1 /* 2 * DMA Pool allocator 3 * 4 * Copyright 2001 David Brownell 5 * Copyright 2007 Intel Corporation 6 * Author: Matthew Wilcox <willy@linux.intel.com> 7 * 8 * This software may be redistributed and/or modified under the terms of 9 * the GNU General Public License ("GPL") version 2 as published by the 10 * Free Software Foundation. 11 * 12 * This allocator returns small blocks of a given size which are DMA-able by 13 * the given device. It uses the dma_alloc_coherent page allocator to get 14 * new pages, then splits them up into blocks of the required size. 15 * Many older drivers still have their own code to do this. 16 * 17 * The current design of this allocator is fairly simple. The pool is 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 19 * allocated pages. Each page in the page_list is split into blocks of at 20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 21 * list of free blocks within the page. Used blocks aren't tracked, but we 22 * keep a count of how many are currently allocated from each page. 23 */ 24 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmapool.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/poison.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/string.h> 37 #include <linux/types.h> 38 #include <linux/wait.h> 39 40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 41 #define DMAPOOL_DEBUG 1 42 #endif 43 44 struct dma_pool { /* the pool */ 45 struct list_head page_list; 46 spinlock_t lock; 47 size_t size; 48 struct device *dev; 49 size_t allocation; 50 size_t boundary; 51 char name[32]; 52 wait_queue_head_t waitq; 53 struct list_head pools; 54 }; 55 56 struct dma_page { /* cacheable header for 'allocation' bytes */ 57 struct list_head page_list; 58 void *vaddr; 59 dma_addr_t dma; 60 unsigned int in_use; 61 unsigned int offset; 62 }; 63 64 #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000) 65 66 static DEFINE_MUTEX(pools_lock); 67 68 static ssize_t 69 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 70 { 71 unsigned temp; 72 unsigned size; 73 char *next; 74 struct dma_page *page; 75 struct dma_pool *pool; 76 77 next = buf; 78 size = PAGE_SIZE; 79 80 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 81 size -= temp; 82 next += temp; 83 84 mutex_lock(&pools_lock); 85 list_for_each_entry(pool, &dev->dma_pools, pools) { 86 unsigned pages = 0; 87 unsigned blocks = 0; 88 89 list_for_each_entry(page, &pool->page_list, page_list) { 90 pages++; 91 blocks += page->in_use; 92 } 93 94 /* per-pool info, no real statistics yet */ 95 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", 96 pool->name, blocks, 97 pages * (pool->allocation / pool->size), 98 pool->size, pages); 99 size -= temp; 100 next += temp; 101 } 102 mutex_unlock(&pools_lock); 103 104 return PAGE_SIZE - size; 105 } 106 107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); 108 109 /** 110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 111 * @name: name of pool, for diagnostics 112 * @dev: device that will be doing the DMA 113 * @size: size of the blocks in this pool. 114 * @align: alignment requirement for blocks; must be a power of two 115 * @boundary: returned blocks won't cross this power of two boundary 116 * Context: !in_interrupt() 117 * 118 * Returns a dma allocation pool with the requested characteristics, or 119 * null if one can't be created. Given one of these pools, dma_pool_alloc() 120 * may be used to allocate memory. Such memory will all have "consistent" 121 * DMA mappings, accessible by the device and its driver without using 122 * cache flushing primitives. The actual size of blocks allocated may be 123 * larger than requested because of alignment. 124 * 125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 126 * cross that size boundary. This is useful for devices which have 127 * addressing restrictions on individual DMA transfers, such as not crossing 128 * boundaries of 4KBytes. 129 */ 130 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 131 size_t size, size_t align, size_t boundary) 132 { 133 struct dma_pool *retval; 134 size_t allocation; 135 136 if (align == 0) { 137 align = 1; 138 } else if (align & (align - 1)) { 139 return NULL; 140 } 141 142 if (size == 0) { 143 return NULL; 144 } else if (size < 4) { 145 size = 4; 146 } 147 148 if ((size % align) != 0) 149 size = ALIGN(size, align); 150 151 allocation = max_t(size_t, size, PAGE_SIZE); 152 153 if (!boundary) { 154 boundary = allocation; 155 } else if ((boundary < size) || (boundary & (boundary - 1))) { 156 return NULL; 157 } 158 159 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 160 if (!retval) 161 return retval; 162 163 strlcpy(retval->name, name, sizeof(retval->name)); 164 165 retval->dev = dev; 166 167 INIT_LIST_HEAD(&retval->page_list); 168 spin_lock_init(&retval->lock); 169 retval->size = size; 170 retval->boundary = boundary; 171 retval->allocation = allocation; 172 init_waitqueue_head(&retval->waitq); 173 174 if (dev) { 175 int ret; 176 177 mutex_lock(&pools_lock); 178 if (list_empty(&dev->dma_pools)) 179 ret = device_create_file(dev, &dev_attr_pools); 180 else 181 ret = 0; 182 /* note: not currently insisting "name" be unique */ 183 if (!ret) 184 list_add(&retval->pools, &dev->dma_pools); 185 else { 186 kfree(retval); 187 retval = NULL; 188 } 189 mutex_unlock(&pools_lock); 190 } else 191 INIT_LIST_HEAD(&retval->pools); 192 193 return retval; 194 } 195 EXPORT_SYMBOL(dma_pool_create); 196 197 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 198 { 199 unsigned int offset = 0; 200 unsigned int next_boundary = pool->boundary; 201 202 do { 203 unsigned int next = offset + pool->size; 204 if (unlikely((next + pool->size) >= next_boundary)) { 205 next = next_boundary; 206 next_boundary += pool->boundary; 207 } 208 *(int *)(page->vaddr + offset) = next; 209 offset = next; 210 } while (offset < pool->allocation); 211 } 212 213 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 214 { 215 struct dma_page *page; 216 217 page = kmalloc(sizeof(*page), mem_flags); 218 if (!page) 219 return NULL; 220 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 221 &page->dma, mem_flags); 222 if (page->vaddr) { 223 #ifdef DMAPOOL_DEBUG 224 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 225 #endif 226 pool_initialise_page(pool, page); 227 list_add(&page->page_list, &pool->page_list); 228 page->in_use = 0; 229 page->offset = 0; 230 } else { 231 kfree(page); 232 page = NULL; 233 } 234 return page; 235 } 236 237 static inline int is_page_busy(struct dma_page *page) 238 { 239 return page->in_use != 0; 240 } 241 242 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 243 { 244 dma_addr_t dma = page->dma; 245 246 #ifdef DMAPOOL_DEBUG 247 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 248 #endif 249 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 250 list_del(&page->page_list); 251 kfree(page); 252 } 253 254 /** 255 * dma_pool_destroy - destroys a pool of dma memory blocks. 256 * @pool: dma pool that will be destroyed 257 * Context: !in_interrupt() 258 * 259 * Caller guarantees that no more memory from the pool is in use, 260 * and that nothing will try to use the pool after this call. 261 */ 262 void dma_pool_destroy(struct dma_pool *pool) 263 { 264 mutex_lock(&pools_lock); 265 list_del(&pool->pools); 266 if (pool->dev && list_empty(&pool->dev->dma_pools)) 267 device_remove_file(pool->dev, &dev_attr_pools); 268 mutex_unlock(&pools_lock); 269 270 while (!list_empty(&pool->page_list)) { 271 struct dma_page *page; 272 page = list_entry(pool->page_list.next, 273 struct dma_page, page_list); 274 if (is_page_busy(page)) { 275 if (pool->dev) 276 dev_err(pool->dev, 277 "dma_pool_destroy %s, %p busy\n", 278 pool->name, page->vaddr); 279 else 280 printk(KERN_ERR 281 "dma_pool_destroy %s, %p busy\n", 282 pool->name, page->vaddr); 283 /* leak the still-in-use consistent memory */ 284 list_del(&page->page_list); 285 kfree(page); 286 } else 287 pool_free_page(pool, page); 288 } 289 290 kfree(pool); 291 } 292 EXPORT_SYMBOL(dma_pool_destroy); 293 294 /** 295 * dma_pool_alloc - get a block of consistent memory 296 * @pool: dma pool that will produce the block 297 * @mem_flags: GFP_* bitmask 298 * @handle: pointer to dma address of block 299 * 300 * This returns the kernel virtual address of a currently unused block, 301 * and reports its dma address through the handle. 302 * If such a memory block can't be allocated, %NULL is returned. 303 */ 304 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 305 dma_addr_t *handle) 306 { 307 unsigned long flags; 308 struct dma_page *page; 309 size_t offset; 310 void *retval; 311 312 spin_lock_irqsave(&pool->lock, flags); 313 restart: 314 list_for_each_entry(page, &pool->page_list, page_list) { 315 if (page->offset < pool->allocation) 316 goto ready; 317 } 318 page = pool_alloc_page(pool, GFP_ATOMIC); 319 if (!page) { 320 if (mem_flags & __GFP_WAIT) { 321 DECLARE_WAITQUEUE(wait, current); 322 323 __set_current_state(TASK_INTERRUPTIBLE); 324 __add_wait_queue(&pool->waitq, &wait); 325 spin_unlock_irqrestore(&pool->lock, flags); 326 327 schedule_timeout(POOL_TIMEOUT_JIFFIES); 328 329 spin_lock_irqsave(&pool->lock, flags); 330 __remove_wait_queue(&pool->waitq, &wait); 331 goto restart; 332 } 333 retval = NULL; 334 goto done; 335 } 336 337 ready: 338 page->in_use++; 339 offset = page->offset; 340 page->offset = *(int *)(page->vaddr + offset); 341 retval = offset + page->vaddr; 342 *handle = offset + page->dma; 343 #ifdef DMAPOOL_DEBUG 344 memset(retval, POOL_POISON_ALLOCATED, pool->size); 345 #endif 346 done: 347 spin_unlock_irqrestore(&pool->lock, flags); 348 return retval; 349 } 350 EXPORT_SYMBOL(dma_pool_alloc); 351 352 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 353 { 354 unsigned long flags; 355 struct dma_page *page; 356 357 spin_lock_irqsave(&pool->lock, flags); 358 list_for_each_entry(page, &pool->page_list, page_list) { 359 if (dma < page->dma) 360 continue; 361 if (dma < (page->dma + pool->allocation)) 362 goto done; 363 } 364 page = NULL; 365 done: 366 spin_unlock_irqrestore(&pool->lock, flags); 367 return page; 368 } 369 370 /** 371 * dma_pool_free - put block back into dma pool 372 * @pool: the dma pool holding the block 373 * @vaddr: virtual address of block 374 * @dma: dma address of block 375 * 376 * Caller promises neither device nor driver will again touch this block 377 * unless it is first re-allocated. 378 */ 379 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 380 { 381 struct dma_page *page; 382 unsigned long flags; 383 unsigned int offset; 384 385 page = pool_find_page(pool, dma); 386 if (!page) { 387 if (pool->dev) 388 dev_err(pool->dev, 389 "dma_pool_free %s, %p/%lx (bad dma)\n", 390 pool->name, vaddr, (unsigned long)dma); 391 else 392 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", 393 pool->name, vaddr, (unsigned long)dma); 394 return; 395 } 396 397 offset = vaddr - page->vaddr; 398 #ifdef DMAPOOL_DEBUG 399 if ((dma - page->dma) != offset) { 400 if (pool->dev) 401 dev_err(pool->dev, 402 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 403 pool->name, vaddr, (unsigned long long)dma); 404 else 405 printk(KERN_ERR 406 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 407 pool->name, vaddr, (unsigned long long)dma); 408 return; 409 } 410 { 411 unsigned int chain = page->offset; 412 while (chain < pool->allocation) { 413 if (chain != offset) { 414 chain = *(int *)(page->vaddr + chain); 415 continue; 416 } 417 if (pool->dev) 418 dev_err(pool->dev, "dma_pool_free %s, dma %Lx " 419 "already free\n", pool->name, 420 (unsigned long long)dma); 421 else 422 printk(KERN_ERR "dma_pool_free %s, dma %Lx " 423 "already free\n", pool->name, 424 (unsigned long long)dma); 425 return; 426 } 427 } 428 memset(vaddr, POOL_POISON_FREED, pool->size); 429 #endif 430 431 spin_lock_irqsave(&pool->lock, flags); 432 page->in_use--; 433 *(int *)vaddr = page->offset; 434 page->offset = offset; 435 if (waitqueue_active(&pool->waitq)) 436 wake_up_locked(&pool->waitq); 437 /* 438 * Resist a temptation to do 439 * if (!is_page_busy(page)) pool_free_page(pool, page); 440 * Better have a few empty pages hang around. 441 */ 442 spin_unlock_irqrestore(&pool->lock, flags); 443 } 444 EXPORT_SYMBOL(dma_pool_free); 445 446 /* 447 * Managed DMA pool 448 */ 449 static void dmam_pool_release(struct device *dev, void *res) 450 { 451 struct dma_pool *pool = *(struct dma_pool **)res; 452 453 dma_pool_destroy(pool); 454 } 455 456 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 457 { 458 return *(struct dma_pool **)res == match_data; 459 } 460 461 /** 462 * dmam_pool_create - Managed dma_pool_create() 463 * @name: name of pool, for diagnostics 464 * @dev: device that will be doing the DMA 465 * @size: size of the blocks in this pool. 466 * @align: alignment requirement for blocks; must be a power of two 467 * @allocation: returned blocks won't cross this boundary (or zero) 468 * 469 * Managed dma_pool_create(). DMA pool created with this function is 470 * automatically destroyed on driver detach. 471 */ 472 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 473 size_t size, size_t align, size_t allocation) 474 { 475 struct dma_pool **ptr, *pool; 476 477 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 478 if (!ptr) 479 return NULL; 480 481 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 482 if (pool) 483 devres_add(dev, ptr); 484 else 485 devres_free(ptr); 486 487 return pool; 488 } 489 EXPORT_SYMBOL(dmam_pool_create); 490 491 /** 492 * dmam_pool_destroy - Managed dma_pool_destroy() 493 * @pool: dma pool that will be destroyed 494 * 495 * Managed dma_pool_destroy(). 496 */ 497 void dmam_pool_destroy(struct dma_pool *pool) 498 { 499 struct device *dev = pool->dev; 500 501 dma_pool_destroy(pool); 502 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool)); 503 } 504 EXPORT_SYMBOL(dmam_pool_destroy); 505