xref: /openbmc/linux/mm/debug_vm_pgtable.c (revision 240e6d25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This kernel test validates architecture page table helpers and
4  * accessors and helps in verifying their continued compliance with
5  * expected generic MM semantics.
6  *
7  * Copyright (C) 2019 ARM Ltd.
8  *
9  * Author: Anshuman Khandual <anshuman.khandual@arm.com>
10  */
11 #define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12 
13 #include <linux/gfp.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/kernel.h>
17 #include <linux/kconfig.h>
18 #include <linux/mm.h>
19 #include <linux/mman.h>
20 #include <linux/mm_types.h>
21 #include <linux/module.h>
22 #include <linux/pfn_t.h>
23 #include <linux/printk.h>
24 #include <linux/pgtable.h>
25 #include <linux/random.h>
26 #include <linux/spinlock.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/start_kernel.h>
30 #include <linux/sched/mm.h>
31 #include <linux/io.h>
32 
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * Please refer Documentation/vm/arch_pgtable_helpers.rst for the semantics
39  * expectations that are being validated here. All future changes in here
40  * or the documentation need to be in sync.
41  */
42 
43 #define VMFLAGS	(VM_READ|VM_WRITE|VM_EXEC)
44 
45 /*
46  * On s390 platform, the lower 4 bits are used to identify given page table
47  * entry type. But these bits might affect the ability to clear entries with
48  * pxx_clear() because of how dynamic page table folding works on s390. So
49  * while loading up the entries do not change the lower 4 bits. It does not
50  * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
51  * used to mark a pte entry.
52  */
53 #define S390_SKIP_MASK		GENMASK(3, 0)
54 #if __BITS_PER_LONG == 64
55 #define PPC64_SKIP_MASK		GENMASK(62, 62)
56 #else
57 #define PPC64_SKIP_MASK		0x0
58 #endif
59 #define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
60 #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
61 #define RANDOM_NZVALUE	GENMASK(7, 0)
62 
63 struct pgtable_debug_args {
64 	struct mm_struct	*mm;
65 	struct vm_area_struct	*vma;
66 
67 	pgd_t			*pgdp;
68 	p4d_t			*p4dp;
69 	pud_t			*pudp;
70 	pmd_t			*pmdp;
71 	pte_t			*ptep;
72 
73 	p4d_t			*start_p4dp;
74 	pud_t			*start_pudp;
75 	pmd_t			*start_pmdp;
76 	pgtable_t		start_ptep;
77 
78 	unsigned long		vaddr;
79 	pgprot_t		page_prot;
80 	pgprot_t		page_prot_none;
81 
82 	bool			is_contiguous_page;
83 	unsigned long		pud_pfn;
84 	unsigned long		pmd_pfn;
85 	unsigned long		pte_pfn;
86 
87 	unsigned long		fixed_pgd_pfn;
88 	unsigned long		fixed_p4d_pfn;
89 	unsigned long		fixed_pud_pfn;
90 	unsigned long		fixed_pmd_pfn;
91 	unsigned long		fixed_pte_pfn;
92 };
93 
94 static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
95 {
96 	pgprot_t prot = protection_map[idx];
97 	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
98 	unsigned long val = idx, *ptr = &val;
99 
100 	pr_debug("Validating PTE basic (%pGv)\n", ptr);
101 
102 	/*
103 	 * This test needs to be executed after the given page table entry
104 	 * is created with pfn_pte() to make sure that protection_map[idx]
105 	 * does not have the dirty bit enabled from the beginning. This is
106 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
107 	 * dirty bit being set.
108 	 */
109 	WARN_ON(pte_dirty(pte_wrprotect(pte)));
110 
111 	WARN_ON(!pte_same(pte, pte));
112 	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
113 	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
114 	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte))));
115 	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
116 	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
117 	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte))));
118 	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
119 	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
120 }
121 
122 static void __init pte_advanced_tests(struct pgtable_debug_args *args)
123 {
124 	struct page *page;
125 	pte_t pte;
126 
127 	/*
128 	 * Architectures optimize set_pte_at by avoiding TLB flush.
129 	 * This requires set_pte_at to be not used to update an
130 	 * existing pte entry. Clear pte before we do set_pte_at
131 	 *
132 	 * flush_dcache_page() is called after set_pte_at() to clear
133 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
134 	 * when it's released and page allocation check will fail when
135 	 * the page is allocated again. For architectures other than ARM64,
136 	 * the unexpected overhead of cache flushing is acceptable.
137 	 */
138 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
139 	if (!page)
140 		return;
141 
142 	pr_debug("Validating PTE advanced\n");
143 	pte = pfn_pte(args->pte_pfn, args->page_prot);
144 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
145 	flush_dcache_page(page);
146 	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
147 	pte = ptep_get(args->ptep);
148 	WARN_ON(pte_write(pte));
149 	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
150 	pte = ptep_get(args->ptep);
151 	WARN_ON(!pte_none(pte));
152 
153 	pte = pfn_pte(args->pte_pfn, args->page_prot);
154 	pte = pte_wrprotect(pte);
155 	pte = pte_mkclean(pte);
156 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
157 	flush_dcache_page(page);
158 	pte = pte_mkwrite(pte);
159 	pte = pte_mkdirty(pte);
160 	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
161 	pte = ptep_get(args->ptep);
162 	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
163 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
164 	pte = ptep_get(args->ptep);
165 	WARN_ON(!pte_none(pte));
166 
167 	pte = pfn_pte(args->pte_pfn, args->page_prot);
168 	pte = pte_mkyoung(pte);
169 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
170 	flush_dcache_page(page);
171 	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
172 	pte = ptep_get(args->ptep);
173 	WARN_ON(pte_young(pte));
174 }
175 
176 static void __init pte_savedwrite_tests(struct pgtable_debug_args *args)
177 {
178 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
179 
180 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
181 		return;
182 
183 	pr_debug("Validating PTE saved write\n");
184 	WARN_ON(!pte_savedwrite(pte_mk_savedwrite(pte_clear_savedwrite(pte))));
185 	WARN_ON(pte_savedwrite(pte_clear_savedwrite(pte_mk_savedwrite(pte))));
186 }
187 
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
190 {
191 	pgprot_t prot = protection_map[idx];
192 	unsigned long val = idx, *ptr = &val;
193 	pmd_t pmd;
194 
195 	if (!has_transparent_hugepage())
196 		return;
197 
198 	pr_debug("Validating PMD basic (%pGv)\n", ptr);
199 	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
200 
201 	/*
202 	 * This test needs to be executed after the given page table entry
203 	 * is created with pfn_pmd() to make sure that protection_map[idx]
204 	 * does not have the dirty bit enabled from the beginning. This is
205 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
206 	 * dirty bit being set.
207 	 */
208 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));
209 
210 
211 	WARN_ON(!pmd_same(pmd, pmd));
212 	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
213 	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
214 	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd))));
215 	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
216 	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
217 	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd))));
218 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
219 	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
220 	/*
221 	 * A huge page does not point to next level page table
222 	 * entry. Hence this must qualify as pmd_bad().
223 	 */
224 	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
225 }
226 
227 static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
228 {
229 	struct page *page;
230 	pmd_t pmd;
231 	unsigned long vaddr = args->vaddr;
232 
233 	if (!has_transparent_hugepage())
234 		return;
235 
236 	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
237 	if (!page)
238 		return;
239 
240 	/*
241 	 * flush_dcache_page() is called after set_pmd_at() to clear
242 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
243 	 * when it's released and page allocation check will fail when
244 	 * the page is allocated again. For architectures other than ARM64,
245 	 * the unexpected overhead of cache flushing is acceptable.
246 	 */
247 	pr_debug("Validating PMD advanced\n");
248 	/* Align the address wrt HPAGE_PMD_SIZE */
249 	vaddr &= HPAGE_PMD_MASK;
250 
251 	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
252 
253 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
254 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
255 	flush_dcache_page(page);
256 	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
257 	pmd = READ_ONCE(*args->pmdp);
258 	WARN_ON(pmd_write(pmd));
259 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
260 	pmd = READ_ONCE(*args->pmdp);
261 	WARN_ON(!pmd_none(pmd));
262 
263 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
264 	pmd = pmd_wrprotect(pmd);
265 	pmd = pmd_mkclean(pmd);
266 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
267 	flush_dcache_page(page);
268 	pmd = pmd_mkwrite(pmd);
269 	pmd = pmd_mkdirty(pmd);
270 	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
271 	pmd = READ_ONCE(*args->pmdp);
272 	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
273 	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
274 	pmd = READ_ONCE(*args->pmdp);
275 	WARN_ON(!pmd_none(pmd));
276 
277 	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
278 	pmd = pmd_mkyoung(pmd);
279 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
280 	flush_dcache_page(page);
281 	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
282 	pmd = READ_ONCE(*args->pmdp);
283 	WARN_ON(pmd_young(pmd));
284 
285 	/*  Clear the pte entries  */
286 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
287 	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
288 }
289 
290 static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
291 {
292 	pmd_t pmd;
293 
294 	if (!has_transparent_hugepage())
295 		return;
296 
297 	pr_debug("Validating PMD leaf\n");
298 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
299 
300 	/*
301 	 * PMD based THP is a leaf entry.
302 	 */
303 	pmd = pmd_mkhuge(pmd);
304 	WARN_ON(!pmd_leaf(pmd));
305 }
306 
307 static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args)
308 {
309 	pmd_t pmd;
310 
311 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
312 		return;
313 
314 	if (!has_transparent_hugepage())
315 		return;
316 
317 	pr_debug("Validating PMD saved write\n");
318 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none);
319 	WARN_ON(!pmd_savedwrite(pmd_mk_savedwrite(pmd_clear_savedwrite(pmd))));
320 	WARN_ON(pmd_savedwrite(pmd_clear_savedwrite(pmd_mk_savedwrite(pmd))));
321 }
322 
323 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
324 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
325 {
326 	pgprot_t prot = protection_map[idx];
327 	unsigned long val = idx, *ptr = &val;
328 	pud_t pud;
329 
330 	if (!has_transparent_hugepage())
331 		return;
332 
333 	pr_debug("Validating PUD basic (%pGv)\n", ptr);
334 	pud = pfn_pud(args->fixed_pud_pfn, prot);
335 
336 	/*
337 	 * This test needs to be executed after the given page table entry
338 	 * is created with pfn_pud() to make sure that protection_map[idx]
339 	 * does not have the dirty bit enabled from the beginning. This is
340 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
341 	 * dirty bit being set.
342 	 */
343 	WARN_ON(pud_dirty(pud_wrprotect(pud)));
344 
345 	WARN_ON(!pud_same(pud, pud));
346 	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
347 	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
348 	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
349 	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
350 	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
351 	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
352 	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
353 	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
354 
355 	if (mm_pmd_folded(args->mm))
356 		return;
357 
358 	/*
359 	 * A huge page does not point to next level page table
360 	 * entry. Hence this must qualify as pud_bad().
361 	 */
362 	WARN_ON(!pud_bad(pud_mkhuge(pud)));
363 }
364 
365 static void __init pud_advanced_tests(struct pgtable_debug_args *args)
366 {
367 	struct page *page;
368 	unsigned long vaddr = args->vaddr;
369 	pud_t pud;
370 
371 	if (!has_transparent_hugepage())
372 		return;
373 
374 	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
375 	if (!page)
376 		return;
377 
378 	/*
379 	 * flush_dcache_page() is called after set_pud_at() to clear
380 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
381 	 * when it's released and page allocation check will fail when
382 	 * the page is allocated again. For architectures other than ARM64,
383 	 * the unexpected overhead of cache flushing is acceptable.
384 	 */
385 	pr_debug("Validating PUD advanced\n");
386 	/* Align the address wrt HPAGE_PUD_SIZE */
387 	vaddr &= HPAGE_PUD_MASK;
388 
389 	pud = pfn_pud(args->pud_pfn, args->page_prot);
390 	set_pud_at(args->mm, vaddr, args->pudp, pud);
391 	flush_dcache_page(page);
392 	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
393 	pud = READ_ONCE(*args->pudp);
394 	WARN_ON(pud_write(pud));
395 
396 #ifndef __PAGETABLE_PMD_FOLDED
397 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
398 	pud = READ_ONCE(*args->pudp);
399 	WARN_ON(!pud_none(pud));
400 #endif /* __PAGETABLE_PMD_FOLDED */
401 	pud = pfn_pud(args->pud_pfn, args->page_prot);
402 	pud = pud_wrprotect(pud);
403 	pud = pud_mkclean(pud);
404 	set_pud_at(args->mm, vaddr, args->pudp, pud);
405 	flush_dcache_page(page);
406 	pud = pud_mkwrite(pud);
407 	pud = pud_mkdirty(pud);
408 	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
409 	pud = READ_ONCE(*args->pudp);
410 	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));
411 
412 #ifndef __PAGETABLE_PMD_FOLDED
413 	pudp_huge_get_and_clear_full(args->mm, vaddr, args->pudp, 1);
414 	pud = READ_ONCE(*args->pudp);
415 	WARN_ON(!pud_none(pud));
416 #endif /* __PAGETABLE_PMD_FOLDED */
417 
418 	pud = pfn_pud(args->pud_pfn, args->page_prot);
419 	pud = pud_mkyoung(pud);
420 	set_pud_at(args->mm, vaddr, args->pudp, pud);
421 	flush_dcache_page(page);
422 	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
423 	pud = READ_ONCE(*args->pudp);
424 	WARN_ON(pud_young(pud));
425 
426 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
427 }
428 
429 static void __init pud_leaf_tests(struct pgtable_debug_args *args)
430 {
431 	pud_t pud;
432 
433 	if (!has_transparent_hugepage())
434 		return;
435 
436 	pr_debug("Validating PUD leaf\n");
437 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
438 	/*
439 	 * PUD based THP is a leaf entry.
440 	 */
441 	pud = pud_mkhuge(pud);
442 	WARN_ON(!pud_leaf(pud));
443 }
444 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
445 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
446 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
447 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
448 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
449 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
450 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
451 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
452 static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
453 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
454 static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
455 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
456 static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args) { }
457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
458 
459 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
460 static void __init pmd_huge_tests(struct pgtable_debug_args *args)
461 {
462 	pmd_t pmd;
463 
464 	if (!arch_vmap_pmd_supported(args->page_prot))
465 		return;
466 
467 	pr_debug("Validating PMD huge\n");
468 	/*
469 	 * X86 defined pmd_set_huge() verifies that the given
470 	 * PMD is not a populated non-leaf entry.
471 	 */
472 	WRITE_ONCE(*args->pmdp, __pmd(0));
473 	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
474 	WARN_ON(!pmd_clear_huge(args->pmdp));
475 	pmd = READ_ONCE(*args->pmdp);
476 	WARN_ON(!pmd_none(pmd));
477 }
478 
479 static void __init pud_huge_tests(struct pgtable_debug_args *args)
480 {
481 	pud_t pud;
482 
483 	if (!arch_vmap_pud_supported(args->page_prot))
484 		return;
485 
486 	pr_debug("Validating PUD huge\n");
487 	/*
488 	 * X86 defined pud_set_huge() verifies that the given
489 	 * PUD is not a populated non-leaf entry.
490 	 */
491 	WRITE_ONCE(*args->pudp, __pud(0));
492 	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
493 	WARN_ON(!pud_clear_huge(args->pudp));
494 	pud = READ_ONCE(*args->pudp);
495 	WARN_ON(!pud_none(pud));
496 }
497 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
498 static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
499 static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
500 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
501 
502 static void __init p4d_basic_tests(struct pgtable_debug_args *args)
503 {
504 	p4d_t p4d;
505 
506 	pr_debug("Validating P4D basic\n");
507 	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
508 	WARN_ON(!p4d_same(p4d, p4d));
509 }
510 
511 static void __init pgd_basic_tests(struct pgtable_debug_args *args)
512 {
513 	pgd_t pgd;
514 
515 	pr_debug("Validating PGD basic\n");
516 	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
517 	WARN_ON(!pgd_same(pgd, pgd));
518 }
519 
520 #ifndef __PAGETABLE_PUD_FOLDED
521 static void __init pud_clear_tests(struct pgtable_debug_args *args)
522 {
523 	pud_t pud = READ_ONCE(*args->pudp);
524 
525 	if (mm_pmd_folded(args->mm))
526 		return;
527 
528 	pr_debug("Validating PUD clear\n");
529 	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
530 	WRITE_ONCE(*args->pudp, pud);
531 	pud_clear(args->pudp);
532 	pud = READ_ONCE(*args->pudp);
533 	WARN_ON(!pud_none(pud));
534 }
535 
536 static void __init pud_populate_tests(struct pgtable_debug_args *args)
537 {
538 	pud_t pud;
539 
540 	if (mm_pmd_folded(args->mm))
541 		return;
542 
543 	pr_debug("Validating PUD populate\n");
544 	/*
545 	 * This entry points to next level page table page.
546 	 * Hence this must not qualify as pud_bad().
547 	 */
548 	pud_populate(args->mm, args->pudp, args->start_pmdp);
549 	pud = READ_ONCE(*args->pudp);
550 	WARN_ON(pud_bad(pud));
551 }
552 #else  /* !__PAGETABLE_PUD_FOLDED */
553 static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
554 static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
555 #endif /* PAGETABLE_PUD_FOLDED */
556 
557 #ifndef __PAGETABLE_P4D_FOLDED
558 static void __init p4d_clear_tests(struct pgtable_debug_args *args)
559 {
560 	p4d_t p4d = READ_ONCE(*args->p4dp);
561 
562 	if (mm_pud_folded(args->mm))
563 		return;
564 
565 	pr_debug("Validating P4D clear\n");
566 	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
567 	WRITE_ONCE(*args->p4dp, p4d);
568 	p4d_clear(args->p4dp);
569 	p4d = READ_ONCE(*args->p4dp);
570 	WARN_ON(!p4d_none(p4d));
571 }
572 
573 static void __init p4d_populate_tests(struct pgtable_debug_args *args)
574 {
575 	p4d_t p4d;
576 
577 	if (mm_pud_folded(args->mm))
578 		return;
579 
580 	pr_debug("Validating P4D populate\n");
581 	/*
582 	 * This entry points to next level page table page.
583 	 * Hence this must not qualify as p4d_bad().
584 	 */
585 	pud_clear(args->pudp);
586 	p4d_clear(args->p4dp);
587 	p4d_populate(args->mm, args->p4dp, args->start_pudp);
588 	p4d = READ_ONCE(*args->p4dp);
589 	WARN_ON(p4d_bad(p4d));
590 }
591 
592 static void __init pgd_clear_tests(struct pgtable_debug_args *args)
593 {
594 	pgd_t pgd = READ_ONCE(*(args->pgdp));
595 
596 	if (mm_p4d_folded(args->mm))
597 		return;
598 
599 	pr_debug("Validating PGD clear\n");
600 	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
601 	WRITE_ONCE(*args->pgdp, pgd);
602 	pgd_clear(args->pgdp);
603 	pgd = READ_ONCE(*args->pgdp);
604 	WARN_ON(!pgd_none(pgd));
605 }
606 
607 static void __init pgd_populate_tests(struct pgtable_debug_args *args)
608 {
609 	pgd_t pgd;
610 
611 	if (mm_p4d_folded(args->mm))
612 		return;
613 
614 	pr_debug("Validating PGD populate\n");
615 	/*
616 	 * This entry points to next level page table page.
617 	 * Hence this must not qualify as pgd_bad().
618 	 */
619 	p4d_clear(args->p4dp);
620 	pgd_clear(args->pgdp);
621 	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
622 	pgd = READ_ONCE(*args->pgdp);
623 	WARN_ON(pgd_bad(pgd));
624 }
625 #else  /* !__PAGETABLE_P4D_FOLDED */
626 static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
627 static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
628 static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
629 static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
630 #endif /* PAGETABLE_P4D_FOLDED */
631 
632 static void __init pte_clear_tests(struct pgtable_debug_args *args)
633 {
634 	struct page *page;
635 	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);
636 
637 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
638 	if (!page)
639 		return;
640 
641 	/*
642 	 * flush_dcache_page() is called after set_pte_at() to clear
643 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
644 	 * when it's released and page allocation check will fail when
645 	 * the page is allocated again. For architectures other than ARM64,
646 	 * the unexpected overhead of cache flushing is acceptable.
647 	 */
648 	pr_debug("Validating PTE clear\n");
649 #ifndef CONFIG_RISCV
650 	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
651 #endif
652 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
653 	flush_dcache_page(page);
654 	barrier();
655 	pte_clear(args->mm, args->vaddr, args->ptep);
656 	pte = ptep_get(args->ptep);
657 	WARN_ON(!pte_none(pte));
658 }
659 
660 static void __init pmd_clear_tests(struct pgtable_debug_args *args)
661 {
662 	pmd_t pmd = READ_ONCE(*args->pmdp);
663 
664 	pr_debug("Validating PMD clear\n");
665 	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
666 	WRITE_ONCE(*args->pmdp, pmd);
667 	pmd_clear(args->pmdp);
668 	pmd = READ_ONCE(*args->pmdp);
669 	WARN_ON(!pmd_none(pmd));
670 }
671 
672 static void __init pmd_populate_tests(struct pgtable_debug_args *args)
673 {
674 	pmd_t pmd;
675 
676 	pr_debug("Validating PMD populate\n");
677 	/*
678 	 * This entry points to next level page table page.
679 	 * Hence this must not qualify as pmd_bad().
680 	 */
681 	pmd_populate(args->mm, args->pmdp, args->start_ptep);
682 	pmd = READ_ONCE(*args->pmdp);
683 	WARN_ON(pmd_bad(pmd));
684 }
685 
686 static void __init pte_special_tests(struct pgtable_debug_args *args)
687 {
688 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
689 
690 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
691 		return;
692 
693 	pr_debug("Validating PTE special\n");
694 	WARN_ON(!pte_special(pte_mkspecial(pte)));
695 }
696 
697 static void __init pte_protnone_tests(struct pgtable_debug_args *args)
698 {
699 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
700 
701 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
702 		return;
703 
704 	pr_debug("Validating PTE protnone\n");
705 	WARN_ON(!pte_protnone(pte));
706 	WARN_ON(!pte_present(pte));
707 }
708 
709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
710 static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
711 {
712 	pmd_t pmd;
713 
714 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
715 		return;
716 
717 	if (!has_transparent_hugepage())
718 		return;
719 
720 	pr_debug("Validating PMD protnone\n");
721 	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
722 	WARN_ON(!pmd_protnone(pmd));
723 	WARN_ON(!pmd_present(pmd));
724 }
725 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
726 static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
728 
729 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
730 static void __init pte_devmap_tests(struct pgtable_debug_args *args)
731 {
732 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
733 
734 	pr_debug("Validating PTE devmap\n");
735 	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
736 }
737 
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
740 {
741 	pmd_t pmd;
742 
743 	if (!has_transparent_hugepage())
744 		return;
745 
746 	pr_debug("Validating PMD devmap\n");
747 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
748 	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
749 }
750 
751 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
752 static void __init pud_devmap_tests(struct pgtable_debug_args *args)
753 {
754 	pud_t pud;
755 
756 	if (!has_transparent_hugepage())
757 		return;
758 
759 	pr_debug("Validating PUD devmap\n");
760 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
761 	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
762 }
763 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
764 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
765 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
766 #else  /* CONFIG_TRANSPARENT_HUGEPAGE */
767 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
768 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
770 #else
771 static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
772 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
773 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
774 #endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */
775 
776 static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
777 {
778 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
779 
780 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
781 		return;
782 
783 	pr_debug("Validating PTE soft dirty\n");
784 	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
785 	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
786 }
787 
788 static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
789 {
790 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
791 
792 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
793 		return;
794 
795 	pr_debug("Validating PTE swap soft dirty\n");
796 	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
797 	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
798 }
799 
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
802 {
803 	pmd_t pmd;
804 
805 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
806 		return;
807 
808 	if (!has_transparent_hugepage())
809 		return;
810 
811 	pr_debug("Validating PMD soft dirty\n");
812 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
813 	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
814 	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
815 }
816 
817 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
818 {
819 	pmd_t pmd;
820 
821 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
822 		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
823 		return;
824 
825 	if (!has_transparent_hugepage())
826 		return;
827 
828 	pr_debug("Validating PMD swap soft dirty\n");
829 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
830 	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
831 	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
832 }
833 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
834 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
835 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
836 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
837 
838 static void __init pte_swap_tests(struct pgtable_debug_args *args)
839 {
840 	swp_entry_t swp;
841 	pte_t pte;
842 
843 	pr_debug("Validating PTE swap\n");
844 	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
845 	swp = __pte_to_swp_entry(pte);
846 	pte = __swp_entry_to_pte(swp);
847 	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
848 }
849 
850 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
851 static void __init pmd_swap_tests(struct pgtable_debug_args *args)
852 {
853 	swp_entry_t swp;
854 	pmd_t pmd;
855 
856 	if (!has_transparent_hugepage())
857 		return;
858 
859 	pr_debug("Validating PMD swap\n");
860 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
861 	swp = __pmd_to_swp_entry(pmd);
862 	pmd = __swp_entry_to_pmd(swp);
863 	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
864 }
865 #else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
866 static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
867 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
868 
869 static void __init swap_migration_tests(struct pgtable_debug_args *args)
870 {
871 	struct page *page;
872 	swp_entry_t swp;
873 
874 	if (!IS_ENABLED(CONFIG_MIGRATION))
875 		return;
876 
877 	/*
878 	 * swap_migration_tests() requires a dedicated page as it needs to
879 	 * be locked before creating a migration entry from it. Locking the
880 	 * page that actually maps kernel text ('start_kernel') can be real
881 	 * problematic. Lets use the allocated page explicitly for this
882 	 * purpose.
883 	 */
884 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
885 	if (!page)
886 		return;
887 
888 	pr_debug("Validating swap migration\n");
889 
890 	/*
891 	 * make_migration_entry() expects given page to be
892 	 * locked, otherwise it stumbles upon a BUG_ON().
893 	 */
894 	__SetPageLocked(page);
895 	swp = make_writable_migration_entry(page_to_pfn(page));
896 	WARN_ON(!is_migration_entry(swp));
897 	WARN_ON(!is_writable_migration_entry(swp));
898 
899 	swp = make_readable_migration_entry(swp_offset(swp));
900 	WARN_ON(!is_migration_entry(swp));
901 	WARN_ON(is_writable_migration_entry(swp));
902 
903 	swp = make_readable_migration_entry(page_to_pfn(page));
904 	WARN_ON(!is_migration_entry(swp));
905 	WARN_ON(is_writable_migration_entry(swp));
906 	__ClearPageLocked(page);
907 }
908 
909 #ifdef CONFIG_HUGETLB_PAGE
910 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
911 {
912 	struct page *page;
913 	pte_t pte;
914 
915 	pr_debug("Validating HugeTLB basic\n");
916 	/*
917 	 * Accessing the page associated with the pfn is safe here,
918 	 * as it was previously derived from a real kernel symbol.
919 	 */
920 	page = pfn_to_page(args->fixed_pmd_pfn);
921 	pte = mk_huge_pte(page, args->page_prot);
922 
923 	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
924 	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
925 	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));
926 
927 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
928 	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
929 
930 	WARN_ON(!pte_huge(pte_mkhuge(pte)));
931 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
932 }
933 #else  /* !CONFIG_HUGETLB_PAGE */
934 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
935 #endif /* CONFIG_HUGETLB_PAGE */
936 
937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
938 static void __init pmd_thp_tests(struct pgtable_debug_args *args)
939 {
940 	pmd_t pmd;
941 
942 	if (!has_transparent_hugepage())
943 		return;
944 
945 	pr_debug("Validating PMD based THP\n");
946 	/*
947 	 * pmd_trans_huge() and pmd_present() must return positive after
948 	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
949 	 * optimization for transparent huge page. pmd_trans_huge() must
950 	 * be true if pmd_page() returns a valid THP to avoid taking the
951 	 * pmd_lock when others walk over non transhuge pmds (i.e. there
952 	 * are no THP allocated). Especially when splitting a THP and
953 	 * removing the present bit from the pmd, pmd_trans_huge() still
954 	 * needs to return true. pmd_present() should be true whenever
955 	 * pmd_trans_huge() returns true.
956 	 */
957 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
958 	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));
959 
960 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
961 	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
962 	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
963 #endif /* __HAVE_ARCH_PMDP_INVALIDATE */
964 }
965 
966 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
967 static void __init pud_thp_tests(struct pgtable_debug_args *args)
968 {
969 	pud_t pud;
970 
971 	if (!has_transparent_hugepage())
972 		return;
973 
974 	pr_debug("Validating PUD based THP\n");
975 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
976 	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));
977 
978 	/*
979 	 * pud_mkinvalid() has been dropped for now. Enable back
980 	 * these tests when it comes back with a modified pud_present().
981 	 *
982 	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
983 	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
984 	 */
985 }
986 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
987 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
988 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
989 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
990 static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
991 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
992 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
993 
994 static unsigned long __init get_random_vaddr(void)
995 {
996 	unsigned long random_vaddr, random_pages, total_user_pages;
997 
998 	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;
999 
1000 	random_pages = get_random_long() % total_user_pages;
1001 	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;
1002 
1003 	return random_vaddr;
1004 }
1005 
1006 static void __init destroy_args(struct pgtable_debug_args *args)
1007 {
1008 	struct page *page = NULL;
1009 
1010 	/* Free (huge) page */
1011 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1012 	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
1013 	    has_transparent_hugepage() &&
1014 	    args->pud_pfn != ULONG_MAX) {
1015 		if (args->is_contiguous_page) {
1016 			free_contig_range(args->pud_pfn,
1017 					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
1018 		} else {
1019 			page = pfn_to_page(args->pud_pfn);
1020 			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
1021 		}
1022 
1023 		args->pud_pfn = ULONG_MAX;
1024 		args->pmd_pfn = ULONG_MAX;
1025 		args->pte_pfn = ULONG_MAX;
1026 	}
1027 
1028 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1029 	    has_transparent_hugepage() &&
1030 	    args->pmd_pfn != ULONG_MAX) {
1031 		if (args->is_contiguous_page) {
1032 			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
1033 		} else {
1034 			page = pfn_to_page(args->pmd_pfn);
1035 			__free_pages(page, HPAGE_PMD_ORDER);
1036 		}
1037 
1038 		args->pmd_pfn = ULONG_MAX;
1039 		args->pte_pfn = ULONG_MAX;
1040 	}
1041 
1042 	if (args->pte_pfn != ULONG_MAX) {
1043 		page = pfn_to_page(args->pte_pfn);
1044 		__free_pages(page, 0);
1045 
1046 		args->pte_pfn = ULONG_MAX;
1047 	}
1048 
1049 	/* Free page table entries */
1050 	if (args->start_ptep) {
1051 		pte_free(args->mm, args->start_ptep);
1052 		mm_dec_nr_ptes(args->mm);
1053 	}
1054 
1055 	if (args->start_pmdp) {
1056 		pmd_free(args->mm, args->start_pmdp);
1057 		mm_dec_nr_pmds(args->mm);
1058 	}
1059 
1060 	if (args->start_pudp) {
1061 		pud_free(args->mm, args->start_pudp);
1062 		mm_dec_nr_puds(args->mm);
1063 	}
1064 
1065 	if (args->start_p4dp)
1066 		p4d_free(args->mm, args->start_p4dp);
1067 
1068 	/* Free vma and mm struct */
1069 	if (args->vma)
1070 		vm_area_free(args->vma);
1071 
1072 	if (args->mm)
1073 		mmdrop(args->mm);
1074 }
1075 
1076 static struct page * __init
1077 debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
1078 {
1079 	struct page *page = NULL;
1080 
1081 #ifdef CONFIG_CONTIG_ALLOC
1082 	if (order >= MAX_ORDER) {
1083 		page = alloc_contig_pages((1 << order), GFP_KERNEL,
1084 					  first_online_node, NULL);
1085 		if (page) {
1086 			args->is_contiguous_page = true;
1087 			return page;
1088 		}
1089 	}
1090 #endif
1091 
1092 	if (order < MAX_ORDER)
1093 		page = alloc_pages(GFP_KERNEL, order);
1094 
1095 	return page;
1096 }
1097 
1098 static int __init init_args(struct pgtable_debug_args *args)
1099 {
1100 	struct page *page = NULL;
1101 	phys_addr_t phys;
1102 	int ret = 0;
1103 
1104 	/*
1105 	 * Initialize the debugging data.
1106 	 *
1107 	 * protection_map[0] (or even protection_map[8]) will help create
1108 	 * page table entries with PROT_NONE permission as required for
1109 	 * pxx_protnone_tests().
1110 	 */
1111 	memset(args, 0, sizeof(*args));
1112 	args->vaddr              = get_random_vaddr();
1113 	args->page_prot          = vm_get_page_prot(VMFLAGS);
1114 	args->page_prot_none     = protection_map[0];
1115 	args->is_contiguous_page = false;
1116 	args->pud_pfn            = ULONG_MAX;
1117 	args->pmd_pfn            = ULONG_MAX;
1118 	args->pte_pfn            = ULONG_MAX;
1119 	args->fixed_pgd_pfn      = ULONG_MAX;
1120 	args->fixed_p4d_pfn      = ULONG_MAX;
1121 	args->fixed_pud_pfn      = ULONG_MAX;
1122 	args->fixed_pmd_pfn      = ULONG_MAX;
1123 	args->fixed_pte_pfn      = ULONG_MAX;
1124 
1125 	/* Allocate mm and vma */
1126 	args->mm = mm_alloc();
1127 	if (!args->mm) {
1128 		pr_err("Failed to allocate mm struct\n");
1129 		ret = -ENOMEM;
1130 		goto error;
1131 	}
1132 
1133 	args->vma = vm_area_alloc(args->mm);
1134 	if (!args->vma) {
1135 		pr_err("Failed to allocate vma\n");
1136 		ret = -ENOMEM;
1137 		goto error;
1138 	}
1139 
1140 	/*
1141 	 * Allocate page table entries. They will be modified in the tests.
1142 	 * Lets save the page table entries so that they can be released
1143 	 * when the tests are completed.
1144 	 */
1145 	args->pgdp = pgd_offset(args->mm, args->vaddr);
1146 	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
1147 	if (!args->p4dp) {
1148 		pr_err("Failed to allocate p4d entries\n");
1149 		ret = -ENOMEM;
1150 		goto error;
1151 	}
1152 	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
1153 	WARN_ON(!args->start_p4dp);
1154 
1155 	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
1156 	if (!args->pudp) {
1157 		pr_err("Failed to allocate pud entries\n");
1158 		ret = -ENOMEM;
1159 		goto error;
1160 	}
1161 	args->start_pudp = pud_offset(args->p4dp, 0UL);
1162 	WARN_ON(!args->start_pudp);
1163 
1164 	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
1165 	if (!args->pmdp) {
1166 		pr_err("Failed to allocate pmd entries\n");
1167 		ret = -ENOMEM;
1168 		goto error;
1169 	}
1170 	args->start_pmdp = pmd_offset(args->pudp, 0UL);
1171 	WARN_ON(!args->start_pmdp);
1172 
1173 	if (pte_alloc(args->mm, args->pmdp)) {
1174 		pr_err("Failed to allocate pte entries\n");
1175 		ret = -ENOMEM;
1176 		goto error;
1177 	}
1178 	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
1179 	WARN_ON(!args->start_ptep);
1180 
1181 	/*
1182 	 * PFN for mapping at PTE level is determined from a standard kernel
1183 	 * text symbol. But pfns for higher page table levels are derived by
1184 	 * masking lower bits of this real pfn. These derived pfns might not
1185 	 * exist on the platform but that does not really matter as pfn_pxx()
1186 	 * helpers will still create appropriate entries for the test. This
1187 	 * helps avoid large memory block allocations to be used for mapping
1188 	 * at higher page table levels in some of the tests.
1189 	 */
1190 	phys = __pa_symbol(&start_kernel);
1191 	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
1192 	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
1193 	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
1194 	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
1195 	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
1196 	WARN_ON(!pfn_valid(args->fixed_pte_pfn));
1197 
1198 	/*
1199 	 * Allocate (huge) pages because some of the tests need to access
1200 	 * the data in the pages. The corresponding tests will be skipped
1201 	 * if we fail to allocate (huge) pages.
1202 	 */
1203 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1204 	    IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
1205 	    has_transparent_hugepage()) {
1206 		page = debug_vm_pgtable_alloc_huge_page(args,
1207 				HPAGE_PUD_SHIFT - PAGE_SHIFT);
1208 		if (page) {
1209 			args->pud_pfn = page_to_pfn(page);
1210 			args->pmd_pfn = args->pud_pfn;
1211 			args->pte_pfn = args->pud_pfn;
1212 			return 0;
1213 		}
1214 	}
1215 
1216 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1217 	    has_transparent_hugepage()) {
1218 		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
1219 		if (page) {
1220 			args->pmd_pfn = page_to_pfn(page);
1221 			args->pte_pfn = args->pmd_pfn;
1222 			return 0;
1223 		}
1224 	}
1225 
1226 	page = alloc_pages(GFP_KERNEL, 0);
1227 	if (page)
1228 		args->pte_pfn = page_to_pfn(page);
1229 
1230 	return 0;
1231 
1232 error:
1233 	destroy_args(args);
1234 	return ret;
1235 }
1236 
1237 static int __init debug_vm_pgtable(void)
1238 {
1239 	struct pgtable_debug_args args;
1240 	spinlock_t *ptl = NULL;
1241 	int idx, ret;
1242 
1243 	pr_info("Validating architecture page table helpers\n");
1244 	ret = init_args(&args);
1245 	if (ret)
1246 		return ret;
1247 
1248 	/*
1249 	 * Iterate over the protection_map[] to make sure that all
1250 	 * the basic page table transformation validations just hold
1251 	 * true irrespective of the starting protection value for a
1252 	 * given page table entry.
1253 	 */
1254 	for (idx = 0; idx < ARRAY_SIZE(protection_map); idx++) {
1255 		pte_basic_tests(&args, idx);
1256 		pmd_basic_tests(&args, idx);
1257 		pud_basic_tests(&args, idx);
1258 	}
1259 
1260 	/*
1261 	 * Both P4D and PGD level tests are very basic which do not
1262 	 * involve creating page table entries from the protection
1263 	 * value and the given pfn. Hence just keep them out from
1264 	 * the above iteration for now to save some test execution
1265 	 * time.
1266 	 */
1267 	p4d_basic_tests(&args);
1268 	pgd_basic_tests(&args);
1269 
1270 	pmd_leaf_tests(&args);
1271 	pud_leaf_tests(&args);
1272 
1273 	pte_savedwrite_tests(&args);
1274 	pmd_savedwrite_tests(&args);
1275 
1276 	pte_special_tests(&args);
1277 	pte_protnone_tests(&args);
1278 	pmd_protnone_tests(&args);
1279 
1280 	pte_devmap_tests(&args);
1281 	pmd_devmap_tests(&args);
1282 	pud_devmap_tests(&args);
1283 
1284 	pte_soft_dirty_tests(&args);
1285 	pmd_soft_dirty_tests(&args);
1286 	pte_swap_soft_dirty_tests(&args);
1287 	pmd_swap_soft_dirty_tests(&args);
1288 
1289 	pte_swap_tests(&args);
1290 	pmd_swap_tests(&args);
1291 
1292 	swap_migration_tests(&args);
1293 
1294 	pmd_thp_tests(&args);
1295 	pud_thp_tests(&args);
1296 
1297 	hugetlb_basic_tests(&args);
1298 
1299 	/*
1300 	 * Page table modifying tests. They need to hold
1301 	 * proper page table lock.
1302 	 */
1303 
1304 	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
1305 	pte_clear_tests(&args);
1306 	pte_advanced_tests(&args);
1307 	pte_unmap_unlock(args.ptep, ptl);
1308 
1309 	ptl = pmd_lock(args.mm, args.pmdp);
1310 	pmd_clear_tests(&args);
1311 	pmd_advanced_tests(&args);
1312 	pmd_huge_tests(&args);
1313 	pmd_populate_tests(&args);
1314 	spin_unlock(ptl);
1315 
1316 	ptl = pud_lock(args.mm, args.pudp);
1317 	pud_clear_tests(&args);
1318 	pud_advanced_tests(&args);
1319 	pud_huge_tests(&args);
1320 	pud_populate_tests(&args);
1321 	spin_unlock(ptl);
1322 
1323 	spin_lock(&(args.mm->page_table_lock));
1324 	p4d_clear_tests(&args);
1325 	pgd_clear_tests(&args);
1326 	p4d_populate_tests(&args);
1327 	pgd_populate_tests(&args);
1328 	spin_unlock(&(args.mm->page_table_lock));
1329 
1330 	destroy_args(&args);
1331 	return 0;
1332 }
1333 late_initcall(debug_vm_pgtable);
1334