1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "ops-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task(t->pid, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = r->ar.end - r->ar.start; 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct vm_area_struct *vma, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; 120 struct vm_area_struct *last_vma = NULL; 121 unsigned long start = 0; 122 struct rb_root rbroot; 123 124 /* Find two biggest gaps so that first_gap > second_gap > others */ 125 for (; vma; vma = vma->vm_next) { 126 if (!last_vma) { 127 start = vma->vm_start; 128 goto next; 129 } 130 131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) { 132 rbroot.rb_node = &vma->vm_rb; 133 vma = rb_entry(rb_last(&rbroot), 134 struct vm_area_struct, vm_rb); 135 goto next; 136 } 137 138 gap.start = last_vma->vm_end; 139 gap.end = vma->vm_start; 140 if (sz_range(&gap) > sz_range(&second_gap)) { 141 swap(gap, second_gap); 142 if (sz_range(&second_gap) > sz_range(&first_gap)) 143 swap(second_gap, first_gap); 144 } 145 next: 146 last_vma = vma; 147 } 148 149 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 150 return -EINVAL; 151 152 /* Sort the two biggest gaps by address */ 153 if (first_gap.start > second_gap.start) 154 swap(first_gap, second_gap); 155 156 /* Store the result */ 157 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); 163 164 return 0; 165 } 166 167 /* 168 * Get the three regions in the given target (task) 169 * 170 * Returns 0 on success, negative error code otherwise. 171 */ 172 static int damon_va_three_regions(struct damon_target *t, 173 struct damon_addr_range regions[3]) 174 { 175 struct mm_struct *mm; 176 int rc; 177 178 mm = damon_get_mm(t); 179 if (!mm) 180 return -EINVAL; 181 182 mmap_read_lock(mm); 183 rc = __damon_va_three_regions(mm->mmap, regions); 184 mmap_read_unlock(mm); 185 186 mmput(mm); 187 return rc; 188 } 189 190 /* 191 * Initialize the monitoring target regions for the given target (task) 192 * 193 * t the given target 194 * 195 * Because only a number of small portions of the entire address space 196 * is actually mapped to the memory and accessed, monitoring the unmapped 197 * regions is wasteful. That said, because we can deal with small noises, 198 * tracking every mapping is not strictly required but could even incur a high 199 * overhead if the mapping frequently changes or the number of mappings is 200 * high. The adaptive regions adjustment mechanism will further help to deal 201 * with the noise by simply identifying the unmapped areas as a region that 202 * has no access. Moreover, applying the real mappings that would have many 203 * unmapped areas inside will make the adaptive mechanism quite complex. That 204 * said, too huge unmapped areas inside the monitoring target should be removed 205 * to not take the time for the adaptive mechanism. 206 * 207 * For the reason, we convert the complex mappings to three distinct regions 208 * that cover every mapped area of the address space. Also the two gaps 209 * between the three regions are the two biggest unmapped areas in the given 210 * address space. In detail, this function first identifies the start and the 211 * end of the mappings and the two biggest unmapped areas of the address space. 212 * Then, it constructs the three regions as below: 213 * 214 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 217 * 218 * As usual memory map of processes is as below, the gap between the heap and 219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 220 * region and the stack will be two biggest unmapped regions. Because these 221 * gaps are exceptionally huge areas in usual address space, excluding these 222 * two biggest unmapped regions will be sufficient to make a trade-off. 223 * 224 * <heap> 225 * <BIG UNMAPPED REGION 1> 226 * <uppermost mmap()-ed region> 227 * (other mmap()-ed regions and small unmapped regions) 228 * <lowermost mmap()-ed region> 229 * <BIG UNMAPPED REGION 2> 230 * <stack> 231 */ 232 static void __damon_va_init_regions(struct damon_ctx *ctx, 233 struct damon_target *t) 234 { 235 struct damon_target *ti; 236 struct damon_region *r; 237 struct damon_addr_range regions[3]; 238 unsigned long sz = 0, nr_pieces; 239 int i, tidx = 0; 240 241 if (damon_va_three_regions(t, regions)) { 242 damon_for_each_target(ti, ctx) { 243 if (ti == t) 244 break; 245 tidx++; 246 } 247 pr_debug("Failed to get three regions of %dth target\n", tidx); 248 return; 249 } 250 251 for (i = 0; i < 3; i++) 252 sz += regions[i].end - regions[i].start; 253 if (ctx->min_nr_regions) 254 sz /= ctx->min_nr_regions; 255 if (sz < DAMON_MIN_REGION) 256 sz = DAMON_MIN_REGION; 257 258 /* Set the initial three regions of the target */ 259 for (i = 0; i < 3; i++) { 260 r = damon_new_region(regions[i].start, regions[i].end); 261 if (!r) { 262 pr_err("%d'th init region creation failed\n", i); 263 return; 264 } 265 damon_add_region(r, t); 266 267 nr_pieces = (regions[i].end - regions[i].start) / sz; 268 damon_va_evenly_split_region(t, r, nr_pieces); 269 } 270 } 271 272 /* Initialize '->regions_list' of every target (task) */ 273 static void damon_va_init(struct damon_ctx *ctx) 274 { 275 struct damon_target *t; 276 277 damon_for_each_target(t, ctx) { 278 /* the user may set the target regions as they want */ 279 if (!damon_nr_regions(t)) 280 __damon_va_init_regions(ctx, t); 281 } 282 } 283 284 /* 285 * Update regions for current memory mappings 286 */ 287 static void damon_va_update(struct damon_ctx *ctx) 288 { 289 struct damon_addr_range three_regions[3]; 290 struct damon_target *t; 291 292 damon_for_each_target(t, ctx) { 293 if (damon_va_three_regions(t, three_regions)) 294 continue; 295 damon_set_regions(t, three_regions, 3); 296 } 297 } 298 299 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 300 unsigned long next, struct mm_walk *walk) 301 { 302 pte_t *pte; 303 spinlock_t *ptl; 304 305 if (pmd_huge(*pmd)) { 306 ptl = pmd_lock(walk->mm, pmd); 307 if (pmd_huge(*pmd)) { 308 damon_pmdp_mkold(pmd, walk->mm, addr); 309 spin_unlock(ptl); 310 return 0; 311 } 312 spin_unlock(ptl); 313 } 314 315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 316 return 0; 317 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 318 if (!pte_present(*pte)) 319 goto out; 320 damon_ptep_mkold(pte, walk->mm, addr); 321 out: 322 pte_unmap_unlock(pte, ptl); 323 return 0; 324 } 325 326 #ifdef CONFIG_HUGETLB_PAGE 327 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 328 struct vm_area_struct *vma, unsigned long addr) 329 { 330 bool referenced = false; 331 pte_t entry = huge_ptep_get(pte); 332 struct page *page = pte_page(entry); 333 334 get_page(page); 335 336 if (pte_young(entry)) { 337 referenced = true; 338 entry = pte_mkold(entry); 339 set_huge_pte_at(mm, addr, pte, entry); 340 } 341 342 #ifdef CONFIG_MMU_NOTIFIER 343 if (mmu_notifier_clear_young(mm, addr, 344 addr + huge_page_size(hstate_vma(vma)))) 345 referenced = true; 346 #endif /* CONFIG_MMU_NOTIFIER */ 347 348 if (referenced) 349 set_page_young(page); 350 351 set_page_idle(page); 352 put_page(page); 353 } 354 355 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 356 unsigned long addr, unsigned long end, 357 struct mm_walk *walk) 358 { 359 struct hstate *h = hstate_vma(walk->vma); 360 spinlock_t *ptl; 361 pte_t entry; 362 363 ptl = huge_pte_lock(h, walk->mm, pte); 364 entry = huge_ptep_get(pte); 365 if (!pte_present(entry)) 366 goto out; 367 368 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 369 370 out: 371 spin_unlock(ptl); 372 return 0; 373 } 374 #else 375 #define damon_mkold_hugetlb_entry NULL 376 #endif /* CONFIG_HUGETLB_PAGE */ 377 378 static const struct mm_walk_ops damon_mkold_ops = { 379 .pmd_entry = damon_mkold_pmd_entry, 380 .hugetlb_entry = damon_mkold_hugetlb_entry, 381 }; 382 383 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 384 { 385 mmap_read_lock(mm); 386 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 387 mmap_read_unlock(mm); 388 } 389 390 /* 391 * Functions for the access checking of the regions 392 */ 393 394 static void __damon_va_prepare_access_check(struct damon_ctx *ctx, 395 struct mm_struct *mm, struct damon_region *r) 396 { 397 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 398 399 damon_va_mkold(mm, r->sampling_addr); 400 } 401 402 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 403 { 404 struct damon_target *t; 405 struct mm_struct *mm; 406 struct damon_region *r; 407 408 damon_for_each_target(t, ctx) { 409 mm = damon_get_mm(t); 410 if (!mm) 411 continue; 412 damon_for_each_region(r, t) 413 __damon_va_prepare_access_check(ctx, mm, r); 414 mmput(mm); 415 } 416 } 417 418 struct damon_young_walk_private { 419 unsigned long *page_sz; 420 bool young; 421 }; 422 423 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 424 unsigned long next, struct mm_walk *walk) 425 { 426 pte_t *pte; 427 spinlock_t *ptl; 428 struct page *page; 429 struct damon_young_walk_private *priv = walk->private; 430 431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 432 if (pmd_huge(*pmd)) { 433 ptl = pmd_lock(walk->mm, pmd); 434 if (!pmd_huge(*pmd)) { 435 spin_unlock(ptl); 436 goto regular_page; 437 } 438 page = damon_get_page(pmd_pfn(*pmd)); 439 if (!page) 440 goto huge_out; 441 if (pmd_young(*pmd) || !page_is_idle(page) || 442 mmu_notifier_test_young(walk->mm, 443 addr)) { 444 *priv->page_sz = HPAGE_PMD_SIZE; 445 priv->young = true; 446 } 447 put_page(page); 448 huge_out: 449 spin_unlock(ptl); 450 return 0; 451 } 452 453 regular_page: 454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 455 456 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 457 return -EINVAL; 458 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 459 if (!pte_present(*pte)) 460 goto out; 461 page = damon_get_page(pte_pfn(*pte)); 462 if (!page) 463 goto out; 464 if (pte_young(*pte) || !page_is_idle(page) || 465 mmu_notifier_test_young(walk->mm, addr)) { 466 *priv->page_sz = PAGE_SIZE; 467 priv->young = true; 468 } 469 put_page(page); 470 out: 471 pte_unmap_unlock(pte, ptl); 472 return 0; 473 } 474 475 #ifdef CONFIG_HUGETLB_PAGE 476 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 477 unsigned long addr, unsigned long end, 478 struct mm_walk *walk) 479 { 480 struct damon_young_walk_private *priv = walk->private; 481 struct hstate *h = hstate_vma(walk->vma); 482 struct page *page; 483 spinlock_t *ptl; 484 pte_t entry; 485 486 ptl = huge_pte_lock(h, walk->mm, pte); 487 entry = huge_ptep_get(pte); 488 if (!pte_present(entry)) 489 goto out; 490 491 page = pte_page(entry); 492 get_page(page); 493 494 if (pte_young(entry) || !page_is_idle(page) || 495 mmu_notifier_test_young(walk->mm, addr)) { 496 *priv->page_sz = huge_page_size(h); 497 priv->young = true; 498 } 499 500 put_page(page); 501 502 out: 503 spin_unlock(ptl); 504 return 0; 505 } 506 #else 507 #define damon_young_hugetlb_entry NULL 508 #endif /* CONFIG_HUGETLB_PAGE */ 509 510 static const struct mm_walk_ops damon_young_ops = { 511 .pmd_entry = damon_young_pmd_entry, 512 .hugetlb_entry = damon_young_hugetlb_entry, 513 }; 514 515 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 516 unsigned long *page_sz) 517 { 518 struct damon_young_walk_private arg = { 519 .page_sz = page_sz, 520 .young = false, 521 }; 522 523 mmap_read_lock(mm); 524 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 525 mmap_read_unlock(mm); 526 return arg.young; 527 } 528 529 /* 530 * Check whether the region was accessed after the last preparation 531 * 532 * mm 'mm_struct' for the given virtual address space 533 * r the region to be checked 534 */ 535 static void __damon_va_check_access(struct damon_ctx *ctx, 536 struct mm_struct *mm, struct damon_region *r) 537 { 538 static struct mm_struct *last_mm; 539 static unsigned long last_addr; 540 static unsigned long last_page_sz = PAGE_SIZE; 541 static bool last_accessed; 542 543 /* If the region is in the last checked page, reuse the result */ 544 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == 545 ALIGN_DOWN(r->sampling_addr, last_page_sz))) { 546 if (last_accessed) 547 r->nr_accesses++; 548 return; 549 } 550 551 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); 552 if (last_accessed) 553 r->nr_accesses++; 554 555 last_mm = mm; 556 last_addr = r->sampling_addr; 557 } 558 559 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 560 { 561 struct damon_target *t; 562 struct mm_struct *mm; 563 struct damon_region *r; 564 unsigned int max_nr_accesses = 0; 565 566 damon_for_each_target(t, ctx) { 567 mm = damon_get_mm(t); 568 if (!mm) 569 continue; 570 damon_for_each_region(r, t) { 571 __damon_va_check_access(ctx, mm, r); 572 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 573 } 574 mmput(mm); 575 } 576 577 return max_nr_accesses; 578 } 579 580 /* 581 * Functions for the target validity check and cleanup 582 */ 583 584 static bool damon_va_target_valid(void *target) 585 { 586 struct damon_target *t = target; 587 struct task_struct *task; 588 589 task = damon_get_task_struct(t); 590 if (task) { 591 put_task_struct(task); 592 return true; 593 } 594 595 return false; 596 } 597 598 #ifndef CONFIG_ADVISE_SYSCALLS 599 static unsigned long damos_madvise(struct damon_target *target, 600 struct damon_region *r, int behavior) 601 { 602 return 0; 603 } 604 #else 605 static unsigned long damos_madvise(struct damon_target *target, 606 struct damon_region *r, int behavior) 607 { 608 struct mm_struct *mm; 609 unsigned long start = PAGE_ALIGN(r->ar.start); 610 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start); 611 unsigned long applied; 612 613 mm = damon_get_mm(target); 614 if (!mm) 615 return 0; 616 617 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 618 mmput(mm); 619 620 return applied; 621 } 622 #endif /* CONFIG_ADVISE_SYSCALLS */ 623 624 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 625 struct damon_target *t, struct damon_region *r, 626 struct damos *scheme) 627 { 628 int madv_action; 629 630 switch (scheme->action) { 631 case DAMOS_WILLNEED: 632 madv_action = MADV_WILLNEED; 633 break; 634 case DAMOS_COLD: 635 madv_action = MADV_COLD; 636 break; 637 case DAMOS_PAGEOUT: 638 madv_action = MADV_PAGEOUT; 639 break; 640 case DAMOS_HUGEPAGE: 641 madv_action = MADV_HUGEPAGE; 642 break; 643 case DAMOS_NOHUGEPAGE: 644 madv_action = MADV_NOHUGEPAGE; 645 break; 646 case DAMOS_STAT: 647 return 0; 648 default: 649 return 0; 650 } 651 652 return damos_madvise(t, r, madv_action); 653 } 654 655 static int damon_va_scheme_score(struct damon_ctx *context, 656 struct damon_target *t, struct damon_region *r, 657 struct damos *scheme) 658 { 659 660 switch (scheme->action) { 661 case DAMOS_PAGEOUT: 662 return damon_pageout_score(context, r, scheme); 663 default: 664 break; 665 } 666 667 return DAMOS_MAX_SCORE; 668 } 669 670 static int __init damon_va_initcall(void) 671 { 672 struct damon_operations ops = { 673 .id = DAMON_OPS_VADDR, 674 .init = damon_va_init, 675 .update = damon_va_update, 676 .prepare_access_checks = damon_va_prepare_access_checks, 677 .check_accesses = damon_va_check_accesses, 678 .reset_aggregated = NULL, 679 .target_valid = damon_va_target_valid, 680 .cleanup = NULL, 681 .apply_scheme = damon_va_apply_scheme, 682 .get_scheme_score = damon_va_scheme_score, 683 }; 684 /* ops for fixed virtual address ranges */ 685 struct damon_operations ops_fvaddr = ops; 686 int err; 687 688 /* Don't set the monitoring target regions for the entire mapping */ 689 ops_fvaddr.id = DAMON_OPS_FVADDR; 690 ops_fvaddr.init = NULL; 691 ops_fvaddr.update = NULL; 692 693 err = damon_register_ops(&ops); 694 if (err) 695 return err; 696 return damon_register_ops(&ops_fvaddr); 697 }; 698 699 subsys_initcall(damon_va_initcall); 700 701 #include "vaddr-test.h" 702