xref: /openbmc/linux/mm/debug_vm_pgtable.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This kernel test validates architecture page table helpers and
4  * accessors and helps in verifying their continued compliance with
5  * expected generic MM semantics.
6  *
7  * Copyright (C) 2019 ARM Ltd.
8  *
9  * Author: Anshuman Khandual <anshuman.khandual@arm.com>
10  */
11 #define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12 
13 #include <linux/gfp.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/kernel.h>
17 #include <linux/kconfig.h>
18 #include <linux/mm.h>
19 #include <linux/mman.h>
20 #include <linux/mm_types.h>
21 #include <linux/module.h>
22 #include <linux/pfn_t.h>
23 #include <linux/printk.h>
24 #include <linux/pgtable.h>
25 #include <linux/random.h>
26 #include <linux/spinlock.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/start_kernel.h>
30 #include <linux/sched/mm.h>
31 #include <linux/io.h>
32 
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * Please refer Documentation/mm/arch_pgtable_helpers.rst for the semantics
39  * expectations that are being validated here. All future changes in here
40  * or the documentation need to be in sync.
41  *
42  * On s390 platform, the lower 4 bits are used to identify given page table
43  * entry type. But these bits might affect the ability to clear entries with
44  * pxx_clear() because of how dynamic page table folding works on s390. So
45  * while loading up the entries do not change the lower 4 bits. It does not
46  * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
47  * used to mark a pte entry.
48  */
49 #define S390_SKIP_MASK		GENMASK(3, 0)
50 #if __BITS_PER_LONG == 64
51 #define PPC64_SKIP_MASK		GENMASK(62, 62)
52 #else
53 #define PPC64_SKIP_MASK		0x0
54 #endif
55 #define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
56 #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
57 #define RANDOM_NZVALUE	GENMASK(7, 0)
58 
59 struct pgtable_debug_args {
60 	struct mm_struct	*mm;
61 	struct vm_area_struct	*vma;
62 
63 	pgd_t			*pgdp;
64 	p4d_t			*p4dp;
65 	pud_t			*pudp;
66 	pmd_t			*pmdp;
67 	pte_t			*ptep;
68 
69 	p4d_t			*start_p4dp;
70 	pud_t			*start_pudp;
71 	pmd_t			*start_pmdp;
72 	pgtable_t		start_ptep;
73 
74 	unsigned long		vaddr;
75 	pgprot_t		page_prot;
76 	pgprot_t		page_prot_none;
77 
78 	bool			is_contiguous_page;
79 	unsigned long		pud_pfn;
80 	unsigned long		pmd_pfn;
81 	unsigned long		pte_pfn;
82 
83 	unsigned long		fixed_pgd_pfn;
84 	unsigned long		fixed_p4d_pfn;
85 	unsigned long		fixed_pud_pfn;
86 	unsigned long		fixed_pmd_pfn;
87 	unsigned long		fixed_pte_pfn;
88 };
89 
90 static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
91 {
92 	pgprot_t prot = vm_get_page_prot(idx);
93 	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
94 	unsigned long val = idx, *ptr = &val;
95 
96 	pr_debug("Validating PTE basic (%pGv)\n", ptr);
97 
98 	/*
99 	 * This test needs to be executed after the given page table entry
100 	 * is created with pfn_pte() to make sure that vm_get_page_prot(idx)
101 	 * does not have the dirty bit enabled from the beginning. This is
102 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
103 	 * dirty bit being set.
104 	 */
105 	WARN_ON(pte_dirty(pte_wrprotect(pte)));
106 
107 	WARN_ON(!pte_same(pte, pte));
108 	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
109 	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
110 	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte))));
111 	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
112 	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
113 	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte))));
114 	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
115 	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
116 }
117 
118 static void __init pte_advanced_tests(struct pgtable_debug_args *args)
119 {
120 	struct page *page;
121 	pte_t pte;
122 
123 	/*
124 	 * Architectures optimize set_pte_at by avoiding TLB flush.
125 	 * This requires set_pte_at to be not used to update an
126 	 * existing pte entry. Clear pte before we do set_pte_at
127 	 *
128 	 * flush_dcache_page() is called after set_pte_at() to clear
129 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
130 	 * when it's released and page allocation check will fail when
131 	 * the page is allocated again. For architectures other than ARM64,
132 	 * the unexpected overhead of cache flushing is acceptable.
133 	 */
134 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
135 	if (!page)
136 		return;
137 
138 	pr_debug("Validating PTE advanced\n");
139 	pte = pfn_pte(args->pte_pfn, args->page_prot);
140 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
141 	flush_dcache_page(page);
142 	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
143 	pte = ptep_get(args->ptep);
144 	WARN_ON(pte_write(pte));
145 	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
146 	pte = ptep_get(args->ptep);
147 	WARN_ON(!pte_none(pte));
148 
149 	pte = pfn_pte(args->pte_pfn, args->page_prot);
150 	pte = pte_wrprotect(pte);
151 	pte = pte_mkclean(pte);
152 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
153 	flush_dcache_page(page);
154 	pte = pte_mkwrite(pte);
155 	pte = pte_mkdirty(pte);
156 	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
157 	pte = ptep_get(args->ptep);
158 	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
159 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
160 	pte = ptep_get(args->ptep);
161 	WARN_ON(!pte_none(pte));
162 
163 	pte = pfn_pte(args->pte_pfn, args->page_prot);
164 	pte = pte_mkyoung(pte);
165 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
166 	flush_dcache_page(page);
167 	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
168 	pte = ptep_get(args->ptep);
169 	WARN_ON(pte_young(pte));
170 
171 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
172 }
173 
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
176 {
177 	pgprot_t prot = vm_get_page_prot(idx);
178 	unsigned long val = idx, *ptr = &val;
179 	pmd_t pmd;
180 
181 	if (!has_transparent_hugepage())
182 		return;
183 
184 	pr_debug("Validating PMD basic (%pGv)\n", ptr);
185 	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
186 
187 	/*
188 	 * This test needs to be executed after the given page table entry
189 	 * is created with pfn_pmd() to make sure that vm_get_page_prot(idx)
190 	 * does not have the dirty bit enabled from the beginning. This is
191 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
192 	 * dirty bit being set.
193 	 */
194 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));
195 
196 
197 	WARN_ON(!pmd_same(pmd, pmd));
198 	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
199 	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
200 	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd))));
201 	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
202 	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
203 	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd))));
204 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
205 	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
206 	/*
207 	 * A huge page does not point to next level page table
208 	 * entry. Hence this must qualify as pmd_bad().
209 	 */
210 	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
211 }
212 
213 static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
214 {
215 	struct page *page;
216 	pmd_t pmd;
217 	unsigned long vaddr = args->vaddr;
218 
219 	if (!has_transparent_hugepage())
220 		return;
221 
222 	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
223 	if (!page)
224 		return;
225 
226 	/*
227 	 * flush_dcache_page() is called after set_pmd_at() to clear
228 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
229 	 * when it's released and page allocation check will fail when
230 	 * the page is allocated again. For architectures other than ARM64,
231 	 * the unexpected overhead of cache flushing is acceptable.
232 	 */
233 	pr_debug("Validating PMD advanced\n");
234 	/* Align the address wrt HPAGE_PMD_SIZE */
235 	vaddr &= HPAGE_PMD_MASK;
236 
237 	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
238 
239 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
240 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
241 	flush_dcache_page(page);
242 	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
243 	pmd = READ_ONCE(*args->pmdp);
244 	WARN_ON(pmd_write(pmd));
245 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
246 	pmd = READ_ONCE(*args->pmdp);
247 	WARN_ON(!pmd_none(pmd));
248 
249 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
250 	pmd = pmd_wrprotect(pmd);
251 	pmd = pmd_mkclean(pmd);
252 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
253 	flush_dcache_page(page);
254 	pmd = pmd_mkwrite(pmd);
255 	pmd = pmd_mkdirty(pmd);
256 	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
257 	pmd = READ_ONCE(*args->pmdp);
258 	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
259 	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
260 	pmd = READ_ONCE(*args->pmdp);
261 	WARN_ON(!pmd_none(pmd));
262 
263 	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
264 	pmd = pmd_mkyoung(pmd);
265 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
266 	flush_dcache_page(page);
267 	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
268 	pmd = READ_ONCE(*args->pmdp);
269 	WARN_ON(pmd_young(pmd));
270 
271 	/*  Clear the pte entries  */
272 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
273 	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
274 }
275 
276 static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
277 {
278 	pmd_t pmd;
279 
280 	if (!has_transparent_hugepage())
281 		return;
282 
283 	pr_debug("Validating PMD leaf\n");
284 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
285 
286 	/*
287 	 * PMD based THP is a leaf entry.
288 	 */
289 	pmd = pmd_mkhuge(pmd);
290 	WARN_ON(!pmd_leaf(pmd));
291 }
292 
293 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
294 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
295 {
296 	pgprot_t prot = vm_get_page_prot(idx);
297 	unsigned long val = idx, *ptr = &val;
298 	pud_t pud;
299 
300 	if (!has_transparent_hugepage())
301 		return;
302 
303 	pr_debug("Validating PUD basic (%pGv)\n", ptr);
304 	pud = pfn_pud(args->fixed_pud_pfn, prot);
305 
306 	/*
307 	 * This test needs to be executed after the given page table entry
308 	 * is created with pfn_pud() to make sure that vm_get_page_prot(idx)
309 	 * does not have the dirty bit enabled from the beginning. This is
310 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
311 	 * dirty bit being set.
312 	 */
313 	WARN_ON(pud_dirty(pud_wrprotect(pud)));
314 
315 	WARN_ON(!pud_same(pud, pud));
316 	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
317 	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
318 	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
319 	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
320 	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
321 	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
322 	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
323 	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
324 
325 	if (mm_pmd_folded(args->mm))
326 		return;
327 
328 	/*
329 	 * A huge page does not point to next level page table
330 	 * entry. Hence this must qualify as pud_bad().
331 	 */
332 	WARN_ON(!pud_bad(pud_mkhuge(pud)));
333 }
334 
335 static void __init pud_advanced_tests(struct pgtable_debug_args *args)
336 {
337 	struct page *page;
338 	unsigned long vaddr = args->vaddr;
339 	pud_t pud;
340 
341 	if (!has_transparent_hugepage())
342 		return;
343 
344 	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
345 	if (!page)
346 		return;
347 
348 	/*
349 	 * flush_dcache_page() is called after set_pud_at() to clear
350 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
351 	 * when it's released and page allocation check will fail when
352 	 * the page is allocated again. For architectures other than ARM64,
353 	 * the unexpected overhead of cache flushing is acceptable.
354 	 */
355 	pr_debug("Validating PUD advanced\n");
356 	/* Align the address wrt HPAGE_PUD_SIZE */
357 	vaddr &= HPAGE_PUD_MASK;
358 
359 	pud = pfn_pud(args->pud_pfn, args->page_prot);
360 	set_pud_at(args->mm, vaddr, args->pudp, pud);
361 	flush_dcache_page(page);
362 	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
363 	pud = READ_ONCE(*args->pudp);
364 	WARN_ON(pud_write(pud));
365 
366 #ifndef __PAGETABLE_PMD_FOLDED
367 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
368 	pud = READ_ONCE(*args->pudp);
369 	WARN_ON(!pud_none(pud));
370 #endif /* __PAGETABLE_PMD_FOLDED */
371 	pud = pfn_pud(args->pud_pfn, args->page_prot);
372 	pud = pud_wrprotect(pud);
373 	pud = pud_mkclean(pud);
374 	set_pud_at(args->mm, vaddr, args->pudp, pud);
375 	flush_dcache_page(page);
376 	pud = pud_mkwrite(pud);
377 	pud = pud_mkdirty(pud);
378 	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
379 	pud = READ_ONCE(*args->pudp);
380 	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));
381 
382 #ifndef __PAGETABLE_PMD_FOLDED
383 	pudp_huge_get_and_clear_full(args->mm, vaddr, args->pudp, 1);
384 	pud = READ_ONCE(*args->pudp);
385 	WARN_ON(!pud_none(pud));
386 #endif /* __PAGETABLE_PMD_FOLDED */
387 
388 	pud = pfn_pud(args->pud_pfn, args->page_prot);
389 	pud = pud_mkyoung(pud);
390 	set_pud_at(args->mm, vaddr, args->pudp, pud);
391 	flush_dcache_page(page);
392 	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
393 	pud = READ_ONCE(*args->pudp);
394 	WARN_ON(pud_young(pud));
395 
396 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
397 }
398 
399 static void __init pud_leaf_tests(struct pgtable_debug_args *args)
400 {
401 	pud_t pud;
402 
403 	if (!has_transparent_hugepage())
404 		return;
405 
406 	pr_debug("Validating PUD leaf\n");
407 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
408 	/*
409 	 * PUD based THP is a leaf entry.
410 	 */
411 	pud = pud_mkhuge(pud);
412 	WARN_ON(!pud_leaf(pud));
413 }
414 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
415 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
416 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
417 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
418 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
419 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
420 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
421 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
422 static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
423 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
424 static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
425 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
426 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
427 
428 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
429 static void __init pmd_huge_tests(struct pgtable_debug_args *args)
430 {
431 	pmd_t pmd;
432 
433 	if (!arch_vmap_pmd_supported(args->page_prot))
434 		return;
435 
436 	pr_debug("Validating PMD huge\n");
437 	/*
438 	 * X86 defined pmd_set_huge() verifies that the given
439 	 * PMD is not a populated non-leaf entry.
440 	 */
441 	WRITE_ONCE(*args->pmdp, __pmd(0));
442 	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
443 	WARN_ON(!pmd_clear_huge(args->pmdp));
444 	pmd = READ_ONCE(*args->pmdp);
445 	WARN_ON(!pmd_none(pmd));
446 }
447 
448 static void __init pud_huge_tests(struct pgtable_debug_args *args)
449 {
450 	pud_t pud;
451 
452 	if (!arch_vmap_pud_supported(args->page_prot))
453 		return;
454 
455 	pr_debug("Validating PUD huge\n");
456 	/*
457 	 * X86 defined pud_set_huge() verifies that the given
458 	 * PUD is not a populated non-leaf entry.
459 	 */
460 	WRITE_ONCE(*args->pudp, __pud(0));
461 	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
462 	WARN_ON(!pud_clear_huge(args->pudp));
463 	pud = READ_ONCE(*args->pudp);
464 	WARN_ON(!pud_none(pud));
465 }
466 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
467 static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
468 static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
469 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
470 
471 static void __init p4d_basic_tests(struct pgtable_debug_args *args)
472 {
473 	p4d_t p4d;
474 
475 	pr_debug("Validating P4D basic\n");
476 	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
477 	WARN_ON(!p4d_same(p4d, p4d));
478 }
479 
480 static void __init pgd_basic_tests(struct pgtable_debug_args *args)
481 {
482 	pgd_t pgd;
483 
484 	pr_debug("Validating PGD basic\n");
485 	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
486 	WARN_ON(!pgd_same(pgd, pgd));
487 }
488 
489 #ifndef __PAGETABLE_PUD_FOLDED
490 static void __init pud_clear_tests(struct pgtable_debug_args *args)
491 {
492 	pud_t pud = READ_ONCE(*args->pudp);
493 
494 	if (mm_pmd_folded(args->mm))
495 		return;
496 
497 	pr_debug("Validating PUD clear\n");
498 	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
499 	WRITE_ONCE(*args->pudp, pud);
500 	pud_clear(args->pudp);
501 	pud = READ_ONCE(*args->pudp);
502 	WARN_ON(!pud_none(pud));
503 }
504 
505 static void __init pud_populate_tests(struct pgtable_debug_args *args)
506 {
507 	pud_t pud;
508 
509 	if (mm_pmd_folded(args->mm))
510 		return;
511 
512 	pr_debug("Validating PUD populate\n");
513 	/*
514 	 * This entry points to next level page table page.
515 	 * Hence this must not qualify as pud_bad().
516 	 */
517 	pud_populate(args->mm, args->pudp, args->start_pmdp);
518 	pud = READ_ONCE(*args->pudp);
519 	WARN_ON(pud_bad(pud));
520 }
521 #else  /* !__PAGETABLE_PUD_FOLDED */
522 static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
523 static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
524 #endif /* PAGETABLE_PUD_FOLDED */
525 
526 #ifndef __PAGETABLE_P4D_FOLDED
527 static void __init p4d_clear_tests(struct pgtable_debug_args *args)
528 {
529 	p4d_t p4d = READ_ONCE(*args->p4dp);
530 
531 	if (mm_pud_folded(args->mm))
532 		return;
533 
534 	pr_debug("Validating P4D clear\n");
535 	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
536 	WRITE_ONCE(*args->p4dp, p4d);
537 	p4d_clear(args->p4dp);
538 	p4d = READ_ONCE(*args->p4dp);
539 	WARN_ON(!p4d_none(p4d));
540 }
541 
542 static void __init p4d_populate_tests(struct pgtable_debug_args *args)
543 {
544 	p4d_t p4d;
545 
546 	if (mm_pud_folded(args->mm))
547 		return;
548 
549 	pr_debug("Validating P4D populate\n");
550 	/*
551 	 * This entry points to next level page table page.
552 	 * Hence this must not qualify as p4d_bad().
553 	 */
554 	pud_clear(args->pudp);
555 	p4d_clear(args->p4dp);
556 	p4d_populate(args->mm, args->p4dp, args->start_pudp);
557 	p4d = READ_ONCE(*args->p4dp);
558 	WARN_ON(p4d_bad(p4d));
559 }
560 
561 static void __init pgd_clear_tests(struct pgtable_debug_args *args)
562 {
563 	pgd_t pgd = READ_ONCE(*(args->pgdp));
564 
565 	if (mm_p4d_folded(args->mm))
566 		return;
567 
568 	pr_debug("Validating PGD clear\n");
569 	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
570 	WRITE_ONCE(*args->pgdp, pgd);
571 	pgd_clear(args->pgdp);
572 	pgd = READ_ONCE(*args->pgdp);
573 	WARN_ON(!pgd_none(pgd));
574 }
575 
576 static void __init pgd_populate_tests(struct pgtable_debug_args *args)
577 {
578 	pgd_t pgd;
579 
580 	if (mm_p4d_folded(args->mm))
581 		return;
582 
583 	pr_debug("Validating PGD populate\n");
584 	/*
585 	 * This entry points to next level page table page.
586 	 * Hence this must not qualify as pgd_bad().
587 	 */
588 	p4d_clear(args->p4dp);
589 	pgd_clear(args->pgdp);
590 	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
591 	pgd = READ_ONCE(*args->pgdp);
592 	WARN_ON(pgd_bad(pgd));
593 }
594 #else  /* !__PAGETABLE_P4D_FOLDED */
595 static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
596 static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
597 static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
598 static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
599 #endif /* PAGETABLE_P4D_FOLDED */
600 
601 static void __init pte_clear_tests(struct pgtable_debug_args *args)
602 {
603 	struct page *page;
604 	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);
605 
606 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
607 	if (!page)
608 		return;
609 
610 	/*
611 	 * flush_dcache_page() is called after set_pte_at() to clear
612 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
613 	 * when it's released and page allocation check will fail when
614 	 * the page is allocated again. For architectures other than ARM64,
615 	 * the unexpected overhead of cache flushing is acceptable.
616 	 */
617 	pr_debug("Validating PTE clear\n");
618 #ifndef CONFIG_RISCV
619 	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
620 #endif
621 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
622 	flush_dcache_page(page);
623 	barrier();
624 	ptep_clear(args->mm, args->vaddr, args->ptep);
625 	pte = ptep_get(args->ptep);
626 	WARN_ON(!pte_none(pte));
627 }
628 
629 static void __init pmd_clear_tests(struct pgtable_debug_args *args)
630 {
631 	pmd_t pmd = READ_ONCE(*args->pmdp);
632 
633 	pr_debug("Validating PMD clear\n");
634 	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
635 	WRITE_ONCE(*args->pmdp, pmd);
636 	pmd_clear(args->pmdp);
637 	pmd = READ_ONCE(*args->pmdp);
638 	WARN_ON(!pmd_none(pmd));
639 }
640 
641 static void __init pmd_populate_tests(struct pgtable_debug_args *args)
642 {
643 	pmd_t pmd;
644 
645 	pr_debug("Validating PMD populate\n");
646 	/*
647 	 * This entry points to next level page table page.
648 	 * Hence this must not qualify as pmd_bad().
649 	 */
650 	pmd_populate(args->mm, args->pmdp, args->start_ptep);
651 	pmd = READ_ONCE(*args->pmdp);
652 	WARN_ON(pmd_bad(pmd));
653 }
654 
655 static void __init pte_special_tests(struct pgtable_debug_args *args)
656 {
657 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
658 
659 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
660 		return;
661 
662 	pr_debug("Validating PTE special\n");
663 	WARN_ON(!pte_special(pte_mkspecial(pte)));
664 }
665 
666 static void __init pte_protnone_tests(struct pgtable_debug_args *args)
667 {
668 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
669 
670 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
671 		return;
672 
673 	pr_debug("Validating PTE protnone\n");
674 	WARN_ON(!pte_protnone(pte));
675 	WARN_ON(!pte_present(pte));
676 }
677 
678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
680 {
681 	pmd_t pmd;
682 
683 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
684 		return;
685 
686 	if (!has_transparent_hugepage())
687 		return;
688 
689 	pr_debug("Validating PMD protnone\n");
690 	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
691 	WARN_ON(!pmd_protnone(pmd));
692 	WARN_ON(!pmd_present(pmd));
693 }
694 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
695 static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
696 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
697 
698 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
699 static void __init pte_devmap_tests(struct pgtable_debug_args *args)
700 {
701 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
702 
703 	pr_debug("Validating PTE devmap\n");
704 	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
705 }
706 
707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
709 {
710 	pmd_t pmd;
711 
712 	if (!has_transparent_hugepage())
713 		return;
714 
715 	pr_debug("Validating PMD devmap\n");
716 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
717 	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
718 }
719 
720 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
721 static void __init pud_devmap_tests(struct pgtable_debug_args *args)
722 {
723 	pud_t pud;
724 
725 	if (!has_transparent_hugepage())
726 		return;
727 
728 	pr_debug("Validating PUD devmap\n");
729 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
730 	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
731 }
732 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
733 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
734 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
735 #else  /* CONFIG_TRANSPARENT_HUGEPAGE */
736 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
737 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
739 #else
740 static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
741 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
742 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
743 #endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */
744 
745 static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
746 {
747 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
748 
749 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
750 		return;
751 
752 	pr_debug("Validating PTE soft dirty\n");
753 	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
754 	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
755 }
756 
757 static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
758 {
759 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
760 
761 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
762 		return;
763 
764 	pr_debug("Validating PTE swap soft dirty\n");
765 	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
766 	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
767 }
768 
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
771 {
772 	pmd_t pmd;
773 
774 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
775 		return;
776 
777 	if (!has_transparent_hugepage())
778 		return;
779 
780 	pr_debug("Validating PMD soft dirty\n");
781 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
782 	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
783 	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
784 }
785 
786 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
787 {
788 	pmd_t pmd;
789 
790 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
791 		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
792 		return;
793 
794 	if (!has_transparent_hugepage())
795 		return;
796 
797 	pr_debug("Validating PMD swap soft dirty\n");
798 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
799 	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
800 	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
801 }
802 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
803 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
804 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
806 
807 static void __init pte_swap_exclusive_tests(struct pgtable_debug_args *args)
808 {
809 #ifdef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
810 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
811 
812 	pr_debug("Validating PTE swap exclusive\n");
813 	pte = pte_swp_mkexclusive(pte);
814 	WARN_ON(!pte_swp_exclusive(pte));
815 	pte = pte_swp_clear_exclusive(pte);
816 	WARN_ON(pte_swp_exclusive(pte));
817 #endif /* __HAVE_ARCH_PTE_SWP_EXCLUSIVE */
818 }
819 
820 static void __init pte_swap_tests(struct pgtable_debug_args *args)
821 {
822 	swp_entry_t swp;
823 	pte_t pte;
824 
825 	pr_debug("Validating PTE swap\n");
826 	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
827 	swp = __pte_to_swp_entry(pte);
828 	pte = __swp_entry_to_pte(swp);
829 	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
830 }
831 
832 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
833 static void __init pmd_swap_tests(struct pgtable_debug_args *args)
834 {
835 	swp_entry_t swp;
836 	pmd_t pmd;
837 
838 	if (!has_transparent_hugepage())
839 		return;
840 
841 	pr_debug("Validating PMD swap\n");
842 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
843 	swp = __pmd_to_swp_entry(pmd);
844 	pmd = __swp_entry_to_pmd(swp);
845 	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
846 }
847 #else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
848 static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
849 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
850 
851 static void __init swap_migration_tests(struct pgtable_debug_args *args)
852 {
853 	struct page *page;
854 	swp_entry_t swp;
855 
856 	if (!IS_ENABLED(CONFIG_MIGRATION))
857 		return;
858 
859 	/*
860 	 * swap_migration_tests() requires a dedicated page as it needs to
861 	 * be locked before creating a migration entry from it. Locking the
862 	 * page that actually maps kernel text ('start_kernel') can be real
863 	 * problematic. Lets use the allocated page explicitly for this
864 	 * purpose.
865 	 */
866 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
867 	if (!page)
868 		return;
869 
870 	pr_debug("Validating swap migration\n");
871 
872 	/*
873 	 * make_[readable|writable]_migration_entry() expects given page to
874 	 * be locked, otherwise it stumbles upon a BUG_ON().
875 	 */
876 	__SetPageLocked(page);
877 	swp = make_writable_migration_entry(page_to_pfn(page));
878 	WARN_ON(!is_migration_entry(swp));
879 	WARN_ON(!is_writable_migration_entry(swp));
880 
881 	swp = make_readable_migration_entry(swp_offset(swp));
882 	WARN_ON(!is_migration_entry(swp));
883 	WARN_ON(is_writable_migration_entry(swp));
884 
885 	swp = make_readable_migration_entry(page_to_pfn(page));
886 	WARN_ON(!is_migration_entry(swp));
887 	WARN_ON(is_writable_migration_entry(swp));
888 	__ClearPageLocked(page);
889 }
890 
891 #ifdef CONFIG_HUGETLB_PAGE
892 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
893 {
894 	struct page *page;
895 	pte_t pte;
896 
897 	pr_debug("Validating HugeTLB basic\n");
898 	/*
899 	 * Accessing the page associated with the pfn is safe here,
900 	 * as it was previously derived from a real kernel symbol.
901 	 */
902 	page = pfn_to_page(args->fixed_pmd_pfn);
903 	pte = mk_huge_pte(page, args->page_prot);
904 
905 	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
906 	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
907 	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));
908 
909 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
910 	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
911 
912 	WARN_ON(!pte_huge(pte_mkhuge(pte)));
913 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
914 }
915 #else  /* !CONFIG_HUGETLB_PAGE */
916 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
917 #endif /* CONFIG_HUGETLB_PAGE */
918 
919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
920 static void __init pmd_thp_tests(struct pgtable_debug_args *args)
921 {
922 	pmd_t pmd;
923 
924 	if (!has_transparent_hugepage())
925 		return;
926 
927 	pr_debug("Validating PMD based THP\n");
928 	/*
929 	 * pmd_trans_huge() and pmd_present() must return positive after
930 	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
931 	 * optimization for transparent huge page. pmd_trans_huge() must
932 	 * be true if pmd_page() returns a valid THP to avoid taking the
933 	 * pmd_lock when others walk over non transhuge pmds (i.e. there
934 	 * are no THP allocated). Especially when splitting a THP and
935 	 * removing the present bit from the pmd, pmd_trans_huge() still
936 	 * needs to return true. pmd_present() should be true whenever
937 	 * pmd_trans_huge() returns true.
938 	 */
939 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
940 	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));
941 
942 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
943 	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
944 	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
945 #endif /* __HAVE_ARCH_PMDP_INVALIDATE */
946 }
947 
948 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
949 static void __init pud_thp_tests(struct pgtable_debug_args *args)
950 {
951 	pud_t pud;
952 
953 	if (!has_transparent_hugepage())
954 		return;
955 
956 	pr_debug("Validating PUD based THP\n");
957 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
958 	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));
959 
960 	/*
961 	 * pud_mkinvalid() has been dropped for now. Enable back
962 	 * these tests when it comes back with a modified pud_present().
963 	 *
964 	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
965 	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
966 	 */
967 }
968 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
969 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
970 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
971 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
972 static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
973 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
974 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
975 
976 static unsigned long __init get_random_vaddr(void)
977 {
978 	unsigned long random_vaddr, random_pages, total_user_pages;
979 
980 	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;
981 
982 	random_pages = get_random_long() % total_user_pages;
983 	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;
984 
985 	return random_vaddr;
986 }
987 
988 static void __init destroy_args(struct pgtable_debug_args *args)
989 {
990 	struct page *page = NULL;
991 
992 	/* Free (huge) page */
993 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
994 	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
995 	    has_transparent_hugepage() &&
996 	    args->pud_pfn != ULONG_MAX) {
997 		if (args->is_contiguous_page) {
998 			free_contig_range(args->pud_pfn,
999 					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
1000 		} else {
1001 			page = pfn_to_page(args->pud_pfn);
1002 			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
1003 		}
1004 
1005 		args->pud_pfn = ULONG_MAX;
1006 		args->pmd_pfn = ULONG_MAX;
1007 		args->pte_pfn = ULONG_MAX;
1008 	}
1009 
1010 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1011 	    has_transparent_hugepage() &&
1012 	    args->pmd_pfn != ULONG_MAX) {
1013 		if (args->is_contiguous_page) {
1014 			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
1015 		} else {
1016 			page = pfn_to_page(args->pmd_pfn);
1017 			__free_pages(page, HPAGE_PMD_ORDER);
1018 		}
1019 
1020 		args->pmd_pfn = ULONG_MAX;
1021 		args->pte_pfn = ULONG_MAX;
1022 	}
1023 
1024 	if (args->pte_pfn != ULONG_MAX) {
1025 		page = pfn_to_page(args->pte_pfn);
1026 		__free_pages(page, 0);
1027 
1028 		args->pte_pfn = ULONG_MAX;
1029 	}
1030 
1031 	/* Free page table entries */
1032 	if (args->start_ptep) {
1033 		pte_free(args->mm, args->start_ptep);
1034 		mm_dec_nr_ptes(args->mm);
1035 	}
1036 
1037 	if (args->start_pmdp) {
1038 		pmd_free(args->mm, args->start_pmdp);
1039 		mm_dec_nr_pmds(args->mm);
1040 	}
1041 
1042 	if (args->start_pudp) {
1043 		pud_free(args->mm, args->start_pudp);
1044 		mm_dec_nr_puds(args->mm);
1045 	}
1046 
1047 	if (args->start_p4dp)
1048 		p4d_free(args->mm, args->start_p4dp);
1049 
1050 	/* Free vma and mm struct */
1051 	if (args->vma)
1052 		vm_area_free(args->vma);
1053 
1054 	if (args->mm)
1055 		mmdrop(args->mm);
1056 }
1057 
1058 static struct page * __init
1059 debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
1060 {
1061 	struct page *page = NULL;
1062 
1063 #ifdef CONFIG_CONTIG_ALLOC
1064 	if (order >= MAX_ORDER) {
1065 		page = alloc_contig_pages((1 << order), GFP_KERNEL,
1066 					  first_online_node, NULL);
1067 		if (page) {
1068 			args->is_contiguous_page = true;
1069 			return page;
1070 		}
1071 	}
1072 #endif
1073 
1074 	if (order < MAX_ORDER)
1075 		page = alloc_pages(GFP_KERNEL, order);
1076 
1077 	return page;
1078 }
1079 
1080 static int __init init_args(struct pgtable_debug_args *args)
1081 {
1082 	struct page *page = NULL;
1083 	phys_addr_t phys;
1084 	int ret = 0;
1085 
1086 	/*
1087 	 * Initialize the debugging data.
1088 	 *
1089 	 * vm_get_page_prot(VM_NONE) or vm_get_page_prot(VM_SHARED|VM_NONE)
1090 	 * will help create page table entries with PROT_NONE permission as
1091 	 * required for pxx_protnone_tests().
1092 	 */
1093 	memset(args, 0, sizeof(*args));
1094 	args->vaddr              = get_random_vaddr();
1095 	args->page_prot          = vm_get_page_prot(VM_ACCESS_FLAGS);
1096 	args->page_prot_none     = vm_get_page_prot(VM_NONE);
1097 	args->is_contiguous_page = false;
1098 	args->pud_pfn            = ULONG_MAX;
1099 	args->pmd_pfn            = ULONG_MAX;
1100 	args->pte_pfn            = ULONG_MAX;
1101 	args->fixed_pgd_pfn      = ULONG_MAX;
1102 	args->fixed_p4d_pfn      = ULONG_MAX;
1103 	args->fixed_pud_pfn      = ULONG_MAX;
1104 	args->fixed_pmd_pfn      = ULONG_MAX;
1105 	args->fixed_pte_pfn      = ULONG_MAX;
1106 
1107 	/* Allocate mm and vma */
1108 	args->mm = mm_alloc();
1109 	if (!args->mm) {
1110 		pr_err("Failed to allocate mm struct\n");
1111 		ret = -ENOMEM;
1112 		goto error;
1113 	}
1114 
1115 	args->vma = vm_area_alloc(args->mm);
1116 	if (!args->vma) {
1117 		pr_err("Failed to allocate vma\n");
1118 		ret = -ENOMEM;
1119 		goto error;
1120 	}
1121 
1122 	/*
1123 	 * Allocate page table entries. They will be modified in the tests.
1124 	 * Lets save the page table entries so that they can be released
1125 	 * when the tests are completed.
1126 	 */
1127 	args->pgdp = pgd_offset(args->mm, args->vaddr);
1128 	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
1129 	if (!args->p4dp) {
1130 		pr_err("Failed to allocate p4d entries\n");
1131 		ret = -ENOMEM;
1132 		goto error;
1133 	}
1134 	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
1135 	WARN_ON(!args->start_p4dp);
1136 
1137 	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
1138 	if (!args->pudp) {
1139 		pr_err("Failed to allocate pud entries\n");
1140 		ret = -ENOMEM;
1141 		goto error;
1142 	}
1143 	args->start_pudp = pud_offset(args->p4dp, 0UL);
1144 	WARN_ON(!args->start_pudp);
1145 
1146 	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
1147 	if (!args->pmdp) {
1148 		pr_err("Failed to allocate pmd entries\n");
1149 		ret = -ENOMEM;
1150 		goto error;
1151 	}
1152 	args->start_pmdp = pmd_offset(args->pudp, 0UL);
1153 	WARN_ON(!args->start_pmdp);
1154 
1155 	if (pte_alloc(args->mm, args->pmdp)) {
1156 		pr_err("Failed to allocate pte entries\n");
1157 		ret = -ENOMEM;
1158 		goto error;
1159 	}
1160 	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
1161 	WARN_ON(!args->start_ptep);
1162 
1163 	/*
1164 	 * PFN for mapping at PTE level is determined from a standard kernel
1165 	 * text symbol. But pfns for higher page table levels are derived by
1166 	 * masking lower bits of this real pfn. These derived pfns might not
1167 	 * exist on the platform but that does not really matter as pfn_pxx()
1168 	 * helpers will still create appropriate entries for the test. This
1169 	 * helps avoid large memory block allocations to be used for mapping
1170 	 * at higher page table levels in some of the tests.
1171 	 */
1172 	phys = __pa_symbol(&start_kernel);
1173 	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
1174 	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
1175 	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
1176 	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
1177 	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
1178 	WARN_ON(!pfn_valid(args->fixed_pte_pfn));
1179 
1180 	/*
1181 	 * Allocate (huge) pages because some of the tests need to access
1182 	 * the data in the pages. The corresponding tests will be skipped
1183 	 * if we fail to allocate (huge) pages.
1184 	 */
1185 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1186 	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
1187 	    has_transparent_hugepage()) {
1188 		page = debug_vm_pgtable_alloc_huge_page(args,
1189 				HPAGE_PUD_SHIFT - PAGE_SHIFT);
1190 		if (page) {
1191 			args->pud_pfn = page_to_pfn(page);
1192 			args->pmd_pfn = args->pud_pfn;
1193 			args->pte_pfn = args->pud_pfn;
1194 			return 0;
1195 		}
1196 	}
1197 
1198 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1199 	    has_transparent_hugepage()) {
1200 		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
1201 		if (page) {
1202 			args->pmd_pfn = page_to_pfn(page);
1203 			args->pte_pfn = args->pmd_pfn;
1204 			return 0;
1205 		}
1206 	}
1207 
1208 	page = alloc_pages(GFP_KERNEL, 0);
1209 	if (page)
1210 		args->pte_pfn = page_to_pfn(page);
1211 
1212 	return 0;
1213 
1214 error:
1215 	destroy_args(args);
1216 	return ret;
1217 }
1218 
1219 static int __init debug_vm_pgtable(void)
1220 {
1221 	struct pgtable_debug_args args;
1222 	spinlock_t *ptl = NULL;
1223 	int idx, ret;
1224 
1225 	pr_info("Validating architecture page table helpers\n");
1226 	ret = init_args(&args);
1227 	if (ret)
1228 		return ret;
1229 
1230 	/*
1231 	 * Iterate over each possible vm_flags to make sure that all
1232 	 * the basic page table transformation validations just hold
1233 	 * true irrespective of the starting protection value for a
1234 	 * given page table entry.
1235 	 *
1236 	 * Protection based vm_flags combinatins are always linear
1237 	 * and increasing i.e starting from VM_NONE and going upto
1238 	 * (VM_SHARED | READ | WRITE | EXEC).
1239 	 */
1240 #define VM_FLAGS_START	(VM_NONE)
1241 #define VM_FLAGS_END	(VM_SHARED | VM_EXEC | VM_WRITE | VM_READ)
1242 
1243 	for (idx = VM_FLAGS_START; idx <= VM_FLAGS_END; idx++) {
1244 		pte_basic_tests(&args, idx);
1245 		pmd_basic_tests(&args, idx);
1246 		pud_basic_tests(&args, idx);
1247 	}
1248 
1249 	/*
1250 	 * Both P4D and PGD level tests are very basic which do not
1251 	 * involve creating page table entries from the protection
1252 	 * value and the given pfn. Hence just keep them out from
1253 	 * the above iteration for now to save some test execution
1254 	 * time.
1255 	 */
1256 	p4d_basic_tests(&args);
1257 	pgd_basic_tests(&args);
1258 
1259 	pmd_leaf_tests(&args);
1260 	pud_leaf_tests(&args);
1261 
1262 	pte_special_tests(&args);
1263 	pte_protnone_tests(&args);
1264 	pmd_protnone_tests(&args);
1265 
1266 	pte_devmap_tests(&args);
1267 	pmd_devmap_tests(&args);
1268 	pud_devmap_tests(&args);
1269 
1270 	pte_soft_dirty_tests(&args);
1271 	pmd_soft_dirty_tests(&args);
1272 	pte_swap_soft_dirty_tests(&args);
1273 	pmd_swap_soft_dirty_tests(&args);
1274 
1275 	pte_swap_exclusive_tests(&args);
1276 
1277 	pte_swap_tests(&args);
1278 	pmd_swap_tests(&args);
1279 
1280 	swap_migration_tests(&args);
1281 
1282 	pmd_thp_tests(&args);
1283 	pud_thp_tests(&args);
1284 
1285 	hugetlb_basic_tests(&args);
1286 
1287 	/*
1288 	 * Page table modifying tests. They need to hold
1289 	 * proper page table lock.
1290 	 */
1291 
1292 	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
1293 	pte_clear_tests(&args);
1294 	pte_advanced_tests(&args);
1295 	pte_unmap_unlock(args.ptep, ptl);
1296 
1297 	ptl = pmd_lock(args.mm, args.pmdp);
1298 	pmd_clear_tests(&args);
1299 	pmd_advanced_tests(&args);
1300 	pmd_huge_tests(&args);
1301 	pmd_populate_tests(&args);
1302 	spin_unlock(ptl);
1303 
1304 	ptl = pud_lock(args.mm, args.pudp);
1305 	pud_clear_tests(&args);
1306 	pud_advanced_tests(&args);
1307 	pud_huge_tests(&args);
1308 	pud_populate_tests(&args);
1309 	spin_unlock(ptl);
1310 
1311 	spin_lock(&(args.mm->page_table_lock));
1312 	p4d_clear_tests(&args);
1313 	pgd_clear_tests(&args);
1314 	p4d_populate_tests(&args);
1315 	pgd_populate_tests(&args);
1316 	spin_unlock(&(args.mm->page_table_lock));
1317 
1318 	destroy_args(&args);
1319 	return 0;
1320 }
1321 late_initcall(debug_vm_pgtable);
1322