1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "prmtv-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->id' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 #define damon_get_task_struct(t) \ 30 (get_pid_task((struct pid *)t->id, PIDTYPE_PID)) 31 32 /* 33 * Get the mm_struct of the given target 34 * 35 * Caller _must_ put the mm_struct after use, unless it is NULL. 36 * 37 * Returns the mm_struct of the target on success, NULL on failure 38 */ 39 static struct mm_struct *damon_get_mm(struct damon_target *t) 40 { 41 struct task_struct *task; 42 struct mm_struct *mm; 43 44 task = damon_get_task_struct(t); 45 if (!task) 46 return NULL; 47 48 mm = get_task_mm(task); 49 put_task_struct(task); 50 return mm; 51 } 52 53 /* 54 * Functions for the initial monitoring target regions construction 55 */ 56 57 /* 58 * Size-evenly split a region into 'nr_pieces' small regions 59 * 60 * Returns 0 on success, or negative error code otherwise. 61 */ 62 static int damon_va_evenly_split_region(struct damon_target *t, 63 struct damon_region *r, unsigned int nr_pieces) 64 { 65 unsigned long sz_orig, sz_piece, orig_end; 66 struct damon_region *n = NULL, *next; 67 unsigned long start; 68 69 if (!r || !nr_pieces) 70 return -EINVAL; 71 72 orig_end = r->ar.end; 73 sz_orig = r->ar.end - r->ar.start; 74 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 75 76 if (!sz_piece) 77 return -EINVAL; 78 79 r->ar.end = r->ar.start + sz_piece; 80 next = damon_next_region(r); 81 for (start = r->ar.end; start + sz_piece <= orig_end; 82 start += sz_piece) { 83 n = damon_new_region(start, start + sz_piece); 84 if (!n) 85 return -ENOMEM; 86 damon_insert_region(n, r, next, t); 87 r = n; 88 } 89 /* complement last region for possible rounding error */ 90 if (n) 91 n->ar.end = orig_end; 92 93 return 0; 94 } 95 96 static unsigned long sz_range(struct damon_addr_range *r) 97 { 98 return r->end - r->start; 99 } 100 101 static void swap_ranges(struct damon_addr_range *r1, 102 struct damon_addr_range *r2) 103 { 104 struct damon_addr_range tmp; 105 106 tmp = *r1; 107 *r1 = *r2; 108 *r2 = tmp; 109 } 110 111 /* 112 * Find three regions separated by two biggest unmapped regions 113 * 114 * vma the head vma of the target address space 115 * regions an array of three address ranges that results will be saved 116 * 117 * This function receives an address space and finds three regions in it which 118 * separated by the two biggest unmapped regions in the space. Please refer to 119 * below comments of '__damon_va_init_regions()' function to know why this is 120 * necessary. 121 * 122 * Returns 0 if success, or negative error code otherwise. 123 */ 124 static int __damon_va_three_regions(struct vm_area_struct *vma, 125 struct damon_addr_range regions[3]) 126 { 127 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; 128 struct vm_area_struct *last_vma = NULL; 129 unsigned long start = 0; 130 struct rb_root rbroot; 131 132 /* Find two biggest gaps so that first_gap > second_gap > others */ 133 for (; vma; vma = vma->vm_next) { 134 if (!last_vma) { 135 start = vma->vm_start; 136 goto next; 137 } 138 139 if (vma->rb_subtree_gap <= sz_range(&second_gap)) { 140 rbroot.rb_node = &vma->vm_rb; 141 vma = rb_entry(rb_last(&rbroot), 142 struct vm_area_struct, vm_rb); 143 goto next; 144 } 145 146 gap.start = last_vma->vm_end; 147 gap.end = vma->vm_start; 148 if (sz_range(&gap) > sz_range(&second_gap)) { 149 swap_ranges(&gap, &second_gap); 150 if (sz_range(&second_gap) > sz_range(&first_gap)) 151 swap_ranges(&second_gap, &first_gap); 152 } 153 next: 154 last_vma = vma; 155 } 156 157 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 158 return -EINVAL; 159 160 /* Sort the two biggest gaps by address */ 161 if (first_gap.start > second_gap.start) 162 swap_ranges(&first_gap, &second_gap); 163 164 /* Store the result */ 165 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 166 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 167 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 168 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 169 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 170 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); 171 172 return 0; 173 } 174 175 /* 176 * Get the three regions in the given target (task) 177 * 178 * Returns 0 on success, negative error code otherwise. 179 */ 180 static int damon_va_three_regions(struct damon_target *t, 181 struct damon_addr_range regions[3]) 182 { 183 struct mm_struct *mm; 184 int rc; 185 186 mm = damon_get_mm(t); 187 if (!mm) 188 return -EINVAL; 189 190 mmap_read_lock(mm); 191 rc = __damon_va_three_regions(mm->mmap, regions); 192 mmap_read_unlock(mm); 193 194 mmput(mm); 195 return rc; 196 } 197 198 /* 199 * Initialize the monitoring target regions for the given target (task) 200 * 201 * t the given target 202 * 203 * Because only a number of small portions of the entire address space 204 * is actually mapped to the memory and accessed, monitoring the unmapped 205 * regions is wasteful. That said, because we can deal with small noises, 206 * tracking every mapping is not strictly required but could even incur a high 207 * overhead if the mapping frequently changes or the number of mappings is 208 * high. The adaptive regions adjustment mechanism will further help to deal 209 * with the noise by simply identifying the unmapped areas as a region that 210 * has no access. Moreover, applying the real mappings that would have many 211 * unmapped areas inside will make the adaptive mechanism quite complex. That 212 * said, too huge unmapped areas inside the monitoring target should be removed 213 * to not take the time for the adaptive mechanism. 214 * 215 * For the reason, we convert the complex mappings to three distinct regions 216 * that cover every mapped area of the address space. Also the two gaps 217 * between the three regions are the two biggest unmapped areas in the given 218 * address space. In detail, this function first identifies the start and the 219 * end of the mappings and the two biggest unmapped areas of the address space. 220 * Then, it constructs the three regions as below: 221 * 222 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 223 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 224 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 225 * 226 * As usual memory map of processes is as below, the gap between the heap and 227 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 228 * region and the stack will be two biggest unmapped regions. Because these 229 * gaps are exceptionally huge areas in usual address space, excluding these 230 * two biggest unmapped regions will be sufficient to make a trade-off. 231 * 232 * <heap> 233 * <BIG UNMAPPED REGION 1> 234 * <uppermost mmap()-ed region> 235 * (other mmap()-ed regions and small unmapped regions) 236 * <lowermost mmap()-ed region> 237 * <BIG UNMAPPED REGION 2> 238 * <stack> 239 */ 240 static void __damon_va_init_regions(struct damon_ctx *ctx, 241 struct damon_target *t) 242 { 243 struct damon_region *r; 244 struct damon_addr_range regions[3]; 245 unsigned long sz = 0, nr_pieces; 246 int i; 247 248 if (damon_va_three_regions(t, regions)) { 249 pr_err("Failed to get three regions of target %lu\n", t->id); 250 return; 251 } 252 253 for (i = 0; i < 3; i++) 254 sz += regions[i].end - regions[i].start; 255 if (ctx->min_nr_regions) 256 sz /= ctx->min_nr_regions; 257 if (sz < DAMON_MIN_REGION) 258 sz = DAMON_MIN_REGION; 259 260 /* Set the initial three regions of the target */ 261 for (i = 0; i < 3; i++) { 262 r = damon_new_region(regions[i].start, regions[i].end); 263 if (!r) { 264 pr_err("%d'th init region creation failed\n", i); 265 return; 266 } 267 damon_add_region(r, t); 268 269 nr_pieces = (regions[i].end - regions[i].start) / sz; 270 damon_va_evenly_split_region(t, r, nr_pieces); 271 } 272 } 273 274 /* Initialize '->regions_list' of every target (task) */ 275 void damon_va_init(struct damon_ctx *ctx) 276 { 277 struct damon_target *t; 278 279 damon_for_each_target(t, ctx) { 280 /* the user may set the target regions as they want */ 281 if (!damon_nr_regions(t)) 282 __damon_va_init_regions(ctx, t); 283 } 284 } 285 286 /* 287 * Functions for the dynamic monitoring target regions update 288 */ 289 290 /* 291 * Check whether a region is intersecting an address range 292 * 293 * Returns true if it is. 294 */ 295 static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re) 296 { 297 return !(r->ar.end <= re->start || re->end <= r->ar.start); 298 } 299 300 /* 301 * Update damon regions for the three big regions of the given target 302 * 303 * t the given target 304 * bregions the three big regions of the target 305 */ 306 static void damon_va_apply_three_regions(struct damon_target *t, 307 struct damon_addr_range bregions[3]) 308 { 309 struct damon_region *r, *next; 310 unsigned int i; 311 312 /* Remove regions which are not in the three big regions now */ 313 damon_for_each_region_safe(r, next, t) { 314 for (i = 0; i < 3; i++) { 315 if (damon_intersect(r, &bregions[i])) 316 break; 317 } 318 if (i == 3) 319 damon_destroy_region(r, t); 320 } 321 322 /* Adjust intersecting regions to fit with the three big regions */ 323 for (i = 0; i < 3; i++) { 324 struct damon_region *first = NULL, *last; 325 struct damon_region *newr; 326 struct damon_addr_range *br; 327 328 br = &bregions[i]; 329 /* Get the first and last regions which intersects with br */ 330 damon_for_each_region(r, t) { 331 if (damon_intersect(r, br)) { 332 if (!first) 333 first = r; 334 last = r; 335 } 336 if (r->ar.start >= br->end) 337 break; 338 } 339 if (!first) { 340 /* no damon_region intersects with this big region */ 341 newr = damon_new_region( 342 ALIGN_DOWN(br->start, 343 DAMON_MIN_REGION), 344 ALIGN(br->end, DAMON_MIN_REGION)); 345 if (!newr) 346 continue; 347 damon_insert_region(newr, damon_prev_region(r), r, t); 348 } else { 349 first->ar.start = ALIGN_DOWN(br->start, 350 DAMON_MIN_REGION); 351 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION); 352 } 353 } 354 } 355 356 /* 357 * Update regions for current memory mappings 358 */ 359 void damon_va_update(struct damon_ctx *ctx) 360 { 361 struct damon_addr_range three_regions[3]; 362 struct damon_target *t; 363 364 damon_for_each_target(t, ctx) { 365 if (damon_va_three_regions(t, three_regions)) 366 continue; 367 damon_va_apply_three_regions(t, three_regions); 368 } 369 } 370 371 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 372 unsigned long next, struct mm_walk *walk) 373 { 374 pte_t *pte; 375 spinlock_t *ptl; 376 377 if (pmd_huge(*pmd)) { 378 ptl = pmd_lock(walk->mm, pmd); 379 if (pmd_huge(*pmd)) { 380 damon_pmdp_mkold(pmd, walk->mm, addr); 381 spin_unlock(ptl); 382 return 0; 383 } 384 spin_unlock(ptl); 385 } 386 387 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 388 return 0; 389 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 390 if (!pte_present(*pte)) 391 goto out; 392 damon_ptep_mkold(pte, walk->mm, addr); 393 out: 394 pte_unmap_unlock(pte, ptl); 395 return 0; 396 } 397 398 static const struct mm_walk_ops damon_mkold_ops = { 399 .pmd_entry = damon_mkold_pmd_entry, 400 }; 401 402 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 403 { 404 mmap_read_lock(mm); 405 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 406 mmap_read_unlock(mm); 407 } 408 409 /* 410 * Functions for the access checking of the regions 411 */ 412 413 static void damon_va_prepare_access_check(struct damon_ctx *ctx, 414 struct mm_struct *mm, struct damon_region *r) 415 { 416 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 417 418 damon_va_mkold(mm, r->sampling_addr); 419 } 420 421 void damon_va_prepare_access_checks(struct damon_ctx *ctx) 422 { 423 struct damon_target *t; 424 struct mm_struct *mm; 425 struct damon_region *r; 426 427 damon_for_each_target(t, ctx) { 428 mm = damon_get_mm(t); 429 if (!mm) 430 continue; 431 damon_for_each_region(r, t) 432 damon_va_prepare_access_check(ctx, mm, r); 433 mmput(mm); 434 } 435 } 436 437 struct damon_young_walk_private { 438 unsigned long *page_sz; 439 bool young; 440 }; 441 442 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 443 unsigned long next, struct mm_walk *walk) 444 { 445 pte_t *pte; 446 spinlock_t *ptl; 447 struct page *page; 448 struct damon_young_walk_private *priv = walk->private; 449 450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 451 if (pmd_huge(*pmd)) { 452 ptl = pmd_lock(walk->mm, pmd); 453 if (!pmd_huge(*pmd)) { 454 spin_unlock(ptl); 455 goto regular_page; 456 } 457 page = damon_get_page(pmd_pfn(*pmd)); 458 if (!page) 459 goto huge_out; 460 if (pmd_young(*pmd) || !page_is_idle(page) || 461 mmu_notifier_test_young(walk->mm, 462 addr)) { 463 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT); 464 priv->young = true; 465 } 466 put_page(page); 467 huge_out: 468 spin_unlock(ptl); 469 return 0; 470 } 471 472 regular_page: 473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 474 475 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 476 return -EINVAL; 477 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 478 if (!pte_present(*pte)) 479 goto out; 480 page = damon_get_page(pte_pfn(*pte)); 481 if (!page) 482 goto out; 483 if (pte_young(*pte) || !page_is_idle(page) || 484 mmu_notifier_test_young(walk->mm, addr)) { 485 *priv->page_sz = PAGE_SIZE; 486 priv->young = true; 487 } 488 put_page(page); 489 out: 490 pte_unmap_unlock(pte, ptl); 491 return 0; 492 } 493 494 static const struct mm_walk_ops damon_young_ops = { 495 .pmd_entry = damon_young_pmd_entry, 496 }; 497 498 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 499 unsigned long *page_sz) 500 { 501 struct damon_young_walk_private arg = { 502 .page_sz = page_sz, 503 .young = false, 504 }; 505 506 mmap_read_lock(mm); 507 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 508 mmap_read_unlock(mm); 509 return arg.young; 510 } 511 512 /* 513 * Check whether the region was accessed after the last preparation 514 * 515 * mm 'mm_struct' for the given virtual address space 516 * r the region to be checked 517 */ 518 static void damon_va_check_access(struct damon_ctx *ctx, 519 struct mm_struct *mm, struct damon_region *r) 520 { 521 static struct mm_struct *last_mm; 522 static unsigned long last_addr; 523 static unsigned long last_page_sz = PAGE_SIZE; 524 static bool last_accessed; 525 526 /* If the region is in the last checked page, reuse the result */ 527 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == 528 ALIGN_DOWN(r->sampling_addr, last_page_sz))) { 529 if (last_accessed) 530 r->nr_accesses++; 531 return; 532 } 533 534 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); 535 if (last_accessed) 536 r->nr_accesses++; 537 538 last_mm = mm; 539 last_addr = r->sampling_addr; 540 } 541 542 unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 543 { 544 struct damon_target *t; 545 struct mm_struct *mm; 546 struct damon_region *r; 547 unsigned int max_nr_accesses = 0; 548 549 damon_for_each_target(t, ctx) { 550 mm = damon_get_mm(t); 551 if (!mm) 552 continue; 553 damon_for_each_region(r, t) { 554 damon_va_check_access(ctx, mm, r); 555 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 556 } 557 mmput(mm); 558 } 559 560 return max_nr_accesses; 561 } 562 563 /* 564 * Functions for the target validity check and cleanup 565 */ 566 567 bool damon_va_target_valid(void *target) 568 { 569 struct damon_target *t = target; 570 struct task_struct *task; 571 572 task = damon_get_task_struct(t); 573 if (task) { 574 put_task_struct(task); 575 return true; 576 } 577 578 return false; 579 } 580 581 #ifndef CONFIG_ADVISE_SYSCALLS 582 static int damos_madvise(struct damon_target *target, struct damon_region *r, 583 int behavior) 584 { 585 return -EINVAL; 586 } 587 #else 588 static int damos_madvise(struct damon_target *target, struct damon_region *r, 589 int behavior) 590 { 591 struct mm_struct *mm; 592 int ret = -ENOMEM; 593 594 mm = damon_get_mm(target); 595 if (!mm) 596 goto out; 597 598 ret = do_madvise(mm, PAGE_ALIGN(r->ar.start), 599 PAGE_ALIGN(r->ar.end - r->ar.start), behavior); 600 mmput(mm); 601 out: 602 return ret; 603 } 604 #endif /* CONFIG_ADVISE_SYSCALLS */ 605 606 int damon_va_apply_scheme(struct damon_ctx *ctx, struct damon_target *t, 607 struct damon_region *r, struct damos *scheme) 608 { 609 int madv_action; 610 611 switch (scheme->action) { 612 case DAMOS_WILLNEED: 613 madv_action = MADV_WILLNEED; 614 break; 615 case DAMOS_COLD: 616 madv_action = MADV_COLD; 617 break; 618 case DAMOS_PAGEOUT: 619 madv_action = MADV_PAGEOUT; 620 break; 621 case DAMOS_HUGEPAGE: 622 madv_action = MADV_HUGEPAGE; 623 break; 624 case DAMOS_NOHUGEPAGE: 625 madv_action = MADV_NOHUGEPAGE; 626 break; 627 case DAMOS_STAT: 628 return 0; 629 default: 630 return -EINVAL; 631 } 632 633 return damos_madvise(t, r, madv_action); 634 } 635 636 int damon_va_scheme_score(struct damon_ctx *context, struct damon_target *t, 637 struct damon_region *r, struct damos *scheme) 638 { 639 640 switch (scheme->action) { 641 case DAMOS_PAGEOUT: 642 return damon_pageout_score(context, r, scheme); 643 default: 644 break; 645 } 646 647 return DAMOS_MAX_SCORE; 648 } 649 650 void damon_va_set_primitives(struct damon_ctx *ctx) 651 { 652 ctx->primitive.init = damon_va_init; 653 ctx->primitive.update = damon_va_update; 654 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks; 655 ctx->primitive.check_accesses = damon_va_check_accesses; 656 ctx->primitive.reset_aggregated = NULL; 657 ctx->primitive.target_valid = damon_va_target_valid; 658 ctx->primitive.cleanup = NULL; 659 ctx->primitive.apply_scheme = damon_va_apply_scheme; 660 ctx->primitive.get_scheme_score = damon_va_scheme_score; 661 } 662 663 #include "vaddr-test.h" 664