1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "ops-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task(t->pid, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = damon_sz_region(r); 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct mm_struct *mm, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range first_gap = {0}, second_gap = {0}; 120 VMA_ITERATOR(vmi, mm, 0); 121 struct vm_area_struct *vma, *prev = NULL; 122 unsigned long start; 123 124 /* 125 * Find the two biggest gaps so that first_gap > second_gap > others. 126 * If this is too slow, it can be optimised to examine the maple 127 * tree gaps. 128 */ 129 for_each_vma(vmi, vma) { 130 unsigned long gap; 131 132 if (!prev) { 133 start = vma->vm_start; 134 goto next; 135 } 136 gap = vma->vm_start - prev->vm_end; 137 138 if (gap > sz_range(&first_gap)) { 139 second_gap = first_gap; 140 first_gap.start = prev->vm_end; 141 first_gap.end = vma->vm_start; 142 } else if (gap > sz_range(&second_gap)) { 143 second_gap.start = prev->vm_end; 144 second_gap.end = vma->vm_start; 145 } 146 next: 147 prev = vma; 148 } 149 150 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 151 return -EINVAL; 152 153 /* Sort the two biggest gaps by address */ 154 if (first_gap.start > second_gap.start) 155 swap(first_gap, second_gap); 156 157 /* Store the result */ 158 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION); 164 165 return 0; 166 } 167 168 /* 169 * Get the three regions in the given target (task) 170 * 171 * Returns 0 on success, negative error code otherwise. 172 */ 173 static int damon_va_three_regions(struct damon_target *t, 174 struct damon_addr_range regions[3]) 175 { 176 struct mm_struct *mm; 177 int rc; 178 179 mm = damon_get_mm(t); 180 if (!mm) 181 return -EINVAL; 182 183 mmap_read_lock(mm); 184 rc = __damon_va_three_regions(mm, regions); 185 mmap_read_unlock(mm); 186 187 mmput(mm); 188 return rc; 189 } 190 191 /* 192 * Initialize the monitoring target regions for the given target (task) 193 * 194 * t the given target 195 * 196 * Because only a number of small portions of the entire address space 197 * is actually mapped to the memory and accessed, monitoring the unmapped 198 * regions is wasteful. That said, because we can deal with small noises, 199 * tracking every mapping is not strictly required but could even incur a high 200 * overhead if the mapping frequently changes or the number of mappings is 201 * high. The adaptive regions adjustment mechanism will further help to deal 202 * with the noise by simply identifying the unmapped areas as a region that 203 * has no access. Moreover, applying the real mappings that would have many 204 * unmapped areas inside will make the adaptive mechanism quite complex. That 205 * said, too huge unmapped areas inside the monitoring target should be removed 206 * to not take the time for the adaptive mechanism. 207 * 208 * For the reason, we convert the complex mappings to three distinct regions 209 * that cover every mapped area of the address space. Also the two gaps 210 * between the three regions are the two biggest unmapped areas in the given 211 * address space. In detail, this function first identifies the start and the 212 * end of the mappings and the two biggest unmapped areas of the address space. 213 * Then, it constructs the three regions as below: 214 * 215 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 218 * 219 * As usual memory map of processes is as below, the gap between the heap and 220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 221 * region and the stack will be two biggest unmapped regions. Because these 222 * gaps are exceptionally huge areas in usual address space, excluding these 223 * two biggest unmapped regions will be sufficient to make a trade-off. 224 * 225 * <heap> 226 * <BIG UNMAPPED REGION 1> 227 * <uppermost mmap()-ed region> 228 * (other mmap()-ed regions and small unmapped regions) 229 * <lowermost mmap()-ed region> 230 * <BIG UNMAPPED REGION 2> 231 * <stack> 232 */ 233 static void __damon_va_init_regions(struct damon_ctx *ctx, 234 struct damon_target *t) 235 { 236 struct damon_target *ti; 237 struct damon_region *r; 238 struct damon_addr_range regions[3]; 239 unsigned long sz = 0, nr_pieces; 240 int i, tidx = 0; 241 242 if (damon_va_three_regions(t, regions)) { 243 damon_for_each_target(ti, ctx) { 244 if (ti == t) 245 break; 246 tidx++; 247 } 248 pr_debug("Failed to get three regions of %dth target\n", tidx); 249 return; 250 } 251 252 for (i = 0; i < 3; i++) 253 sz += regions[i].end - regions[i].start; 254 if (ctx->attrs.min_nr_regions) 255 sz /= ctx->attrs.min_nr_regions; 256 if (sz < DAMON_MIN_REGION) 257 sz = DAMON_MIN_REGION; 258 259 /* Set the initial three regions of the target */ 260 for (i = 0; i < 3; i++) { 261 r = damon_new_region(regions[i].start, regions[i].end); 262 if (!r) { 263 pr_err("%d'th init region creation failed\n", i); 264 return; 265 } 266 damon_add_region(r, t); 267 268 nr_pieces = (regions[i].end - regions[i].start) / sz; 269 damon_va_evenly_split_region(t, r, nr_pieces); 270 } 271 } 272 273 /* Initialize '->regions_list' of every target (task) */ 274 static void damon_va_init(struct damon_ctx *ctx) 275 { 276 struct damon_target *t; 277 278 damon_for_each_target(t, ctx) { 279 /* the user may set the target regions as they want */ 280 if (!damon_nr_regions(t)) 281 __damon_va_init_regions(ctx, t); 282 } 283 } 284 285 /* 286 * Update regions for current memory mappings 287 */ 288 static void damon_va_update(struct damon_ctx *ctx) 289 { 290 struct damon_addr_range three_regions[3]; 291 struct damon_target *t; 292 293 damon_for_each_target(t, ctx) { 294 if (damon_va_three_regions(t, three_regions)) 295 continue; 296 damon_set_regions(t, three_regions, 3); 297 } 298 } 299 300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 301 unsigned long next, struct mm_walk *walk) 302 { 303 pte_t *pte; 304 pmd_t pmde; 305 spinlock_t *ptl; 306 307 if (pmd_trans_huge(pmdp_get(pmd))) { 308 ptl = pmd_lock(walk->mm, pmd); 309 pmde = pmdp_get(pmd); 310 311 if (!pmd_present(pmde)) { 312 spin_unlock(ptl); 313 return 0; 314 } 315 316 if (pmd_trans_huge(pmde)) { 317 damon_pmdp_mkold(pmd, walk->vma, addr); 318 spin_unlock(ptl); 319 return 0; 320 } 321 spin_unlock(ptl); 322 } 323 324 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 325 if (!pte) { 326 walk->action = ACTION_AGAIN; 327 return 0; 328 } 329 if (!pte_present(ptep_get(pte))) 330 goto out; 331 damon_ptep_mkold(pte, walk->vma, addr); 332 out: 333 pte_unmap_unlock(pte, ptl); 334 return 0; 335 } 336 337 #ifdef CONFIG_HUGETLB_PAGE 338 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 339 struct vm_area_struct *vma, unsigned long addr) 340 { 341 bool referenced = false; 342 pte_t entry = huge_ptep_get(pte); 343 struct folio *folio = pfn_folio(pte_pfn(entry)); 344 345 folio_get(folio); 346 347 if (pte_young(entry)) { 348 referenced = true; 349 entry = pte_mkold(entry); 350 set_huge_pte_at(mm, addr, pte, entry); 351 } 352 353 #ifdef CONFIG_MMU_NOTIFIER 354 if (mmu_notifier_clear_young(mm, addr, 355 addr + huge_page_size(hstate_vma(vma)))) 356 referenced = true; 357 #endif /* CONFIG_MMU_NOTIFIER */ 358 359 if (referenced) 360 folio_set_young(folio); 361 362 folio_set_idle(folio); 363 folio_put(folio); 364 } 365 366 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 367 unsigned long addr, unsigned long end, 368 struct mm_walk *walk) 369 { 370 struct hstate *h = hstate_vma(walk->vma); 371 spinlock_t *ptl; 372 pte_t entry; 373 374 ptl = huge_pte_lock(h, walk->mm, pte); 375 entry = huge_ptep_get(pte); 376 if (!pte_present(entry)) 377 goto out; 378 379 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 380 381 out: 382 spin_unlock(ptl); 383 return 0; 384 } 385 #else 386 #define damon_mkold_hugetlb_entry NULL 387 #endif /* CONFIG_HUGETLB_PAGE */ 388 389 static const struct mm_walk_ops damon_mkold_ops = { 390 .pmd_entry = damon_mkold_pmd_entry, 391 .hugetlb_entry = damon_mkold_hugetlb_entry, 392 }; 393 394 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 395 { 396 mmap_read_lock(mm); 397 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 398 mmap_read_unlock(mm); 399 } 400 401 /* 402 * Functions for the access checking of the regions 403 */ 404 405 static void __damon_va_prepare_access_check(struct mm_struct *mm, 406 struct damon_region *r) 407 { 408 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 409 410 damon_va_mkold(mm, r->sampling_addr); 411 } 412 413 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 414 { 415 struct damon_target *t; 416 struct mm_struct *mm; 417 struct damon_region *r; 418 419 damon_for_each_target(t, ctx) { 420 mm = damon_get_mm(t); 421 if (!mm) 422 continue; 423 damon_for_each_region(r, t) 424 __damon_va_prepare_access_check(mm, r); 425 mmput(mm); 426 } 427 } 428 429 struct damon_young_walk_private { 430 /* size of the folio for the access checked virtual memory address */ 431 unsigned long *folio_sz; 432 bool young; 433 }; 434 435 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 436 unsigned long next, struct mm_walk *walk) 437 { 438 pte_t *pte; 439 pte_t ptent; 440 spinlock_t *ptl; 441 struct folio *folio; 442 struct damon_young_walk_private *priv = walk->private; 443 444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 445 if (pmd_trans_huge(pmdp_get(pmd))) { 446 pmd_t pmde; 447 448 ptl = pmd_lock(walk->mm, pmd); 449 pmde = pmdp_get(pmd); 450 451 if (!pmd_present(pmde)) { 452 spin_unlock(ptl); 453 return 0; 454 } 455 456 if (!pmd_trans_huge(pmde)) { 457 spin_unlock(ptl); 458 goto regular_page; 459 } 460 folio = damon_get_folio(pmd_pfn(pmde)); 461 if (!folio) 462 goto huge_out; 463 if (pmd_young(pmde) || !folio_test_idle(folio) || 464 mmu_notifier_test_young(walk->mm, 465 addr)) 466 priv->young = true; 467 *priv->folio_sz = HPAGE_PMD_SIZE; 468 folio_put(folio); 469 huge_out: 470 spin_unlock(ptl); 471 return 0; 472 } 473 474 regular_page: 475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 476 477 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 478 if (!pte) { 479 walk->action = ACTION_AGAIN; 480 return 0; 481 } 482 ptent = ptep_get(pte); 483 if (!pte_present(ptent)) 484 goto out; 485 folio = damon_get_folio(pte_pfn(ptent)); 486 if (!folio) 487 goto out; 488 if (pte_young(ptent) || !folio_test_idle(folio) || 489 mmu_notifier_test_young(walk->mm, addr)) 490 priv->young = true; 491 *priv->folio_sz = folio_size(folio); 492 folio_put(folio); 493 out: 494 pte_unmap_unlock(pte, ptl); 495 return 0; 496 } 497 498 #ifdef CONFIG_HUGETLB_PAGE 499 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 500 unsigned long addr, unsigned long end, 501 struct mm_walk *walk) 502 { 503 struct damon_young_walk_private *priv = walk->private; 504 struct hstate *h = hstate_vma(walk->vma); 505 struct folio *folio; 506 spinlock_t *ptl; 507 pte_t entry; 508 509 ptl = huge_pte_lock(h, walk->mm, pte); 510 entry = huge_ptep_get(pte); 511 if (!pte_present(entry)) 512 goto out; 513 514 folio = pfn_folio(pte_pfn(entry)); 515 folio_get(folio); 516 517 if (pte_young(entry) || !folio_test_idle(folio) || 518 mmu_notifier_test_young(walk->mm, addr)) 519 priv->young = true; 520 *priv->folio_sz = huge_page_size(h); 521 522 folio_put(folio); 523 524 out: 525 spin_unlock(ptl); 526 return 0; 527 } 528 #else 529 #define damon_young_hugetlb_entry NULL 530 #endif /* CONFIG_HUGETLB_PAGE */ 531 532 static const struct mm_walk_ops damon_young_ops = { 533 .pmd_entry = damon_young_pmd_entry, 534 .hugetlb_entry = damon_young_hugetlb_entry, 535 }; 536 537 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 538 unsigned long *folio_sz) 539 { 540 struct damon_young_walk_private arg = { 541 .folio_sz = folio_sz, 542 .young = false, 543 }; 544 545 mmap_read_lock(mm); 546 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 547 mmap_read_unlock(mm); 548 return arg.young; 549 } 550 551 /* 552 * Check whether the region was accessed after the last preparation 553 * 554 * mm 'mm_struct' for the given virtual address space 555 * r the region to be checked 556 */ 557 static void __damon_va_check_access(struct mm_struct *mm, 558 struct damon_region *r, bool same_target) 559 { 560 static unsigned long last_addr; 561 static unsigned long last_folio_sz = PAGE_SIZE; 562 static bool last_accessed; 563 564 /* If the region is in the last checked page, reuse the result */ 565 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) == 566 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) { 567 if (last_accessed) 568 r->nr_accesses++; 569 return; 570 } 571 572 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz); 573 if (last_accessed) 574 r->nr_accesses++; 575 576 last_addr = r->sampling_addr; 577 } 578 579 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 580 { 581 struct damon_target *t; 582 struct mm_struct *mm; 583 struct damon_region *r; 584 unsigned int max_nr_accesses = 0; 585 bool same_target; 586 587 damon_for_each_target(t, ctx) { 588 mm = damon_get_mm(t); 589 if (!mm) 590 continue; 591 same_target = false; 592 damon_for_each_region(r, t) { 593 __damon_va_check_access(mm, r, same_target); 594 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 595 same_target = true; 596 } 597 mmput(mm); 598 } 599 600 return max_nr_accesses; 601 } 602 603 /* 604 * Functions for the target validity check and cleanup 605 */ 606 607 static bool damon_va_target_valid(struct damon_target *t) 608 { 609 struct task_struct *task; 610 611 task = damon_get_task_struct(t); 612 if (task) { 613 put_task_struct(task); 614 return true; 615 } 616 617 return false; 618 } 619 620 #ifndef CONFIG_ADVISE_SYSCALLS 621 static unsigned long damos_madvise(struct damon_target *target, 622 struct damon_region *r, int behavior) 623 { 624 return 0; 625 } 626 #else 627 static unsigned long damos_madvise(struct damon_target *target, 628 struct damon_region *r, int behavior) 629 { 630 struct mm_struct *mm; 631 unsigned long start = PAGE_ALIGN(r->ar.start); 632 unsigned long len = PAGE_ALIGN(damon_sz_region(r)); 633 unsigned long applied; 634 635 mm = damon_get_mm(target); 636 if (!mm) 637 return 0; 638 639 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 640 mmput(mm); 641 642 return applied; 643 } 644 #endif /* CONFIG_ADVISE_SYSCALLS */ 645 646 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 647 struct damon_target *t, struct damon_region *r, 648 struct damos *scheme) 649 { 650 int madv_action; 651 652 switch (scheme->action) { 653 case DAMOS_WILLNEED: 654 madv_action = MADV_WILLNEED; 655 break; 656 case DAMOS_COLD: 657 madv_action = MADV_COLD; 658 break; 659 case DAMOS_PAGEOUT: 660 madv_action = MADV_PAGEOUT; 661 break; 662 case DAMOS_HUGEPAGE: 663 madv_action = MADV_HUGEPAGE; 664 break; 665 case DAMOS_NOHUGEPAGE: 666 madv_action = MADV_NOHUGEPAGE; 667 break; 668 case DAMOS_STAT: 669 return 0; 670 default: 671 /* 672 * DAMOS actions that are not yet supported by 'vaddr'. 673 */ 674 return 0; 675 } 676 677 return damos_madvise(t, r, madv_action); 678 } 679 680 static int damon_va_scheme_score(struct damon_ctx *context, 681 struct damon_target *t, struct damon_region *r, 682 struct damos *scheme) 683 { 684 685 switch (scheme->action) { 686 case DAMOS_PAGEOUT: 687 return damon_cold_score(context, r, scheme); 688 default: 689 break; 690 } 691 692 return DAMOS_MAX_SCORE; 693 } 694 695 static int __init damon_va_initcall(void) 696 { 697 struct damon_operations ops = { 698 .id = DAMON_OPS_VADDR, 699 .init = damon_va_init, 700 .update = damon_va_update, 701 .prepare_access_checks = damon_va_prepare_access_checks, 702 .check_accesses = damon_va_check_accesses, 703 .reset_aggregated = NULL, 704 .target_valid = damon_va_target_valid, 705 .cleanup = NULL, 706 .apply_scheme = damon_va_apply_scheme, 707 .get_scheme_score = damon_va_scheme_score, 708 }; 709 /* ops for fixed virtual address ranges */ 710 struct damon_operations ops_fvaddr = ops; 711 int err; 712 713 /* Don't set the monitoring target regions for the entire mapping */ 714 ops_fvaddr.id = DAMON_OPS_FVADDR; 715 ops_fvaddr.init = NULL; 716 ops_fvaddr.update = NULL; 717 718 err = damon_register_ops(&ops); 719 if (err) 720 return err; 721 return damon_register_ops(&ops_fvaddr); 722 }; 723 724 subsys_initcall(damon_va_initcall); 725 726 #include "vaddr-test.h" 727