xref: /openbmc/linux/mm/damon/core.c (revision de6da33e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/random.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/damon.h>
20 
21 #ifdef CONFIG_DAMON_KUNIT_TEST
22 #undef DAMON_MIN_REGION
23 #define DAMON_MIN_REGION 1
24 #endif
25 
26 /* Get a random number in [l, r) */
27 #define damon_rand(l, r) (l + prandom_u32_max(r - l))
28 
29 static DEFINE_MUTEX(damon_lock);
30 static int nr_running_ctxs;
31 
32 /*
33  * Construct a damon_region struct
34  *
35  * Returns the pointer to the new struct if success, or NULL otherwise
36  */
37 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
38 {
39 	struct damon_region *region;
40 
41 	region = kmalloc(sizeof(*region), GFP_KERNEL);
42 	if (!region)
43 		return NULL;
44 
45 	region->ar.start = start;
46 	region->ar.end = end;
47 	region->nr_accesses = 0;
48 	INIT_LIST_HEAD(&region->list);
49 
50 	region->age = 0;
51 	region->last_nr_accesses = 0;
52 
53 	return region;
54 }
55 
56 /*
57  * Add a region between two other regions
58  */
59 inline void damon_insert_region(struct damon_region *r,
60 		struct damon_region *prev, struct damon_region *next,
61 		struct damon_target *t)
62 {
63 	__list_add(&r->list, &prev->list, &next->list);
64 	t->nr_regions++;
65 }
66 
67 void damon_add_region(struct damon_region *r, struct damon_target *t)
68 {
69 	list_add_tail(&r->list, &t->regions_list);
70 	t->nr_regions++;
71 }
72 
73 static void damon_del_region(struct damon_region *r, struct damon_target *t)
74 {
75 	list_del(&r->list);
76 	t->nr_regions--;
77 }
78 
79 static void damon_free_region(struct damon_region *r)
80 {
81 	kfree(r);
82 }
83 
84 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
85 {
86 	damon_del_region(r, t);
87 	damon_free_region(r);
88 }
89 
90 struct damos *damon_new_scheme(
91 		unsigned long min_sz_region, unsigned long max_sz_region,
92 		unsigned int min_nr_accesses, unsigned int max_nr_accesses,
93 		unsigned int min_age_region, unsigned int max_age_region,
94 		enum damos_action action, struct damos_quota *quota,
95 		struct damos_watermarks *wmarks)
96 {
97 	struct damos *scheme;
98 
99 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
100 	if (!scheme)
101 		return NULL;
102 	scheme->min_sz_region = min_sz_region;
103 	scheme->max_sz_region = max_sz_region;
104 	scheme->min_nr_accesses = min_nr_accesses;
105 	scheme->max_nr_accesses = max_nr_accesses;
106 	scheme->min_age_region = min_age_region;
107 	scheme->max_age_region = max_age_region;
108 	scheme->action = action;
109 	scheme->stat_count = 0;
110 	scheme->stat_sz = 0;
111 	INIT_LIST_HEAD(&scheme->list);
112 
113 	scheme->quota.ms = quota->ms;
114 	scheme->quota.sz = quota->sz;
115 	scheme->quota.reset_interval = quota->reset_interval;
116 	scheme->quota.weight_sz = quota->weight_sz;
117 	scheme->quota.weight_nr_accesses = quota->weight_nr_accesses;
118 	scheme->quota.weight_age = quota->weight_age;
119 	scheme->quota.total_charged_sz = 0;
120 	scheme->quota.total_charged_ns = 0;
121 	scheme->quota.esz = 0;
122 	scheme->quota.charged_sz = 0;
123 	scheme->quota.charged_from = 0;
124 	scheme->quota.charge_target_from = NULL;
125 	scheme->quota.charge_addr_from = 0;
126 
127 	scheme->wmarks.metric = wmarks->metric;
128 	scheme->wmarks.interval = wmarks->interval;
129 	scheme->wmarks.high = wmarks->high;
130 	scheme->wmarks.mid = wmarks->mid;
131 	scheme->wmarks.low = wmarks->low;
132 	scheme->wmarks.activated = true;
133 
134 	return scheme;
135 }
136 
137 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
138 {
139 	list_add_tail(&s->list, &ctx->schemes);
140 }
141 
142 static void damon_del_scheme(struct damos *s)
143 {
144 	list_del(&s->list);
145 }
146 
147 static void damon_free_scheme(struct damos *s)
148 {
149 	kfree(s);
150 }
151 
152 void damon_destroy_scheme(struct damos *s)
153 {
154 	damon_del_scheme(s);
155 	damon_free_scheme(s);
156 }
157 
158 /*
159  * Construct a damon_target struct
160  *
161  * Returns the pointer to the new struct if success, or NULL otherwise
162  */
163 struct damon_target *damon_new_target(unsigned long id)
164 {
165 	struct damon_target *t;
166 
167 	t = kmalloc(sizeof(*t), GFP_KERNEL);
168 	if (!t)
169 		return NULL;
170 
171 	t->id = id;
172 	t->nr_regions = 0;
173 	INIT_LIST_HEAD(&t->regions_list);
174 
175 	return t;
176 }
177 
178 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
179 {
180 	list_add_tail(&t->list, &ctx->adaptive_targets);
181 }
182 
183 bool damon_targets_empty(struct damon_ctx *ctx)
184 {
185 	return list_empty(&ctx->adaptive_targets);
186 }
187 
188 static void damon_del_target(struct damon_target *t)
189 {
190 	list_del(&t->list);
191 }
192 
193 void damon_free_target(struct damon_target *t)
194 {
195 	struct damon_region *r, *next;
196 
197 	damon_for_each_region_safe(r, next, t)
198 		damon_free_region(r);
199 	kfree(t);
200 }
201 
202 void damon_destroy_target(struct damon_target *t)
203 {
204 	damon_del_target(t);
205 	damon_free_target(t);
206 }
207 
208 unsigned int damon_nr_regions(struct damon_target *t)
209 {
210 	return t->nr_regions;
211 }
212 
213 struct damon_ctx *damon_new_ctx(void)
214 {
215 	struct damon_ctx *ctx;
216 
217 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
218 	if (!ctx)
219 		return NULL;
220 
221 	ctx->sample_interval = 5 * 1000;
222 	ctx->aggr_interval = 100 * 1000;
223 	ctx->primitive_update_interval = 60 * 1000 * 1000;
224 
225 	ktime_get_coarse_ts64(&ctx->last_aggregation);
226 	ctx->last_primitive_update = ctx->last_aggregation;
227 
228 	mutex_init(&ctx->kdamond_lock);
229 
230 	ctx->min_nr_regions = 10;
231 	ctx->max_nr_regions = 1000;
232 
233 	INIT_LIST_HEAD(&ctx->adaptive_targets);
234 	INIT_LIST_HEAD(&ctx->schemes);
235 
236 	return ctx;
237 }
238 
239 static void damon_destroy_targets(struct damon_ctx *ctx)
240 {
241 	struct damon_target *t, *next_t;
242 
243 	if (ctx->primitive.cleanup) {
244 		ctx->primitive.cleanup(ctx);
245 		return;
246 	}
247 
248 	damon_for_each_target_safe(t, next_t, ctx)
249 		damon_destroy_target(t);
250 }
251 
252 void damon_destroy_ctx(struct damon_ctx *ctx)
253 {
254 	struct damos *s, *next_s;
255 
256 	damon_destroy_targets(ctx);
257 
258 	damon_for_each_scheme_safe(s, next_s, ctx)
259 		damon_destroy_scheme(s);
260 
261 	kfree(ctx);
262 }
263 
264 /**
265  * damon_set_targets() - Set monitoring targets.
266  * @ctx:	monitoring context
267  * @ids:	array of target ids
268  * @nr_ids:	number of entries in @ids
269  *
270  * This function should not be called while the kdamond is running.
271  *
272  * Return: 0 on success, negative error code otherwise.
273  */
274 int damon_set_targets(struct damon_ctx *ctx,
275 		      unsigned long *ids, ssize_t nr_ids)
276 {
277 	ssize_t i;
278 	struct damon_target *t, *next;
279 
280 	damon_destroy_targets(ctx);
281 
282 	for (i = 0; i < nr_ids; i++) {
283 		t = damon_new_target(ids[i]);
284 		if (!t) {
285 			pr_err("Failed to alloc damon_target\n");
286 			/* The caller should do cleanup of the ids itself */
287 			damon_for_each_target_safe(t, next, ctx)
288 				damon_destroy_target(t);
289 			return -ENOMEM;
290 		}
291 		damon_add_target(ctx, t);
292 	}
293 
294 	return 0;
295 }
296 
297 /**
298  * damon_set_attrs() - Set attributes for the monitoring.
299  * @ctx:		monitoring context
300  * @sample_int:		time interval between samplings
301  * @aggr_int:		time interval between aggregations
302  * @primitive_upd_int:	time interval between monitoring primitive updates
303  * @min_nr_reg:		minimal number of regions
304  * @max_nr_reg:		maximum number of regions
305  *
306  * This function should not be called while the kdamond is running.
307  * Every time interval is in micro-seconds.
308  *
309  * Return: 0 on success, negative error code otherwise.
310  */
311 int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
312 		    unsigned long aggr_int, unsigned long primitive_upd_int,
313 		    unsigned long min_nr_reg, unsigned long max_nr_reg)
314 {
315 	if (min_nr_reg < 3) {
316 		pr_err("min_nr_regions (%lu) must be at least 3\n",
317 				min_nr_reg);
318 		return -EINVAL;
319 	}
320 	if (min_nr_reg > max_nr_reg) {
321 		pr_err("invalid nr_regions.  min (%lu) > max (%lu)\n",
322 				min_nr_reg, max_nr_reg);
323 		return -EINVAL;
324 	}
325 
326 	ctx->sample_interval = sample_int;
327 	ctx->aggr_interval = aggr_int;
328 	ctx->primitive_update_interval = primitive_upd_int;
329 	ctx->min_nr_regions = min_nr_reg;
330 	ctx->max_nr_regions = max_nr_reg;
331 
332 	return 0;
333 }
334 
335 /**
336  * damon_set_schemes() - Set data access monitoring based operation schemes.
337  * @ctx:	monitoring context
338  * @schemes:	array of the schemes
339  * @nr_schemes:	number of entries in @schemes
340  *
341  * This function should not be called while the kdamond of the context is
342  * running.
343  *
344  * Return: 0 if success, or negative error code otherwise.
345  */
346 int damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
347 			ssize_t nr_schemes)
348 {
349 	struct damos *s, *next;
350 	ssize_t i;
351 
352 	damon_for_each_scheme_safe(s, next, ctx)
353 		damon_destroy_scheme(s);
354 	for (i = 0; i < nr_schemes; i++)
355 		damon_add_scheme(ctx, schemes[i]);
356 	return 0;
357 }
358 
359 /**
360  * damon_nr_running_ctxs() - Return number of currently running contexts.
361  */
362 int damon_nr_running_ctxs(void)
363 {
364 	int nr_ctxs;
365 
366 	mutex_lock(&damon_lock);
367 	nr_ctxs = nr_running_ctxs;
368 	mutex_unlock(&damon_lock);
369 
370 	return nr_ctxs;
371 }
372 
373 /* Returns the size upper limit for each monitoring region */
374 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
375 {
376 	struct damon_target *t;
377 	struct damon_region *r;
378 	unsigned long sz = 0;
379 
380 	damon_for_each_target(t, ctx) {
381 		damon_for_each_region(r, t)
382 			sz += r->ar.end - r->ar.start;
383 	}
384 
385 	if (ctx->min_nr_regions)
386 		sz /= ctx->min_nr_regions;
387 	if (sz < DAMON_MIN_REGION)
388 		sz = DAMON_MIN_REGION;
389 
390 	return sz;
391 }
392 
393 static int kdamond_fn(void *data);
394 
395 /*
396  * __damon_start() - Starts monitoring with given context.
397  * @ctx:	monitoring context
398  *
399  * This function should be called while damon_lock is hold.
400  *
401  * Return: 0 on success, negative error code otherwise.
402  */
403 static int __damon_start(struct damon_ctx *ctx)
404 {
405 	int err = -EBUSY;
406 
407 	mutex_lock(&ctx->kdamond_lock);
408 	if (!ctx->kdamond) {
409 		err = 0;
410 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
411 				nr_running_ctxs);
412 		if (IS_ERR(ctx->kdamond)) {
413 			err = PTR_ERR(ctx->kdamond);
414 			ctx->kdamond = NULL;
415 		}
416 	}
417 	mutex_unlock(&ctx->kdamond_lock);
418 
419 	return err;
420 }
421 
422 /**
423  * damon_start() - Starts the monitorings for a given group of contexts.
424  * @ctxs:	an array of the pointers for contexts to start monitoring
425  * @nr_ctxs:	size of @ctxs
426  *
427  * This function starts a group of monitoring threads for a group of monitoring
428  * contexts.  One thread per each context is created and run in parallel.  The
429  * caller should handle synchronization between the threads by itself.  If a
430  * group of threads that created by other 'damon_start()' call is currently
431  * running, this function does nothing but returns -EBUSY.
432  *
433  * Return: 0 on success, negative error code otherwise.
434  */
435 int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
436 {
437 	int i;
438 	int err = 0;
439 
440 	mutex_lock(&damon_lock);
441 	if (nr_running_ctxs) {
442 		mutex_unlock(&damon_lock);
443 		return -EBUSY;
444 	}
445 
446 	for (i = 0; i < nr_ctxs; i++) {
447 		err = __damon_start(ctxs[i]);
448 		if (err)
449 			break;
450 		nr_running_ctxs++;
451 	}
452 	mutex_unlock(&damon_lock);
453 
454 	return err;
455 }
456 
457 /*
458  * __damon_stop() - Stops monitoring of given context.
459  * @ctx:	monitoring context
460  *
461  * Return: 0 on success, negative error code otherwise.
462  */
463 static int __damon_stop(struct damon_ctx *ctx)
464 {
465 	struct task_struct *tsk;
466 
467 	mutex_lock(&ctx->kdamond_lock);
468 	tsk = ctx->kdamond;
469 	if (tsk) {
470 		get_task_struct(tsk);
471 		mutex_unlock(&ctx->kdamond_lock);
472 		kthread_stop(tsk);
473 		put_task_struct(tsk);
474 		return 0;
475 	}
476 	mutex_unlock(&ctx->kdamond_lock);
477 
478 	return -EPERM;
479 }
480 
481 /**
482  * damon_stop() - Stops the monitorings for a given group of contexts.
483  * @ctxs:	an array of the pointers for contexts to stop monitoring
484  * @nr_ctxs:	size of @ctxs
485  *
486  * Return: 0 on success, negative error code otherwise.
487  */
488 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
489 {
490 	int i, err = 0;
491 
492 	for (i = 0; i < nr_ctxs; i++) {
493 		/* nr_running_ctxs is decremented in kdamond_fn */
494 		err = __damon_stop(ctxs[i]);
495 		if (err)
496 			return err;
497 	}
498 
499 	return err;
500 }
501 
502 /*
503  * damon_check_reset_time_interval() - Check if a time interval is elapsed.
504  * @baseline:	the time to check whether the interval has elapsed since
505  * @interval:	the time interval (microseconds)
506  *
507  * See whether the given time interval has passed since the given baseline
508  * time.  If so, it also updates the baseline to current time for next check.
509  *
510  * Return:	true if the time interval has passed, or false otherwise.
511  */
512 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
513 		unsigned long interval)
514 {
515 	struct timespec64 now;
516 
517 	ktime_get_coarse_ts64(&now);
518 	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
519 			interval * 1000)
520 		return false;
521 	*baseline = now;
522 	return true;
523 }
524 
525 /*
526  * Check whether it is time to flush the aggregated information
527  */
528 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
529 {
530 	return damon_check_reset_time_interval(&ctx->last_aggregation,
531 			ctx->aggr_interval);
532 }
533 
534 /*
535  * Reset the aggregated monitoring results ('nr_accesses' of each region).
536  */
537 static void kdamond_reset_aggregated(struct damon_ctx *c)
538 {
539 	struct damon_target *t;
540 
541 	damon_for_each_target(t, c) {
542 		struct damon_region *r;
543 
544 		damon_for_each_region(r, t) {
545 			trace_damon_aggregated(t, r, damon_nr_regions(t));
546 			r->last_nr_accesses = r->nr_accesses;
547 			r->nr_accesses = 0;
548 		}
549 	}
550 }
551 
552 static void damon_split_region_at(struct damon_ctx *ctx,
553 		struct damon_target *t, struct damon_region *r,
554 		unsigned long sz_r);
555 
556 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
557 {
558 	unsigned long sz;
559 
560 	sz = r->ar.end - r->ar.start;
561 	return s->min_sz_region <= sz && sz <= s->max_sz_region &&
562 		s->min_nr_accesses <= r->nr_accesses &&
563 		r->nr_accesses <= s->max_nr_accesses &&
564 		s->min_age_region <= r->age && r->age <= s->max_age_region;
565 }
566 
567 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
568 		struct damon_region *r, struct damos *s)
569 {
570 	bool ret = __damos_valid_target(r, s);
571 
572 	if (!ret || !s->quota.esz || !c->primitive.get_scheme_score)
573 		return ret;
574 
575 	return c->primitive.get_scheme_score(c, t, r, s) >= s->quota.min_score;
576 }
577 
578 static void damon_do_apply_schemes(struct damon_ctx *c,
579 				   struct damon_target *t,
580 				   struct damon_region *r)
581 {
582 	struct damos *s;
583 
584 	damon_for_each_scheme(s, c) {
585 		struct damos_quota *quota = &s->quota;
586 		unsigned long sz = r->ar.end - r->ar.start;
587 		struct timespec64 begin, end;
588 
589 		if (!s->wmarks.activated)
590 			continue;
591 
592 		/* Check the quota */
593 		if (quota->esz && quota->charged_sz >= quota->esz)
594 			continue;
595 
596 		/* Skip previously charged regions */
597 		if (quota->charge_target_from) {
598 			if (t != quota->charge_target_from)
599 				continue;
600 			if (r == damon_last_region(t)) {
601 				quota->charge_target_from = NULL;
602 				quota->charge_addr_from = 0;
603 				continue;
604 			}
605 			if (quota->charge_addr_from &&
606 					r->ar.end <= quota->charge_addr_from)
607 				continue;
608 
609 			if (quota->charge_addr_from && r->ar.start <
610 					quota->charge_addr_from) {
611 				sz = ALIGN_DOWN(quota->charge_addr_from -
612 						r->ar.start, DAMON_MIN_REGION);
613 				if (!sz) {
614 					if (r->ar.end - r->ar.start <=
615 							DAMON_MIN_REGION)
616 						continue;
617 					sz = DAMON_MIN_REGION;
618 				}
619 				damon_split_region_at(c, t, r, sz);
620 				r = damon_next_region(r);
621 				sz = r->ar.end - r->ar.start;
622 			}
623 			quota->charge_target_from = NULL;
624 			quota->charge_addr_from = 0;
625 		}
626 
627 		if (!damos_valid_target(c, t, r, s))
628 			continue;
629 
630 		/* Apply the scheme */
631 		if (c->primitive.apply_scheme) {
632 			if (quota->esz &&
633 					quota->charged_sz + sz > quota->esz) {
634 				sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
635 						DAMON_MIN_REGION);
636 				if (!sz)
637 					goto update_stat;
638 				damon_split_region_at(c, t, r, sz);
639 			}
640 			ktime_get_coarse_ts64(&begin);
641 			c->primitive.apply_scheme(c, t, r, s);
642 			ktime_get_coarse_ts64(&end);
643 			quota->total_charged_ns += timespec64_to_ns(&end) -
644 				timespec64_to_ns(&begin);
645 			quota->charged_sz += sz;
646 			if (quota->esz && quota->charged_sz >= quota->esz) {
647 				quota->charge_target_from = t;
648 				quota->charge_addr_from = r->ar.end + 1;
649 			}
650 		}
651 		if (s->action != DAMOS_STAT)
652 			r->age = 0;
653 
654 update_stat:
655 		s->stat_count++;
656 		s->stat_sz += sz;
657 	}
658 }
659 
660 /* Shouldn't be called if quota->ms and quota->sz are zero */
661 static void damos_set_effective_quota(struct damos_quota *quota)
662 {
663 	unsigned long throughput;
664 	unsigned long esz;
665 
666 	if (!quota->ms) {
667 		quota->esz = quota->sz;
668 		return;
669 	}
670 
671 	if (quota->total_charged_ns)
672 		throughput = quota->total_charged_sz * 1000000 /
673 			quota->total_charged_ns;
674 	else
675 		throughput = PAGE_SIZE * 1024;
676 	esz = throughput * quota->ms;
677 
678 	if (quota->sz && quota->sz < esz)
679 		esz = quota->sz;
680 	quota->esz = esz;
681 }
682 
683 static void kdamond_apply_schemes(struct damon_ctx *c)
684 {
685 	struct damon_target *t;
686 	struct damon_region *r, *next_r;
687 	struct damos *s;
688 
689 	damon_for_each_scheme(s, c) {
690 		struct damos_quota *quota = &s->quota;
691 		unsigned long cumulated_sz;
692 		unsigned int score, max_score = 0;
693 
694 		if (!s->wmarks.activated)
695 			continue;
696 
697 		if (!quota->ms && !quota->sz)
698 			continue;
699 
700 		/* New charge window starts */
701 		if (time_after_eq(jiffies, quota->charged_from +
702 					msecs_to_jiffies(
703 						quota->reset_interval))) {
704 			quota->total_charged_sz += quota->charged_sz;
705 			quota->charged_from = jiffies;
706 			quota->charged_sz = 0;
707 			damos_set_effective_quota(quota);
708 		}
709 
710 		if (!c->primitive.get_scheme_score)
711 			continue;
712 
713 		/* Fill up the score histogram */
714 		memset(quota->histogram, 0, sizeof(quota->histogram));
715 		damon_for_each_target(t, c) {
716 			damon_for_each_region(r, t) {
717 				if (!__damos_valid_target(r, s))
718 					continue;
719 				score = c->primitive.get_scheme_score(
720 						c, t, r, s);
721 				quota->histogram[score] +=
722 					r->ar.end - r->ar.start;
723 				if (score > max_score)
724 					max_score = score;
725 			}
726 		}
727 
728 		/* Set the min score limit */
729 		for (cumulated_sz = 0, score = max_score; ; score--) {
730 			cumulated_sz += quota->histogram[score];
731 			if (cumulated_sz >= quota->esz || !score)
732 				break;
733 		}
734 		quota->min_score = score;
735 	}
736 
737 	damon_for_each_target(t, c) {
738 		damon_for_each_region_safe(r, next_r, t)
739 			damon_do_apply_schemes(c, t, r);
740 	}
741 }
742 
743 #define sz_damon_region(r) (r->ar.end - r->ar.start)
744 
745 /*
746  * Merge two adjacent regions into one region
747  */
748 static void damon_merge_two_regions(struct damon_target *t,
749 		struct damon_region *l, struct damon_region *r)
750 {
751 	unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
752 
753 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
754 			(sz_l + sz_r);
755 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
756 	l->ar.end = r->ar.end;
757 	damon_destroy_region(r, t);
758 }
759 
760 #define diff_of(a, b) (a > b ? a - b : b - a)
761 
762 /*
763  * Merge adjacent regions having similar access frequencies
764  *
765  * t		target affected by this merge operation
766  * thres	'->nr_accesses' diff threshold for the merge
767  * sz_limit	size upper limit of each region
768  */
769 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
770 				   unsigned long sz_limit)
771 {
772 	struct damon_region *r, *prev = NULL, *next;
773 
774 	damon_for_each_region_safe(r, next, t) {
775 		if (diff_of(r->nr_accesses, r->last_nr_accesses) > thres)
776 			r->age = 0;
777 		else
778 			r->age++;
779 
780 		if (prev && prev->ar.end == r->ar.start &&
781 		    diff_of(prev->nr_accesses, r->nr_accesses) <= thres &&
782 		    sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
783 			damon_merge_two_regions(t, prev, r);
784 		else
785 			prev = r;
786 	}
787 }
788 
789 /*
790  * Merge adjacent regions having similar access frequencies
791  *
792  * threshold	'->nr_accesses' diff threshold for the merge
793  * sz_limit	size upper limit of each region
794  *
795  * This function merges monitoring target regions which are adjacent and their
796  * access frequencies are similar.  This is for minimizing the monitoring
797  * overhead under the dynamically changeable access pattern.  If a merge was
798  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
799  */
800 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
801 				  unsigned long sz_limit)
802 {
803 	struct damon_target *t;
804 
805 	damon_for_each_target(t, c)
806 		damon_merge_regions_of(t, threshold, sz_limit);
807 }
808 
809 /*
810  * Split a region in two
811  *
812  * r		the region to be split
813  * sz_r		size of the first sub-region that will be made
814  */
815 static void damon_split_region_at(struct damon_ctx *ctx,
816 		struct damon_target *t, struct damon_region *r,
817 		unsigned long sz_r)
818 {
819 	struct damon_region *new;
820 
821 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
822 	if (!new)
823 		return;
824 
825 	r->ar.end = new->ar.start;
826 
827 	new->age = r->age;
828 	new->last_nr_accesses = r->last_nr_accesses;
829 
830 	damon_insert_region(new, r, damon_next_region(r), t);
831 }
832 
833 /* Split every region in the given target into 'nr_subs' regions */
834 static void damon_split_regions_of(struct damon_ctx *ctx,
835 				     struct damon_target *t, int nr_subs)
836 {
837 	struct damon_region *r, *next;
838 	unsigned long sz_region, sz_sub = 0;
839 	int i;
840 
841 	damon_for_each_region_safe(r, next, t) {
842 		sz_region = r->ar.end - r->ar.start;
843 
844 		for (i = 0; i < nr_subs - 1 &&
845 				sz_region > 2 * DAMON_MIN_REGION; i++) {
846 			/*
847 			 * Randomly select size of left sub-region to be at
848 			 * least 10 percent and at most 90% of original region
849 			 */
850 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
851 					sz_region / 10, DAMON_MIN_REGION);
852 			/* Do not allow blank region */
853 			if (sz_sub == 0 || sz_sub >= sz_region)
854 				continue;
855 
856 			damon_split_region_at(ctx, t, r, sz_sub);
857 			sz_region = sz_sub;
858 		}
859 	}
860 }
861 
862 /*
863  * Split every target region into randomly-sized small regions
864  *
865  * This function splits every target region into random-sized small regions if
866  * current total number of the regions is equal or smaller than half of the
867  * user-specified maximum number of regions.  This is for maximizing the
868  * monitoring accuracy under the dynamically changeable access patterns.  If a
869  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
870  * it.
871  */
872 static void kdamond_split_regions(struct damon_ctx *ctx)
873 {
874 	struct damon_target *t;
875 	unsigned int nr_regions = 0;
876 	static unsigned int last_nr_regions;
877 	int nr_subregions = 2;
878 
879 	damon_for_each_target(t, ctx)
880 		nr_regions += damon_nr_regions(t);
881 
882 	if (nr_regions > ctx->max_nr_regions / 2)
883 		return;
884 
885 	/* Maybe the middle of the region has different access frequency */
886 	if (last_nr_regions == nr_regions &&
887 			nr_regions < ctx->max_nr_regions / 3)
888 		nr_subregions = 3;
889 
890 	damon_for_each_target(t, ctx)
891 		damon_split_regions_of(ctx, t, nr_subregions);
892 
893 	last_nr_regions = nr_regions;
894 }
895 
896 /*
897  * Check whether it is time to check and apply the target monitoring regions
898  *
899  * Returns true if it is.
900  */
901 static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
902 {
903 	return damon_check_reset_time_interval(&ctx->last_primitive_update,
904 			ctx->primitive_update_interval);
905 }
906 
907 /*
908  * Check whether current monitoring should be stopped
909  *
910  * The monitoring is stopped when either the user requested to stop, or all
911  * monitoring targets are invalid.
912  *
913  * Returns true if need to stop current monitoring.
914  */
915 static bool kdamond_need_stop(struct damon_ctx *ctx)
916 {
917 	struct damon_target *t;
918 
919 	if (kthread_should_stop())
920 		return true;
921 
922 	if (!ctx->primitive.target_valid)
923 		return false;
924 
925 	damon_for_each_target(t, ctx) {
926 		if (ctx->primitive.target_valid(t))
927 			return false;
928 	}
929 
930 	return true;
931 }
932 
933 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
934 {
935 	struct sysinfo i;
936 
937 	switch (metric) {
938 	case DAMOS_WMARK_FREE_MEM_RATE:
939 		si_meminfo(&i);
940 		return i.freeram * 1000 / i.totalram;
941 	default:
942 		break;
943 	}
944 	return -EINVAL;
945 }
946 
947 /*
948  * Returns zero if the scheme is active.  Else, returns time to wait for next
949  * watermark check in micro-seconds.
950  */
951 static unsigned long damos_wmark_wait_us(struct damos *scheme)
952 {
953 	unsigned long metric;
954 
955 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
956 		return 0;
957 
958 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
959 	/* higher than high watermark or lower than low watermark */
960 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
961 		if (scheme->wmarks.activated)
962 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
963 					scheme->action,
964 					metric > scheme->wmarks.high ?
965 					"high" : "low");
966 		scheme->wmarks.activated = false;
967 		return scheme->wmarks.interval;
968 	}
969 
970 	/* inactive and higher than middle watermark */
971 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
972 			!scheme->wmarks.activated)
973 		return scheme->wmarks.interval;
974 
975 	if (!scheme->wmarks.activated)
976 		pr_debug("activate a scheme (%d)\n", scheme->action);
977 	scheme->wmarks.activated = true;
978 	return 0;
979 }
980 
981 static void kdamond_usleep(unsigned long usecs)
982 {
983 	if (usecs > 100 * 1000)
984 		schedule_timeout_interruptible(usecs_to_jiffies(usecs));
985 	else
986 		usleep_range(usecs, usecs + 1);
987 }
988 
989 /* Returns negative error code if it's not activated but should return */
990 static int kdamond_wait_activation(struct damon_ctx *ctx)
991 {
992 	struct damos *s;
993 	unsigned long wait_time;
994 	unsigned long min_wait_time = 0;
995 
996 	while (!kdamond_need_stop(ctx)) {
997 		damon_for_each_scheme(s, ctx) {
998 			wait_time = damos_wmark_wait_us(s);
999 			if (!min_wait_time || wait_time < min_wait_time)
1000 				min_wait_time = wait_time;
1001 		}
1002 		if (!min_wait_time)
1003 			return 0;
1004 
1005 		kdamond_usleep(min_wait_time);
1006 	}
1007 	return -EBUSY;
1008 }
1009 
1010 /*
1011  * The monitoring daemon that runs as a kernel thread
1012  */
1013 static int kdamond_fn(void *data)
1014 {
1015 	struct damon_ctx *ctx = (struct damon_ctx *)data;
1016 	struct damon_target *t;
1017 	struct damon_region *r, *next;
1018 	unsigned int max_nr_accesses = 0;
1019 	unsigned long sz_limit = 0;
1020 	bool done = false;
1021 
1022 	pr_debug("kdamond (%d) starts\n", current->pid);
1023 
1024 	if (ctx->primitive.init)
1025 		ctx->primitive.init(ctx);
1026 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1027 		done = true;
1028 
1029 	sz_limit = damon_region_sz_limit(ctx);
1030 
1031 	while (!kdamond_need_stop(ctx) && !done) {
1032 		if (kdamond_wait_activation(ctx))
1033 			continue;
1034 
1035 		if (ctx->primitive.prepare_access_checks)
1036 			ctx->primitive.prepare_access_checks(ctx);
1037 		if (ctx->callback.after_sampling &&
1038 				ctx->callback.after_sampling(ctx))
1039 			done = true;
1040 
1041 		usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
1042 
1043 		if (ctx->primitive.check_accesses)
1044 			max_nr_accesses = ctx->primitive.check_accesses(ctx);
1045 
1046 		if (kdamond_aggregate_interval_passed(ctx)) {
1047 			kdamond_merge_regions(ctx,
1048 					max_nr_accesses / 10,
1049 					sz_limit);
1050 			if (ctx->callback.after_aggregation &&
1051 					ctx->callback.after_aggregation(ctx))
1052 				done = true;
1053 			kdamond_apply_schemes(ctx);
1054 			kdamond_reset_aggregated(ctx);
1055 			kdamond_split_regions(ctx);
1056 			if (ctx->primitive.reset_aggregated)
1057 				ctx->primitive.reset_aggregated(ctx);
1058 		}
1059 
1060 		if (kdamond_need_update_primitive(ctx)) {
1061 			if (ctx->primitive.update)
1062 				ctx->primitive.update(ctx);
1063 			sz_limit = damon_region_sz_limit(ctx);
1064 		}
1065 	}
1066 	damon_for_each_target(t, ctx) {
1067 		damon_for_each_region_safe(r, next, t)
1068 			damon_destroy_region(r, t);
1069 	}
1070 
1071 	if (ctx->callback.before_terminate)
1072 		ctx->callback.before_terminate(ctx);
1073 	if (ctx->primitive.cleanup)
1074 		ctx->primitive.cleanup(ctx);
1075 
1076 	pr_debug("kdamond (%d) finishes\n", current->pid);
1077 	mutex_lock(&ctx->kdamond_lock);
1078 	ctx->kdamond = NULL;
1079 	mutex_unlock(&ctx->kdamond_lock);
1080 
1081 	mutex_lock(&damon_lock);
1082 	nr_running_ctxs--;
1083 	mutex_unlock(&damon_lock);
1084 
1085 	return 0;
1086 }
1087 
1088 #include "core-test.h"
1089