xref: /openbmc/linux/mm/damon/vaddr.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DAMON Primitives for Virtual Address Spaces
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon-va: " fmt
9 
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17 
18 #include "ops-common.h"
19 
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 /*
26  * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27  * count.  Caller must put the returned task, unless it is NULL.
28  */
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 	return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33 
34 /*
35  * Get the mm_struct of the given target
36  *
37  * Caller _must_ put the mm_struct after use, unless it is NULL.
38  *
39  * Returns the mm_struct of the target on success, NULL on failure
40  */
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 	struct task_struct *task;
44 	struct mm_struct *mm;
45 
46 	task = damon_get_task_struct(t);
47 	if (!task)
48 		return NULL;
49 
50 	mm = get_task_mm(task);
51 	put_task_struct(task);
52 	return mm;
53 }
54 
55 /*
56  * Functions for the initial monitoring target regions construction
57  */
58 
59 /*
60  * Size-evenly split a region into 'nr_pieces' small regions
61  *
62  * Returns 0 on success, or negative error code otherwise.
63  */
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 		struct damon_region *r, unsigned int nr_pieces)
66 {
67 	unsigned long sz_orig, sz_piece, orig_end;
68 	struct damon_region *n = NULL, *next;
69 	unsigned long start;
70 
71 	if (!r || !nr_pieces)
72 		return -EINVAL;
73 
74 	orig_end = r->ar.end;
75 	sz_orig = damon_sz_region(r);
76 	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77 
78 	if (!sz_piece)
79 		return -EINVAL;
80 
81 	r->ar.end = r->ar.start + sz_piece;
82 	next = damon_next_region(r);
83 	for (start = r->ar.end; start + sz_piece <= orig_end;
84 			start += sz_piece) {
85 		n = damon_new_region(start, start + sz_piece);
86 		if (!n)
87 			return -ENOMEM;
88 		damon_insert_region(n, r, next, t);
89 		r = n;
90 	}
91 	/* complement last region for possible rounding error */
92 	if (n)
93 		n->ar.end = orig_end;
94 
95 	return 0;
96 }
97 
98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 	return r->end - r->start;
101 }
102 
103 /*
104  * Find three regions separated by two biggest unmapped regions
105  *
106  * vma		the head vma of the target address space
107  * regions	an array of three address ranges that results will be saved
108  *
109  * This function receives an address space and finds three regions in it which
110  * separated by the two biggest unmapped regions in the space.  Please refer to
111  * below comments of '__damon_va_init_regions()' function to know why this is
112  * necessary.
113  *
114  * Returns 0 if success, or negative error code otherwise.
115  */
116 static int __damon_va_three_regions(struct mm_struct *mm,
117 				       struct damon_addr_range regions[3])
118 {
119 	struct damon_addr_range first_gap = {0}, second_gap = {0};
120 	VMA_ITERATOR(vmi, mm, 0);
121 	struct vm_area_struct *vma, *prev = NULL;
122 	unsigned long start;
123 
124 	/*
125 	 * Find the two biggest gaps so that first_gap > second_gap > others.
126 	 * If this is too slow, it can be optimised to examine the maple
127 	 * tree gaps.
128 	 */
129 	for_each_vma(vmi, vma) {
130 		unsigned long gap;
131 
132 		if (!prev) {
133 			start = vma->vm_start;
134 			goto next;
135 		}
136 		gap = vma->vm_start - prev->vm_end;
137 
138 		if (gap > sz_range(&first_gap)) {
139 			second_gap = first_gap;
140 			first_gap.start = prev->vm_end;
141 			first_gap.end = vma->vm_start;
142 		} else if (gap > sz_range(&second_gap)) {
143 			second_gap.start = prev->vm_end;
144 			second_gap.end = vma->vm_start;
145 		}
146 next:
147 		prev = vma;
148 	}
149 
150 	if (!sz_range(&second_gap) || !sz_range(&first_gap))
151 		return -EINVAL;
152 
153 	/* Sort the two biggest gaps by address */
154 	if (first_gap.start > second_gap.start)
155 		swap(first_gap, second_gap);
156 
157 	/* Store the result */
158 	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164 
165 	return 0;
166 }
167 
168 /*
169  * Get the three regions in the given target (task)
170  *
171  * Returns 0 on success, negative error code otherwise.
172  */
173 static int damon_va_three_regions(struct damon_target *t,
174 				struct damon_addr_range regions[3])
175 {
176 	struct mm_struct *mm;
177 	int rc;
178 
179 	mm = damon_get_mm(t);
180 	if (!mm)
181 		return -EINVAL;
182 
183 	mmap_read_lock(mm);
184 	rc = __damon_va_three_regions(mm, regions);
185 	mmap_read_unlock(mm);
186 
187 	mmput(mm);
188 	return rc;
189 }
190 
191 /*
192  * Initialize the monitoring target regions for the given target (task)
193  *
194  * t	the given target
195  *
196  * Because only a number of small portions of the entire address space
197  * is actually mapped to the memory and accessed, monitoring the unmapped
198  * regions is wasteful.  That said, because we can deal with small noises,
199  * tracking every mapping is not strictly required but could even incur a high
200  * overhead if the mapping frequently changes or the number of mappings is
201  * high.  The adaptive regions adjustment mechanism will further help to deal
202  * with the noise by simply identifying the unmapped areas as a region that
203  * has no access.  Moreover, applying the real mappings that would have many
204  * unmapped areas inside will make the adaptive mechanism quite complex.  That
205  * said, too huge unmapped areas inside the monitoring target should be removed
206  * to not take the time for the adaptive mechanism.
207  *
208  * For the reason, we convert the complex mappings to three distinct regions
209  * that cover every mapped area of the address space.  Also the two gaps
210  * between the three regions are the two biggest unmapped areas in the given
211  * address space.  In detail, this function first identifies the start and the
212  * end of the mappings and the two biggest unmapped areas of the address space.
213  * Then, it constructs the three regions as below:
214  *
215  *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
216  *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217  *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218  *
219  * As usual memory map of processes is as below, the gap between the heap and
220  * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221  * region and the stack will be two biggest unmapped regions.  Because these
222  * gaps are exceptionally huge areas in usual address space, excluding these
223  * two biggest unmapped regions will be sufficient to make a trade-off.
224  *
225  *   <heap>
226  *   <BIG UNMAPPED REGION 1>
227  *   <uppermost mmap()-ed region>
228  *   (other mmap()-ed regions and small unmapped regions)
229  *   <lowermost mmap()-ed region>
230  *   <BIG UNMAPPED REGION 2>
231  *   <stack>
232  */
233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 				     struct damon_target *t)
235 {
236 	struct damon_target *ti;
237 	struct damon_region *r;
238 	struct damon_addr_range regions[3];
239 	unsigned long sz = 0, nr_pieces;
240 	int i, tidx = 0;
241 
242 	if (damon_va_three_regions(t, regions)) {
243 		damon_for_each_target(ti, ctx) {
244 			if (ti == t)
245 				break;
246 			tidx++;
247 		}
248 		pr_debug("Failed to get three regions of %dth target\n", tidx);
249 		return;
250 	}
251 
252 	for (i = 0; i < 3; i++)
253 		sz += regions[i].end - regions[i].start;
254 	if (ctx->attrs.min_nr_regions)
255 		sz /= ctx->attrs.min_nr_regions;
256 	if (sz < DAMON_MIN_REGION)
257 		sz = DAMON_MIN_REGION;
258 
259 	/* Set the initial three regions of the target */
260 	for (i = 0; i < 3; i++) {
261 		r = damon_new_region(regions[i].start, regions[i].end);
262 		if (!r) {
263 			pr_err("%d'th init region creation failed\n", i);
264 			return;
265 		}
266 		damon_add_region(r, t);
267 
268 		nr_pieces = (regions[i].end - regions[i].start) / sz;
269 		damon_va_evenly_split_region(t, r, nr_pieces);
270 	}
271 }
272 
273 /* Initialize '->regions_list' of every target (task) */
274 static void damon_va_init(struct damon_ctx *ctx)
275 {
276 	struct damon_target *t;
277 
278 	damon_for_each_target(t, ctx) {
279 		/* the user may set the target regions as they want */
280 		if (!damon_nr_regions(t))
281 			__damon_va_init_regions(ctx, t);
282 	}
283 }
284 
285 /*
286  * Update regions for current memory mappings
287  */
288 static void damon_va_update(struct damon_ctx *ctx)
289 {
290 	struct damon_addr_range three_regions[3];
291 	struct damon_target *t;
292 
293 	damon_for_each_target(t, ctx) {
294 		if (damon_va_three_regions(t, three_regions))
295 			continue;
296 		damon_set_regions(t, three_regions, 3);
297 	}
298 }
299 
300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 		unsigned long next, struct mm_walk *walk)
302 {
303 	pte_t *pte;
304 	spinlock_t *ptl;
305 
306 	if (pmd_trans_huge(*pmd)) {
307 		ptl = pmd_lock(walk->mm, pmd);
308 		if (!pmd_present(*pmd)) {
309 			spin_unlock(ptl);
310 			return 0;
311 		}
312 
313 		if (pmd_trans_huge(*pmd)) {
314 			damon_pmdp_mkold(pmd, walk->mm, addr);
315 			spin_unlock(ptl);
316 			return 0;
317 		}
318 		spin_unlock(ptl);
319 	}
320 
321 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
322 		return 0;
323 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
324 	if (!pte_present(*pte))
325 		goto out;
326 	damon_ptep_mkold(pte, walk->mm, addr);
327 out:
328 	pte_unmap_unlock(pte, ptl);
329 	return 0;
330 }
331 
332 #ifdef CONFIG_HUGETLB_PAGE
333 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
334 				struct vm_area_struct *vma, unsigned long addr)
335 {
336 	bool referenced = false;
337 	pte_t entry = huge_ptep_get(pte);
338 	struct page *page = pte_page(entry);
339 
340 	get_page(page);
341 
342 	if (pte_young(entry)) {
343 		referenced = true;
344 		entry = pte_mkold(entry);
345 		set_huge_pte_at(mm, addr, pte, entry);
346 	}
347 
348 #ifdef CONFIG_MMU_NOTIFIER
349 	if (mmu_notifier_clear_young(mm, addr,
350 				     addr + huge_page_size(hstate_vma(vma))))
351 		referenced = true;
352 #endif /* CONFIG_MMU_NOTIFIER */
353 
354 	if (referenced)
355 		set_page_young(page);
356 
357 	set_page_idle(page);
358 	put_page(page);
359 }
360 
361 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362 				     unsigned long addr, unsigned long end,
363 				     struct mm_walk *walk)
364 {
365 	struct hstate *h = hstate_vma(walk->vma);
366 	spinlock_t *ptl;
367 	pte_t entry;
368 
369 	ptl = huge_pte_lock(h, walk->mm, pte);
370 	entry = huge_ptep_get(pte);
371 	if (!pte_present(entry))
372 		goto out;
373 
374 	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375 
376 out:
377 	spin_unlock(ptl);
378 	return 0;
379 }
380 #else
381 #define damon_mkold_hugetlb_entry NULL
382 #endif /* CONFIG_HUGETLB_PAGE */
383 
384 static const struct mm_walk_ops damon_mkold_ops = {
385 	.pmd_entry = damon_mkold_pmd_entry,
386 	.hugetlb_entry = damon_mkold_hugetlb_entry,
387 };
388 
389 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
390 {
391 	mmap_read_lock(mm);
392 	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
393 	mmap_read_unlock(mm);
394 }
395 
396 /*
397  * Functions for the access checking of the regions
398  */
399 
400 static void __damon_va_prepare_access_check(struct mm_struct *mm,
401 					struct damon_region *r)
402 {
403 	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
404 
405 	damon_va_mkold(mm, r->sampling_addr);
406 }
407 
408 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
409 {
410 	struct damon_target *t;
411 	struct mm_struct *mm;
412 	struct damon_region *r;
413 
414 	damon_for_each_target(t, ctx) {
415 		mm = damon_get_mm(t);
416 		if (!mm)
417 			continue;
418 		damon_for_each_region(r, t)
419 			__damon_va_prepare_access_check(mm, r);
420 		mmput(mm);
421 	}
422 }
423 
424 struct damon_young_walk_private {
425 	unsigned long *page_sz;
426 	bool young;
427 };
428 
429 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
430 		unsigned long next, struct mm_walk *walk)
431 {
432 	pte_t *pte;
433 	spinlock_t *ptl;
434 	struct page *page;
435 	struct damon_young_walk_private *priv = walk->private;
436 
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 	if (pmd_trans_huge(*pmd)) {
439 		ptl = pmd_lock(walk->mm, pmd);
440 		if (!pmd_present(*pmd)) {
441 			spin_unlock(ptl);
442 			return 0;
443 		}
444 
445 		if (!pmd_trans_huge(*pmd)) {
446 			spin_unlock(ptl);
447 			goto regular_page;
448 		}
449 		page = damon_get_page(pmd_pfn(*pmd));
450 		if (!page)
451 			goto huge_out;
452 		if (pmd_young(*pmd) || !page_is_idle(page) ||
453 					mmu_notifier_test_young(walk->mm,
454 						addr)) {
455 			*priv->page_sz = HPAGE_PMD_SIZE;
456 			priv->young = true;
457 		}
458 		put_page(page);
459 huge_out:
460 		spin_unlock(ptl);
461 		return 0;
462 	}
463 
464 regular_page:
465 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
466 
467 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
468 		return -EINVAL;
469 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
470 	if (!pte_present(*pte))
471 		goto out;
472 	page = damon_get_page(pte_pfn(*pte));
473 	if (!page)
474 		goto out;
475 	if (pte_young(*pte) || !page_is_idle(page) ||
476 			mmu_notifier_test_young(walk->mm, addr)) {
477 		*priv->page_sz = PAGE_SIZE;
478 		priv->young = true;
479 	}
480 	put_page(page);
481 out:
482 	pte_unmap_unlock(pte, ptl);
483 	return 0;
484 }
485 
486 #ifdef CONFIG_HUGETLB_PAGE
487 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
488 				     unsigned long addr, unsigned long end,
489 				     struct mm_walk *walk)
490 {
491 	struct damon_young_walk_private *priv = walk->private;
492 	struct hstate *h = hstate_vma(walk->vma);
493 	struct page *page;
494 	spinlock_t *ptl;
495 	pte_t entry;
496 
497 	ptl = huge_pte_lock(h, walk->mm, pte);
498 	entry = huge_ptep_get(pte);
499 	if (!pte_present(entry))
500 		goto out;
501 
502 	page = pte_page(entry);
503 	get_page(page);
504 
505 	if (pte_young(entry) || !page_is_idle(page) ||
506 	    mmu_notifier_test_young(walk->mm, addr)) {
507 		*priv->page_sz = huge_page_size(h);
508 		priv->young = true;
509 	}
510 
511 	put_page(page);
512 
513 out:
514 	spin_unlock(ptl);
515 	return 0;
516 }
517 #else
518 #define damon_young_hugetlb_entry NULL
519 #endif /* CONFIG_HUGETLB_PAGE */
520 
521 static const struct mm_walk_ops damon_young_ops = {
522 	.pmd_entry = damon_young_pmd_entry,
523 	.hugetlb_entry = damon_young_hugetlb_entry,
524 };
525 
526 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
527 		unsigned long *page_sz)
528 {
529 	struct damon_young_walk_private arg = {
530 		.page_sz = page_sz,
531 		.young = false,
532 	};
533 
534 	mmap_read_lock(mm);
535 	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
536 	mmap_read_unlock(mm);
537 	return arg.young;
538 }
539 
540 /*
541  * Check whether the region was accessed after the last preparation
542  *
543  * mm	'mm_struct' for the given virtual address space
544  * r	the region to be checked
545  */
546 static void __damon_va_check_access(struct mm_struct *mm,
547 				struct damon_region *r, bool same_target)
548 {
549 	static unsigned long last_addr;
550 	static unsigned long last_page_sz = PAGE_SIZE;
551 	static bool last_accessed;
552 
553 	/* If the region is in the last checked page, reuse the result */
554 	if (same_target && (ALIGN_DOWN(last_addr, last_page_sz) ==
555 				ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
556 		if (last_accessed)
557 			r->nr_accesses++;
558 		return;
559 	}
560 
561 	last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
562 	if (last_accessed)
563 		r->nr_accesses++;
564 
565 	last_addr = r->sampling_addr;
566 }
567 
568 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
569 {
570 	struct damon_target *t;
571 	struct mm_struct *mm;
572 	struct damon_region *r;
573 	unsigned int max_nr_accesses = 0;
574 	bool same_target;
575 
576 	damon_for_each_target(t, ctx) {
577 		mm = damon_get_mm(t);
578 		if (!mm)
579 			continue;
580 		same_target = false;
581 		damon_for_each_region(r, t) {
582 			__damon_va_check_access(mm, r, same_target);
583 			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
584 			same_target = true;
585 		}
586 		mmput(mm);
587 	}
588 
589 	return max_nr_accesses;
590 }
591 
592 /*
593  * Functions for the target validity check and cleanup
594  */
595 
596 static bool damon_va_target_valid(struct damon_target *t)
597 {
598 	struct task_struct *task;
599 
600 	task = damon_get_task_struct(t);
601 	if (task) {
602 		put_task_struct(task);
603 		return true;
604 	}
605 
606 	return false;
607 }
608 
609 #ifndef CONFIG_ADVISE_SYSCALLS
610 static unsigned long damos_madvise(struct damon_target *target,
611 		struct damon_region *r, int behavior)
612 {
613 	return 0;
614 }
615 #else
616 static unsigned long damos_madvise(struct damon_target *target,
617 		struct damon_region *r, int behavior)
618 {
619 	struct mm_struct *mm;
620 	unsigned long start = PAGE_ALIGN(r->ar.start);
621 	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
622 	unsigned long applied;
623 
624 	mm = damon_get_mm(target);
625 	if (!mm)
626 		return 0;
627 
628 	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
629 	mmput(mm);
630 
631 	return applied;
632 }
633 #endif	/* CONFIG_ADVISE_SYSCALLS */
634 
635 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
636 		struct damon_target *t, struct damon_region *r,
637 		struct damos *scheme)
638 {
639 	int madv_action;
640 
641 	switch (scheme->action) {
642 	case DAMOS_WILLNEED:
643 		madv_action = MADV_WILLNEED;
644 		break;
645 	case DAMOS_COLD:
646 		madv_action = MADV_COLD;
647 		break;
648 	case DAMOS_PAGEOUT:
649 		madv_action = MADV_PAGEOUT;
650 		break;
651 	case DAMOS_HUGEPAGE:
652 		madv_action = MADV_HUGEPAGE;
653 		break;
654 	case DAMOS_NOHUGEPAGE:
655 		madv_action = MADV_NOHUGEPAGE;
656 		break;
657 	case DAMOS_STAT:
658 		return 0;
659 	default:
660 		/*
661 		 * DAMOS actions that are not yet supported by 'vaddr'.
662 		 */
663 		return 0;
664 	}
665 
666 	return damos_madvise(t, r, madv_action);
667 }
668 
669 static int damon_va_scheme_score(struct damon_ctx *context,
670 		struct damon_target *t, struct damon_region *r,
671 		struct damos *scheme)
672 {
673 
674 	switch (scheme->action) {
675 	case DAMOS_PAGEOUT:
676 		return damon_cold_score(context, r, scheme);
677 	default:
678 		break;
679 	}
680 
681 	return DAMOS_MAX_SCORE;
682 }
683 
684 static int __init damon_va_initcall(void)
685 {
686 	struct damon_operations ops = {
687 		.id = DAMON_OPS_VADDR,
688 		.init = damon_va_init,
689 		.update = damon_va_update,
690 		.prepare_access_checks = damon_va_prepare_access_checks,
691 		.check_accesses = damon_va_check_accesses,
692 		.reset_aggregated = NULL,
693 		.target_valid = damon_va_target_valid,
694 		.cleanup = NULL,
695 		.apply_scheme = damon_va_apply_scheme,
696 		.get_scheme_score = damon_va_scheme_score,
697 	};
698 	/* ops for fixed virtual address ranges */
699 	struct damon_operations ops_fvaddr = ops;
700 	int err;
701 
702 	/* Don't set the monitoring target regions for the entire mapping */
703 	ops_fvaddr.id = DAMON_OPS_FVADDR;
704 	ops_fvaddr.init = NULL;
705 	ops_fvaddr.update = NULL;
706 
707 	err = damon_register_ops(&ops);
708 	if (err)
709 		return err;
710 	return damon_register_ops(&ops_fvaddr);
711 };
712 
713 subsys_initcall(damon_va_initcall);
714 
715 #include "vaddr-test.h"
716