xref: /openbmc/linux/mm/damon/vaddr.c (revision 1b36955c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DAMON Primitives for Virtual Address Spaces
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon-va: " fmt
9 
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
17 
18 #include "ops-common.h"
19 
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 /*
26  * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27  * count.  Caller must put the returned task, unless it is NULL.
28  */
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
30 {
31 	return get_pid_task(t->pid, PIDTYPE_PID);
32 }
33 
34 /*
35  * Get the mm_struct of the given target
36  *
37  * Caller _must_ put the mm_struct after use, unless it is NULL.
38  *
39  * Returns the mm_struct of the target on success, NULL on failure
40  */
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
42 {
43 	struct task_struct *task;
44 	struct mm_struct *mm;
45 
46 	task = damon_get_task_struct(t);
47 	if (!task)
48 		return NULL;
49 
50 	mm = get_task_mm(task);
51 	put_task_struct(task);
52 	return mm;
53 }
54 
55 /*
56  * Functions for the initial monitoring target regions construction
57  */
58 
59 /*
60  * Size-evenly split a region into 'nr_pieces' small regions
61  *
62  * Returns 0 on success, or negative error code otherwise.
63  */
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 		struct damon_region *r, unsigned int nr_pieces)
66 {
67 	unsigned long sz_orig, sz_piece, orig_end;
68 	struct damon_region *n = NULL, *next;
69 	unsigned long start;
70 
71 	if (!r || !nr_pieces)
72 		return -EINVAL;
73 
74 	orig_end = r->ar.end;
75 	sz_orig = damon_sz_region(r);
76 	sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
77 
78 	if (!sz_piece)
79 		return -EINVAL;
80 
81 	r->ar.end = r->ar.start + sz_piece;
82 	next = damon_next_region(r);
83 	for (start = r->ar.end; start + sz_piece <= orig_end;
84 			start += sz_piece) {
85 		n = damon_new_region(start, start + sz_piece);
86 		if (!n)
87 			return -ENOMEM;
88 		damon_insert_region(n, r, next, t);
89 		r = n;
90 	}
91 	/* complement last region for possible rounding error */
92 	if (n)
93 		n->ar.end = orig_end;
94 
95 	return 0;
96 }
97 
98 static unsigned long sz_range(struct damon_addr_range *r)
99 {
100 	return r->end - r->start;
101 }
102 
103 /*
104  * Find three regions separated by two biggest unmapped regions
105  *
106  * vma		the head vma of the target address space
107  * regions	an array of three address ranges that results will be saved
108  *
109  * This function receives an address space and finds three regions in it which
110  * separated by the two biggest unmapped regions in the space.  Please refer to
111  * below comments of '__damon_va_init_regions()' function to know why this is
112  * necessary.
113  *
114  * Returns 0 if success, or negative error code otherwise.
115  */
116 static int __damon_va_three_regions(struct mm_struct *mm,
117 				       struct damon_addr_range regions[3])
118 {
119 	struct damon_addr_range first_gap = {0}, second_gap = {0};
120 	VMA_ITERATOR(vmi, mm, 0);
121 	struct vm_area_struct *vma, *prev = NULL;
122 	unsigned long start;
123 
124 	/*
125 	 * Find the two biggest gaps so that first_gap > second_gap > others.
126 	 * If this is too slow, it can be optimised to examine the maple
127 	 * tree gaps.
128 	 */
129 	for_each_vma(vmi, vma) {
130 		unsigned long gap;
131 
132 		if (!prev) {
133 			start = vma->vm_start;
134 			goto next;
135 		}
136 		gap = vma->vm_start - prev->vm_end;
137 
138 		if (gap > sz_range(&first_gap)) {
139 			second_gap = first_gap;
140 			first_gap.start = prev->vm_end;
141 			first_gap.end = vma->vm_start;
142 		} else if (gap > sz_range(&second_gap)) {
143 			second_gap.start = prev->vm_end;
144 			second_gap.end = vma->vm_start;
145 		}
146 next:
147 		prev = vma;
148 	}
149 
150 	if (!sz_range(&second_gap) || !sz_range(&first_gap))
151 		return -EINVAL;
152 
153 	/* Sort the two biggest gaps by address */
154 	if (first_gap.start > second_gap.start)
155 		swap(first_gap, second_gap);
156 
157 	/* Store the result */
158 	regions[0].start = ALIGN(start, DAMON_MIN_REGION);
159 	regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
160 	regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
161 	regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
162 	regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
163 	regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
164 
165 	return 0;
166 }
167 
168 /*
169  * Get the three regions in the given target (task)
170  *
171  * Returns 0 on success, negative error code otherwise.
172  */
173 static int damon_va_three_regions(struct damon_target *t,
174 				struct damon_addr_range regions[3])
175 {
176 	struct mm_struct *mm;
177 	int rc;
178 
179 	mm = damon_get_mm(t);
180 	if (!mm)
181 		return -EINVAL;
182 
183 	mmap_read_lock(mm);
184 	rc = __damon_va_three_regions(mm, regions);
185 	mmap_read_unlock(mm);
186 
187 	mmput(mm);
188 	return rc;
189 }
190 
191 /*
192  * Initialize the monitoring target regions for the given target (task)
193  *
194  * t	the given target
195  *
196  * Because only a number of small portions of the entire address space
197  * is actually mapped to the memory and accessed, monitoring the unmapped
198  * regions is wasteful.  That said, because we can deal with small noises,
199  * tracking every mapping is not strictly required but could even incur a high
200  * overhead if the mapping frequently changes or the number of mappings is
201  * high.  The adaptive regions adjustment mechanism will further help to deal
202  * with the noise by simply identifying the unmapped areas as a region that
203  * has no access.  Moreover, applying the real mappings that would have many
204  * unmapped areas inside will make the adaptive mechanism quite complex.  That
205  * said, too huge unmapped areas inside the monitoring target should be removed
206  * to not take the time for the adaptive mechanism.
207  *
208  * For the reason, we convert the complex mappings to three distinct regions
209  * that cover every mapped area of the address space.  Also the two gaps
210  * between the three regions are the two biggest unmapped areas in the given
211  * address space.  In detail, this function first identifies the start and the
212  * end of the mappings and the two biggest unmapped areas of the address space.
213  * Then, it constructs the three regions as below:
214  *
215  *     [mappings[0]->start, big_two_unmapped_areas[0]->start)
216  *     [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
217  *     [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218  *
219  * As usual memory map of processes is as below, the gap between the heap and
220  * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
221  * region and the stack will be two biggest unmapped regions.  Because these
222  * gaps are exceptionally huge areas in usual address space, excluding these
223  * two biggest unmapped regions will be sufficient to make a trade-off.
224  *
225  *   <heap>
226  *   <BIG UNMAPPED REGION 1>
227  *   <uppermost mmap()-ed region>
228  *   (other mmap()-ed regions and small unmapped regions)
229  *   <lowermost mmap()-ed region>
230  *   <BIG UNMAPPED REGION 2>
231  *   <stack>
232  */
233 static void __damon_va_init_regions(struct damon_ctx *ctx,
234 				     struct damon_target *t)
235 {
236 	struct damon_target *ti;
237 	struct damon_region *r;
238 	struct damon_addr_range regions[3];
239 	unsigned long sz = 0, nr_pieces;
240 	int i, tidx = 0;
241 
242 	if (damon_va_three_regions(t, regions)) {
243 		damon_for_each_target(ti, ctx) {
244 			if (ti == t)
245 				break;
246 			tidx++;
247 		}
248 		pr_debug("Failed to get three regions of %dth target\n", tidx);
249 		return;
250 	}
251 
252 	for (i = 0; i < 3; i++)
253 		sz += regions[i].end - regions[i].start;
254 	if (ctx->attrs.min_nr_regions)
255 		sz /= ctx->attrs.min_nr_regions;
256 	if (sz < DAMON_MIN_REGION)
257 		sz = DAMON_MIN_REGION;
258 
259 	/* Set the initial three regions of the target */
260 	for (i = 0; i < 3; i++) {
261 		r = damon_new_region(regions[i].start, regions[i].end);
262 		if (!r) {
263 			pr_err("%d'th init region creation failed\n", i);
264 			return;
265 		}
266 		damon_add_region(r, t);
267 
268 		nr_pieces = (regions[i].end - regions[i].start) / sz;
269 		damon_va_evenly_split_region(t, r, nr_pieces);
270 	}
271 }
272 
273 /* Initialize '->regions_list' of every target (task) */
274 static void damon_va_init(struct damon_ctx *ctx)
275 {
276 	struct damon_target *t;
277 
278 	damon_for_each_target(t, ctx) {
279 		/* the user may set the target regions as they want */
280 		if (!damon_nr_regions(t))
281 			__damon_va_init_regions(ctx, t);
282 	}
283 }
284 
285 /*
286  * Update regions for current memory mappings
287  */
288 static void damon_va_update(struct damon_ctx *ctx)
289 {
290 	struct damon_addr_range three_regions[3];
291 	struct damon_target *t;
292 
293 	damon_for_each_target(t, ctx) {
294 		if (damon_va_three_regions(t, three_regions))
295 			continue;
296 		damon_set_regions(t, three_regions, 3);
297 	}
298 }
299 
300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
301 		unsigned long next, struct mm_walk *walk)
302 {
303 	pte_t *pte;
304 	spinlock_t *ptl;
305 
306 	if (pmd_trans_huge(*pmd)) {
307 		ptl = pmd_lock(walk->mm, pmd);
308 		if (!pmd_present(*pmd)) {
309 			spin_unlock(ptl);
310 			return 0;
311 		}
312 
313 		if (pmd_trans_huge(*pmd)) {
314 			damon_pmdp_mkold(pmd, walk->vma, addr);
315 			spin_unlock(ptl);
316 			return 0;
317 		}
318 		spin_unlock(ptl);
319 	}
320 
321 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
322 	if (!pte) {
323 		walk->action = ACTION_AGAIN;
324 		return 0;
325 	}
326 	if (!pte_present(ptep_get(pte)))
327 		goto out;
328 	damon_ptep_mkold(pte, walk->vma, addr);
329 out:
330 	pte_unmap_unlock(pte, ptl);
331 	return 0;
332 }
333 
334 #ifdef CONFIG_HUGETLB_PAGE
335 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
336 				struct vm_area_struct *vma, unsigned long addr)
337 {
338 	bool referenced = false;
339 	pte_t entry = huge_ptep_get(pte);
340 	struct folio *folio = pfn_folio(pte_pfn(entry));
341 
342 	folio_get(folio);
343 
344 	if (pte_young(entry)) {
345 		referenced = true;
346 		entry = pte_mkold(entry);
347 		set_huge_pte_at(mm, addr, pte, entry);
348 	}
349 
350 #ifdef CONFIG_MMU_NOTIFIER
351 	if (mmu_notifier_clear_young(mm, addr,
352 				     addr + huge_page_size(hstate_vma(vma))))
353 		referenced = true;
354 #endif /* CONFIG_MMU_NOTIFIER */
355 
356 	if (referenced)
357 		folio_set_young(folio);
358 
359 	folio_set_idle(folio);
360 	folio_put(folio);
361 }
362 
363 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
364 				     unsigned long addr, unsigned long end,
365 				     struct mm_walk *walk)
366 {
367 	struct hstate *h = hstate_vma(walk->vma);
368 	spinlock_t *ptl;
369 	pte_t entry;
370 
371 	ptl = huge_pte_lock(h, walk->mm, pte);
372 	entry = huge_ptep_get(pte);
373 	if (!pte_present(entry))
374 		goto out;
375 
376 	damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
377 
378 out:
379 	spin_unlock(ptl);
380 	return 0;
381 }
382 #else
383 #define damon_mkold_hugetlb_entry NULL
384 #endif /* CONFIG_HUGETLB_PAGE */
385 
386 static const struct mm_walk_ops damon_mkold_ops = {
387 	.pmd_entry = damon_mkold_pmd_entry,
388 	.hugetlb_entry = damon_mkold_hugetlb_entry,
389 	.walk_lock = PGWALK_RDLOCK,
390 };
391 
392 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
393 {
394 	mmap_read_lock(mm);
395 	walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
396 	mmap_read_unlock(mm);
397 }
398 
399 /*
400  * Functions for the access checking of the regions
401  */
402 
403 static void __damon_va_prepare_access_check(struct mm_struct *mm,
404 					struct damon_region *r)
405 {
406 	r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
407 
408 	damon_va_mkold(mm, r->sampling_addr);
409 }
410 
411 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
412 {
413 	struct damon_target *t;
414 	struct mm_struct *mm;
415 	struct damon_region *r;
416 
417 	damon_for_each_target(t, ctx) {
418 		mm = damon_get_mm(t);
419 		if (!mm)
420 			continue;
421 		damon_for_each_region(r, t)
422 			__damon_va_prepare_access_check(mm, r);
423 		mmput(mm);
424 	}
425 }
426 
427 struct damon_young_walk_private {
428 	/* size of the folio for the access checked virtual memory address */
429 	unsigned long *folio_sz;
430 	bool young;
431 };
432 
433 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
434 		unsigned long next, struct mm_walk *walk)
435 {
436 	pte_t *pte;
437 	pte_t ptent;
438 	spinlock_t *ptl;
439 	struct folio *folio;
440 	struct damon_young_walk_private *priv = walk->private;
441 
442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
443 	if (pmd_trans_huge(*pmd)) {
444 		ptl = pmd_lock(walk->mm, pmd);
445 		if (!pmd_present(*pmd)) {
446 			spin_unlock(ptl);
447 			return 0;
448 		}
449 
450 		if (!pmd_trans_huge(*pmd)) {
451 			spin_unlock(ptl);
452 			goto regular_page;
453 		}
454 		folio = damon_get_folio(pmd_pfn(*pmd));
455 		if (!folio)
456 			goto huge_out;
457 		if (pmd_young(*pmd) || !folio_test_idle(folio) ||
458 					mmu_notifier_test_young(walk->mm,
459 						addr))
460 			priv->young = true;
461 		*priv->folio_sz = HPAGE_PMD_SIZE;
462 		folio_put(folio);
463 huge_out:
464 		spin_unlock(ptl);
465 		return 0;
466 	}
467 
468 regular_page:
469 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
470 
471 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
472 	if (!pte) {
473 		walk->action = ACTION_AGAIN;
474 		return 0;
475 	}
476 	ptent = ptep_get(pte);
477 	if (!pte_present(ptent))
478 		goto out;
479 	folio = damon_get_folio(pte_pfn(ptent));
480 	if (!folio)
481 		goto out;
482 	if (pte_young(ptent) || !folio_test_idle(folio) ||
483 			mmu_notifier_test_young(walk->mm, addr))
484 		priv->young = true;
485 	*priv->folio_sz = folio_size(folio);
486 	folio_put(folio);
487 out:
488 	pte_unmap_unlock(pte, ptl);
489 	return 0;
490 }
491 
492 #ifdef CONFIG_HUGETLB_PAGE
493 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
494 				     unsigned long addr, unsigned long end,
495 				     struct mm_walk *walk)
496 {
497 	struct damon_young_walk_private *priv = walk->private;
498 	struct hstate *h = hstate_vma(walk->vma);
499 	struct folio *folio;
500 	spinlock_t *ptl;
501 	pte_t entry;
502 
503 	ptl = huge_pte_lock(h, walk->mm, pte);
504 	entry = huge_ptep_get(pte);
505 	if (!pte_present(entry))
506 		goto out;
507 
508 	folio = pfn_folio(pte_pfn(entry));
509 	folio_get(folio);
510 
511 	if (pte_young(entry) || !folio_test_idle(folio) ||
512 	    mmu_notifier_test_young(walk->mm, addr))
513 		priv->young = true;
514 	*priv->folio_sz = huge_page_size(h);
515 
516 	folio_put(folio);
517 
518 out:
519 	spin_unlock(ptl);
520 	return 0;
521 }
522 #else
523 #define damon_young_hugetlb_entry NULL
524 #endif /* CONFIG_HUGETLB_PAGE */
525 
526 static const struct mm_walk_ops damon_young_ops = {
527 	.pmd_entry = damon_young_pmd_entry,
528 	.hugetlb_entry = damon_young_hugetlb_entry,
529 	.walk_lock = PGWALK_RDLOCK,
530 };
531 
532 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
533 		unsigned long *folio_sz)
534 {
535 	struct damon_young_walk_private arg = {
536 		.folio_sz = folio_sz,
537 		.young = false,
538 	};
539 
540 	mmap_read_lock(mm);
541 	walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
542 	mmap_read_unlock(mm);
543 	return arg.young;
544 }
545 
546 /*
547  * Check whether the region was accessed after the last preparation
548  *
549  * mm	'mm_struct' for the given virtual address space
550  * r	the region to be checked
551  */
552 static void __damon_va_check_access(struct mm_struct *mm,
553 				struct damon_region *r, bool same_target)
554 {
555 	static unsigned long last_addr;
556 	static unsigned long last_folio_sz = PAGE_SIZE;
557 	static bool last_accessed;
558 
559 	/* If the region is in the last checked page, reuse the result */
560 	if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
561 				ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
562 		if (last_accessed)
563 			r->nr_accesses++;
564 		return;
565 	}
566 
567 	last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
568 	if (last_accessed)
569 		r->nr_accesses++;
570 
571 	last_addr = r->sampling_addr;
572 }
573 
574 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
575 {
576 	struct damon_target *t;
577 	struct mm_struct *mm;
578 	struct damon_region *r;
579 	unsigned int max_nr_accesses = 0;
580 	bool same_target;
581 
582 	damon_for_each_target(t, ctx) {
583 		mm = damon_get_mm(t);
584 		if (!mm)
585 			continue;
586 		same_target = false;
587 		damon_for_each_region(r, t) {
588 			__damon_va_check_access(mm, r, same_target);
589 			max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
590 			same_target = true;
591 		}
592 		mmput(mm);
593 	}
594 
595 	return max_nr_accesses;
596 }
597 
598 /*
599  * Functions for the target validity check and cleanup
600  */
601 
602 static bool damon_va_target_valid(struct damon_target *t)
603 {
604 	struct task_struct *task;
605 
606 	task = damon_get_task_struct(t);
607 	if (task) {
608 		put_task_struct(task);
609 		return true;
610 	}
611 
612 	return false;
613 }
614 
615 #ifndef CONFIG_ADVISE_SYSCALLS
616 static unsigned long damos_madvise(struct damon_target *target,
617 		struct damon_region *r, int behavior)
618 {
619 	return 0;
620 }
621 #else
622 static unsigned long damos_madvise(struct damon_target *target,
623 		struct damon_region *r, int behavior)
624 {
625 	struct mm_struct *mm;
626 	unsigned long start = PAGE_ALIGN(r->ar.start);
627 	unsigned long len = PAGE_ALIGN(damon_sz_region(r));
628 	unsigned long applied;
629 
630 	mm = damon_get_mm(target);
631 	if (!mm)
632 		return 0;
633 
634 	applied = do_madvise(mm, start, len, behavior) ? 0 : len;
635 	mmput(mm);
636 
637 	return applied;
638 }
639 #endif	/* CONFIG_ADVISE_SYSCALLS */
640 
641 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
642 		struct damon_target *t, struct damon_region *r,
643 		struct damos *scheme)
644 {
645 	int madv_action;
646 
647 	switch (scheme->action) {
648 	case DAMOS_WILLNEED:
649 		madv_action = MADV_WILLNEED;
650 		break;
651 	case DAMOS_COLD:
652 		madv_action = MADV_COLD;
653 		break;
654 	case DAMOS_PAGEOUT:
655 		madv_action = MADV_PAGEOUT;
656 		break;
657 	case DAMOS_HUGEPAGE:
658 		madv_action = MADV_HUGEPAGE;
659 		break;
660 	case DAMOS_NOHUGEPAGE:
661 		madv_action = MADV_NOHUGEPAGE;
662 		break;
663 	case DAMOS_STAT:
664 		return 0;
665 	default:
666 		/*
667 		 * DAMOS actions that are not yet supported by 'vaddr'.
668 		 */
669 		return 0;
670 	}
671 
672 	return damos_madvise(t, r, madv_action);
673 }
674 
675 static int damon_va_scheme_score(struct damon_ctx *context,
676 		struct damon_target *t, struct damon_region *r,
677 		struct damos *scheme)
678 {
679 
680 	switch (scheme->action) {
681 	case DAMOS_PAGEOUT:
682 		return damon_cold_score(context, r, scheme);
683 	default:
684 		break;
685 	}
686 
687 	return DAMOS_MAX_SCORE;
688 }
689 
690 static int __init damon_va_initcall(void)
691 {
692 	struct damon_operations ops = {
693 		.id = DAMON_OPS_VADDR,
694 		.init = damon_va_init,
695 		.update = damon_va_update,
696 		.prepare_access_checks = damon_va_prepare_access_checks,
697 		.check_accesses = damon_va_check_accesses,
698 		.reset_aggregated = NULL,
699 		.target_valid = damon_va_target_valid,
700 		.cleanup = NULL,
701 		.apply_scheme = damon_va_apply_scheme,
702 		.get_scheme_score = damon_va_scheme_score,
703 	};
704 	/* ops for fixed virtual address ranges */
705 	struct damon_operations ops_fvaddr = ops;
706 	int err;
707 
708 	/* Don't set the monitoring target regions for the entire mapping */
709 	ops_fvaddr.id = DAMON_OPS_FVADDR;
710 	ops_fvaddr.init = NULL;
711 	ops_fvaddr.update = NULL;
712 
713 	err = damon_register_ops(&ops);
714 	if (err)
715 		return err;
716 	return damon_register_ops(&ops_fvaddr);
717 };
718 
719 subsys_initcall(damon_va_initcall);
720 
721 #include "vaddr-test.h"
722