1 /* 2 * DMA Pool allocator 3 * 4 * Copyright 2001 David Brownell 5 * Copyright 2007 Intel Corporation 6 * Author: Matthew Wilcox <willy@linux.intel.com> 7 * 8 * This software may be redistributed and/or modified under the terms of 9 * the GNU General Public License ("GPL") version 2 as published by the 10 * Free Software Foundation. 11 * 12 * This allocator returns small blocks of a given size which are DMA-able by 13 * the given device. It uses the dma_alloc_coherent page allocator to get 14 * new pages, then splits them up into blocks of the required size. 15 * Many older drivers still have their own code to do this. 16 * 17 * The current design of this allocator is fairly simple. The pool is 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 19 * allocated pages. Each page in the page_list is split into blocks of at 20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 21 * list of free blocks within the page. Used blocks aren't tracked, but we 22 * keep a count of how many are currently allocated from each page. 23 */ 24 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmapool.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/export.h> 31 #include <linux/mutex.h> 32 #include <linux/poison.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/stat.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/types.h> 39 #include <linux/wait.h> 40 41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 42 #define DMAPOOL_DEBUG 1 43 #endif 44 45 struct dma_pool { /* the pool */ 46 struct list_head page_list; 47 spinlock_t lock; 48 size_t size; 49 struct device *dev; 50 size_t allocation; 51 size_t boundary; 52 char name[32]; 53 struct list_head pools; 54 }; 55 56 struct dma_page { /* cacheable header for 'allocation' bytes */ 57 struct list_head page_list; 58 void *vaddr; 59 dma_addr_t dma; 60 unsigned int in_use; 61 unsigned int offset; 62 }; 63 64 static DEFINE_MUTEX(pools_lock); 65 static DEFINE_MUTEX(pools_reg_lock); 66 67 static ssize_t 68 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 69 { 70 unsigned temp; 71 unsigned size; 72 char *next; 73 struct dma_page *page; 74 struct dma_pool *pool; 75 76 next = buf; 77 size = PAGE_SIZE; 78 79 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 80 size -= temp; 81 next += temp; 82 83 mutex_lock(&pools_lock); 84 list_for_each_entry(pool, &dev->dma_pools, pools) { 85 unsigned pages = 0; 86 unsigned blocks = 0; 87 88 spin_lock_irq(&pool->lock); 89 list_for_each_entry(page, &pool->page_list, page_list) { 90 pages++; 91 blocks += page->in_use; 92 } 93 spin_unlock_irq(&pool->lock); 94 95 /* per-pool info, no real statistics yet */ 96 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", 97 pool->name, blocks, 98 pages * (pool->allocation / pool->size), 99 pool->size, pages); 100 size -= temp; 101 next += temp; 102 } 103 mutex_unlock(&pools_lock); 104 105 return PAGE_SIZE - size; 106 } 107 108 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); 109 110 /** 111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 112 * @name: name of pool, for diagnostics 113 * @dev: device that will be doing the DMA 114 * @size: size of the blocks in this pool. 115 * @align: alignment requirement for blocks; must be a power of two 116 * @boundary: returned blocks won't cross this power of two boundary 117 * Context: !in_interrupt() 118 * 119 * Returns a dma allocation pool with the requested characteristics, or 120 * null if one can't be created. Given one of these pools, dma_pool_alloc() 121 * may be used to allocate memory. Such memory will all have "consistent" 122 * DMA mappings, accessible by the device and its driver without using 123 * cache flushing primitives. The actual size of blocks allocated may be 124 * larger than requested because of alignment. 125 * 126 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 127 * cross that size boundary. This is useful for devices which have 128 * addressing restrictions on individual DMA transfers, such as not crossing 129 * boundaries of 4KBytes. 130 */ 131 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 132 size_t size, size_t align, size_t boundary) 133 { 134 struct dma_pool *retval; 135 size_t allocation; 136 bool empty = false; 137 138 if (align == 0) 139 align = 1; 140 else if (align & (align - 1)) 141 return NULL; 142 143 if (size == 0) 144 return NULL; 145 else if (size < 4) 146 size = 4; 147 148 if ((size % align) != 0) 149 size = ALIGN(size, align); 150 151 allocation = max_t(size_t, size, PAGE_SIZE); 152 153 if (!boundary) 154 boundary = allocation; 155 else if ((boundary < size) || (boundary & (boundary - 1))) 156 return NULL; 157 158 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 159 if (!retval) 160 return retval; 161 162 strlcpy(retval->name, name, sizeof(retval->name)); 163 164 retval->dev = dev; 165 166 INIT_LIST_HEAD(&retval->page_list); 167 spin_lock_init(&retval->lock); 168 retval->size = size; 169 retval->boundary = boundary; 170 retval->allocation = allocation; 171 172 INIT_LIST_HEAD(&retval->pools); 173 174 /* 175 * pools_lock ensures that the ->dma_pools list does not get corrupted. 176 * pools_reg_lock ensures that there is not a race between 177 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 178 * when the first invocation of dma_pool_create() failed on 179 * device_create_file() and the second assumes that it has been done (I 180 * know it is a short window). 181 */ 182 mutex_lock(&pools_reg_lock); 183 mutex_lock(&pools_lock); 184 if (list_empty(&dev->dma_pools)) 185 empty = true; 186 list_add(&retval->pools, &dev->dma_pools); 187 mutex_unlock(&pools_lock); 188 if (empty) { 189 int err; 190 191 err = device_create_file(dev, &dev_attr_pools); 192 if (err) { 193 mutex_lock(&pools_lock); 194 list_del(&retval->pools); 195 mutex_unlock(&pools_lock); 196 mutex_unlock(&pools_reg_lock); 197 kfree(retval); 198 return NULL; 199 } 200 } 201 mutex_unlock(&pools_reg_lock); 202 return retval; 203 } 204 EXPORT_SYMBOL(dma_pool_create); 205 206 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 207 { 208 unsigned int offset = 0; 209 unsigned int next_boundary = pool->boundary; 210 211 do { 212 unsigned int next = offset + pool->size; 213 if (unlikely((next + pool->size) >= next_boundary)) { 214 next = next_boundary; 215 next_boundary += pool->boundary; 216 } 217 *(int *)(page->vaddr + offset) = next; 218 offset = next; 219 } while (offset < pool->allocation); 220 } 221 222 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 223 { 224 struct dma_page *page; 225 226 page = kmalloc(sizeof(*page), mem_flags); 227 if (!page) 228 return NULL; 229 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 230 &page->dma, mem_flags); 231 if (page->vaddr) { 232 #ifdef DMAPOOL_DEBUG 233 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 234 #endif 235 pool_initialise_page(pool, page); 236 page->in_use = 0; 237 page->offset = 0; 238 } else { 239 kfree(page); 240 page = NULL; 241 } 242 return page; 243 } 244 245 static inline bool is_page_busy(struct dma_page *page) 246 { 247 return page->in_use != 0; 248 } 249 250 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 251 { 252 dma_addr_t dma = page->dma; 253 254 #ifdef DMAPOOL_DEBUG 255 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 256 #endif 257 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 258 list_del(&page->page_list); 259 kfree(page); 260 } 261 262 /** 263 * dma_pool_destroy - destroys a pool of dma memory blocks. 264 * @pool: dma pool that will be destroyed 265 * Context: !in_interrupt() 266 * 267 * Caller guarantees that no more memory from the pool is in use, 268 * and that nothing will try to use the pool after this call. 269 */ 270 void dma_pool_destroy(struct dma_pool *pool) 271 { 272 bool empty = false; 273 274 if (unlikely(!pool)) 275 return; 276 277 mutex_lock(&pools_reg_lock); 278 mutex_lock(&pools_lock); 279 list_del(&pool->pools); 280 if (pool->dev && list_empty(&pool->dev->dma_pools)) 281 empty = true; 282 mutex_unlock(&pools_lock); 283 if (empty) 284 device_remove_file(pool->dev, &dev_attr_pools); 285 mutex_unlock(&pools_reg_lock); 286 287 while (!list_empty(&pool->page_list)) { 288 struct dma_page *page; 289 page = list_entry(pool->page_list.next, 290 struct dma_page, page_list); 291 if (is_page_busy(page)) { 292 if (pool->dev) 293 dev_err(pool->dev, 294 "dma_pool_destroy %s, %p busy\n", 295 pool->name, page->vaddr); 296 else 297 printk(KERN_ERR 298 "dma_pool_destroy %s, %p busy\n", 299 pool->name, page->vaddr); 300 /* leak the still-in-use consistent memory */ 301 list_del(&page->page_list); 302 kfree(page); 303 } else 304 pool_free_page(pool, page); 305 } 306 307 kfree(pool); 308 } 309 EXPORT_SYMBOL(dma_pool_destroy); 310 311 /** 312 * dma_pool_alloc - get a block of consistent memory 313 * @pool: dma pool that will produce the block 314 * @mem_flags: GFP_* bitmask 315 * @handle: pointer to dma address of block 316 * 317 * This returns the kernel virtual address of a currently unused block, 318 * and reports its dma address through the handle. 319 * If such a memory block can't be allocated, %NULL is returned. 320 */ 321 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 322 dma_addr_t *handle) 323 { 324 unsigned long flags; 325 struct dma_page *page; 326 size_t offset; 327 void *retval; 328 329 might_sleep_if(gfpflags_allow_blocking(mem_flags)); 330 331 spin_lock_irqsave(&pool->lock, flags); 332 list_for_each_entry(page, &pool->page_list, page_list) { 333 if (page->offset < pool->allocation) 334 goto ready; 335 } 336 337 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ 338 spin_unlock_irqrestore(&pool->lock, flags); 339 340 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 341 if (!page) 342 return NULL; 343 344 spin_lock_irqsave(&pool->lock, flags); 345 346 list_add(&page->page_list, &pool->page_list); 347 ready: 348 page->in_use++; 349 offset = page->offset; 350 page->offset = *(int *)(page->vaddr + offset); 351 retval = offset + page->vaddr; 352 *handle = offset + page->dma; 353 #ifdef DMAPOOL_DEBUG 354 { 355 int i; 356 u8 *data = retval; 357 /* page->offset is stored in first 4 bytes */ 358 for (i = sizeof(page->offset); i < pool->size; i++) { 359 if (data[i] == POOL_POISON_FREED) 360 continue; 361 if (pool->dev) 362 dev_err(pool->dev, 363 "dma_pool_alloc %s, %p (corrupted)\n", 364 pool->name, retval); 365 else 366 pr_err("dma_pool_alloc %s, %p (corrupted)\n", 367 pool->name, retval); 368 369 /* 370 * Dump the first 4 bytes even if they are not 371 * POOL_POISON_FREED 372 */ 373 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 374 data, pool->size, 1); 375 break; 376 } 377 } 378 if (!(mem_flags & __GFP_ZERO)) 379 memset(retval, POOL_POISON_ALLOCATED, pool->size); 380 #endif 381 spin_unlock_irqrestore(&pool->lock, flags); 382 383 if (mem_flags & __GFP_ZERO) 384 memset(retval, 0, pool->size); 385 386 return retval; 387 } 388 EXPORT_SYMBOL(dma_pool_alloc); 389 390 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 391 { 392 struct dma_page *page; 393 394 list_for_each_entry(page, &pool->page_list, page_list) { 395 if (dma < page->dma) 396 continue; 397 if ((dma - page->dma) < pool->allocation) 398 return page; 399 } 400 return NULL; 401 } 402 403 /** 404 * dma_pool_free - put block back into dma pool 405 * @pool: the dma pool holding the block 406 * @vaddr: virtual address of block 407 * @dma: dma address of block 408 * 409 * Caller promises neither device nor driver will again touch this block 410 * unless it is first re-allocated. 411 */ 412 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 413 { 414 struct dma_page *page; 415 unsigned long flags; 416 unsigned int offset; 417 418 spin_lock_irqsave(&pool->lock, flags); 419 page = pool_find_page(pool, dma); 420 if (!page) { 421 spin_unlock_irqrestore(&pool->lock, flags); 422 if (pool->dev) 423 dev_err(pool->dev, 424 "dma_pool_free %s, %p/%lx (bad dma)\n", 425 pool->name, vaddr, (unsigned long)dma); 426 else 427 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", 428 pool->name, vaddr, (unsigned long)dma); 429 return; 430 } 431 432 offset = vaddr - page->vaddr; 433 #ifdef DMAPOOL_DEBUG 434 if ((dma - page->dma) != offset) { 435 spin_unlock_irqrestore(&pool->lock, flags); 436 if (pool->dev) 437 dev_err(pool->dev, 438 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 439 pool->name, vaddr, (unsigned long long)dma); 440 else 441 printk(KERN_ERR 442 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 443 pool->name, vaddr, (unsigned long long)dma); 444 return; 445 } 446 { 447 unsigned int chain = page->offset; 448 while (chain < pool->allocation) { 449 if (chain != offset) { 450 chain = *(int *)(page->vaddr + chain); 451 continue; 452 } 453 spin_unlock_irqrestore(&pool->lock, flags); 454 if (pool->dev) 455 dev_err(pool->dev, "dma_pool_free %s, dma %Lx " 456 "already free\n", pool->name, 457 (unsigned long long)dma); 458 else 459 printk(KERN_ERR "dma_pool_free %s, dma %Lx " 460 "already free\n", pool->name, 461 (unsigned long long)dma); 462 return; 463 } 464 } 465 memset(vaddr, POOL_POISON_FREED, pool->size); 466 #endif 467 468 page->in_use--; 469 *(int *)vaddr = page->offset; 470 page->offset = offset; 471 /* 472 * Resist a temptation to do 473 * if (!is_page_busy(page)) pool_free_page(pool, page); 474 * Better have a few empty pages hang around. 475 */ 476 spin_unlock_irqrestore(&pool->lock, flags); 477 } 478 EXPORT_SYMBOL(dma_pool_free); 479 480 /* 481 * Managed DMA pool 482 */ 483 static void dmam_pool_release(struct device *dev, void *res) 484 { 485 struct dma_pool *pool = *(struct dma_pool **)res; 486 487 dma_pool_destroy(pool); 488 } 489 490 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 491 { 492 return *(struct dma_pool **)res == match_data; 493 } 494 495 /** 496 * dmam_pool_create - Managed dma_pool_create() 497 * @name: name of pool, for diagnostics 498 * @dev: device that will be doing the DMA 499 * @size: size of the blocks in this pool. 500 * @align: alignment requirement for blocks; must be a power of two 501 * @allocation: returned blocks won't cross this boundary (or zero) 502 * 503 * Managed dma_pool_create(). DMA pool created with this function is 504 * automatically destroyed on driver detach. 505 */ 506 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 507 size_t size, size_t align, size_t allocation) 508 { 509 struct dma_pool **ptr, *pool; 510 511 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 512 if (!ptr) 513 return NULL; 514 515 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 516 if (pool) 517 devres_add(dev, ptr); 518 else 519 devres_free(ptr); 520 521 return pool; 522 } 523 EXPORT_SYMBOL(dmam_pool_create); 524 525 /** 526 * dmam_pool_destroy - Managed dma_pool_destroy() 527 * @pool: dma pool that will be destroyed 528 * 529 * Managed dma_pool_destroy(). 530 */ 531 void dmam_pool_destroy(struct dma_pool *pool) 532 { 533 struct device *dev = pool->dev; 534 535 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 536 } 537 EXPORT_SYMBOL(dmam_pool_destroy); 538