xref: /openbmc/linux/mm/debug_vm_pgtable.c (revision c34a8052)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This kernel test validates architecture page table helpers and
4  * accessors and helps in verifying their continued compliance with
5  * expected generic MM semantics.
6  *
7  * Copyright (C) 2019 ARM Ltd.
8  *
9  * Author: Anshuman Khandual <anshuman.khandual@arm.com>
10  */
11 #define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12 
13 #include <linux/gfp.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/kernel.h>
17 #include <linux/kconfig.h>
18 #include <linux/memblock.h>
19 #include <linux/mm.h>
20 #include <linux/mman.h>
21 #include <linux/mm_types.h>
22 #include <linux/module.h>
23 #include <linux/pfn_t.h>
24 #include <linux/printk.h>
25 #include <linux/pgtable.h>
26 #include <linux/random.h>
27 #include <linux/spinlock.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/start_kernel.h>
31 #include <linux/sched/mm.h>
32 #include <linux/io.h>
33 
34 #include <asm/cacheflush.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlbflush.h>
37 
38 /*
39  * Please refer Documentation/mm/arch_pgtable_helpers.rst for the semantics
40  * expectations that are being validated here. All future changes in here
41  * or the documentation need to be in sync.
42  *
43  * On s390 platform, the lower 4 bits are used to identify given page table
44  * entry type. But these bits might affect the ability to clear entries with
45  * pxx_clear() because of how dynamic page table folding works on s390. So
46  * while loading up the entries do not change the lower 4 bits. It does not
47  * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
48  * used to mark a pte entry.
49  */
50 #define S390_SKIP_MASK		GENMASK(3, 0)
51 #if __BITS_PER_LONG == 64
52 #define PPC64_SKIP_MASK		GENMASK(62, 62)
53 #else
54 #define PPC64_SKIP_MASK		0x0
55 #endif
56 #define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
57 #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
58 #define RANDOM_NZVALUE	GENMASK(7, 0)
59 
60 struct pgtable_debug_args {
61 	struct mm_struct	*mm;
62 	struct vm_area_struct	*vma;
63 
64 	pgd_t			*pgdp;
65 	p4d_t			*p4dp;
66 	pud_t			*pudp;
67 	pmd_t			*pmdp;
68 	pte_t			*ptep;
69 
70 	p4d_t			*start_p4dp;
71 	pud_t			*start_pudp;
72 	pmd_t			*start_pmdp;
73 	pgtable_t		start_ptep;
74 
75 	unsigned long		vaddr;
76 	pgprot_t		page_prot;
77 	pgprot_t		page_prot_none;
78 
79 	bool			is_contiguous_page;
80 	unsigned long		pud_pfn;
81 	unsigned long		pmd_pfn;
82 	unsigned long		pte_pfn;
83 
84 	unsigned long		fixed_alignment;
85 	unsigned long		fixed_pgd_pfn;
86 	unsigned long		fixed_p4d_pfn;
87 	unsigned long		fixed_pud_pfn;
88 	unsigned long		fixed_pmd_pfn;
89 	unsigned long		fixed_pte_pfn;
90 };
91 
92 static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
93 {
94 	pgprot_t prot = vm_get_page_prot(idx);
95 	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
96 	unsigned long val = idx, *ptr = &val;
97 
98 	pr_debug("Validating PTE basic (%pGv)\n", ptr);
99 
100 	/*
101 	 * This test needs to be executed after the given page table entry
102 	 * is created with pfn_pte() to make sure that vm_get_page_prot(idx)
103 	 * does not have the dirty bit enabled from the beginning. This is
104 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
105 	 * dirty bit being set.
106 	 */
107 	WARN_ON(pte_dirty(pte_wrprotect(pte)));
108 
109 	WARN_ON(!pte_same(pte, pte));
110 	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
111 	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
112 	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte), args->vma)));
113 	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
114 	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
115 	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte, args->vma))));
116 	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
117 	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
118 }
119 
120 static void __init pte_advanced_tests(struct pgtable_debug_args *args)
121 {
122 	struct page *page;
123 	pte_t pte;
124 
125 	/*
126 	 * Architectures optimize set_pte_at by avoiding TLB flush.
127 	 * This requires set_pte_at to be not used to update an
128 	 * existing pte entry. Clear pte before we do set_pte_at
129 	 *
130 	 * flush_dcache_page() is called after set_pte_at() to clear
131 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
132 	 * when it's released and page allocation check will fail when
133 	 * the page is allocated again. For architectures other than ARM64,
134 	 * the unexpected overhead of cache flushing is acceptable.
135 	 */
136 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
137 	if (!page)
138 		return;
139 
140 	pr_debug("Validating PTE advanced\n");
141 	if (WARN_ON(!args->ptep))
142 		return;
143 
144 	pte = pfn_pte(args->pte_pfn, args->page_prot);
145 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
146 	flush_dcache_page(page);
147 	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
148 	pte = ptep_get(args->ptep);
149 	WARN_ON(pte_write(pte));
150 	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
151 	pte = ptep_get(args->ptep);
152 	WARN_ON(!pte_none(pte));
153 
154 	pte = pfn_pte(args->pte_pfn, args->page_prot);
155 	pte = pte_wrprotect(pte);
156 	pte = pte_mkclean(pte);
157 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
158 	flush_dcache_page(page);
159 	pte = pte_mkwrite(pte, args->vma);
160 	pte = pte_mkdirty(pte);
161 	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
162 	pte = ptep_get(args->ptep);
163 	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
164 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
165 	pte = ptep_get(args->ptep);
166 	WARN_ON(!pte_none(pte));
167 
168 	pte = pfn_pte(args->pte_pfn, args->page_prot);
169 	pte = pte_mkyoung(pte);
170 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
171 	flush_dcache_page(page);
172 	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
173 	pte = ptep_get(args->ptep);
174 	WARN_ON(pte_young(pte));
175 
176 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
177 }
178 
179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
180 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
181 {
182 	pgprot_t prot = vm_get_page_prot(idx);
183 	unsigned long val = idx, *ptr = &val;
184 	pmd_t pmd;
185 
186 	if (!has_transparent_hugepage())
187 		return;
188 
189 	pr_debug("Validating PMD basic (%pGv)\n", ptr);
190 	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
191 
192 	/*
193 	 * This test needs to be executed after the given page table entry
194 	 * is created with pfn_pmd() to make sure that vm_get_page_prot(idx)
195 	 * does not have the dirty bit enabled from the beginning. This is
196 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
197 	 * dirty bit being set.
198 	 */
199 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));
200 
201 
202 	WARN_ON(!pmd_same(pmd, pmd));
203 	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
204 	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
205 	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd), args->vma)));
206 	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
207 	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
208 	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd, args->vma))));
209 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
210 	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
211 	/*
212 	 * A huge page does not point to next level page table
213 	 * entry. Hence this must qualify as pmd_bad().
214 	 */
215 	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
216 }
217 
218 static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
219 {
220 	struct page *page;
221 	pmd_t pmd;
222 	unsigned long vaddr = args->vaddr;
223 
224 	if (!has_transparent_hugepage())
225 		return;
226 
227 	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
228 	if (!page)
229 		return;
230 
231 	/*
232 	 * flush_dcache_page() is called after set_pmd_at() to clear
233 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
234 	 * when it's released and page allocation check will fail when
235 	 * the page is allocated again. For architectures other than ARM64,
236 	 * the unexpected overhead of cache flushing is acceptable.
237 	 */
238 	pr_debug("Validating PMD advanced\n");
239 	/* Align the address wrt HPAGE_PMD_SIZE */
240 	vaddr &= HPAGE_PMD_MASK;
241 
242 	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
243 
244 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
245 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
246 	flush_dcache_page(page);
247 	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
248 	pmd = READ_ONCE(*args->pmdp);
249 	WARN_ON(pmd_write(pmd));
250 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
251 	pmd = READ_ONCE(*args->pmdp);
252 	WARN_ON(!pmd_none(pmd));
253 
254 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
255 	pmd = pmd_wrprotect(pmd);
256 	pmd = pmd_mkclean(pmd);
257 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
258 	flush_dcache_page(page);
259 	pmd = pmd_mkwrite(pmd, args->vma);
260 	pmd = pmd_mkdirty(pmd);
261 	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
262 	pmd = READ_ONCE(*args->pmdp);
263 	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
264 	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
265 	pmd = READ_ONCE(*args->pmdp);
266 	WARN_ON(!pmd_none(pmd));
267 
268 	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
269 	pmd = pmd_mkyoung(pmd);
270 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
271 	flush_dcache_page(page);
272 	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
273 	pmd = READ_ONCE(*args->pmdp);
274 	WARN_ON(pmd_young(pmd));
275 
276 	/*  Clear the pte entries  */
277 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
278 	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
279 }
280 
281 static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
282 {
283 	pmd_t pmd;
284 
285 	if (!has_transparent_hugepage())
286 		return;
287 
288 	pr_debug("Validating PMD leaf\n");
289 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
290 
291 	/*
292 	 * PMD based THP is a leaf entry.
293 	 */
294 	pmd = pmd_mkhuge(pmd);
295 	WARN_ON(!pmd_leaf(pmd));
296 }
297 
298 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
299 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
300 {
301 	pgprot_t prot = vm_get_page_prot(idx);
302 	unsigned long val = idx, *ptr = &val;
303 	pud_t pud;
304 
305 	if (!has_transparent_pud_hugepage())
306 		return;
307 
308 	pr_debug("Validating PUD basic (%pGv)\n", ptr);
309 	pud = pfn_pud(args->fixed_pud_pfn, prot);
310 
311 	/*
312 	 * This test needs to be executed after the given page table entry
313 	 * is created with pfn_pud() to make sure that vm_get_page_prot(idx)
314 	 * does not have the dirty bit enabled from the beginning. This is
315 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
316 	 * dirty bit being set.
317 	 */
318 	WARN_ON(pud_dirty(pud_wrprotect(pud)));
319 
320 	WARN_ON(!pud_same(pud, pud));
321 	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
322 	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
323 	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
324 	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
325 	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
326 	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
327 	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
328 	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
329 
330 	if (mm_pmd_folded(args->mm))
331 		return;
332 
333 	/*
334 	 * A huge page does not point to next level page table
335 	 * entry. Hence this must qualify as pud_bad().
336 	 */
337 	WARN_ON(!pud_bad(pud_mkhuge(pud)));
338 }
339 
340 static void __init pud_advanced_tests(struct pgtable_debug_args *args)
341 {
342 	struct page *page;
343 	unsigned long vaddr = args->vaddr;
344 	pud_t pud;
345 
346 	if (!has_transparent_pud_hugepage())
347 		return;
348 
349 	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
350 	if (!page)
351 		return;
352 
353 	/*
354 	 * flush_dcache_page() is called after set_pud_at() to clear
355 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
356 	 * when it's released and page allocation check will fail when
357 	 * the page is allocated again. For architectures other than ARM64,
358 	 * the unexpected overhead of cache flushing is acceptable.
359 	 */
360 	pr_debug("Validating PUD advanced\n");
361 	/* Align the address wrt HPAGE_PUD_SIZE */
362 	vaddr &= HPAGE_PUD_MASK;
363 
364 	pud = pfn_pud(args->pud_pfn, args->page_prot);
365 	/*
366 	 * Some architectures have debug checks to make sure
367 	 * huge pud mapping are only found with devmap entries
368 	 * For now test with only devmap entries.
369 	 */
370 	pud = pud_mkdevmap(pud);
371 	set_pud_at(args->mm, vaddr, args->pudp, pud);
372 	flush_dcache_page(page);
373 	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
374 	pud = READ_ONCE(*args->pudp);
375 	WARN_ON(pud_write(pud));
376 
377 #ifndef __PAGETABLE_PMD_FOLDED
378 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
379 	pud = READ_ONCE(*args->pudp);
380 	WARN_ON(!pud_none(pud));
381 #endif /* __PAGETABLE_PMD_FOLDED */
382 	pud = pfn_pud(args->pud_pfn, args->page_prot);
383 	pud = pud_mkdevmap(pud);
384 	pud = pud_wrprotect(pud);
385 	pud = pud_mkclean(pud);
386 	set_pud_at(args->mm, vaddr, args->pudp, pud);
387 	flush_dcache_page(page);
388 	pud = pud_mkwrite(pud);
389 	pud = pud_mkdirty(pud);
390 	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
391 	pud = READ_ONCE(*args->pudp);
392 	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));
393 
394 #ifndef __PAGETABLE_PMD_FOLDED
395 	pudp_huge_get_and_clear_full(args->vma, vaddr, args->pudp, 1);
396 	pud = READ_ONCE(*args->pudp);
397 	WARN_ON(!pud_none(pud));
398 #endif /* __PAGETABLE_PMD_FOLDED */
399 
400 	pud = pfn_pud(args->pud_pfn, args->page_prot);
401 	pud = pud_mkdevmap(pud);
402 	pud = pud_mkyoung(pud);
403 	set_pud_at(args->mm, vaddr, args->pudp, pud);
404 	flush_dcache_page(page);
405 	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
406 	pud = READ_ONCE(*args->pudp);
407 	WARN_ON(pud_young(pud));
408 
409 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
410 }
411 
412 static void __init pud_leaf_tests(struct pgtable_debug_args *args)
413 {
414 	pud_t pud;
415 
416 	if (!has_transparent_pud_hugepage())
417 		return;
418 
419 	pr_debug("Validating PUD leaf\n");
420 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
421 	/*
422 	 * PUD based THP is a leaf entry.
423 	 */
424 	pud = pud_mkhuge(pud);
425 	WARN_ON(!pud_leaf(pud));
426 }
427 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
428 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
429 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
430 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
431 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
432 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
433 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
434 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
435 static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
436 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
437 static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
438 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
439 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
440 
441 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
442 static void __init pmd_huge_tests(struct pgtable_debug_args *args)
443 {
444 	pmd_t pmd;
445 
446 	if (!arch_vmap_pmd_supported(args->page_prot) ||
447 	    args->fixed_alignment < PMD_SIZE)
448 		return;
449 
450 	pr_debug("Validating PMD huge\n");
451 	/*
452 	 * X86 defined pmd_set_huge() verifies that the given
453 	 * PMD is not a populated non-leaf entry.
454 	 */
455 	WRITE_ONCE(*args->pmdp, __pmd(0));
456 	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
457 	WARN_ON(!pmd_clear_huge(args->pmdp));
458 	pmd = READ_ONCE(*args->pmdp);
459 	WARN_ON(!pmd_none(pmd));
460 }
461 
462 static void __init pud_huge_tests(struct pgtable_debug_args *args)
463 {
464 	pud_t pud;
465 
466 	if (!arch_vmap_pud_supported(args->page_prot) ||
467 	    args->fixed_alignment < PUD_SIZE)
468 		return;
469 
470 	pr_debug("Validating PUD huge\n");
471 	/*
472 	 * X86 defined pud_set_huge() verifies that the given
473 	 * PUD is not a populated non-leaf entry.
474 	 */
475 	WRITE_ONCE(*args->pudp, __pud(0));
476 	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
477 	WARN_ON(!pud_clear_huge(args->pudp));
478 	pud = READ_ONCE(*args->pudp);
479 	WARN_ON(!pud_none(pud));
480 }
481 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
482 static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
483 static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
484 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
485 
486 static void __init p4d_basic_tests(struct pgtable_debug_args *args)
487 {
488 	p4d_t p4d;
489 
490 	pr_debug("Validating P4D basic\n");
491 	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
492 	WARN_ON(!p4d_same(p4d, p4d));
493 }
494 
495 static void __init pgd_basic_tests(struct pgtable_debug_args *args)
496 {
497 	pgd_t pgd;
498 
499 	pr_debug("Validating PGD basic\n");
500 	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
501 	WARN_ON(!pgd_same(pgd, pgd));
502 }
503 
504 #ifndef __PAGETABLE_PUD_FOLDED
505 static void __init pud_clear_tests(struct pgtable_debug_args *args)
506 {
507 	pud_t pud = READ_ONCE(*args->pudp);
508 
509 	if (mm_pmd_folded(args->mm))
510 		return;
511 
512 	pr_debug("Validating PUD clear\n");
513 	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
514 	WRITE_ONCE(*args->pudp, pud);
515 	pud_clear(args->pudp);
516 	pud = READ_ONCE(*args->pudp);
517 	WARN_ON(!pud_none(pud));
518 }
519 
520 static void __init pud_populate_tests(struct pgtable_debug_args *args)
521 {
522 	pud_t pud;
523 
524 	if (mm_pmd_folded(args->mm))
525 		return;
526 
527 	pr_debug("Validating PUD populate\n");
528 	/*
529 	 * This entry points to next level page table page.
530 	 * Hence this must not qualify as pud_bad().
531 	 */
532 	pud_populate(args->mm, args->pudp, args->start_pmdp);
533 	pud = READ_ONCE(*args->pudp);
534 	WARN_ON(pud_bad(pud));
535 }
536 #else  /* !__PAGETABLE_PUD_FOLDED */
537 static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
538 static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
539 #endif /* PAGETABLE_PUD_FOLDED */
540 
541 #ifndef __PAGETABLE_P4D_FOLDED
542 static void __init p4d_clear_tests(struct pgtable_debug_args *args)
543 {
544 	p4d_t p4d = READ_ONCE(*args->p4dp);
545 
546 	if (mm_pud_folded(args->mm))
547 		return;
548 
549 	pr_debug("Validating P4D clear\n");
550 	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
551 	WRITE_ONCE(*args->p4dp, p4d);
552 	p4d_clear(args->p4dp);
553 	p4d = READ_ONCE(*args->p4dp);
554 	WARN_ON(!p4d_none(p4d));
555 }
556 
557 static void __init p4d_populate_tests(struct pgtable_debug_args *args)
558 {
559 	p4d_t p4d;
560 
561 	if (mm_pud_folded(args->mm))
562 		return;
563 
564 	pr_debug("Validating P4D populate\n");
565 	/*
566 	 * This entry points to next level page table page.
567 	 * Hence this must not qualify as p4d_bad().
568 	 */
569 	pud_clear(args->pudp);
570 	p4d_clear(args->p4dp);
571 	p4d_populate(args->mm, args->p4dp, args->start_pudp);
572 	p4d = READ_ONCE(*args->p4dp);
573 	WARN_ON(p4d_bad(p4d));
574 }
575 
576 static void __init pgd_clear_tests(struct pgtable_debug_args *args)
577 {
578 	pgd_t pgd = READ_ONCE(*(args->pgdp));
579 
580 	if (mm_p4d_folded(args->mm))
581 		return;
582 
583 	pr_debug("Validating PGD clear\n");
584 	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
585 	WRITE_ONCE(*args->pgdp, pgd);
586 	pgd_clear(args->pgdp);
587 	pgd = READ_ONCE(*args->pgdp);
588 	WARN_ON(!pgd_none(pgd));
589 }
590 
591 static void __init pgd_populate_tests(struct pgtable_debug_args *args)
592 {
593 	pgd_t pgd;
594 
595 	if (mm_p4d_folded(args->mm))
596 		return;
597 
598 	pr_debug("Validating PGD populate\n");
599 	/*
600 	 * This entry points to next level page table page.
601 	 * Hence this must not qualify as pgd_bad().
602 	 */
603 	p4d_clear(args->p4dp);
604 	pgd_clear(args->pgdp);
605 	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
606 	pgd = READ_ONCE(*args->pgdp);
607 	WARN_ON(pgd_bad(pgd));
608 }
609 #else  /* !__PAGETABLE_P4D_FOLDED */
610 static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
611 static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
612 static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
613 static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
614 #endif /* PAGETABLE_P4D_FOLDED */
615 
616 static void __init pte_clear_tests(struct pgtable_debug_args *args)
617 {
618 	struct page *page;
619 	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);
620 
621 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
622 	if (!page)
623 		return;
624 
625 	/*
626 	 * flush_dcache_page() is called after set_pte_at() to clear
627 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
628 	 * when it's released and page allocation check will fail when
629 	 * the page is allocated again. For architectures other than ARM64,
630 	 * the unexpected overhead of cache flushing is acceptable.
631 	 */
632 	pr_debug("Validating PTE clear\n");
633 	if (WARN_ON(!args->ptep))
634 		return;
635 
636 #ifndef CONFIG_RISCV
637 	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
638 #endif
639 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
640 	flush_dcache_page(page);
641 	barrier();
642 	ptep_clear(args->mm, args->vaddr, args->ptep);
643 	pte = ptep_get(args->ptep);
644 	WARN_ON(!pte_none(pte));
645 }
646 
647 static void __init pmd_clear_tests(struct pgtable_debug_args *args)
648 {
649 	pmd_t pmd = READ_ONCE(*args->pmdp);
650 
651 	pr_debug("Validating PMD clear\n");
652 	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
653 	WRITE_ONCE(*args->pmdp, pmd);
654 	pmd_clear(args->pmdp);
655 	pmd = READ_ONCE(*args->pmdp);
656 	WARN_ON(!pmd_none(pmd));
657 }
658 
659 static void __init pmd_populate_tests(struct pgtable_debug_args *args)
660 {
661 	pmd_t pmd;
662 
663 	pr_debug("Validating PMD populate\n");
664 	/*
665 	 * This entry points to next level page table page.
666 	 * Hence this must not qualify as pmd_bad().
667 	 */
668 	pmd_populate(args->mm, args->pmdp, args->start_ptep);
669 	pmd = READ_ONCE(*args->pmdp);
670 	WARN_ON(pmd_bad(pmd));
671 }
672 
673 static void __init pte_special_tests(struct pgtable_debug_args *args)
674 {
675 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
676 
677 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
678 		return;
679 
680 	pr_debug("Validating PTE special\n");
681 	WARN_ON(!pte_special(pte_mkspecial(pte)));
682 }
683 
684 static void __init pte_protnone_tests(struct pgtable_debug_args *args)
685 {
686 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
687 
688 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
689 		return;
690 
691 	pr_debug("Validating PTE protnone\n");
692 	WARN_ON(!pte_protnone(pte));
693 	WARN_ON(!pte_present(pte));
694 }
695 
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
698 {
699 	pmd_t pmd;
700 
701 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
702 		return;
703 
704 	if (!has_transparent_hugepage())
705 		return;
706 
707 	pr_debug("Validating PMD protnone\n");
708 	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
709 	WARN_ON(!pmd_protnone(pmd));
710 	WARN_ON(!pmd_present(pmd));
711 }
712 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
713 static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
715 
716 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
717 static void __init pte_devmap_tests(struct pgtable_debug_args *args)
718 {
719 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
720 
721 	pr_debug("Validating PTE devmap\n");
722 	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
723 }
724 
725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
726 static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
727 {
728 	pmd_t pmd;
729 
730 	if (!has_transparent_hugepage())
731 		return;
732 
733 	pr_debug("Validating PMD devmap\n");
734 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
735 	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
736 }
737 
738 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
739 static void __init pud_devmap_tests(struct pgtable_debug_args *args)
740 {
741 	pud_t pud;
742 
743 	if (!has_transparent_pud_hugepage())
744 		return;
745 
746 	pr_debug("Validating PUD devmap\n");
747 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
748 	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
749 }
750 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
751 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
752 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
753 #else  /* CONFIG_TRANSPARENT_HUGEPAGE */
754 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
755 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 #else
758 static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
759 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
760 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
761 #endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */
762 
763 static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
764 {
765 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
766 
767 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
768 		return;
769 
770 	pr_debug("Validating PTE soft dirty\n");
771 	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
772 	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
773 }
774 
775 static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
776 {
777 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
778 
779 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
780 		return;
781 
782 	pr_debug("Validating PTE swap soft dirty\n");
783 	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
784 	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
785 }
786 
787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
788 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
789 {
790 	pmd_t pmd;
791 
792 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
793 		return;
794 
795 	if (!has_transparent_hugepage())
796 		return;
797 
798 	pr_debug("Validating PMD soft dirty\n");
799 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
800 	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
801 	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
802 }
803 
804 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
805 {
806 	pmd_t pmd;
807 
808 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
809 		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
810 		return;
811 
812 	if (!has_transparent_hugepage())
813 		return;
814 
815 	pr_debug("Validating PMD swap soft dirty\n");
816 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
817 	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
818 	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
819 }
820 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
821 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
822 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
823 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
824 
825 static void __init pte_swap_exclusive_tests(struct pgtable_debug_args *args)
826 {
827 	unsigned long max_swap_offset;
828 	swp_entry_t entry, entry2;
829 	pte_t pte;
830 
831 	pr_debug("Validating PTE swap exclusive\n");
832 
833 	/* See generic_max_swapfile_size(): probe the maximum offset */
834 	max_swap_offset = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0, ~0UL))));
835 
836 	/* Create a swp entry with all possible bits set */
837 	entry = swp_entry((1 << MAX_SWAPFILES_SHIFT) - 1, max_swap_offset);
838 
839 	pte = swp_entry_to_pte(entry);
840 	WARN_ON(pte_swp_exclusive(pte));
841 	WARN_ON(!is_swap_pte(pte));
842 	entry2 = pte_to_swp_entry(pte);
843 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
844 
845 	pte = pte_swp_mkexclusive(pte);
846 	WARN_ON(!pte_swp_exclusive(pte));
847 	WARN_ON(!is_swap_pte(pte));
848 	WARN_ON(pte_swp_soft_dirty(pte));
849 	entry2 = pte_to_swp_entry(pte);
850 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
851 
852 	pte = pte_swp_clear_exclusive(pte);
853 	WARN_ON(pte_swp_exclusive(pte));
854 	WARN_ON(!is_swap_pte(pte));
855 	entry2 = pte_to_swp_entry(pte);
856 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
857 }
858 
859 static void __init pte_swap_tests(struct pgtable_debug_args *args)
860 {
861 	swp_entry_t swp;
862 	pte_t pte;
863 
864 	pr_debug("Validating PTE swap\n");
865 	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
866 	swp = __pte_to_swp_entry(pte);
867 	pte = __swp_entry_to_pte(swp);
868 	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
869 }
870 
871 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
872 static void __init pmd_swap_tests(struct pgtable_debug_args *args)
873 {
874 	swp_entry_t swp;
875 	pmd_t pmd;
876 
877 	if (!has_transparent_hugepage())
878 		return;
879 
880 	pr_debug("Validating PMD swap\n");
881 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
882 	swp = __pmd_to_swp_entry(pmd);
883 	pmd = __swp_entry_to_pmd(swp);
884 	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
885 }
886 #else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
887 static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
888 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
889 
890 static void __init swap_migration_tests(struct pgtable_debug_args *args)
891 {
892 	struct page *page;
893 	swp_entry_t swp;
894 
895 	if (!IS_ENABLED(CONFIG_MIGRATION))
896 		return;
897 
898 	/*
899 	 * swap_migration_tests() requires a dedicated page as it needs to
900 	 * be locked before creating a migration entry from it. Locking the
901 	 * page that actually maps kernel text ('start_kernel') can be real
902 	 * problematic. Lets use the allocated page explicitly for this
903 	 * purpose.
904 	 */
905 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
906 	if (!page)
907 		return;
908 
909 	pr_debug("Validating swap migration\n");
910 
911 	/*
912 	 * make_[readable|writable]_migration_entry() expects given page to
913 	 * be locked, otherwise it stumbles upon a BUG_ON().
914 	 */
915 	__SetPageLocked(page);
916 	swp = make_writable_migration_entry(page_to_pfn(page));
917 	WARN_ON(!is_migration_entry(swp));
918 	WARN_ON(!is_writable_migration_entry(swp));
919 
920 	swp = make_readable_migration_entry(swp_offset(swp));
921 	WARN_ON(!is_migration_entry(swp));
922 	WARN_ON(is_writable_migration_entry(swp));
923 
924 	swp = make_readable_migration_entry(page_to_pfn(page));
925 	WARN_ON(!is_migration_entry(swp));
926 	WARN_ON(is_writable_migration_entry(swp));
927 	__ClearPageLocked(page);
928 }
929 
930 #ifdef CONFIG_HUGETLB_PAGE
931 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
932 {
933 	struct page *page;
934 	pte_t pte;
935 
936 	pr_debug("Validating HugeTLB basic\n");
937 	/*
938 	 * Accessing the page associated with the pfn is safe here,
939 	 * as it was previously derived from a real kernel symbol.
940 	 */
941 	page = pfn_to_page(args->fixed_pmd_pfn);
942 	pte = mk_huge_pte(page, args->page_prot);
943 
944 	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
945 	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
946 	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));
947 
948 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
949 	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
950 
951 	WARN_ON(!pte_huge(arch_make_huge_pte(pte, PMD_SHIFT, VM_ACCESS_FLAGS)));
952 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
953 }
954 #else  /* !CONFIG_HUGETLB_PAGE */
955 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
956 #endif /* CONFIG_HUGETLB_PAGE */
957 
958 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
959 static void __init pmd_thp_tests(struct pgtable_debug_args *args)
960 {
961 	pmd_t pmd;
962 
963 	if (!has_transparent_hugepage())
964 		return;
965 
966 	pr_debug("Validating PMD based THP\n");
967 	/*
968 	 * pmd_trans_huge() and pmd_present() must return positive after
969 	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
970 	 * optimization for transparent huge page. pmd_trans_huge() must
971 	 * be true if pmd_page() returns a valid THP to avoid taking the
972 	 * pmd_lock when others walk over non transhuge pmds (i.e. there
973 	 * are no THP allocated). Especially when splitting a THP and
974 	 * removing the present bit from the pmd, pmd_trans_huge() still
975 	 * needs to return true. pmd_present() should be true whenever
976 	 * pmd_trans_huge() returns true.
977 	 */
978 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
979 	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));
980 
981 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
982 	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
983 	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
984 #endif /* __HAVE_ARCH_PMDP_INVALIDATE */
985 }
986 
987 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
988 static void __init pud_thp_tests(struct pgtable_debug_args *args)
989 {
990 	pud_t pud;
991 
992 	if (!has_transparent_pud_hugepage())
993 		return;
994 
995 	pr_debug("Validating PUD based THP\n");
996 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
997 	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));
998 
999 	/*
1000 	 * pud_mkinvalid() has been dropped for now. Enable back
1001 	 * these tests when it comes back with a modified pud_present().
1002 	 *
1003 	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
1004 	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
1005 	 */
1006 }
1007 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1008 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1009 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1010 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
1011 static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
1012 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1014 
1015 static unsigned long __init get_random_vaddr(void)
1016 {
1017 	unsigned long random_vaddr, random_pages, total_user_pages;
1018 
1019 	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;
1020 
1021 	random_pages = get_random_long() % total_user_pages;
1022 	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;
1023 
1024 	return random_vaddr;
1025 }
1026 
1027 static void __init destroy_args(struct pgtable_debug_args *args)
1028 {
1029 	struct page *page = NULL;
1030 
1031 	/* Free (huge) page */
1032 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1033 	    has_transparent_pud_hugepage() &&
1034 	    args->pud_pfn != ULONG_MAX) {
1035 		if (args->is_contiguous_page) {
1036 			free_contig_range(args->pud_pfn,
1037 					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
1038 		} else {
1039 			page = pfn_to_page(args->pud_pfn);
1040 			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
1041 		}
1042 
1043 		args->pud_pfn = ULONG_MAX;
1044 		args->pmd_pfn = ULONG_MAX;
1045 		args->pte_pfn = ULONG_MAX;
1046 	}
1047 
1048 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1049 	    has_transparent_hugepage() &&
1050 	    args->pmd_pfn != ULONG_MAX) {
1051 		if (args->is_contiguous_page) {
1052 			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
1053 		} else {
1054 			page = pfn_to_page(args->pmd_pfn);
1055 			__free_pages(page, HPAGE_PMD_ORDER);
1056 		}
1057 
1058 		args->pmd_pfn = ULONG_MAX;
1059 		args->pte_pfn = ULONG_MAX;
1060 	}
1061 
1062 	if (args->pte_pfn != ULONG_MAX) {
1063 		page = pfn_to_page(args->pte_pfn);
1064 		__free_page(page);
1065 
1066 		args->pte_pfn = ULONG_MAX;
1067 	}
1068 
1069 	/* Free page table entries */
1070 	if (args->start_ptep) {
1071 		pte_free(args->mm, args->start_ptep);
1072 		mm_dec_nr_ptes(args->mm);
1073 	}
1074 
1075 	if (args->start_pmdp) {
1076 		pmd_free(args->mm, args->start_pmdp);
1077 		mm_dec_nr_pmds(args->mm);
1078 	}
1079 
1080 	if (args->start_pudp) {
1081 		pud_free(args->mm, args->start_pudp);
1082 		mm_dec_nr_puds(args->mm);
1083 	}
1084 
1085 	if (args->start_p4dp)
1086 		p4d_free(args->mm, args->start_p4dp);
1087 
1088 	/* Free vma and mm struct */
1089 	if (args->vma)
1090 		vm_area_free(args->vma);
1091 
1092 	if (args->mm)
1093 		mmdrop(args->mm);
1094 }
1095 
1096 static struct page * __init
1097 debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
1098 {
1099 	struct page *page = NULL;
1100 
1101 #ifdef CONFIG_CONTIG_ALLOC
1102 	if (order > MAX_ORDER) {
1103 		page = alloc_contig_pages((1 << order), GFP_KERNEL,
1104 					  first_online_node, NULL);
1105 		if (page) {
1106 			args->is_contiguous_page = true;
1107 			return page;
1108 		}
1109 	}
1110 #endif
1111 
1112 	if (order <= MAX_ORDER)
1113 		page = alloc_pages(GFP_KERNEL, order);
1114 
1115 	return page;
1116 }
1117 
1118 /*
1119  * Check if a physical memory range described by <pstart, pend> contains
1120  * an area that is of size psize, and aligned to psize.
1121  *
1122  * Don't use address 0, an all-zeroes physical address might mask bugs, and
1123  * it's not used on x86.
1124  */
1125 static void  __init phys_align_check(phys_addr_t pstart,
1126 				     phys_addr_t pend, unsigned long psize,
1127 				     phys_addr_t *physp, unsigned long *alignp)
1128 {
1129 	phys_addr_t aligned_start, aligned_end;
1130 
1131 	if (pstart == 0)
1132 		pstart = PAGE_SIZE;
1133 
1134 	aligned_start = ALIGN(pstart, psize);
1135 	aligned_end = aligned_start + psize;
1136 
1137 	if (aligned_end > aligned_start && aligned_end <= pend) {
1138 		*alignp = psize;
1139 		*physp = aligned_start;
1140 	}
1141 }
1142 
1143 static void __init init_fixed_pfns(struct pgtable_debug_args *args)
1144 {
1145 	u64 idx;
1146 	phys_addr_t phys, pstart, pend;
1147 
1148 	/*
1149 	 * Initialize the fixed pfns. To do this, try to find a
1150 	 * valid physical range, preferably aligned to PUD_SIZE,
1151 	 * but settling for aligned to PMD_SIZE as a fallback. If
1152 	 * neither of those is found, use the physical address of
1153 	 * the start_kernel symbol.
1154 	 *
1155 	 * The memory doesn't need to be allocated, it just needs to exist
1156 	 * as usable memory. It won't be touched.
1157 	 *
1158 	 * The alignment is recorded, and can be checked to see if we
1159 	 * can run the tests that require an actual valid physical
1160 	 * address range on some architectures ({pmd,pud}_huge_test
1161 	 * on x86).
1162 	 */
1163 
1164 	phys = __pa_symbol(&start_kernel);
1165 	args->fixed_alignment = PAGE_SIZE;
1166 
1167 	for_each_mem_range(idx, &pstart, &pend) {
1168 		/* First check for a PUD-aligned area */
1169 		phys_align_check(pstart, pend, PUD_SIZE, &phys,
1170 				 &args->fixed_alignment);
1171 
1172 		/* If a PUD-aligned area is found, we're done */
1173 		if (args->fixed_alignment == PUD_SIZE)
1174 			break;
1175 
1176 		/*
1177 		 * If no PMD-aligned area found yet, check for one,
1178 		 * but continue the loop to look for a PUD-aligned area.
1179 		 */
1180 		if (args->fixed_alignment < PMD_SIZE)
1181 			phys_align_check(pstart, pend, PMD_SIZE, &phys,
1182 					 &args->fixed_alignment);
1183 	}
1184 
1185 	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
1186 	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
1187 	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
1188 	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
1189 	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
1190 	WARN_ON(!pfn_valid(args->fixed_pte_pfn));
1191 }
1192 
1193 
1194 static int __init init_args(struct pgtable_debug_args *args)
1195 {
1196 	struct page *page = NULL;
1197 	int ret = 0;
1198 
1199 	/*
1200 	 * Initialize the debugging data.
1201 	 *
1202 	 * vm_get_page_prot(VM_NONE) or vm_get_page_prot(VM_SHARED|VM_NONE)
1203 	 * will help create page table entries with PROT_NONE permission as
1204 	 * required for pxx_protnone_tests().
1205 	 */
1206 	memset(args, 0, sizeof(*args));
1207 	args->vaddr              = get_random_vaddr();
1208 	args->page_prot          = vm_get_page_prot(VM_ACCESS_FLAGS);
1209 	args->page_prot_none     = vm_get_page_prot(VM_NONE);
1210 	args->is_contiguous_page = false;
1211 	args->pud_pfn            = ULONG_MAX;
1212 	args->pmd_pfn            = ULONG_MAX;
1213 	args->pte_pfn            = ULONG_MAX;
1214 	args->fixed_pgd_pfn      = ULONG_MAX;
1215 	args->fixed_p4d_pfn      = ULONG_MAX;
1216 	args->fixed_pud_pfn      = ULONG_MAX;
1217 	args->fixed_pmd_pfn      = ULONG_MAX;
1218 	args->fixed_pte_pfn      = ULONG_MAX;
1219 
1220 	/* Allocate mm and vma */
1221 	args->mm = mm_alloc();
1222 	if (!args->mm) {
1223 		pr_err("Failed to allocate mm struct\n");
1224 		ret = -ENOMEM;
1225 		goto error;
1226 	}
1227 
1228 	args->vma = vm_area_alloc(args->mm);
1229 	if (!args->vma) {
1230 		pr_err("Failed to allocate vma\n");
1231 		ret = -ENOMEM;
1232 		goto error;
1233 	}
1234 
1235 	/*
1236 	 * Allocate page table entries. They will be modified in the tests.
1237 	 * Lets save the page table entries so that they can be released
1238 	 * when the tests are completed.
1239 	 */
1240 	args->pgdp = pgd_offset(args->mm, args->vaddr);
1241 	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
1242 	if (!args->p4dp) {
1243 		pr_err("Failed to allocate p4d entries\n");
1244 		ret = -ENOMEM;
1245 		goto error;
1246 	}
1247 	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
1248 	WARN_ON(!args->start_p4dp);
1249 
1250 	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
1251 	if (!args->pudp) {
1252 		pr_err("Failed to allocate pud entries\n");
1253 		ret = -ENOMEM;
1254 		goto error;
1255 	}
1256 	args->start_pudp = pud_offset(args->p4dp, 0UL);
1257 	WARN_ON(!args->start_pudp);
1258 
1259 	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
1260 	if (!args->pmdp) {
1261 		pr_err("Failed to allocate pmd entries\n");
1262 		ret = -ENOMEM;
1263 		goto error;
1264 	}
1265 	args->start_pmdp = pmd_offset(args->pudp, 0UL);
1266 	WARN_ON(!args->start_pmdp);
1267 
1268 	if (pte_alloc(args->mm, args->pmdp)) {
1269 		pr_err("Failed to allocate pte entries\n");
1270 		ret = -ENOMEM;
1271 		goto error;
1272 	}
1273 	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
1274 	WARN_ON(!args->start_ptep);
1275 
1276 	init_fixed_pfns(args);
1277 
1278 	/*
1279 	 * Allocate (huge) pages because some of the tests need to access
1280 	 * the data in the pages. The corresponding tests will be skipped
1281 	 * if we fail to allocate (huge) pages.
1282 	 */
1283 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1284 	    has_transparent_pud_hugepage()) {
1285 		page = debug_vm_pgtable_alloc_huge_page(args,
1286 				HPAGE_PUD_SHIFT - PAGE_SHIFT);
1287 		if (page) {
1288 			args->pud_pfn = page_to_pfn(page);
1289 			args->pmd_pfn = args->pud_pfn;
1290 			args->pte_pfn = args->pud_pfn;
1291 			return 0;
1292 		}
1293 	}
1294 
1295 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1296 	    has_transparent_hugepage()) {
1297 		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
1298 		if (page) {
1299 			args->pmd_pfn = page_to_pfn(page);
1300 			args->pte_pfn = args->pmd_pfn;
1301 			return 0;
1302 		}
1303 	}
1304 
1305 	page = alloc_page(GFP_KERNEL);
1306 	if (page)
1307 		args->pte_pfn = page_to_pfn(page);
1308 
1309 	return 0;
1310 
1311 error:
1312 	destroy_args(args);
1313 	return ret;
1314 }
1315 
1316 static int __init debug_vm_pgtable(void)
1317 {
1318 	struct pgtable_debug_args args;
1319 	spinlock_t *ptl = NULL;
1320 	int idx, ret;
1321 
1322 	pr_info("Validating architecture page table helpers\n");
1323 	ret = init_args(&args);
1324 	if (ret)
1325 		return ret;
1326 
1327 	/*
1328 	 * Iterate over each possible vm_flags to make sure that all
1329 	 * the basic page table transformation validations just hold
1330 	 * true irrespective of the starting protection value for a
1331 	 * given page table entry.
1332 	 *
1333 	 * Protection based vm_flags combinatins are always linear
1334 	 * and increasing i.e starting from VM_NONE and going upto
1335 	 * (VM_SHARED | READ | WRITE | EXEC).
1336 	 */
1337 #define VM_FLAGS_START	(VM_NONE)
1338 #define VM_FLAGS_END	(VM_SHARED | VM_EXEC | VM_WRITE | VM_READ)
1339 
1340 	for (idx = VM_FLAGS_START; idx <= VM_FLAGS_END; idx++) {
1341 		pte_basic_tests(&args, idx);
1342 		pmd_basic_tests(&args, idx);
1343 		pud_basic_tests(&args, idx);
1344 	}
1345 
1346 	/*
1347 	 * Both P4D and PGD level tests are very basic which do not
1348 	 * involve creating page table entries from the protection
1349 	 * value and the given pfn. Hence just keep them out from
1350 	 * the above iteration for now to save some test execution
1351 	 * time.
1352 	 */
1353 	p4d_basic_tests(&args);
1354 	pgd_basic_tests(&args);
1355 
1356 	pmd_leaf_tests(&args);
1357 	pud_leaf_tests(&args);
1358 
1359 	pte_special_tests(&args);
1360 	pte_protnone_tests(&args);
1361 	pmd_protnone_tests(&args);
1362 
1363 	pte_devmap_tests(&args);
1364 	pmd_devmap_tests(&args);
1365 	pud_devmap_tests(&args);
1366 
1367 	pte_soft_dirty_tests(&args);
1368 	pmd_soft_dirty_tests(&args);
1369 	pte_swap_soft_dirty_tests(&args);
1370 	pmd_swap_soft_dirty_tests(&args);
1371 
1372 	pte_swap_exclusive_tests(&args);
1373 
1374 	pte_swap_tests(&args);
1375 	pmd_swap_tests(&args);
1376 
1377 	swap_migration_tests(&args);
1378 
1379 	pmd_thp_tests(&args);
1380 	pud_thp_tests(&args);
1381 
1382 	hugetlb_basic_tests(&args);
1383 
1384 	/*
1385 	 * Page table modifying tests. They need to hold
1386 	 * proper page table lock.
1387 	 */
1388 
1389 	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
1390 	pte_clear_tests(&args);
1391 	pte_advanced_tests(&args);
1392 	if (args.ptep)
1393 		pte_unmap_unlock(args.ptep, ptl);
1394 
1395 	ptl = pmd_lock(args.mm, args.pmdp);
1396 	pmd_clear_tests(&args);
1397 	pmd_advanced_tests(&args);
1398 	pmd_huge_tests(&args);
1399 	pmd_populate_tests(&args);
1400 	spin_unlock(ptl);
1401 
1402 	ptl = pud_lock(args.mm, args.pudp);
1403 	pud_clear_tests(&args);
1404 	pud_advanced_tests(&args);
1405 	pud_huge_tests(&args);
1406 	pud_populate_tests(&args);
1407 	spin_unlock(ptl);
1408 
1409 	spin_lock(&(args.mm->page_table_lock));
1410 	p4d_clear_tests(&args);
1411 	pgd_clear_tests(&args);
1412 	p4d_populate_tests(&args);
1413 	pgd_populate_tests(&args);
1414 	spin_unlock(&(args.mm->page_table_lock));
1415 
1416 	destroy_args(&args);
1417 	return 0;
1418 }
1419 late_initcall(debug_vm_pgtable);
1420