xref: /openbmc/linux/mm/dmapool.c (revision 41415b8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA Pool allocator
4  *
5  * Copyright 2001 David Brownell
6  * Copyright 2007 Intel Corporation
7  *   Author: Matthew Wilcox <willy@linux.intel.com>
8  *
9  * This allocator returns small blocks of a given size which are DMA-able by
10  * the given device.  It uses the dma_alloc_coherent page allocator to get
11  * new pages, then splits them up into blocks of the required size.
12  * Many older drivers still have their own code to do this.
13  *
14  * The current design of this allocator is fairly simple.  The pool is
15  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16  * allocated pages.  Each page in the page_list is split into blocks of at
17  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
18  * list of free blocks within the page.  Used blocks aren't tracked, but we
19  * keep a count of how many are currently allocated from each page.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/slab.h>
33 #include <linux/stat.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/wait.h>
38 
39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40 #define DMAPOOL_DEBUG 1
41 #endif
42 
43 struct dma_pool {		/* the pool */
44 	struct list_head page_list;
45 	spinlock_t lock;
46 	size_t size;
47 	struct device *dev;
48 	size_t allocation;
49 	size_t boundary;
50 	char name[32];
51 	struct list_head pools;
52 };
53 
54 struct dma_page {		/* cacheable header for 'allocation' bytes */
55 	struct list_head page_list;
56 	void *vaddr;
57 	dma_addr_t dma;
58 	unsigned int in_use;
59 	unsigned int offset;
60 };
61 
62 static DEFINE_MUTEX(pools_lock);
63 static DEFINE_MUTEX(pools_reg_lock);
64 
65 static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
66 {
67 	unsigned temp;
68 	unsigned size;
69 	char *next;
70 	struct dma_page *page;
71 	struct dma_pool *pool;
72 
73 	next = buf;
74 	size = PAGE_SIZE;
75 
76 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
77 	size -= temp;
78 	next += temp;
79 
80 	mutex_lock(&pools_lock);
81 	list_for_each_entry(pool, &dev->dma_pools, pools) {
82 		unsigned pages = 0;
83 		unsigned blocks = 0;
84 
85 		spin_lock_irq(&pool->lock);
86 		list_for_each_entry(page, &pool->page_list, page_list) {
87 			pages++;
88 			blocks += page->in_use;
89 		}
90 		spin_unlock_irq(&pool->lock);
91 
92 		/* per-pool info, no real statistics yet */
93 		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
94 				 pool->name, blocks,
95 				 pages * (pool->allocation / pool->size),
96 				 pool->size, pages);
97 		size -= temp;
98 		next += temp;
99 	}
100 	mutex_unlock(&pools_lock);
101 
102 	return PAGE_SIZE - size;
103 }
104 
105 static DEVICE_ATTR_RO(pools);
106 
107 /**
108  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109  * @name: name of pool, for diagnostics
110  * @dev: device that will be doing the DMA
111  * @size: size of the blocks in this pool.
112  * @align: alignment requirement for blocks; must be a power of two
113  * @boundary: returned blocks won't cross this power of two boundary
114  * Context: not in_interrupt()
115  *
116  * Given one of these pools, dma_pool_alloc()
117  * may be used to allocate memory.  Such memory will all have "consistent"
118  * DMA mappings, accessible by the device and its driver without using
119  * cache flushing primitives.  The actual size of blocks allocated may be
120  * larger than requested because of alignment.
121  *
122  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123  * cross that size boundary.  This is useful for devices which have
124  * addressing restrictions on individual DMA transfers, such as not crossing
125  * boundaries of 4KBytes.
126  *
127  * Return: a dma allocation pool with the requested characteristics, or
128  * %NULL if one can't be created.
129  */
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 				 size_t size, size_t align, size_t boundary)
132 {
133 	struct dma_pool *retval;
134 	size_t allocation;
135 	bool empty = false;
136 
137 	if (align == 0)
138 		align = 1;
139 	else if (align & (align - 1))
140 		return NULL;
141 
142 	if (size == 0)
143 		return NULL;
144 	else if (size < 4)
145 		size = 4;
146 
147 	size = ALIGN(size, align);
148 	allocation = max_t(size_t, size, PAGE_SIZE);
149 
150 	if (!boundary)
151 		boundary = allocation;
152 	else if ((boundary < size) || (boundary & (boundary - 1)))
153 		return NULL;
154 
155 	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
156 	if (!retval)
157 		return retval;
158 
159 	strscpy(retval->name, name, sizeof(retval->name));
160 
161 	retval->dev = dev;
162 
163 	INIT_LIST_HEAD(&retval->page_list);
164 	spin_lock_init(&retval->lock);
165 	retval->size = size;
166 	retval->boundary = boundary;
167 	retval->allocation = allocation;
168 
169 	INIT_LIST_HEAD(&retval->pools);
170 
171 	/*
172 	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173 	 * pools_reg_lock ensures that there is not a race between
174 	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175 	 * when the first invocation of dma_pool_create() failed on
176 	 * device_create_file() and the second assumes that it has been done (I
177 	 * know it is a short window).
178 	 */
179 	mutex_lock(&pools_reg_lock);
180 	mutex_lock(&pools_lock);
181 	if (list_empty(&dev->dma_pools))
182 		empty = true;
183 	list_add(&retval->pools, &dev->dma_pools);
184 	mutex_unlock(&pools_lock);
185 	if (empty) {
186 		int err;
187 
188 		err = device_create_file(dev, &dev_attr_pools);
189 		if (err) {
190 			mutex_lock(&pools_lock);
191 			list_del(&retval->pools);
192 			mutex_unlock(&pools_lock);
193 			mutex_unlock(&pools_reg_lock);
194 			kfree(retval);
195 			return NULL;
196 		}
197 	}
198 	mutex_unlock(&pools_reg_lock);
199 	return retval;
200 }
201 EXPORT_SYMBOL(dma_pool_create);
202 
203 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
204 {
205 	unsigned int offset = 0;
206 	unsigned int next_boundary = pool->boundary;
207 
208 	do {
209 		unsigned int next = offset + pool->size;
210 		if (unlikely((next + pool->size) >= next_boundary)) {
211 			next = next_boundary;
212 			next_boundary += pool->boundary;
213 		}
214 		*(int *)(page->vaddr + offset) = next;
215 		offset = next;
216 	} while (offset < pool->allocation);
217 }
218 
219 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
220 {
221 	struct dma_page *page;
222 
223 	page = kmalloc(sizeof(*page), mem_flags);
224 	if (!page)
225 		return NULL;
226 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
227 					 &page->dma, mem_flags);
228 	if (page->vaddr) {
229 #ifdef	DMAPOOL_DEBUG
230 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
231 #endif
232 		pool_initialise_page(pool, page);
233 		page->in_use = 0;
234 		page->offset = 0;
235 	} else {
236 		kfree(page);
237 		page = NULL;
238 	}
239 	return page;
240 }
241 
242 static inline bool is_page_busy(struct dma_page *page)
243 {
244 	return page->in_use != 0;
245 }
246 
247 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
248 {
249 	dma_addr_t dma = page->dma;
250 
251 #ifdef	DMAPOOL_DEBUG
252 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
253 #endif
254 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255 	list_del(&page->page_list);
256 	kfree(page);
257 }
258 
259 /**
260  * dma_pool_destroy - destroys a pool of dma memory blocks.
261  * @pool: dma pool that will be destroyed
262  * Context: !in_interrupt()
263  *
264  * Caller guarantees that no more memory from the pool is in use,
265  * and that nothing will try to use the pool after this call.
266  */
267 void dma_pool_destroy(struct dma_pool *pool)
268 {
269 	struct dma_page *page, *tmp;
270 	bool empty = false;
271 
272 	if (unlikely(!pool))
273 		return;
274 
275 	mutex_lock(&pools_reg_lock);
276 	mutex_lock(&pools_lock);
277 	list_del(&pool->pools);
278 	if (pool->dev && list_empty(&pool->dev->dma_pools))
279 		empty = true;
280 	mutex_unlock(&pools_lock);
281 	if (empty)
282 		device_remove_file(pool->dev, &dev_attr_pools);
283 	mutex_unlock(&pools_reg_lock);
284 
285 	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
286 		if (is_page_busy(page)) {
287 			if (pool->dev)
288 				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
289 					pool->name, page->vaddr);
290 			else
291 				pr_err("%s %s, %p busy\n", __func__,
292 				       pool->name, page->vaddr);
293 			/* leak the still-in-use consistent memory */
294 			list_del(&page->page_list);
295 			kfree(page);
296 		} else
297 			pool_free_page(pool, page);
298 	}
299 
300 	kfree(pool);
301 }
302 EXPORT_SYMBOL(dma_pool_destroy);
303 
304 /**
305  * dma_pool_alloc - get a block of consistent memory
306  * @pool: dma pool that will produce the block
307  * @mem_flags: GFP_* bitmask
308  * @handle: pointer to dma address of block
309  *
310  * Return: the kernel virtual address of a currently unused block,
311  * and reports its dma address through the handle.
312  * If such a memory block can't be allocated, %NULL is returned.
313  */
314 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
315 		     dma_addr_t *handle)
316 {
317 	unsigned long flags;
318 	struct dma_page *page;
319 	size_t offset;
320 	void *retval;
321 
322 	might_alloc(mem_flags);
323 
324 	spin_lock_irqsave(&pool->lock, flags);
325 	list_for_each_entry(page, &pool->page_list, page_list) {
326 		if (page->offset < pool->allocation)
327 			goto ready;
328 	}
329 
330 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
331 	spin_unlock_irqrestore(&pool->lock, flags);
332 
333 	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
334 	if (!page)
335 		return NULL;
336 
337 	spin_lock_irqsave(&pool->lock, flags);
338 
339 	list_add(&page->page_list, &pool->page_list);
340  ready:
341 	page->in_use++;
342 	offset = page->offset;
343 	page->offset = *(int *)(page->vaddr + offset);
344 	retval = offset + page->vaddr;
345 	*handle = offset + page->dma;
346 #ifdef	DMAPOOL_DEBUG
347 	{
348 		int i;
349 		u8 *data = retval;
350 		/* page->offset is stored in first 4 bytes */
351 		for (i = sizeof(page->offset); i < pool->size; i++) {
352 			if (data[i] == POOL_POISON_FREED)
353 				continue;
354 			if (pool->dev)
355 				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
356 					__func__, pool->name, retval);
357 			else
358 				pr_err("%s %s, %p (corrupted)\n",
359 					__func__, pool->name, retval);
360 
361 			/*
362 			 * Dump the first 4 bytes even if they are not
363 			 * POOL_POISON_FREED
364 			 */
365 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
366 					data, pool->size, 1);
367 			break;
368 		}
369 	}
370 	if (!(mem_flags & __GFP_ZERO))
371 		memset(retval, POOL_POISON_ALLOCATED, pool->size);
372 #endif
373 	spin_unlock_irqrestore(&pool->lock, flags);
374 
375 	if (want_init_on_alloc(mem_flags))
376 		memset(retval, 0, pool->size);
377 
378 	return retval;
379 }
380 EXPORT_SYMBOL(dma_pool_alloc);
381 
382 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
383 {
384 	struct dma_page *page;
385 
386 	list_for_each_entry(page, &pool->page_list, page_list) {
387 		if (dma < page->dma)
388 			continue;
389 		if ((dma - page->dma) < pool->allocation)
390 			return page;
391 	}
392 	return NULL;
393 }
394 
395 /**
396  * dma_pool_free - put block back into dma pool
397  * @pool: the dma pool holding the block
398  * @vaddr: virtual address of block
399  * @dma: dma address of block
400  *
401  * Caller promises neither device nor driver will again touch this block
402  * unless it is first re-allocated.
403  */
404 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
405 {
406 	struct dma_page *page;
407 	unsigned long flags;
408 	unsigned int offset;
409 
410 	spin_lock_irqsave(&pool->lock, flags);
411 	page = pool_find_page(pool, dma);
412 	if (!page) {
413 		spin_unlock_irqrestore(&pool->lock, flags);
414 		if (pool->dev)
415 			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
416 				__func__, pool->name, vaddr, &dma);
417 		else
418 			pr_err("%s %s, %p/%pad (bad dma)\n",
419 			       __func__, pool->name, vaddr, &dma);
420 		return;
421 	}
422 
423 	offset = vaddr - page->vaddr;
424 	if (want_init_on_free())
425 		memset(vaddr, 0, pool->size);
426 #ifdef	DMAPOOL_DEBUG
427 	if ((dma - page->dma) != offset) {
428 		spin_unlock_irqrestore(&pool->lock, flags);
429 		if (pool->dev)
430 			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
431 				__func__, pool->name, vaddr, &dma);
432 		else
433 			pr_err("%s %s, %p (bad vaddr)/%pad\n",
434 			       __func__, pool->name, vaddr, &dma);
435 		return;
436 	}
437 	{
438 		unsigned int chain = page->offset;
439 		while (chain < pool->allocation) {
440 			if (chain != offset) {
441 				chain = *(int *)(page->vaddr + chain);
442 				continue;
443 			}
444 			spin_unlock_irqrestore(&pool->lock, flags);
445 			if (pool->dev)
446 				dev_err(pool->dev, "%s %s, dma %pad already free\n",
447 					__func__, pool->name, &dma);
448 			else
449 				pr_err("%s %s, dma %pad already free\n",
450 				       __func__, pool->name, &dma);
451 			return;
452 		}
453 	}
454 	memset(vaddr, POOL_POISON_FREED, pool->size);
455 #endif
456 
457 	page->in_use--;
458 	*(int *)vaddr = page->offset;
459 	page->offset = offset;
460 	/*
461 	 * Resist a temptation to do
462 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
463 	 * Better have a few empty pages hang around.
464 	 */
465 	spin_unlock_irqrestore(&pool->lock, flags);
466 }
467 EXPORT_SYMBOL(dma_pool_free);
468 
469 /*
470  * Managed DMA pool
471  */
472 static void dmam_pool_release(struct device *dev, void *res)
473 {
474 	struct dma_pool *pool = *(struct dma_pool **)res;
475 
476 	dma_pool_destroy(pool);
477 }
478 
479 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
480 {
481 	return *(struct dma_pool **)res == match_data;
482 }
483 
484 /**
485  * dmam_pool_create - Managed dma_pool_create()
486  * @name: name of pool, for diagnostics
487  * @dev: device that will be doing the DMA
488  * @size: size of the blocks in this pool.
489  * @align: alignment requirement for blocks; must be a power of two
490  * @allocation: returned blocks won't cross this boundary (or zero)
491  *
492  * Managed dma_pool_create().  DMA pool created with this function is
493  * automatically destroyed on driver detach.
494  *
495  * Return: a managed dma allocation pool with the requested
496  * characteristics, or %NULL if one can't be created.
497  */
498 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499 				  size_t size, size_t align, size_t allocation)
500 {
501 	struct dma_pool **ptr, *pool;
502 
503 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504 	if (!ptr)
505 		return NULL;
506 
507 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508 	if (pool)
509 		devres_add(dev, ptr);
510 	else
511 		devres_free(ptr);
512 
513 	return pool;
514 }
515 EXPORT_SYMBOL(dmam_pool_create);
516 
517 /**
518  * dmam_pool_destroy - Managed dma_pool_destroy()
519  * @pool: dma pool that will be destroyed
520  *
521  * Managed dma_pool_destroy().
522  */
523 void dmam_pool_destroy(struct dma_pool *pool)
524 {
525 	struct device *dev = pool->dev;
526 
527 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
528 }
529 EXPORT_SYMBOL(dmam_pool_destroy);
530