xref: /openbmc/linux/mm/damon/vaddr.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DAMON Primitives for Virtual Address Spaces
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon-va: " fmt
9 
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17 
18 #include "ops-common.h"
19 
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 /*
26  * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27  * count.  Caller must put the returned task, unless it is NULL.
28  */
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 	return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33 
34 /*
35  * Get the mm_struct of the given target
36  *
37  * Caller _must_ put the mm_struct after use, unless it is NULL.
38  *
39  * Returns the mm_struct of the target on success, NULL on failure
40  */
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 	struct task_struct *task;
44 	struct mm_struct *mm;
45 
46 	task = damon_get_task_struct(t);
47 	if (!task)
48 		return NULL;
49 
50 	mm = get_task_mm(task);
51 	put_task_struct(task);
52 	return mm;
53 }
54 
55 /*
56  * Functions for the initial monitoring target regions construction
57  */
58 
59 /*
60  * Size-evenly split a region into 'nr_pieces' small regions
61  *
62  * Returns 0 on success, or negative error code otherwise.
63  */
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 		struct damon_region *r, unsigned int nr_pieces)
66 {
67 	unsigned long sz_orig, sz_piece, orig_end;
68 	struct damon_region *n = NULL, *next;
69 	unsigned long start;
70 
71 	if (!r || !nr_pieces)
72 		return -EINVAL;
73 
74 	orig_end = r->ar.end;
75 	sz_orig = damon_sz_region(r);
76 	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77 
78 	if (!sz_piece)
79 		return -EINVAL;
80 
81 	r->ar.end = r->ar.start + sz_piece;
82 	next = damon_next_region(r);
83 	for (start = r->ar.end; start + sz_piece <= orig_end;
84 			start += sz_piece) {
85 		n = damon_new_region(start, start + sz_piece);
86 		if (!n)
87 			return -ENOMEM;
88 		damon_insert_region(n, r, next, t);
89 		r = n;
90 	}
91 	/* complement last region for possible rounding error */
92 	if (n)
93 		n->ar.end = orig_end;
94 
95 	return 0;
96 }
97 
98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 	return r->end - r->start;
101 }
102 
103 /*
104  * Find three regions separated by two biggest unmapped regions
105  *
106  * vma		the head vma of the target address space
107  * regions	an array of three address ranges that results will be saved
108  *
109  * This function receives an address space and finds three regions in it which
110  * separated by the two biggest unmapped regions in the space.  Please refer to
111  * below comments of '__damon_va_init_regions()' function to know why this is
112  * necessary.
113  *
114  * Returns 0 if success, or negative error code otherwise.
115  */
116 static int __damon_va_three_regions(struct mm_struct *mm,
117 				       struct damon_addr_range regions[3])
118 {
119 	struct damon_addr_range first_gap = {0}, second_gap = {0};
120 	VMA_ITERATOR(vmi, mm, 0);
121 	struct vm_area_struct *vma, *prev = NULL;
122 	unsigned long start;
123 
124 	/*
125 	 * Find the two biggest gaps so that first_gap > second_gap > others.
126 	 * If this is too slow, it can be optimised to examine the maple
127 	 * tree gaps.
128 	 */
129 	rcu_read_lock();
130 	for_each_vma(vmi, vma) {
131 		unsigned long gap;
132 
133 		if (!prev) {
134 			start = vma->vm_start;
135 			goto next;
136 		}
137 		gap = vma->vm_start - prev->vm_end;
138 
139 		if (gap > sz_range(&first_gap)) {
140 			second_gap = first_gap;
141 			first_gap.start = prev->vm_end;
142 			first_gap.end = vma->vm_start;
143 		} else if (gap > sz_range(&second_gap)) {
144 			second_gap.start = prev->vm_end;
145 			second_gap.end = vma->vm_start;
146 		}
147 next:
148 		prev = vma;
149 	}
150 	rcu_read_unlock();
151 
152 	if (!sz_range(&second_gap) || !sz_range(&first_gap))
153 		return -EINVAL;
154 
155 	/* Sort the two biggest gaps by address */
156 	if (first_gap.start > second_gap.start)
157 		swap(first_gap, second_gap);
158 
159 	/* Store the result */
160 	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
161 	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
162 	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
163 	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
164 	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
165 	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
166 
167 	return 0;
168 }
169 
170 /*
171  * Get the three regions in the given target (task)
172  *
173  * Returns 0 on success, negative error code otherwise.
174  */
175 static int damon_va_three_regions(struct damon_target *t,
176 				struct damon_addr_range regions[3])
177 {
178 	struct mm_struct *mm;
179 	int rc;
180 
181 	mm = damon_get_mm(t);
182 	if (!mm)
183 		return -EINVAL;
184 
185 	mmap_read_lock(mm);
186 	rc = __damon_va_three_regions(mm, regions);
187 	mmap_read_unlock(mm);
188 
189 	mmput(mm);
190 	return rc;
191 }
192 
193 /*
194  * Initialize the monitoring target regions for the given target (task)
195  *
196  * t	the given target
197  *
198  * Because only a number of small portions of the entire address space
199  * is actually mapped to the memory and accessed, monitoring the unmapped
200  * regions is wasteful.  That said, because we can deal with small noises,
201  * tracking every mapping is not strictly required but could even incur a high
202  * overhead if the mapping frequently changes or the number of mappings is
203  * high.  The adaptive regions adjustment mechanism will further help to deal
204  * with the noise by simply identifying the unmapped areas as a region that
205  * has no access.  Moreover, applying the real mappings that would have many
206  * unmapped areas inside will make the adaptive mechanism quite complex.  That
207  * said, too huge unmapped areas inside the monitoring target should be removed
208  * to not take the time for the adaptive mechanism.
209  *
210  * For the reason, we convert the complex mappings to three distinct regions
211  * that cover every mapped area of the address space.  Also the two gaps
212  * between the three regions are the two biggest unmapped areas in the given
213  * address space.  In detail, this function first identifies the start and the
214  * end of the mappings and the two biggest unmapped areas of the address space.
215  * Then, it constructs the three regions as below:
216  *
217  *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
218  *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
219  *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
220  *
221  * As usual memory map of processes is as below, the gap between the heap and
222  * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
223  * region and the stack will be two biggest unmapped regions.  Because these
224  * gaps are exceptionally huge areas in usual address space, excluding these
225  * two biggest unmapped regions will be sufficient to make a trade-off.
226  *
227  *   <heap>
228  *   <BIG UNMAPPED REGION 1>
229  *   <uppermost mmap()-ed region>
230  *   (other mmap()-ed regions and small unmapped regions)
231  *   <lowermost mmap()-ed region>
232  *   <BIG UNMAPPED REGION 2>
233  *   <stack>
234  */
235 static void __damon_va_init_regions(struct damon_ctx *ctx,
236 				     struct damon_target *t)
237 {
238 	struct damon_target *ti;
239 	struct damon_region *r;
240 	struct damon_addr_range regions[3];
241 	unsigned long sz = 0, nr_pieces;
242 	int i, tidx = 0;
243 
244 	if (damon_va_three_regions(t, regions)) {
245 		damon_for_each_target(ti, ctx) {
246 			if (ti == t)
247 				break;
248 			tidx++;
249 		}
250 		pr_debug("Failed to get three regions of %dth target\n", tidx);
251 		return;
252 	}
253 
254 	for (i = 0; i < 3; i++)
255 		sz += regions[i].end - regions[i].start;
256 	if (ctx->attrs.min_nr_regions)
257 		sz /= ctx->attrs.min_nr_regions;
258 	if (sz < DAMON_MIN_REGION)
259 		sz = DAMON_MIN_REGION;
260 
261 	/* Set the initial three regions of the target */
262 	for (i = 0; i < 3; i++) {
263 		r = damon_new_region(regions[i].start, regions[i].end);
264 		if (!r) {
265 			pr_err("%d'th init region creation failed\n", i);
266 			return;
267 		}
268 		damon_add_region(r, t);
269 
270 		nr_pieces = (regions[i].end - regions[i].start) / sz;
271 		damon_va_evenly_split_region(t, r, nr_pieces);
272 	}
273 }
274 
275 /* Initialize '->regions_list' of every target (task) */
276 static void damon_va_init(struct damon_ctx *ctx)
277 {
278 	struct damon_target *t;
279 
280 	damon_for_each_target(t, ctx) {
281 		/* the user may set the target regions as they want */
282 		if (!damon_nr_regions(t))
283 			__damon_va_init_regions(ctx, t);
284 	}
285 }
286 
287 /*
288  * Update regions for current memory mappings
289  */
290 static void damon_va_update(struct damon_ctx *ctx)
291 {
292 	struct damon_addr_range three_regions[3];
293 	struct damon_target *t;
294 
295 	damon_for_each_target(t, ctx) {
296 		if (damon_va_three_regions(t, three_regions))
297 			continue;
298 		damon_set_regions(t, three_regions, 3);
299 	}
300 }
301 
302 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
303 		unsigned long next, struct mm_walk *walk)
304 {
305 	pte_t *pte;
306 	pmd_t pmde;
307 	spinlock_t *ptl;
308 
309 	if (pmd_trans_huge(pmdp_get(pmd))) {
310 		ptl = pmd_lock(walk->mm, pmd);
311 		pmde = pmdp_get(pmd);
312 
313 		if (!pmd_present(pmde)) {
314 			spin_unlock(ptl);
315 			return 0;
316 		}
317 
318 		if (pmd_trans_huge(pmde)) {
319 			damon_pmdp_mkold(pmd, walk->vma, addr);
320 			spin_unlock(ptl);
321 			return 0;
322 		}
323 		spin_unlock(ptl);
324 	}
325 
326 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
327 	if (!pte) {
328 		walk->action = ACTION_AGAIN;
329 		return 0;
330 	}
331 	if (!pte_present(ptep_get(pte)))
332 		goto out;
333 	damon_ptep_mkold(pte, walk->vma, addr);
334 out:
335 	pte_unmap_unlock(pte, ptl);
336 	return 0;
337 }
338 
339 #ifdef CONFIG_HUGETLB_PAGE
340 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
341 				struct vm_area_struct *vma, unsigned long addr)
342 {
343 	bool referenced = false;
344 	pte_t entry = huge_ptep_get(pte);
345 	struct folio *folio = pfn_folio(pte_pfn(entry));
346 	unsigned long psize = huge_page_size(hstate_vma(vma));
347 
348 	folio_get(folio);
349 
350 	if (pte_young(entry)) {
351 		referenced = true;
352 		entry = pte_mkold(entry);
353 		set_huge_pte_at(mm, addr, pte, entry, psize);
354 	}
355 
356 #ifdef CONFIG_MMU_NOTIFIER
357 	if (mmu_notifier_clear_young(mm, addr,
358 				     addr + huge_page_size(hstate_vma(vma))))
359 		referenced = true;
360 #endif /* CONFIG_MMU_NOTIFIER */
361 
362 	if (referenced)
363 		folio_set_young(folio);
364 
365 	folio_set_idle(folio);
366 	folio_put(folio);
367 }
368 
369 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
370 				     unsigned long addr, unsigned long end,
371 				     struct mm_walk *walk)
372 {
373 	struct hstate *h = hstate_vma(walk->vma);
374 	spinlock_t *ptl;
375 	pte_t entry;
376 
377 	ptl = huge_pte_lock(h, walk->mm, pte);
378 	entry = huge_ptep_get(pte);
379 	if (!pte_present(entry))
380 		goto out;
381 
382 	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
383 
384 out:
385 	spin_unlock(ptl);
386 	return 0;
387 }
388 #else
389 #define damon_mkold_hugetlb_entry NULL
390 #endif /* CONFIG_HUGETLB_PAGE */
391 
392 static const struct mm_walk_ops damon_mkold_ops = {
393 	.pmd_entry = damon_mkold_pmd_entry,
394 	.hugetlb_entry = damon_mkold_hugetlb_entry,
395 	.walk_lock = PGWALK_RDLOCK,
396 };
397 
398 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
399 {
400 	mmap_read_lock(mm);
401 	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
402 	mmap_read_unlock(mm);
403 }
404 
405 /*
406  * Functions for the access checking of the regions
407  */
408 
409 static void __damon_va_prepare_access_check(struct mm_struct *mm,
410 					struct damon_region *r)
411 {
412 	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
413 
414 	damon_va_mkold(mm, r->sampling_addr);
415 }
416 
417 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
418 {
419 	struct damon_target *t;
420 	struct mm_struct *mm;
421 	struct damon_region *r;
422 
423 	damon_for_each_target(t, ctx) {
424 		mm = damon_get_mm(t);
425 		if (!mm)
426 			continue;
427 		damon_for_each_region(r, t)
428 			__damon_va_prepare_access_check(mm, r);
429 		mmput(mm);
430 	}
431 }
432 
433 struct damon_young_walk_private {
434 	/* size of the folio for the access checked virtual memory address */
435 	unsigned long *folio_sz;
436 	bool young;
437 };
438 
439 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
440 		unsigned long next, struct mm_walk *walk)
441 {
442 	pte_t *pte;
443 	pte_t ptent;
444 	spinlock_t *ptl;
445 	struct folio *folio;
446 	struct damon_young_walk_private *priv = walk->private;
447 
448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
449 	if (pmd_trans_huge(pmdp_get(pmd))) {
450 		pmd_t pmde;
451 
452 		ptl = pmd_lock(walk->mm, pmd);
453 		pmde = pmdp_get(pmd);
454 
455 		if (!pmd_present(pmde)) {
456 			spin_unlock(ptl);
457 			return 0;
458 		}
459 
460 		if (!pmd_trans_huge(pmde)) {
461 			spin_unlock(ptl);
462 			goto regular_page;
463 		}
464 		folio = damon_get_folio(pmd_pfn(pmde));
465 		if (!folio)
466 			goto huge_out;
467 		if (pmd_young(pmde) || !folio_test_idle(folio) ||
468 					mmu_notifier_test_young(walk->mm,
469 						addr))
470 			priv->young = true;
471 		*priv->folio_sz = HPAGE_PMD_SIZE;
472 		folio_put(folio);
473 huge_out:
474 		spin_unlock(ptl);
475 		return 0;
476 	}
477 
478 regular_page:
479 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
480 
481 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
482 	if (!pte) {
483 		walk->action = ACTION_AGAIN;
484 		return 0;
485 	}
486 	ptent = ptep_get(pte);
487 	if (!pte_present(ptent))
488 		goto out;
489 	folio = damon_get_folio(pte_pfn(ptent));
490 	if (!folio)
491 		goto out;
492 	if (pte_young(ptent) || !folio_test_idle(folio) ||
493 			mmu_notifier_test_young(walk->mm, addr))
494 		priv->young = true;
495 	*priv->folio_sz = folio_size(folio);
496 	folio_put(folio);
497 out:
498 	pte_unmap_unlock(pte, ptl);
499 	return 0;
500 }
501 
502 #ifdef CONFIG_HUGETLB_PAGE
503 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
504 				     unsigned long addr, unsigned long end,
505 				     struct mm_walk *walk)
506 {
507 	struct damon_young_walk_private *priv = walk->private;
508 	struct hstate *h = hstate_vma(walk->vma);
509 	struct folio *folio;
510 	spinlock_t *ptl;
511 	pte_t entry;
512 
513 	ptl = huge_pte_lock(h, walk->mm, pte);
514 	entry = huge_ptep_get(pte);
515 	if (!pte_present(entry))
516 		goto out;
517 
518 	folio = pfn_folio(pte_pfn(entry));
519 	folio_get(folio);
520 
521 	if (pte_young(entry) || !folio_test_idle(folio) ||
522 	    mmu_notifier_test_young(walk->mm, addr))
523 		priv->young = true;
524 	*priv->folio_sz = huge_page_size(h);
525 
526 	folio_put(folio);
527 
528 out:
529 	spin_unlock(ptl);
530 	return 0;
531 }
532 #else
533 #define damon_young_hugetlb_entry NULL
534 #endif /* CONFIG_HUGETLB_PAGE */
535 
536 static const struct mm_walk_ops damon_young_ops = {
537 	.pmd_entry = damon_young_pmd_entry,
538 	.hugetlb_entry = damon_young_hugetlb_entry,
539 	.walk_lock = PGWALK_RDLOCK,
540 };
541 
542 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
543 		unsigned long *folio_sz)
544 {
545 	struct damon_young_walk_private arg = {
546 		.folio_sz = folio_sz,
547 		.young = false,
548 	};
549 
550 	mmap_read_lock(mm);
551 	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
552 	mmap_read_unlock(mm);
553 	return arg.young;
554 }
555 
556 /*
557  * Check whether the region was accessed after the last preparation
558  *
559  * mm	'mm_struct' for the given virtual address space
560  * r	the region to be checked
561  */
562 static void __damon_va_check_access(struct mm_struct *mm,
563 				struct damon_region *r, bool same_target)
564 {
565 	static unsigned long last_addr;
566 	static unsigned long last_folio_sz = PAGE_SIZE;
567 	static bool last_accessed;
568 
569 	/* If the region is in the last checked page, reuse the result */
570 	if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
571 				ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
572 		if (last_accessed)
573 			r->nr_accesses++;
574 		return;
575 	}
576 
577 	last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
578 	if (last_accessed)
579 		r->nr_accesses++;
580 
581 	last_addr = r->sampling_addr;
582 }
583 
584 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
585 {
586 	struct damon_target *t;
587 	struct mm_struct *mm;
588 	struct damon_region *r;
589 	unsigned int max_nr_accesses = 0;
590 	bool same_target;
591 
592 	damon_for_each_target(t, ctx) {
593 		mm = damon_get_mm(t);
594 		if (!mm)
595 			continue;
596 		same_target = false;
597 		damon_for_each_region(r, t) {
598 			__damon_va_check_access(mm, r, same_target);
599 			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
600 			same_target = true;
601 		}
602 		mmput(mm);
603 	}
604 
605 	return max_nr_accesses;
606 }
607 
608 /*
609  * Functions for the target validity check and cleanup
610  */
611 
612 static bool damon_va_target_valid(struct damon_target *t)
613 {
614 	struct task_struct *task;
615 
616 	task = damon_get_task_struct(t);
617 	if (task) {
618 		put_task_struct(task);
619 		return true;
620 	}
621 
622 	return false;
623 }
624 
625 #ifndef CONFIG_ADVISE_SYSCALLS
626 static unsigned long damos_madvise(struct damon_target *target,
627 		struct damon_region *r, int behavior)
628 {
629 	return 0;
630 }
631 #else
632 static unsigned long damos_madvise(struct damon_target *target,
633 		struct damon_region *r, int behavior)
634 {
635 	struct mm_struct *mm;
636 	unsigned long start = PAGE_ALIGN(r->ar.start);
637 	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
638 	unsigned long applied;
639 
640 	mm = damon_get_mm(target);
641 	if (!mm)
642 		return 0;
643 
644 	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
645 	mmput(mm);
646 
647 	return applied;
648 }
649 #endif	/* CONFIG_ADVISE_SYSCALLS */
650 
651 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
652 		struct damon_target *t, struct damon_region *r,
653 		struct damos *scheme)
654 {
655 	int madv_action;
656 
657 	switch (scheme->action) {
658 	case DAMOS_WILLNEED:
659 		madv_action = MADV_WILLNEED;
660 		break;
661 	case DAMOS_COLD:
662 		madv_action = MADV_COLD;
663 		break;
664 	case DAMOS_PAGEOUT:
665 		madv_action = MADV_PAGEOUT;
666 		break;
667 	case DAMOS_HUGEPAGE:
668 		madv_action = MADV_HUGEPAGE;
669 		break;
670 	case DAMOS_NOHUGEPAGE:
671 		madv_action = MADV_NOHUGEPAGE;
672 		break;
673 	case DAMOS_STAT:
674 		return 0;
675 	default:
676 		/*
677 		 * DAMOS actions that are not yet supported by 'vaddr'.
678 		 */
679 		return 0;
680 	}
681 
682 	return damos_madvise(t, r, madv_action);
683 }
684 
685 static int damon_va_scheme_score(struct damon_ctx *context,
686 		struct damon_target *t, struct damon_region *r,
687 		struct damos *scheme)
688 {
689 
690 	switch (scheme->action) {
691 	case DAMOS_PAGEOUT:
692 		return damon_cold_score(context, r, scheme);
693 	default:
694 		break;
695 	}
696 
697 	return DAMOS_MAX_SCORE;
698 }
699 
700 static int __init damon_va_initcall(void)
701 {
702 	struct damon_operations ops = {
703 		.id = DAMON_OPS_VADDR,
704 		.init = damon_va_init,
705 		.update = damon_va_update,
706 		.prepare_access_checks = damon_va_prepare_access_checks,
707 		.check_accesses = damon_va_check_accesses,
708 		.reset_aggregated = NULL,
709 		.target_valid = damon_va_target_valid,
710 		.cleanup = NULL,
711 		.apply_scheme = damon_va_apply_scheme,
712 		.get_scheme_score = damon_va_scheme_score,
713 	};
714 	/* ops for fixed virtual address ranges */
715 	struct damon_operations ops_fvaddr = ops;
716 	int err;
717 
718 	/* Don't set the monitoring target regions for the entire mapping */
719 	ops_fvaddr.id = DAMON_OPS_FVADDR;
720 	ops_fvaddr.init = NULL;
721 	ops_fvaddr.update = NULL;
722 
723 	err = damon_register_ops(&ops);
724 	if (err)
725 		return err;
726 	return damon_register_ops(&ops_fvaddr);
727 };
728 
729 subsys_initcall(damon_va_initcall);
730 
731 #include "vaddr-test.h"
732