xref: /openbmc/linux/mm/debug_vm_pgtable.c (revision 22b6e7f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This kernel test validates architecture page table helpers and
4  * accessors and helps in verifying their continued compliance with
5  * expected generic MM semantics.
6  *
7  * Copyright (C) 2019 ARM Ltd.
8  *
9  * Author: Anshuman Khandual <anshuman.khandual@arm.com>
10  */
11 #define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__
12 
13 #include <linux/gfp.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/kernel.h>
17 #include <linux/kconfig.h>
18 #include <linux/memblock.h>
19 #include <linux/mm.h>
20 #include <linux/mman.h>
21 #include <linux/mm_types.h>
22 #include <linux/module.h>
23 #include <linux/pfn_t.h>
24 #include <linux/printk.h>
25 #include <linux/pgtable.h>
26 #include <linux/random.h>
27 #include <linux/spinlock.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/start_kernel.h>
31 #include <linux/sched/mm.h>
32 #include <linux/io.h>
33 
34 #include <asm/cacheflush.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlbflush.h>
37 
38 /*
39  * Please refer Documentation/mm/arch_pgtable_helpers.rst for the semantics
40  * expectations that are being validated here. All future changes in here
41  * or the documentation need to be in sync.
42  *
43  * On s390 platform, the lower 4 bits are used to identify given page table
44  * entry type. But these bits might affect the ability to clear entries with
45  * pxx_clear() because of how dynamic page table folding works on s390. So
46  * while loading up the entries do not change the lower 4 bits. It does not
47  * have affect any other platform. Also avoid the 62nd bit on ppc64 that is
48  * used to mark a pte entry.
49  */
50 #define S390_SKIP_MASK		GENMASK(3, 0)
51 #if __BITS_PER_LONG == 64
52 #define PPC64_SKIP_MASK		GENMASK(62, 62)
53 #else
54 #define PPC64_SKIP_MASK		0x0
55 #endif
56 #define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK)
57 #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK)
58 #define RANDOM_NZVALUE	GENMASK(7, 0)
59 
60 struct pgtable_debug_args {
61 	struct mm_struct	*mm;
62 	struct vm_area_struct	*vma;
63 
64 	pgd_t			*pgdp;
65 	p4d_t			*p4dp;
66 	pud_t			*pudp;
67 	pmd_t			*pmdp;
68 	pte_t			*ptep;
69 
70 	p4d_t			*start_p4dp;
71 	pud_t			*start_pudp;
72 	pmd_t			*start_pmdp;
73 	pgtable_t		start_ptep;
74 
75 	unsigned long		vaddr;
76 	pgprot_t		page_prot;
77 	pgprot_t		page_prot_none;
78 
79 	bool			is_contiguous_page;
80 	unsigned long		pud_pfn;
81 	unsigned long		pmd_pfn;
82 	unsigned long		pte_pfn;
83 
84 	unsigned long		fixed_alignment;
85 	unsigned long		fixed_pgd_pfn;
86 	unsigned long		fixed_p4d_pfn;
87 	unsigned long		fixed_pud_pfn;
88 	unsigned long		fixed_pmd_pfn;
89 	unsigned long		fixed_pte_pfn;
90 };
91 
92 static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx)
93 {
94 	pgprot_t prot = vm_get_page_prot(idx);
95 	pte_t pte = pfn_pte(args->fixed_pte_pfn, prot);
96 	unsigned long val = idx, *ptr = &val;
97 
98 	pr_debug("Validating PTE basic (%pGv)\n", ptr);
99 
100 	/*
101 	 * This test needs to be executed after the given page table entry
102 	 * is created with pfn_pte() to make sure that vm_get_page_prot(idx)
103 	 * does not have the dirty bit enabled from the beginning. This is
104 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
105 	 * dirty bit being set.
106 	 */
107 	WARN_ON(pte_dirty(pte_wrprotect(pte)));
108 
109 	WARN_ON(!pte_same(pte, pte));
110 	WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte))));
111 	WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte))));
112 	WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte), args->vma)));
113 	WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte))));
114 	WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte))));
115 	WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte, args->vma))));
116 	WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte))));
117 	WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte))));
118 }
119 
120 static void __init pte_advanced_tests(struct pgtable_debug_args *args)
121 {
122 	struct page *page;
123 	pte_t pte;
124 
125 	/*
126 	 * Architectures optimize set_pte_at by avoiding TLB flush.
127 	 * This requires set_pte_at to be not used to update an
128 	 * existing pte entry. Clear pte before we do set_pte_at
129 	 *
130 	 * flush_dcache_page() is called after set_pte_at() to clear
131 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
132 	 * when it's released and page allocation check will fail when
133 	 * the page is allocated again. For architectures other than ARM64,
134 	 * the unexpected overhead of cache flushing is acceptable.
135 	 */
136 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
137 	if (!page)
138 		return;
139 
140 	pr_debug("Validating PTE advanced\n");
141 	if (WARN_ON(!args->ptep))
142 		return;
143 
144 	pte = pfn_pte(args->pte_pfn, args->page_prot);
145 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
146 	flush_dcache_page(page);
147 	ptep_set_wrprotect(args->mm, args->vaddr, args->ptep);
148 	pte = ptep_get(args->ptep);
149 	WARN_ON(pte_write(pte));
150 	ptep_get_and_clear(args->mm, args->vaddr, args->ptep);
151 	pte = ptep_get(args->ptep);
152 	WARN_ON(!pte_none(pte));
153 
154 	pte = pfn_pte(args->pte_pfn, args->page_prot);
155 	pte = pte_wrprotect(pte);
156 	pte = pte_mkclean(pte);
157 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
158 	flush_dcache_page(page);
159 	pte = pte_mkwrite(pte, args->vma);
160 	pte = pte_mkdirty(pte);
161 	ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1);
162 	pte = ptep_get(args->ptep);
163 	WARN_ON(!(pte_write(pte) && pte_dirty(pte)));
164 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
165 	pte = ptep_get(args->ptep);
166 	WARN_ON(!pte_none(pte));
167 
168 	pte = pfn_pte(args->pte_pfn, args->page_prot);
169 	pte = pte_mkyoung(pte);
170 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
171 	flush_dcache_page(page);
172 	ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep);
173 	pte = ptep_get(args->ptep);
174 	WARN_ON(pte_young(pte));
175 
176 	ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1);
177 }
178 
179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
180 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx)
181 {
182 	pgprot_t prot = vm_get_page_prot(idx);
183 	unsigned long val = idx, *ptr = &val;
184 	pmd_t pmd;
185 
186 	if (!has_transparent_hugepage())
187 		return;
188 
189 	pr_debug("Validating PMD basic (%pGv)\n", ptr);
190 	pmd = pfn_pmd(args->fixed_pmd_pfn, prot);
191 
192 	/*
193 	 * This test needs to be executed after the given page table entry
194 	 * is created with pfn_pmd() to make sure that vm_get_page_prot(idx)
195 	 * does not have the dirty bit enabled from the beginning. This is
196 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
197 	 * dirty bit being set.
198 	 */
199 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd)));
200 
201 
202 	WARN_ON(!pmd_same(pmd, pmd));
203 	WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd))));
204 	WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd))));
205 	WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd), args->vma)));
206 	WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd))));
207 	WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd))));
208 	WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd, args->vma))));
209 	WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd))));
210 	WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd))));
211 	/*
212 	 * A huge page does not point to next level page table
213 	 * entry. Hence this must qualify as pmd_bad().
214 	 */
215 	WARN_ON(!pmd_bad(pmd_mkhuge(pmd)));
216 }
217 
218 static void __init pmd_advanced_tests(struct pgtable_debug_args *args)
219 {
220 	struct page *page;
221 	pmd_t pmd;
222 	unsigned long vaddr = args->vaddr;
223 
224 	if (!has_transparent_hugepage())
225 		return;
226 
227 	page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL;
228 	if (!page)
229 		return;
230 
231 	/*
232 	 * flush_dcache_page() is called after set_pmd_at() to clear
233 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
234 	 * when it's released and page allocation check will fail when
235 	 * the page is allocated again. For architectures other than ARM64,
236 	 * the unexpected overhead of cache flushing is acceptable.
237 	 */
238 	pr_debug("Validating PMD advanced\n");
239 	/* Align the address wrt HPAGE_PMD_SIZE */
240 	vaddr &= HPAGE_PMD_MASK;
241 
242 	pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep);
243 
244 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
245 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
246 	flush_dcache_page(page);
247 	pmdp_set_wrprotect(args->mm, vaddr, args->pmdp);
248 	pmd = READ_ONCE(*args->pmdp);
249 	WARN_ON(pmd_write(pmd));
250 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
251 	pmd = READ_ONCE(*args->pmdp);
252 	WARN_ON(!pmd_none(pmd));
253 
254 	pmd = pfn_pmd(args->pmd_pfn, args->page_prot);
255 	pmd = pmd_wrprotect(pmd);
256 	pmd = pmd_mkclean(pmd);
257 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
258 	flush_dcache_page(page);
259 	pmd = pmd_mkwrite(pmd, args->vma);
260 	pmd = pmd_mkdirty(pmd);
261 	pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1);
262 	pmd = READ_ONCE(*args->pmdp);
263 	WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd)));
264 	pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1);
265 	pmd = READ_ONCE(*args->pmdp);
266 	WARN_ON(!pmd_none(pmd));
267 
268 	pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot));
269 	pmd = pmd_mkyoung(pmd);
270 	set_pmd_at(args->mm, vaddr, args->pmdp, pmd);
271 	flush_dcache_page(page);
272 	pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp);
273 	pmd = READ_ONCE(*args->pmdp);
274 	WARN_ON(pmd_young(pmd));
275 
276 	/*  Clear the pte entries  */
277 	pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp);
278 	pgtable_trans_huge_withdraw(args->mm, args->pmdp);
279 }
280 
281 static void __init pmd_leaf_tests(struct pgtable_debug_args *args)
282 {
283 	pmd_t pmd;
284 
285 	if (!has_transparent_hugepage())
286 		return;
287 
288 	pr_debug("Validating PMD leaf\n");
289 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
290 
291 	/*
292 	 * PMD based THP is a leaf entry.
293 	 */
294 	pmd = pmd_mkhuge(pmd);
295 	WARN_ON(!pmd_leaf(pmd));
296 }
297 
298 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
299 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx)
300 {
301 	pgprot_t prot = vm_get_page_prot(idx);
302 	unsigned long val = idx, *ptr = &val;
303 	pud_t pud;
304 
305 	if (!has_transparent_pud_hugepage())
306 		return;
307 
308 	pr_debug("Validating PUD basic (%pGv)\n", ptr);
309 	pud = pfn_pud(args->fixed_pud_pfn, prot);
310 
311 	/*
312 	 * This test needs to be executed after the given page table entry
313 	 * is created with pfn_pud() to make sure that vm_get_page_prot(idx)
314 	 * does not have the dirty bit enabled from the beginning. This is
315 	 * important for platforms like arm64 where (!PTE_RDONLY) indicate
316 	 * dirty bit being set.
317 	 */
318 	WARN_ON(pud_dirty(pud_wrprotect(pud)));
319 
320 	WARN_ON(!pud_same(pud, pud));
321 	WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud))));
322 	WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud))));
323 	WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud))));
324 	WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud))));
325 	WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud))));
326 	WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud))));
327 	WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud))));
328 	WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud))));
329 
330 	if (mm_pmd_folded(args->mm))
331 		return;
332 
333 	/*
334 	 * A huge page does not point to next level page table
335 	 * entry. Hence this must qualify as pud_bad().
336 	 */
337 	WARN_ON(!pud_bad(pud_mkhuge(pud)));
338 }
339 
340 static void __init pud_advanced_tests(struct pgtable_debug_args *args)
341 {
342 	struct page *page;
343 	unsigned long vaddr = args->vaddr;
344 	pud_t pud;
345 
346 	if (!has_transparent_pud_hugepage())
347 		return;
348 
349 	page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL;
350 	if (!page)
351 		return;
352 
353 	/*
354 	 * flush_dcache_page() is called after set_pud_at() to clear
355 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
356 	 * when it's released and page allocation check will fail when
357 	 * the page is allocated again. For architectures other than ARM64,
358 	 * the unexpected overhead of cache flushing is acceptable.
359 	 */
360 	pr_debug("Validating PUD advanced\n");
361 	/* Align the address wrt HPAGE_PUD_SIZE */
362 	vaddr &= HPAGE_PUD_MASK;
363 
364 	pud = pfn_pud(args->pud_pfn, args->page_prot);
365 	set_pud_at(args->mm, vaddr, args->pudp, pud);
366 	flush_dcache_page(page);
367 	pudp_set_wrprotect(args->mm, vaddr, args->pudp);
368 	pud = READ_ONCE(*args->pudp);
369 	WARN_ON(pud_write(pud));
370 
371 #ifndef __PAGETABLE_PMD_FOLDED
372 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
373 	pud = READ_ONCE(*args->pudp);
374 	WARN_ON(!pud_none(pud));
375 #endif /* __PAGETABLE_PMD_FOLDED */
376 	pud = pfn_pud(args->pud_pfn, args->page_prot);
377 	pud = pud_wrprotect(pud);
378 	pud = pud_mkclean(pud);
379 	set_pud_at(args->mm, vaddr, args->pudp, pud);
380 	flush_dcache_page(page);
381 	pud = pud_mkwrite(pud);
382 	pud = pud_mkdirty(pud);
383 	pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1);
384 	pud = READ_ONCE(*args->pudp);
385 	WARN_ON(!(pud_write(pud) && pud_dirty(pud)));
386 
387 #ifndef __PAGETABLE_PMD_FOLDED
388 	pudp_huge_get_and_clear_full(args->vma, vaddr, args->pudp, 1);
389 	pud = READ_ONCE(*args->pudp);
390 	WARN_ON(!pud_none(pud));
391 #endif /* __PAGETABLE_PMD_FOLDED */
392 
393 	pud = pfn_pud(args->pud_pfn, args->page_prot);
394 	pud = pud_mkyoung(pud);
395 	set_pud_at(args->mm, vaddr, args->pudp, pud);
396 	flush_dcache_page(page);
397 	pudp_test_and_clear_young(args->vma, vaddr, args->pudp);
398 	pud = READ_ONCE(*args->pudp);
399 	WARN_ON(pud_young(pud));
400 
401 	pudp_huge_get_and_clear(args->mm, vaddr, args->pudp);
402 }
403 
404 static void __init pud_leaf_tests(struct pgtable_debug_args *args)
405 {
406 	pud_t pud;
407 
408 	if (!has_transparent_pud_hugepage())
409 		return;
410 
411 	pr_debug("Validating PUD leaf\n");
412 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
413 	/*
414 	 * PUD based THP is a leaf entry.
415 	 */
416 	pud = pud_mkhuge(pud);
417 	WARN_ON(!pud_leaf(pud));
418 }
419 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
420 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
421 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
422 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
423 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
424 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
425 static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { }
426 static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { }
427 static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { }
428 static void __init pud_advanced_tests(struct pgtable_debug_args *args) { }
429 static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { }
430 static void __init pud_leaf_tests(struct pgtable_debug_args *args) { }
431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
432 
433 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
434 static void __init pmd_huge_tests(struct pgtable_debug_args *args)
435 {
436 	pmd_t pmd;
437 
438 	if (!arch_vmap_pmd_supported(args->page_prot) ||
439 	    args->fixed_alignment < PMD_SIZE)
440 		return;
441 
442 	pr_debug("Validating PMD huge\n");
443 	/*
444 	 * X86 defined pmd_set_huge() verifies that the given
445 	 * PMD is not a populated non-leaf entry.
446 	 */
447 	WRITE_ONCE(*args->pmdp, __pmd(0));
448 	WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot));
449 	WARN_ON(!pmd_clear_huge(args->pmdp));
450 	pmd = READ_ONCE(*args->pmdp);
451 	WARN_ON(!pmd_none(pmd));
452 }
453 
454 static void __init pud_huge_tests(struct pgtable_debug_args *args)
455 {
456 	pud_t pud;
457 
458 	if (!arch_vmap_pud_supported(args->page_prot) ||
459 	    args->fixed_alignment < PUD_SIZE)
460 		return;
461 
462 	pr_debug("Validating PUD huge\n");
463 	/*
464 	 * X86 defined pud_set_huge() verifies that the given
465 	 * PUD is not a populated non-leaf entry.
466 	 */
467 	WRITE_ONCE(*args->pudp, __pud(0));
468 	WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot));
469 	WARN_ON(!pud_clear_huge(args->pudp));
470 	pud = READ_ONCE(*args->pudp);
471 	WARN_ON(!pud_none(pud));
472 }
473 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
474 static void __init pmd_huge_tests(struct pgtable_debug_args *args) { }
475 static void __init pud_huge_tests(struct pgtable_debug_args *args) { }
476 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
477 
478 static void __init p4d_basic_tests(struct pgtable_debug_args *args)
479 {
480 	p4d_t p4d;
481 
482 	pr_debug("Validating P4D basic\n");
483 	memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t));
484 	WARN_ON(!p4d_same(p4d, p4d));
485 }
486 
487 static void __init pgd_basic_tests(struct pgtable_debug_args *args)
488 {
489 	pgd_t pgd;
490 
491 	pr_debug("Validating PGD basic\n");
492 	memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t));
493 	WARN_ON(!pgd_same(pgd, pgd));
494 }
495 
496 #ifndef __PAGETABLE_PUD_FOLDED
497 static void __init pud_clear_tests(struct pgtable_debug_args *args)
498 {
499 	pud_t pud = READ_ONCE(*args->pudp);
500 
501 	if (mm_pmd_folded(args->mm))
502 		return;
503 
504 	pr_debug("Validating PUD clear\n");
505 	pud = __pud(pud_val(pud) | RANDOM_ORVALUE);
506 	WRITE_ONCE(*args->pudp, pud);
507 	pud_clear(args->pudp);
508 	pud = READ_ONCE(*args->pudp);
509 	WARN_ON(!pud_none(pud));
510 }
511 
512 static void __init pud_populate_tests(struct pgtable_debug_args *args)
513 {
514 	pud_t pud;
515 
516 	if (mm_pmd_folded(args->mm))
517 		return;
518 
519 	pr_debug("Validating PUD populate\n");
520 	/*
521 	 * This entry points to next level page table page.
522 	 * Hence this must not qualify as pud_bad().
523 	 */
524 	pud_populate(args->mm, args->pudp, args->start_pmdp);
525 	pud = READ_ONCE(*args->pudp);
526 	WARN_ON(pud_bad(pud));
527 }
528 #else  /* !__PAGETABLE_PUD_FOLDED */
529 static void __init pud_clear_tests(struct pgtable_debug_args *args) { }
530 static void __init pud_populate_tests(struct pgtable_debug_args *args) { }
531 #endif /* PAGETABLE_PUD_FOLDED */
532 
533 #ifndef __PAGETABLE_P4D_FOLDED
534 static void __init p4d_clear_tests(struct pgtable_debug_args *args)
535 {
536 	p4d_t p4d = READ_ONCE(*args->p4dp);
537 
538 	if (mm_pud_folded(args->mm))
539 		return;
540 
541 	pr_debug("Validating P4D clear\n");
542 	p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE);
543 	WRITE_ONCE(*args->p4dp, p4d);
544 	p4d_clear(args->p4dp);
545 	p4d = READ_ONCE(*args->p4dp);
546 	WARN_ON(!p4d_none(p4d));
547 }
548 
549 static void __init p4d_populate_tests(struct pgtable_debug_args *args)
550 {
551 	p4d_t p4d;
552 
553 	if (mm_pud_folded(args->mm))
554 		return;
555 
556 	pr_debug("Validating P4D populate\n");
557 	/*
558 	 * This entry points to next level page table page.
559 	 * Hence this must not qualify as p4d_bad().
560 	 */
561 	pud_clear(args->pudp);
562 	p4d_clear(args->p4dp);
563 	p4d_populate(args->mm, args->p4dp, args->start_pudp);
564 	p4d = READ_ONCE(*args->p4dp);
565 	WARN_ON(p4d_bad(p4d));
566 }
567 
568 static void __init pgd_clear_tests(struct pgtable_debug_args *args)
569 {
570 	pgd_t pgd = READ_ONCE(*(args->pgdp));
571 
572 	if (mm_p4d_folded(args->mm))
573 		return;
574 
575 	pr_debug("Validating PGD clear\n");
576 	pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE);
577 	WRITE_ONCE(*args->pgdp, pgd);
578 	pgd_clear(args->pgdp);
579 	pgd = READ_ONCE(*args->pgdp);
580 	WARN_ON(!pgd_none(pgd));
581 }
582 
583 static void __init pgd_populate_tests(struct pgtable_debug_args *args)
584 {
585 	pgd_t pgd;
586 
587 	if (mm_p4d_folded(args->mm))
588 		return;
589 
590 	pr_debug("Validating PGD populate\n");
591 	/*
592 	 * This entry points to next level page table page.
593 	 * Hence this must not qualify as pgd_bad().
594 	 */
595 	p4d_clear(args->p4dp);
596 	pgd_clear(args->pgdp);
597 	pgd_populate(args->mm, args->pgdp, args->start_p4dp);
598 	pgd = READ_ONCE(*args->pgdp);
599 	WARN_ON(pgd_bad(pgd));
600 }
601 #else  /* !__PAGETABLE_P4D_FOLDED */
602 static void __init p4d_clear_tests(struct pgtable_debug_args *args) { }
603 static void __init pgd_clear_tests(struct pgtable_debug_args *args) { }
604 static void __init p4d_populate_tests(struct pgtable_debug_args *args) { }
605 static void __init pgd_populate_tests(struct pgtable_debug_args *args) { }
606 #endif /* PAGETABLE_P4D_FOLDED */
607 
608 static void __init pte_clear_tests(struct pgtable_debug_args *args)
609 {
610 	struct page *page;
611 	pte_t pte = pfn_pte(args->pte_pfn, args->page_prot);
612 
613 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
614 	if (!page)
615 		return;
616 
617 	/*
618 	 * flush_dcache_page() is called after set_pte_at() to clear
619 	 * PG_arch_1 for the page on ARM64. The page flag isn't cleared
620 	 * when it's released and page allocation check will fail when
621 	 * the page is allocated again. For architectures other than ARM64,
622 	 * the unexpected overhead of cache flushing is acceptable.
623 	 */
624 	pr_debug("Validating PTE clear\n");
625 	if (WARN_ON(!args->ptep))
626 		return;
627 
628 #ifndef CONFIG_RISCV
629 	pte = __pte(pte_val(pte) | RANDOM_ORVALUE);
630 #endif
631 	set_pte_at(args->mm, args->vaddr, args->ptep, pte);
632 	flush_dcache_page(page);
633 	barrier();
634 	ptep_clear(args->mm, args->vaddr, args->ptep);
635 	pte = ptep_get(args->ptep);
636 	WARN_ON(!pte_none(pte));
637 }
638 
639 static void __init pmd_clear_tests(struct pgtable_debug_args *args)
640 {
641 	pmd_t pmd = READ_ONCE(*args->pmdp);
642 
643 	pr_debug("Validating PMD clear\n");
644 	pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE);
645 	WRITE_ONCE(*args->pmdp, pmd);
646 	pmd_clear(args->pmdp);
647 	pmd = READ_ONCE(*args->pmdp);
648 	WARN_ON(!pmd_none(pmd));
649 }
650 
651 static void __init pmd_populate_tests(struct pgtable_debug_args *args)
652 {
653 	pmd_t pmd;
654 
655 	pr_debug("Validating PMD populate\n");
656 	/*
657 	 * This entry points to next level page table page.
658 	 * Hence this must not qualify as pmd_bad().
659 	 */
660 	pmd_populate(args->mm, args->pmdp, args->start_ptep);
661 	pmd = READ_ONCE(*args->pmdp);
662 	WARN_ON(pmd_bad(pmd));
663 }
664 
665 static void __init pte_special_tests(struct pgtable_debug_args *args)
666 {
667 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
668 
669 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL))
670 		return;
671 
672 	pr_debug("Validating PTE special\n");
673 	WARN_ON(!pte_special(pte_mkspecial(pte)));
674 }
675 
676 static void __init pte_protnone_tests(struct pgtable_debug_args *args)
677 {
678 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none);
679 
680 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
681 		return;
682 
683 	pr_debug("Validating PTE protnone\n");
684 	WARN_ON(!pte_protnone(pte));
685 	WARN_ON(!pte_present(pte));
686 }
687 
688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
689 static void __init pmd_protnone_tests(struct pgtable_debug_args *args)
690 {
691 	pmd_t pmd;
692 
693 	if (!IS_ENABLED(CONFIG_NUMA_BALANCING))
694 		return;
695 
696 	if (!has_transparent_hugepage())
697 		return;
698 
699 	pr_debug("Validating PMD protnone\n");
700 	pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none));
701 	WARN_ON(!pmd_protnone(pmd));
702 	WARN_ON(!pmd_present(pmd));
703 }
704 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
705 static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { }
706 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
707 
708 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
709 static void __init pte_devmap_tests(struct pgtable_debug_args *args)
710 {
711 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
712 
713 	pr_debug("Validating PTE devmap\n");
714 	WARN_ON(!pte_devmap(pte_mkdevmap(pte)));
715 }
716 
717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
718 static void __init pmd_devmap_tests(struct pgtable_debug_args *args)
719 {
720 	pmd_t pmd;
721 
722 	if (!has_transparent_hugepage())
723 		return;
724 
725 	pr_debug("Validating PMD devmap\n");
726 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
727 	WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd)));
728 }
729 
730 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
731 static void __init pud_devmap_tests(struct pgtable_debug_args *args)
732 {
733 	pud_t pud;
734 
735 	if (!has_transparent_pud_hugepage())
736 		return;
737 
738 	pr_debug("Validating PUD devmap\n");
739 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
740 	WARN_ON(!pud_devmap(pud_mkdevmap(pud)));
741 }
742 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
743 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
744 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
745 #else  /* CONFIG_TRANSPARENT_HUGEPAGE */
746 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
747 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
749 #else
750 static void __init pte_devmap_tests(struct pgtable_debug_args *args) { }
751 static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { }
752 static void __init pud_devmap_tests(struct pgtable_debug_args *args) { }
753 #endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */
754 
755 static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args)
756 {
757 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
758 
759 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
760 		return;
761 
762 	pr_debug("Validating PTE soft dirty\n");
763 	WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte)));
764 	WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte)));
765 }
766 
767 static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args)
768 {
769 	pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
770 
771 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
772 		return;
773 
774 	pr_debug("Validating PTE swap soft dirty\n");
775 	WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte)));
776 	WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte)));
777 }
778 
779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
780 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args)
781 {
782 	pmd_t pmd;
783 
784 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
785 		return;
786 
787 	if (!has_transparent_hugepage())
788 		return;
789 
790 	pr_debug("Validating PMD soft dirty\n");
791 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
792 	WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd)));
793 	WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd)));
794 }
795 
796 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args)
797 {
798 	pmd_t pmd;
799 
800 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) ||
801 		!IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION))
802 		return;
803 
804 	if (!has_transparent_hugepage())
805 		return;
806 
807 	pr_debug("Validating PMD swap soft dirty\n");
808 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
809 	WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd)));
810 	WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd)));
811 }
812 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
813 static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { }
814 static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { }
815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
816 
817 static void __init pte_swap_exclusive_tests(struct pgtable_debug_args *args)
818 {
819 	unsigned long max_swap_offset;
820 	swp_entry_t entry, entry2;
821 	pte_t pte;
822 
823 	pr_debug("Validating PTE swap exclusive\n");
824 
825 	/* See generic_max_swapfile_size(): probe the maximum offset */
826 	max_swap_offset = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0, ~0UL))));
827 
828 	/* Create a swp entry with all possible bits set */
829 	entry = swp_entry((1 << MAX_SWAPFILES_SHIFT) - 1, max_swap_offset);
830 
831 	pte = swp_entry_to_pte(entry);
832 	WARN_ON(pte_swp_exclusive(pte));
833 	WARN_ON(!is_swap_pte(pte));
834 	entry2 = pte_to_swp_entry(pte);
835 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
836 
837 	pte = pte_swp_mkexclusive(pte);
838 	WARN_ON(!pte_swp_exclusive(pte));
839 	WARN_ON(!is_swap_pte(pte));
840 	WARN_ON(pte_swp_soft_dirty(pte));
841 	entry2 = pte_to_swp_entry(pte);
842 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
843 
844 	pte = pte_swp_clear_exclusive(pte);
845 	WARN_ON(pte_swp_exclusive(pte));
846 	WARN_ON(!is_swap_pte(pte));
847 	entry2 = pte_to_swp_entry(pte);
848 	WARN_ON(memcmp(&entry, &entry2, sizeof(entry)));
849 }
850 
851 static void __init pte_swap_tests(struct pgtable_debug_args *args)
852 {
853 	swp_entry_t swp;
854 	pte_t pte;
855 
856 	pr_debug("Validating PTE swap\n");
857 	pte = pfn_pte(args->fixed_pte_pfn, args->page_prot);
858 	swp = __pte_to_swp_entry(pte);
859 	pte = __swp_entry_to_pte(swp);
860 	WARN_ON(args->fixed_pte_pfn != pte_pfn(pte));
861 }
862 
863 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
864 static void __init pmd_swap_tests(struct pgtable_debug_args *args)
865 {
866 	swp_entry_t swp;
867 	pmd_t pmd;
868 
869 	if (!has_transparent_hugepage())
870 		return;
871 
872 	pr_debug("Validating PMD swap\n");
873 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
874 	swp = __pmd_to_swp_entry(pmd);
875 	pmd = __swp_entry_to_pmd(swp);
876 	WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd));
877 }
878 #else  /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
879 static void __init pmd_swap_tests(struct pgtable_debug_args *args) { }
880 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
881 
882 static void __init swap_migration_tests(struct pgtable_debug_args *args)
883 {
884 	struct page *page;
885 	swp_entry_t swp;
886 
887 	if (!IS_ENABLED(CONFIG_MIGRATION))
888 		return;
889 
890 	/*
891 	 * swap_migration_tests() requires a dedicated page as it needs to
892 	 * be locked before creating a migration entry from it. Locking the
893 	 * page that actually maps kernel text ('start_kernel') can be real
894 	 * problematic. Lets use the allocated page explicitly for this
895 	 * purpose.
896 	 */
897 	page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL;
898 	if (!page)
899 		return;
900 
901 	pr_debug("Validating swap migration\n");
902 
903 	/*
904 	 * make_[readable|writable]_migration_entry() expects given page to
905 	 * be locked, otherwise it stumbles upon a BUG_ON().
906 	 */
907 	__SetPageLocked(page);
908 	swp = make_writable_migration_entry(page_to_pfn(page));
909 	WARN_ON(!is_migration_entry(swp));
910 	WARN_ON(!is_writable_migration_entry(swp));
911 
912 	swp = make_readable_migration_entry(swp_offset(swp));
913 	WARN_ON(!is_migration_entry(swp));
914 	WARN_ON(is_writable_migration_entry(swp));
915 
916 	swp = make_readable_migration_entry(page_to_pfn(page));
917 	WARN_ON(!is_migration_entry(swp));
918 	WARN_ON(is_writable_migration_entry(swp));
919 	__ClearPageLocked(page);
920 }
921 
922 #ifdef CONFIG_HUGETLB_PAGE
923 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args)
924 {
925 	struct page *page;
926 	pte_t pte;
927 
928 	pr_debug("Validating HugeTLB basic\n");
929 	/*
930 	 * Accessing the page associated with the pfn is safe here,
931 	 * as it was previously derived from a real kernel symbol.
932 	 */
933 	page = pfn_to_page(args->fixed_pmd_pfn);
934 	pte = mk_huge_pte(page, args->page_prot);
935 
936 	WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte)));
937 	WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte))));
938 	WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte))));
939 
940 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
941 	pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot);
942 
943 	WARN_ON(!pte_huge(arch_make_huge_pte(pte, PMD_SHIFT, VM_ACCESS_FLAGS)));
944 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
945 }
946 #else  /* !CONFIG_HUGETLB_PAGE */
947 static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { }
948 #endif /* CONFIG_HUGETLB_PAGE */
949 
950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
951 static void __init pmd_thp_tests(struct pgtable_debug_args *args)
952 {
953 	pmd_t pmd;
954 
955 	if (!has_transparent_hugepage())
956 		return;
957 
958 	pr_debug("Validating PMD based THP\n");
959 	/*
960 	 * pmd_trans_huge() and pmd_present() must return positive after
961 	 * MMU invalidation with pmd_mkinvalid(). This behavior is an
962 	 * optimization for transparent huge page. pmd_trans_huge() must
963 	 * be true if pmd_page() returns a valid THP to avoid taking the
964 	 * pmd_lock when others walk over non transhuge pmds (i.e. there
965 	 * are no THP allocated). Especially when splitting a THP and
966 	 * removing the present bit from the pmd, pmd_trans_huge() still
967 	 * needs to return true. pmd_present() should be true whenever
968 	 * pmd_trans_huge() returns true.
969 	 */
970 	pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot);
971 	WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd)));
972 
973 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
974 	WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd))));
975 	WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd))));
976 #endif /* __HAVE_ARCH_PMDP_INVALIDATE */
977 }
978 
979 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
980 static void __init pud_thp_tests(struct pgtable_debug_args *args)
981 {
982 	pud_t pud;
983 
984 	if (!has_transparent_pud_hugepage())
985 		return;
986 
987 	pr_debug("Validating PUD based THP\n");
988 	pud = pfn_pud(args->fixed_pud_pfn, args->page_prot);
989 	WARN_ON(!pud_trans_huge(pud_mkhuge(pud)));
990 
991 	/*
992 	 * pud_mkinvalid() has been dropped for now. Enable back
993 	 * these tests when it comes back with a modified pud_present().
994 	 *
995 	 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud))));
996 	 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud))));
997 	 */
998 }
999 #else  /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1000 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1001 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1002 #else  /* !CONFIG_TRANSPARENT_HUGEPAGE */
1003 static void __init pmd_thp_tests(struct pgtable_debug_args *args) { }
1004 static void __init pud_thp_tests(struct pgtable_debug_args *args) { }
1005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1006 
1007 static unsigned long __init get_random_vaddr(void)
1008 {
1009 	unsigned long random_vaddr, random_pages, total_user_pages;
1010 
1011 	total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE;
1012 
1013 	random_pages = get_random_long() % total_user_pages;
1014 	random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE;
1015 
1016 	return random_vaddr;
1017 }
1018 
1019 static void __init destroy_args(struct pgtable_debug_args *args)
1020 {
1021 	struct page *page = NULL;
1022 
1023 	/* Free (huge) page */
1024 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1025 	    has_transparent_pud_hugepage() &&
1026 	    args->pud_pfn != ULONG_MAX) {
1027 		if (args->is_contiguous_page) {
1028 			free_contig_range(args->pud_pfn,
1029 					  (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT)));
1030 		} else {
1031 			page = pfn_to_page(args->pud_pfn);
1032 			__free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT);
1033 		}
1034 
1035 		args->pud_pfn = ULONG_MAX;
1036 		args->pmd_pfn = ULONG_MAX;
1037 		args->pte_pfn = ULONG_MAX;
1038 	}
1039 
1040 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1041 	    has_transparent_hugepage() &&
1042 	    args->pmd_pfn != ULONG_MAX) {
1043 		if (args->is_contiguous_page) {
1044 			free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER));
1045 		} else {
1046 			page = pfn_to_page(args->pmd_pfn);
1047 			__free_pages(page, HPAGE_PMD_ORDER);
1048 		}
1049 
1050 		args->pmd_pfn = ULONG_MAX;
1051 		args->pte_pfn = ULONG_MAX;
1052 	}
1053 
1054 	if (args->pte_pfn != ULONG_MAX) {
1055 		page = pfn_to_page(args->pte_pfn);
1056 		__free_page(page);
1057 
1058 		args->pte_pfn = ULONG_MAX;
1059 	}
1060 
1061 	/* Free page table entries */
1062 	if (args->start_ptep) {
1063 		pte_free(args->mm, args->start_ptep);
1064 		mm_dec_nr_ptes(args->mm);
1065 	}
1066 
1067 	if (args->start_pmdp) {
1068 		pmd_free(args->mm, args->start_pmdp);
1069 		mm_dec_nr_pmds(args->mm);
1070 	}
1071 
1072 	if (args->start_pudp) {
1073 		pud_free(args->mm, args->start_pudp);
1074 		mm_dec_nr_puds(args->mm);
1075 	}
1076 
1077 	if (args->start_p4dp)
1078 		p4d_free(args->mm, args->start_p4dp);
1079 
1080 	/* Free vma and mm struct */
1081 	if (args->vma)
1082 		vm_area_free(args->vma);
1083 
1084 	if (args->mm)
1085 		mmdrop(args->mm);
1086 }
1087 
1088 static struct page * __init
1089 debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order)
1090 {
1091 	struct page *page = NULL;
1092 
1093 #ifdef CONFIG_CONTIG_ALLOC
1094 	if (order > MAX_ORDER) {
1095 		page = alloc_contig_pages((1 << order), GFP_KERNEL,
1096 					  first_online_node, NULL);
1097 		if (page) {
1098 			args->is_contiguous_page = true;
1099 			return page;
1100 		}
1101 	}
1102 #endif
1103 
1104 	if (order <= MAX_ORDER)
1105 		page = alloc_pages(GFP_KERNEL, order);
1106 
1107 	return page;
1108 }
1109 
1110 /*
1111  * Check if a physical memory range described by <pstart, pend> contains
1112  * an area that is of size psize, and aligned to psize.
1113  *
1114  * Don't use address 0, an all-zeroes physical address might mask bugs, and
1115  * it's not used on x86.
1116  */
1117 static void  __init phys_align_check(phys_addr_t pstart,
1118 				     phys_addr_t pend, unsigned long psize,
1119 				     phys_addr_t *physp, unsigned long *alignp)
1120 {
1121 	phys_addr_t aligned_start, aligned_end;
1122 
1123 	if (pstart == 0)
1124 		pstart = PAGE_SIZE;
1125 
1126 	aligned_start = ALIGN(pstart, psize);
1127 	aligned_end = aligned_start + psize;
1128 
1129 	if (aligned_end > aligned_start && aligned_end <= pend) {
1130 		*alignp = psize;
1131 		*physp = aligned_start;
1132 	}
1133 }
1134 
1135 static void __init init_fixed_pfns(struct pgtable_debug_args *args)
1136 {
1137 	u64 idx;
1138 	phys_addr_t phys, pstart, pend;
1139 
1140 	/*
1141 	 * Initialize the fixed pfns. To do this, try to find a
1142 	 * valid physical range, preferably aligned to PUD_SIZE,
1143 	 * but settling for aligned to PMD_SIZE as a fallback. If
1144 	 * neither of those is found, use the physical address of
1145 	 * the start_kernel symbol.
1146 	 *
1147 	 * The memory doesn't need to be allocated, it just needs to exist
1148 	 * as usable memory. It won't be touched.
1149 	 *
1150 	 * The alignment is recorded, and can be checked to see if we
1151 	 * can run the tests that require an actual valid physical
1152 	 * address range on some architectures ({pmd,pud}_huge_test
1153 	 * on x86).
1154 	 */
1155 
1156 	phys = __pa_symbol(&start_kernel);
1157 	args->fixed_alignment = PAGE_SIZE;
1158 
1159 	for_each_mem_range(idx, &pstart, &pend) {
1160 		/* First check for a PUD-aligned area */
1161 		phys_align_check(pstart, pend, PUD_SIZE, &phys,
1162 				 &args->fixed_alignment);
1163 
1164 		/* If a PUD-aligned area is found, we're done */
1165 		if (args->fixed_alignment == PUD_SIZE)
1166 			break;
1167 
1168 		/*
1169 		 * If no PMD-aligned area found yet, check for one,
1170 		 * but continue the loop to look for a PUD-aligned area.
1171 		 */
1172 		if (args->fixed_alignment < PMD_SIZE)
1173 			phys_align_check(pstart, pend, PMD_SIZE, &phys,
1174 					 &args->fixed_alignment);
1175 	}
1176 
1177 	args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK);
1178 	args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK);
1179 	args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK);
1180 	args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK);
1181 	args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK);
1182 	WARN_ON(!pfn_valid(args->fixed_pte_pfn));
1183 }
1184 
1185 
1186 static int __init init_args(struct pgtable_debug_args *args)
1187 {
1188 	struct page *page = NULL;
1189 	int ret = 0;
1190 
1191 	/*
1192 	 * Initialize the debugging data.
1193 	 *
1194 	 * vm_get_page_prot(VM_NONE) or vm_get_page_prot(VM_SHARED|VM_NONE)
1195 	 * will help create page table entries with PROT_NONE permission as
1196 	 * required for pxx_protnone_tests().
1197 	 */
1198 	memset(args, 0, sizeof(*args));
1199 	args->vaddr              = get_random_vaddr();
1200 	args->page_prot          = vm_get_page_prot(VM_ACCESS_FLAGS);
1201 	args->page_prot_none     = vm_get_page_prot(VM_NONE);
1202 	args->is_contiguous_page = false;
1203 	args->pud_pfn            = ULONG_MAX;
1204 	args->pmd_pfn            = ULONG_MAX;
1205 	args->pte_pfn            = ULONG_MAX;
1206 	args->fixed_pgd_pfn      = ULONG_MAX;
1207 	args->fixed_p4d_pfn      = ULONG_MAX;
1208 	args->fixed_pud_pfn      = ULONG_MAX;
1209 	args->fixed_pmd_pfn      = ULONG_MAX;
1210 	args->fixed_pte_pfn      = ULONG_MAX;
1211 
1212 	/* Allocate mm and vma */
1213 	args->mm = mm_alloc();
1214 	if (!args->mm) {
1215 		pr_err("Failed to allocate mm struct\n");
1216 		ret = -ENOMEM;
1217 		goto error;
1218 	}
1219 
1220 	args->vma = vm_area_alloc(args->mm);
1221 	if (!args->vma) {
1222 		pr_err("Failed to allocate vma\n");
1223 		ret = -ENOMEM;
1224 		goto error;
1225 	}
1226 
1227 	/*
1228 	 * Allocate page table entries. They will be modified in the tests.
1229 	 * Lets save the page table entries so that they can be released
1230 	 * when the tests are completed.
1231 	 */
1232 	args->pgdp = pgd_offset(args->mm, args->vaddr);
1233 	args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr);
1234 	if (!args->p4dp) {
1235 		pr_err("Failed to allocate p4d entries\n");
1236 		ret = -ENOMEM;
1237 		goto error;
1238 	}
1239 	args->start_p4dp = p4d_offset(args->pgdp, 0UL);
1240 	WARN_ON(!args->start_p4dp);
1241 
1242 	args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr);
1243 	if (!args->pudp) {
1244 		pr_err("Failed to allocate pud entries\n");
1245 		ret = -ENOMEM;
1246 		goto error;
1247 	}
1248 	args->start_pudp = pud_offset(args->p4dp, 0UL);
1249 	WARN_ON(!args->start_pudp);
1250 
1251 	args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr);
1252 	if (!args->pmdp) {
1253 		pr_err("Failed to allocate pmd entries\n");
1254 		ret = -ENOMEM;
1255 		goto error;
1256 	}
1257 	args->start_pmdp = pmd_offset(args->pudp, 0UL);
1258 	WARN_ON(!args->start_pmdp);
1259 
1260 	if (pte_alloc(args->mm, args->pmdp)) {
1261 		pr_err("Failed to allocate pte entries\n");
1262 		ret = -ENOMEM;
1263 		goto error;
1264 	}
1265 	args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp));
1266 	WARN_ON(!args->start_ptep);
1267 
1268 	init_fixed_pfns(args);
1269 
1270 	/*
1271 	 * Allocate (huge) pages because some of the tests need to access
1272 	 * the data in the pages. The corresponding tests will be skipped
1273 	 * if we fail to allocate (huge) pages.
1274 	 */
1275 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1276 	    has_transparent_pud_hugepage()) {
1277 		page = debug_vm_pgtable_alloc_huge_page(args,
1278 				HPAGE_PUD_SHIFT - PAGE_SHIFT);
1279 		if (page) {
1280 			args->pud_pfn = page_to_pfn(page);
1281 			args->pmd_pfn = args->pud_pfn;
1282 			args->pte_pfn = args->pud_pfn;
1283 			return 0;
1284 		}
1285 	}
1286 
1287 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
1288 	    has_transparent_hugepage()) {
1289 		page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER);
1290 		if (page) {
1291 			args->pmd_pfn = page_to_pfn(page);
1292 			args->pte_pfn = args->pmd_pfn;
1293 			return 0;
1294 		}
1295 	}
1296 
1297 	page = alloc_page(GFP_KERNEL);
1298 	if (page)
1299 		args->pte_pfn = page_to_pfn(page);
1300 
1301 	return 0;
1302 
1303 error:
1304 	destroy_args(args);
1305 	return ret;
1306 }
1307 
1308 static int __init debug_vm_pgtable(void)
1309 {
1310 	struct pgtable_debug_args args;
1311 	spinlock_t *ptl = NULL;
1312 	int idx, ret;
1313 
1314 	pr_info("Validating architecture page table helpers\n");
1315 	ret = init_args(&args);
1316 	if (ret)
1317 		return ret;
1318 
1319 	/*
1320 	 * Iterate over each possible vm_flags to make sure that all
1321 	 * the basic page table transformation validations just hold
1322 	 * true irrespective of the starting protection value for a
1323 	 * given page table entry.
1324 	 *
1325 	 * Protection based vm_flags combinatins are always linear
1326 	 * and increasing i.e starting from VM_NONE and going upto
1327 	 * (VM_SHARED | READ | WRITE | EXEC).
1328 	 */
1329 #define VM_FLAGS_START	(VM_NONE)
1330 #define VM_FLAGS_END	(VM_SHARED | VM_EXEC | VM_WRITE | VM_READ)
1331 
1332 	for (idx = VM_FLAGS_START; idx <= VM_FLAGS_END; idx++) {
1333 		pte_basic_tests(&args, idx);
1334 		pmd_basic_tests(&args, idx);
1335 		pud_basic_tests(&args, idx);
1336 	}
1337 
1338 	/*
1339 	 * Both P4D and PGD level tests are very basic which do not
1340 	 * involve creating page table entries from the protection
1341 	 * value and the given pfn. Hence just keep them out from
1342 	 * the above iteration for now to save some test execution
1343 	 * time.
1344 	 */
1345 	p4d_basic_tests(&args);
1346 	pgd_basic_tests(&args);
1347 
1348 	pmd_leaf_tests(&args);
1349 	pud_leaf_tests(&args);
1350 
1351 	pte_special_tests(&args);
1352 	pte_protnone_tests(&args);
1353 	pmd_protnone_tests(&args);
1354 
1355 	pte_devmap_tests(&args);
1356 	pmd_devmap_tests(&args);
1357 	pud_devmap_tests(&args);
1358 
1359 	pte_soft_dirty_tests(&args);
1360 	pmd_soft_dirty_tests(&args);
1361 	pte_swap_soft_dirty_tests(&args);
1362 	pmd_swap_soft_dirty_tests(&args);
1363 
1364 	pte_swap_exclusive_tests(&args);
1365 
1366 	pte_swap_tests(&args);
1367 	pmd_swap_tests(&args);
1368 
1369 	swap_migration_tests(&args);
1370 
1371 	pmd_thp_tests(&args);
1372 	pud_thp_tests(&args);
1373 
1374 	hugetlb_basic_tests(&args);
1375 
1376 	/*
1377 	 * Page table modifying tests. They need to hold
1378 	 * proper page table lock.
1379 	 */
1380 
1381 	args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl);
1382 	pte_clear_tests(&args);
1383 	pte_advanced_tests(&args);
1384 	if (args.ptep)
1385 		pte_unmap_unlock(args.ptep, ptl);
1386 
1387 	ptl = pmd_lock(args.mm, args.pmdp);
1388 	pmd_clear_tests(&args);
1389 	pmd_advanced_tests(&args);
1390 	pmd_huge_tests(&args);
1391 	pmd_populate_tests(&args);
1392 	spin_unlock(ptl);
1393 
1394 	ptl = pud_lock(args.mm, args.pudp);
1395 	pud_clear_tests(&args);
1396 	pud_advanced_tests(&args);
1397 	pud_huge_tests(&args);
1398 	pud_populate_tests(&args);
1399 	spin_unlock(ptl);
1400 
1401 	spin_lock(&(args.mm->page_table_lock));
1402 	p4d_clear_tests(&args);
1403 	pgd_clear_tests(&args);
1404 	p4d_populate_tests(&args);
1405 	pgd_populate_tests(&args);
1406 	spin_unlock(&(args.mm->page_table_lock));
1407 
1408 	destroy_args(&args);
1409 	return 0;
1410 }
1411 late_initcall(debug_vm_pgtable);
1412