1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "ops-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task(t->pid, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = damon_sz_region(r); 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct mm_struct *mm, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range first_gap = {0}, second_gap = {0}; 120 VMA_ITERATOR(vmi, mm, 0); 121 struct vm_area_struct *vma, *prev = NULL; 122 unsigned long start; 123 124 /* 125 * Find the two biggest gaps so that first_gap > second_gap > others. 126 * If this is too slow, it can be optimised to examine the maple 127 * tree gaps. 128 */ 129 for_each_vma(vmi, vma) { 130 unsigned long gap; 131 132 if (!prev) { 133 start = vma->vm_start; 134 goto next; 135 } 136 gap = vma->vm_start - prev->vm_end; 137 138 if (gap > sz_range(&first_gap)) { 139 second_gap = first_gap; 140 first_gap.start = prev->vm_end; 141 first_gap.end = vma->vm_start; 142 } else if (gap > sz_range(&second_gap)) { 143 second_gap.start = prev->vm_end; 144 second_gap.end = vma->vm_start; 145 } 146 next: 147 prev = vma; 148 } 149 150 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 151 return -EINVAL; 152 153 /* Sort the two biggest gaps by address */ 154 if (first_gap.start > second_gap.start) 155 swap(first_gap, second_gap); 156 157 /* Store the result */ 158 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 159 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 160 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 161 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 162 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 163 regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION); 164 165 return 0; 166 } 167 168 /* 169 * Get the three regions in the given target (task) 170 * 171 * Returns 0 on success, negative error code otherwise. 172 */ 173 static int damon_va_three_regions(struct damon_target *t, 174 struct damon_addr_range regions[3]) 175 { 176 struct mm_struct *mm; 177 int rc; 178 179 mm = damon_get_mm(t); 180 if (!mm) 181 return -EINVAL; 182 183 mmap_read_lock(mm); 184 rc = __damon_va_three_regions(mm, regions); 185 mmap_read_unlock(mm); 186 187 mmput(mm); 188 return rc; 189 } 190 191 /* 192 * Initialize the monitoring target regions for the given target (task) 193 * 194 * t the given target 195 * 196 * Because only a number of small portions of the entire address space 197 * is actually mapped to the memory and accessed, monitoring the unmapped 198 * regions is wasteful. That said, because we can deal with small noises, 199 * tracking every mapping is not strictly required but could even incur a high 200 * overhead if the mapping frequently changes or the number of mappings is 201 * high. The adaptive regions adjustment mechanism will further help to deal 202 * with the noise by simply identifying the unmapped areas as a region that 203 * has no access. Moreover, applying the real mappings that would have many 204 * unmapped areas inside will make the adaptive mechanism quite complex. That 205 * said, too huge unmapped areas inside the monitoring target should be removed 206 * to not take the time for the adaptive mechanism. 207 * 208 * For the reason, we convert the complex mappings to three distinct regions 209 * that cover every mapped area of the address space. Also the two gaps 210 * between the three regions are the two biggest unmapped areas in the given 211 * address space. In detail, this function first identifies the start and the 212 * end of the mappings and the two biggest unmapped areas of the address space. 213 * Then, it constructs the three regions as below: 214 * 215 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 216 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 217 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 218 * 219 * As usual memory map of processes is as below, the gap between the heap and 220 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 221 * region and the stack will be two biggest unmapped regions. Because these 222 * gaps are exceptionally huge areas in usual address space, excluding these 223 * two biggest unmapped regions will be sufficient to make a trade-off. 224 * 225 * <heap> 226 * <BIG UNMAPPED REGION 1> 227 * <uppermost mmap()-ed region> 228 * (other mmap()-ed regions and small unmapped regions) 229 * <lowermost mmap()-ed region> 230 * <BIG UNMAPPED REGION 2> 231 * <stack> 232 */ 233 static void __damon_va_init_regions(struct damon_ctx *ctx, 234 struct damon_target *t) 235 { 236 struct damon_target *ti; 237 struct damon_region *r; 238 struct damon_addr_range regions[3]; 239 unsigned long sz = 0, nr_pieces; 240 int i, tidx = 0; 241 242 if (damon_va_three_regions(t, regions)) { 243 damon_for_each_target(ti, ctx) { 244 if (ti == t) 245 break; 246 tidx++; 247 } 248 pr_debug("Failed to get three regions of %dth target\n", tidx); 249 return; 250 } 251 252 for (i = 0; i < 3; i++) 253 sz += regions[i].end - regions[i].start; 254 if (ctx->attrs.min_nr_regions) 255 sz /= ctx->attrs.min_nr_regions; 256 if (sz < DAMON_MIN_REGION) 257 sz = DAMON_MIN_REGION; 258 259 /* Set the initial three regions of the target */ 260 for (i = 0; i < 3; i++) { 261 r = damon_new_region(regions[i].start, regions[i].end); 262 if (!r) { 263 pr_err("%d'th init region creation failed\n", i); 264 return; 265 } 266 damon_add_region(r, t); 267 268 nr_pieces = (regions[i].end - regions[i].start) / sz; 269 damon_va_evenly_split_region(t, r, nr_pieces); 270 } 271 } 272 273 /* Initialize '->regions_list' of every target (task) */ 274 static void damon_va_init(struct damon_ctx *ctx) 275 { 276 struct damon_target *t; 277 278 damon_for_each_target(t, ctx) { 279 /* the user may set the target regions as they want */ 280 if (!damon_nr_regions(t)) 281 __damon_va_init_regions(ctx, t); 282 } 283 } 284 285 /* 286 * Update regions for current memory mappings 287 */ 288 static void damon_va_update(struct damon_ctx *ctx) 289 { 290 struct damon_addr_range three_regions[3]; 291 struct damon_target *t; 292 293 damon_for_each_target(t, ctx) { 294 if (damon_va_three_regions(t, three_regions)) 295 continue; 296 damon_set_regions(t, three_regions, 3); 297 } 298 } 299 300 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 301 unsigned long next, struct mm_walk *walk) 302 { 303 pte_t *pte; 304 spinlock_t *ptl; 305 306 if (pmd_trans_huge(*pmd)) { 307 ptl = pmd_lock(walk->mm, pmd); 308 if (!pmd_present(*pmd)) { 309 spin_unlock(ptl); 310 return 0; 311 } 312 313 if (pmd_trans_huge(*pmd)) { 314 damon_pmdp_mkold(pmd, walk->vma, addr); 315 spin_unlock(ptl); 316 return 0; 317 } 318 spin_unlock(ptl); 319 } 320 321 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 322 if (!pte) { 323 walk->action = ACTION_AGAIN; 324 return 0; 325 } 326 if (!pte_present(ptep_get(pte))) 327 goto out; 328 damon_ptep_mkold(pte, walk->vma, addr); 329 out: 330 pte_unmap_unlock(pte, ptl); 331 return 0; 332 } 333 334 #ifdef CONFIG_HUGETLB_PAGE 335 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 336 struct vm_area_struct *vma, unsigned long addr) 337 { 338 bool referenced = false; 339 pte_t entry = huge_ptep_get(pte); 340 struct folio *folio = pfn_folio(pte_pfn(entry)); 341 342 folio_get(folio); 343 344 if (pte_young(entry)) { 345 referenced = true; 346 entry = pte_mkold(entry); 347 set_huge_pte_at(mm, addr, pte, entry); 348 } 349 350 #ifdef CONFIG_MMU_NOTIFIER 351 if (mmu_notifier_clear_young(mm, addr, 352 addr + huge_page_size(hstate_vma(vma)))) 353 referenced = true; 354 #endif /* CONFIG_MMU_NOTIFIER */ 355 356 if (referenced) 357 folio_set_young(folio); 358 359 folio_set_idle(folio); 360 folio_put(folio); 361 } 362 363 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 364 unsigned long addr, unsigned long end, 365 struct mm_walk *walk) 366 { 367 struct hstate *h = hstate_vma(walk->vma); 368 spinlock_t *ptl; 369 pte_t entry; 370 371 ptl = huge_pte_lock(h, walk->mm, pte); 372 entry = huge_ptep_get(pte); 373 if (!pte_present(entry)) 374 goto out; 375 376 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 377 378 out: 379 spin_unlock(ptl); 380 return 0; 381 } 382 #else 383 #define damon_mkold_hugetlb_entry NULL 384 #endif /* CONFIG_HUGETLB_PAGE */ 385 386 static const struct mm_walk_ops damon_mkold_ops = { 387 .pmd_entry = damon_mkold_pmd_entry, 388 .hugetlb_entry = damon_mkold_hugetlb_entry, 389 .walk_lock = PGWALK_RDLOCK, 390 }; 391 392 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 393 { 394 mmap_read_lock(mm); 395 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 396 mmap_read_unlock(mm); 397 } 398 399 /* 400 * Functions for the access checking of the regions 401 */ 402 403 static void __damon_va_prepare_access_check(struct mm_struct *mm, 404 struct damon_region *r) 405 { 406 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 407 408 damon_va_mkold(mm, r->sampling_addr); 409 } 410 411 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 412 { 413 struct damon_target *t; 414 struct mm_struct *mm; 415 struct damon_region *r; 416 417 damon_for_each_target(t, ctx) { 418 mm = damon_get_mm(t); 419 if (!mm) 420 continue; 421 damon_for_each_region(r, t) 422 __damon_va_prepare_access_check(mm, r); 423 mmput(mm); 424 } 425 } 426 427 struct damon_young_walk_private { 428 /* size of the folio for the access checked virtual memory address */ 429 unsigned long *folio_sz; 430 bool young; 431 }; 432 433 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 434 unsigned long next, struct mm_walk *walk) 435 { 436 pte_t *pte; 437 pte_t ptent; 438 spinlock_t *ptl; 439 struct folio *folio; 440 struct damon_young_walk_private *priv = walk->private; 441 442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 443 if (pmd_trans_huge(*pmd)) { 444 ptl = pmd_lock(walk->mm, pmd); 445 if (!pmd_present(*pmd)) { 446 spin_unlock(ptl); 447 return 0; 448 } 449 450 if (!pmd_trans_huge(*pmd)) { 451 spin_unlock(ptl); 452 goto regular_page; 453 } 454 folio = damon_get_folio(pmd_pfn(*pmd)); 455 if (!folio) 456 goto huge_out; 457 if (pmd_young(*pmd) || !folio_test_idle(folio) || 458 mmu_notifier_test_young(walk->mm, 459 addr)) 460 priv->young = true; 461 *priv->folio_sz = HPAGE_PMD_SIZE; 462 folio_put(folio); 463 huge_out: 464 spin_unlock(ptl); 465 return 0; 466 } 467 468 regular_page: 469 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 470 471 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 472 if (!pte) { 473 walk->action = ACTION_AGAIN; 474 return 0; 475 } 476 ptent = ptep_get(pte); 477 if (!pte_present(ptent)) 478 goto out; 479 folio = damon_get_folio(pte_pfn(ptent)); 480 if (!folio) 481 goto out; 482 if (pte_young(ptent) || !folio_test_idle(folio) || 483 mmu_notifier_test_young(walk->mm, addr)) 484 priv->young = true; 485 *priv->folio_sz = folio_size(folio); 486 folio_put(folio); 487 out: 488 pte_unmap_unlock(pte, ptl); 489 return 0; 490 } 491 492 #ifdef CONFIG_HUGETLB_PAGE 493 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 494 unsigned long addr, unsigned long end, 495 struct mm_walk *walk) 496 { 497 struct damon_young_walk_private *priv = walk->private; 498 struct hstate *h = hstate_vma(walk->vma); 499 struct folio *folio; 500 spinlock_t *ptl; 501 pte_t entry; 502 503 ptl = huge_pte_lock(h, walk->mm, pte); 504 entry = huge_ptep_get(pte); 505 if (!pte_present(entry)) 506 goto out; 507 508 folio = pfn_folio(pte_pfn(entry)); 509 folio_get(folio); 510 511 if (pte_young(entry) || !folio_test_idle(folio) || 512 mmu_notifier_test_young(walk->mm, addr)) 513 priv->young = true; 514 *priv->folio_sz = huge_page_size(h); 515 516 folio_put(folio); 517 518 out: 519 spin_unlock(ptl); 520 return 0; 521 } 522 #else 523 #define damon_young_hugetlb_entry NULL 524 #endif /* CONFIG_HUGETLB_PAGE */ 525 526 static const struct mm_walk_ops damon_young_ops = { 527 .pmd_entry = damon_young_pmd_entry, 528 .hugetlb_entry = damon_young_hugetlb_entry, 529 .walk_lock = PGWALK_RDLOCK, 530 }; 531 532 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 533 unsigned long *folio_sz) 534 { 535 struct damon_young_walk_private arg = { 536 .folio_sz = folio_sz, 537 .young = false, 538 }; 539 540 mmap_read_lock(mm); 541 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 542 mmap_read_unlock(mm); 543 return arg.young; 544 } 545 546 /* 547 * Check whether the region was accessed after the last preparation 548 * 549 * mm 'mm_struct' for the given virtual address space 550 * r the region to be checked 551 */ 552 static void __damon_va_check_access(struct mm_struct *mm, 553 struct damon_region *r, bool same_target) 554 { 555 static unsigned long last_addr; 556 static unsigned long last_folio_sz = PAGE_SIZE; 557 static bool last_accessed; 558 559 /* If the region is in the last checked page, reuse the result */ 560 if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) == 561 ALIGN_DOWN(r->sampling_addr, last_folio_sz))) { 562 if (last_accessed) 563 r->nr_accesses++; 564 return; 565 } 566 567 last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz); 568 if (last_accessed) 569 r->nr_accesses++; 570 571 last_addr = r->sampling_addr; 572 } 573 574 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 575 { 576 struct damon_target *t; 577 struct mm_struct *mm; 578 struct damon_region *r; 579 unsigned int max_nr_accesses = 0; 580 bool same_target; 581 582 damon_for_each_target(t, ctx) { 583 mm = damon_get_mm(t); 584 if (!mm) 585 continue; 586 same_target = false; 587 damon_for_each_region(r, t) { 588 __damon_va_check_access(mm, r, same_target); 589 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 590 same_target = true; 591 } 592 mmput(mm); 593 } 594 595 return max_nr_accesses; 596 } 597 598 /* 599 * Functions for the target validity check and cleanup 600 */ 601 602 static bool damon_va_target_valid(struct damon_target *t) 603 { 604 struct task_struct *task; 605 606 task = damon_get_task_struct(t); 607 if (task) { 608 put_task_struct(task); 609 return true; 610 } 611 612 return false; 613 } 614 615 #ifndef CONFIG_ADVISE_SYSCALLS 616 static unsigned long damos_madvise(struct damon_target *target, 617 struct damon_region *r, int behavior) 618 { 619 return 0; 620 } 621 #else 622 static unsigned long damos_madvise(struct damon_target *target, 623 struct damon_region *r, int behavior) 624 { 625 struct mm_struct *mm; 626 unsigned long start = PAGE_ALIGN(r->ar.start); 627 unsigned long len = PAGE_ALIGN(damon_sz_region(r)); 628 unsigned long applied; 629 630 mm = damon_get_mm(target); 631 if (!mm) 632 return 0; 633 634 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 635 mmput(mm); 636 637 return applied; 638 } 639 #endif /* CONFIG_ADVISE_SYSCALLS */ 640 641 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 642 struct damon_target *t, struct damon_region *r, 643 struct damos *scheme) 644 { 645 int madv_action; 646 647 switch (scheme->action) { 648 case DAMOS_WILLNEED: 649 madv_action = MADV_WILLNEED; 650 break; 651 case DAMOS_COLD: 652 madv_action = MADV_COLD; 653 break; 654 case DAMOS_PAGEOUT: 655 madv_action = MADV_PAGEOUT; 656 break; 657 case DAMOS_HUGEPAGE: 658 madv_action = MADV_HUGEPAGE; 659 break; 660 case DAMOS_NOHUGEPAGE: 661 madv_action = MADV_NOHUGEPAGE; 662 break; 663 case DAMOS_STAT: 664 return 0; 665 default: 666 /* 667 * DAMOS actions that are not yet supported by 'vaddr'. 668 */ 669 return 0; 670 } 671 672 return damos_madvise(t, r, madv_action); 673 } 674 675 static int damon_va_scheme_score(struct damon_ctx *context, 676 struct damon_target *t, struct damon_region *r, 677 struct damos *scheme) 678 { 679 680 switch (scheme->action) { 681 case DAMOS_PAGEOUT: 682 return damon_cold_score(context, r, scheme); 683 default: 684 break; 685 } 686 687 return DAMOS_MAX_SCORE; 688 } 689 690 static int __init damon_va_initcall(void) 691 { 692 struct damon_operations ops = { 693 .id = DAMON_OPS_VADDR, 694 .init = damon_va_init, 695 .update = damon_va_update, 696 .prepare_access_checks = damon_va_prepare_access_checks, 697 .check_accesses = damon_va_check_accesses, 698 .reset_aggregated = NULL, 699 .target_valid = damon_va_target_valid, 700 .cleanup = NULL, 701 .apply_scheme = damon_va_apply_scheme, 702 .get_scheme_score = damon_va_scheme_score, 703 }; 704 /* ops for fixed virtual address ranges */ 705 struct damon_operations ops_fvaddr = ops; 706 int err; 707 708 /* Don't set the monitoring target regions for the entire mapping */ 709 ops_fvaddr.id = DAMON_OPS_FVADDR; 710 ops_fvaddr.init = NULL; 711 ops_fvaddr.update = NULL; 712 713 err = damon_register_ops(&ops); 714 if (err) 715 return err; 716 return damon_register_ops(&ops_fvaddr); 717 }; 718 719 subsys_initcall(damon_va_initcall); 720 721 #include "vaddr-test.h" 722