xref: /openbmc/linux/mm/dmapool.c (revision 367b8112)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
39 
40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41 #define DMAPOOL_DEBUG 1
42 #endif
43 
44 struct dma_pool {		/* the pool */
45 	struct list_head page_list;
46 	spinlock_t lock;
47 	size_t size;
48 	struct device *dev;
49 	size_t allocation;
50 	size_t boundary;
51 	char name[32];
52 	wait_queue_head_t waitq;
53 	struct list_head pools;
54 };
55 
56 struct dma_page {		/* cacheable header for 'allocation' bytes */
57 	struct list_head page_list;
58 	void *vaddr;
59 	dma_addr_t dma;
60 	unsigned int in_use;
61 	unsigned int offset;
62 };
63 
64 #define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
65 
66 static DEFINE_MUTEX(pools_lock);
67 
68 static ssize_t
69 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
70 {
71 	unsigned temp;
72 	unsigned size;
73 	char *next;
74 	struct dma_page *page;
75 	struct dma_pool *pool;
76 
77 	next = buf;
78 	size = PAGE_SIZE;
79 
80 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
81 	size -= temp;
82 	next += temp;
83 
84 	mutex_lock(&pools_lock);
85 	list_for_each_entry(pool, &dev->dma_pools, pools) {
86 		unsigned pages = 0;
87 		unsigned blocks = 0;
88 
89 		list_for_each_entry(page, &pool->page_list, page_list) {
90 			pages++;
91 			blocks += page->in_use;
92 		}
93 
94 		/* per-pool info, no real statistics yet */
95 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
96 				 pool->name, blocks,
97 				 pages * (pool->allocation / pool->size),
98 				 pool->size, pages);
99 		size -= temp;
100 		next += temp;
101 	}
102 	mutex_unlock(&pools_lock);
103 
104 	return PAGE_SIZE - size;
105 }
106 
107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
108 
109 /**
110  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111  * @name: name of pool, for diagnostics
112  * @dev: device that will be doing the DMA
113  * @size: size of the blocks in this pool.
114  * @align: alignment requirement for blocks; must be a power of two
115  * @boundary: returned blocks won't cross this power of two boundary
116  * Context: !in_interrupt()
117  *
118  * Returns a dma allocation pool with the requested characteristics, or
119  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
120  * may be used to allocate memory.  Such memory will all have "consistent"
121  * DMA mappings, accessible by the device and its driver without using
122  * cache flushing primitives.  The actual size of blocks allocated may be
123  * larger than requested because of alignment.
124  *
125  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126  * cross that size boundary.  This is useful for devices which have
127  * addressing restrictions on individual DMA transfers, such as not crossing
128  * boundaries of 4KBytes.
129  */
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 				 size_t size, size_t align, size_t boundary)
132 {
133 	struct dma_pool *retval;
134 	size_t allocation;
135 
136 	if (align == 0) {
137 		align = 1;
138 	} else if (align & (align - 1)) {
139 		return NULL;
140 	}
141 
142 	if (size == 0) {
143 		return NULL;
144 	} else if (size < 4) {
145 		size = 4;
146 	}
147 
148 	if ((size % align) != 0)
149 		size = ALIGN(size, align);
150 
151 	allocation = max_t(size_t, size, PAGE_SIZE);
152 
153 	if (!boundary) {
154 		boundary = allocation;
155 	} else if ((boundary < size) || (boundary & (boundary - 1))) {
156 		return NULL;
157 	}
158 
159 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
160 	if (!retval)
161 		return retval;
162 
163 	strlcpy(retval->name, name, sizeof(retval->name));
164 
165 	retval->dev = dev;
166 
167 	INIT_LIST_HEAD(&retval->page_list);
168 	spin_lock_init(&retval->lock);
169 	retval->size = size;
170 	retval->boundary = boundary;
171 	retval->allocation = allocation;
172 	init_waitqueue_head(&retval->waitq);
173 
174 	if (dev) {
175 		int ret;
176 
177 		mutex_lock(&pools_lock);
178 		if (list_empty(&dev->dma_pools))
179 			ret = device_create_file(dev, &dev_attr_pools);
180 		else
181 			ret = 0;
182 		/* note:  not currently insisting "name" be unique */
183 		if (!ret)
184 			list_add(&retval->pools, &dev->dma_pools);
185 		else {
186 			kfree(retval);
187 			retval = NULL;
188 		}
189 		mutex_unlock(&pools_lock);
190 	} else
191 		INIT_LIST_HEAD(&retval->pools);
192 
193 	return retval;
194 }
195 EXPORT_SYMBOL(dma_pool_create);
196 
197 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
198 {
199 	unsigned int offset = 0;
200 	unsigned int next_boundary = pool->boundary;
201 
202 	do {
203 		unsigned int next = offset + pool->size;
204 		if (unlikely((next + pool->size) >= next_boundary)) {
205 			next = next_boundary;
206 			next_boundary += pool->boundary;
207 		}
208 		*(int *)(page->vaddr + offset) = next;
209 		offset = next;
210 	} while (offset < pool->allocation);
211 }
212 
213 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
214 {
215 	struct dma_page *page;
216 
217 	page = kmalloc(sizeof(*page), mem_flags);
218 	if (!page)
219 		return NULL;
220 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
221 					 &page->dma, mem_flags);
222 	if (page->vaddr) {
223 #ifdef	DMAPOOL_DEBUG
224 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
225 #endif
226 		pool_initialise_page(pool, page);
227 		list_add(&page->page_list, &pool->page_list);
228 		page->in_use = 0;
229 		page->offset = 0;
230 	} else {
231 		kfree(page);
232 		page = NULL;
233 	}
234 	return page;
235 }
236 
237 static inline int is_page_busy(struct dma_page *page)
238 {
239 	return page->in_use != 0;
240 }
241 
242 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
243 {
244 	dma_addr_t dma = page->dma;
245 
246 #ifdef	DMAPOOL_DEBUG
247 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
248 #endif
249 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
250 	list_del(&page->page_list);
251 	kfree(page);
252 }
253 
254 /**
255  * dma_pool_destroy - destroys a pool of dma memory blocks.
256  * @pool: dma pool that will be destroyed
257  * Context: !in_interrupt()
258  *
259  * Caller guarantees that no more memory from the pool is in use,
260  * and that nothing will try to use the pool after this call.
261  */
262 void dma_pool_destroy(struct dma_pool *pool)
263 {
264 	mutex_lock(&pools_lock);
265 	list_del(&pool->pools);
266 	if (pool->dev && list_empty(&pool->dev->dma_pools))
267 		device_remove_file(pool->dev, &dev_attr_pools);
268 	mutex_unlock(&pools_lock);
269 
270 	while (!list_empty(&pool->page_list)) {
271 		struct dma_page *page;
272 		page = list_entry(pool->page_list.next,
273 				  struct dma_page, page_list);
274 		if (is_page_busy(page)) {
275 			if (pool->dev)
276 				dev_err(pool->dev,
277 					"dma_pool_destroy %s, %p busy\n",
278 					pool->name, page->vaddr);
279 			else
280 				printk(KERN_ERR
281 				       "dma_pool_destroy %s, %p busy\n",
282 				       pool->name, page->vaddr);
283 			/* leak the still-in-use consistent memory */
284 			list_del(&page->page_list);
285 			kfree(page);
286 		} else
287 			pool_free_page(pool, page);
288 	}
289 
290 	kfree(pool);
291 }
292 EXPORT_SYMBOL(dma_pool_destroy);
293 
294 /**
295  * dma_pool_alloc - get a block of consistent memory
296  * @pool: dma pool that will produce the block
297  * @mem_flags: GFP_* bitmask
298  * @handle: pointer to dma address of block
299  *
300  * This returns the kernel virtual address of a currently unused block,
301  * and reports its dma address through the handle.
302  * If such a memory block can't be allocated, %NULL is returned.
303  */
304 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
305 		     dma_addr_t *handle)
306 {
307 	unsigned long flags;
308 	struct dma_page *page;
309 	size_t offset;
310 	void *retval;
311 
312 	spin_lock_irqsave(&pool->lock, flags);
313  restart:
314 	list_for_each_entry(page, &pool->page_list, page_list) {
315 		if (page->offset < pool->allocation)
316 			goto ready;
317 	}
318 	page = pool_alloc_page(pool, GFP_ATOMIC);
319 	if (!page) {
320 		if (mem_flags & __GFP_WAIT) {
321 			DECLARE_WAITQUEUE(wait, current);
322 
323 			__set_current_state(TASK_INTERRUPTIBLE);
324 			__add_wait_queue(&pool->waitq, &wait);
325 			spin_unlock_irqrestore(&pool->lock, flags);
326 
327 			schedule_timeout(POOL_TIMEOUT_JIFFIES);
328 
329 			spin_lock_irqsave(&pool->lock, flags);
330 			__remove_wait_queue(&pool->waitq, &wait);
331 			goto restart;
332 		}
333 		retval = NULL;
334 		goto done;
335 	}
336 
337  ready:
338 	page->in_use++;
339 	offset = page->offset;
340 	page->offset = *(int *)(page->vaddr + offset);
341 	retval = offset + page->vaddr;
342 	*handle = offset + page->dma;
343 #ifdef	DMAPOOL_DEBUG
344 	memset(retval, POOL_POISON_ALLOCATED, pool->size);
345 #endif
346  done:
347 	spin_unlock_irqrestore(&pool->lock, flags);
348 	return retval;
349 }
350 EXPORT_SYMBOL(dma_pool_alloc);
351 
352 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
353 {
354 	unsigned long flags;
355 	struct dma_page *page;
356 
357 	spin_lock_irqsave(&pool->lock, flags);
358 	list_for_each_entry(page, &pool->page_list, page_list) {
359 		if (dma < page->dma)
360 			continue;
361 		if (dma < (page->dma + pool->allocation))
362 			goto done;
363 	}
364 	page = NULL;
365  done:
366 	spin_unlock_irqrestore(&pool->lock, flags);
367 	return page;
368 }
369 
370 /**
371  * dma_pool_free - put block back into dma pool
372  * @pool: the dma pool holding the block
373  * @vaddr: virtual address of block
374  * @dma: dma address of block
375  *
376  * Caller promises neither device nor driver will again touch this block
377  * unless it is first re-allocated.
378  */
379 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
380 {
381 	struct dma_page *page;
382 	unsigned long flags;
383 	unsigned int offset;
384 
385 	page = pool_find_page(pool, dma);
386 	if (!page) {
387 		if (pool->dev)
388 			dev_err(pool->dev,
389 				"dma_pool_free %s, %p/%lx (bad dma)\n",
390 				pool->name, vaddr, (unsigned long)dma);
391 		else
392 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
393 			       pool->name, vaddr, (unsigned long)dma);
394 		return;
395 	}
396 
397 	offset = vaddr - page->vaddr;
398 #ifdef	DMAPOOL_DEBUG
399 	if ((dma - page->dma) != offset) {
400 		if (pool->dev)
401 			dev_err(pool->dev,
402 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
403 				pool->name, vaddr, (unsigned long long)dma);
404 		else
405 			printk(KERN_ERR
406 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
407 			       pool->name, vaddr, (unsigned long long)dma);
408 		return;
409 	}
410 	{
411 		unsigned int chain = page->offset;
412 		while (chain < pool->allocation) {
413 			if (chain != offset) {
414 				chain = *(int *)(page->vaddr + chain);
415 				continue;
416 			}
417 			if (pool->dev)
418 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
419 					"already free\n", pool->name,
420 					(unsigned long long)dma);
421 			else
422 				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
423 					"already free\n", pool->name,
424 					(unsigned long long)dma);
425 			return;
426 		}
427 	}
428 	memset(vaddr, POOL_POISON_FREED, pool->size);
429 #endif
430 
431 	spin_lock_irqsave(&pool->lock, flags);
432 	page->in_use--;
433 	*(int *)vaddr = page->offset;
434 	page->offset = offset;
435 	if (waitqueue_active(&pool->waitq))
436 		wake_up_locked(&pool->waitq);
437 	/*
438 	 * Resist a temptation to do
439 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
440 	 * Better have a few empty pages hang around.
441 	 */
442 	spin_unlock_irqrestore(&pool->lock, flags);
443 }
444 EXPORT_SYMBOL(dma_pool_free);
445 
446 /*
447  * Managed DMA pool
448  */
449 static void dmam_pool_release(struct device *dev, void *res)
450 {
451 	struct dma_pool *pool = *(struct dma_pool **)res;
452 
453 	dma_pool_destroy(pool);
454 }
455 
456 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
457 {
458 	return *(struct dma_pool **)res == match_data;
459 }
460 
461 /**
462  * dmam_pool_create - Managed dma_pool_create()
463  * @name: name of pool, for diagnostics
464  * @dev: device that will be doing the DMA
465  * @size: size of the blocks in this pool.
466  * @align: alignment requirement for blocks; must be a power of two
467  * @allocation: returned blocks won't cross this boundary (or zero)
468  *
469  * Managed dma_pool_create().  DMA pool created with this function is
470  * automatically destroyed on driver detach.
471  */
472 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
473 				  size_t size, size_t align, size_t allocation)
474 {
475 	struct dma_pool **ptr, *pool;
476 
477 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
478 	if (!ptr)
479 		return NULL;
480 
481 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
482 	if (pool)
483 		devres_add(dev, ptr);
484 	else
485 		devres_free(ptr);
486 
487 	return pool;
488 }
489 EXPORT_SYMBOL(dmam_pool_create);
490 
491 /**
492  * dmam_pool_destroy - Managed dma_pool_destroy()
493  * @pool: dma pool that will be destroyed
494  *
495  * Managed dma_pool_destroy().
496  */
497 void dmam_pool_destroy(struct dma_pool *pool)
498 {
499 	struct device *dev = pool->dev;
500 
501 	dma_pool_destroy(pool);
502 	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
503 }
504 EXPORT_SYMBOL(dmam_pool_destroy);
505