469  * @align: alignment requirement for blocks; must be a power of two
470  * @allocation: returned blocks won't cross this boundary (or zero)
471  *
472  * Managed dma_pool_create().  DMA pool created with this function is
473  * automatically destroyed on driver detach.
474  */
475 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
476 				  size_t size, size_t align, size_t allocation)
477 {
478 	struct dma_pool **ptr, *pool;
479 
480 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
481 	if (!ptr)
482 		return NULL;
483 
484 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
485 	if (pool)
486 		devres_add(dev, ptr);
487 	else
488 		devres_free(ptr);
489 
490 	return pool;
491 }
492 EXPORT_SYMBOL(dmam_pool_create);
493 
494 /**
495  * dmam_pool_destroy - Managed dma_pool_destroy()
496  * @pool: dma pool that will be destroyed
497  *
498  * Managed dma_pool_destroy().
499  */
500 void dmam_pool_destroy(struct dma_pool *pool)
501 {
502 	struct device *dev = pool->dev;
503 
504 	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
505 	dma_pool_destroy(pool);
506 }
507 EXPORT_SYMBOL(dmam_pool_destroy);
508