xref: /openbmc/linux/mm/damon/core.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	INIT_LIST_HEAD(&region->list);
132 
133 	region->age = 0;
134 	region->last_nr_accesses = 0;
135 
136 	return region;
137 }
138 
139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 	list_add_tail(&r->list, &t->regions_list);
142 	t->nr_regions++;
143 }
144 
145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 	list_del(&r->list);
148 	t->nr_regions--;
149 }
150 
151 static void damon_free_region(struct damon_region *r)
152 {
153 	kmem_cache_free(damon_region_cache, r);
154 }
155 
156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 	damon_del_region(r, t);
159 	damon_free_region(r);
160 }
161 
162 /*
163  * Check whether a region is intersecting an address range
164  *
165  * Returns true if it is.
166  */
167 static bool damon_intersect(struct damon_region *r,
168 		struct damon_addr_range *re)
169 {
170 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172 
173 /*
174  * Fill holes in regions with new regions.
175  */
176 static int damon_fill_regions_holes(struct damon_region *first,
177 		struct damon_region *last, struct damon_target *t)
178 {
179 	struct damon_region *r = first;
180 
181 	damon_for_each_region_from(r, t) {
182 		struct damon_region *next, *newr;
183 
184 		if (r == last)
185 			break;
186 		next = damon_next_region(r);
187 		if (r->ar.end != next->ar.start) {
188 			newr = damon_new_region(r->ar.end, next->ar.start);
189 			if (!newr)
190 				return -ENOMEM;
191 			damon_insert_region(newr, r, next, t);
192 		}
193 	}
194 	return 0;
195 }
196 
197 /*
198  * damon_set_regions() - Set regions of a target for given address ranges.
199  * @t:		the given target.
200  * @ranges:	array of new monitoring target ranges.
201  * @nr_ranges:	length of @ranges.
202  *
203  * This function adds new regions to, or modify existing regions of a
204  * monitoring target to fit in specific ranges.
205  *
206  * Return: 0 if success, or negative error code otherwise.
207  */
208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 		unsigned int nr_ranges)
210 {
211 	struct damon_region *r, *next;
212 	unsigned int i;
213 	int err;
214 
215 	/* Remove regions which are not in the new ranges */
216 	damon_for_each_region_safe(r, next, t) {
217 		for (i = 0; i < nr_ranges; i++) {
218 			if (damon_intersect(r, &ranges[i]))
219 				break;
220 		}
221 		if (i == nr_ranges)
222 			damon_destroy_region(r, t);
223 	}
224 
225 	r = damon_first_region(t);
226 	/* Add new regions or resize existing regions to fit in the ranges */
227 	for (i = 0; i < nr_ranges; i++) {
228 		struct damon_region *first = NULL, *last, *newr;
229 		struct damon_addr_range *range;
230 
231 		range = &ranges[i];
232 		/* Get the first/last regions intersecting with the range */
233 		damon_for_each_region_from(r, t) {
234 			if (damon_intersect(r, range)) {
235 				if (!first)
236 					first = r;
237 				last = r;
238 			}
239 			if (r->ar.start >= range->end)
240 				break;
241 		}
242 		if (!first) {
243 			/* no region intersects with this range */
244 			newr = damon_new_region(
245 					ALIGN_DOWN(range->start,
246 						DAMON_MIN_REGION),
247 					ALIGN(range->end, DAMON_MIN_REGION));
248 			if (!newr)
249 				return -ENOMEM;
250 			damon_insert_region(newr, damon_prev_region(r), r, t);
251 		} else {
252 			/* resize intersecting regions to fit in this range */
253 			first->ar.start = ALIGN_DOWN(range->start,
254 					DAMON_MIN_REGION);
255 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256 
257 			/* fill possible holes in the range */
258 			err = damon_fill_regions_holes(first, last, t);
259 			if (err)
260 				return err;
261 		}
262 	}
263 	return 0;
264 }
265 
266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 		bool matching)
268 {
269 	struct damos_filter *filter;
270 
271 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 	if (!filter)
273 		return NULL;
274 	filter->type = type;
275 	filter->matching = matching;
276 	INIT_LIST_HEAD(&filter->list);
277 	return filter;
278 }
279 
280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 	list_add_tail(&f->list, &s->filters);
283 }
284 
285 static void damos_del_filter(struct damos_filter *f)
286 {
287 	list_del(&f->list);
288 }
289 
290 static void damos_free_filter(struct damos_filter *f)
291 {
292 	kfree(f);
293 }
294 
295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 	damos_del_filter(f);
298 	damos_free_filter(f);
299 }
300 
301 /* initialize private fields of damos_quota and return the pointer */
302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 	quota->total_charged_sz = 0;
305 	quota->total_charged_ns = 0;
306 	quota->esz = 0;
307 	quota->charged_sz = 0;
308 	quota->charged_from = 0;
309 	quota->charge_target_from = NULL;
310 	quota->charge_addr_from = 0;
311 	return quota;
312 }
313 
314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 			enum damos_action action,
316 			unsigned long apply_interval_us,
317 			struct damos_quota *quota,
318 			struct damos_watermarks *wmarks)
319 {
320 	struct damos *scheme;
321 
322 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
323 	if (!scheme)
324 		return NULL;
325 	scheme->pattern = *pattern;
326 	scheme->action = action;
327 	scheme->apply_interval_us = apply_interval_us;
328 	/*
329 	 * next_apply_sis will be set when kdamond starts.  While kdamond is
330 	 * running, it will also updated when it is added to the DAMON context,
331 	 * or damon_attrs are updated.
332 	 */
333 	scheme->next_apply_sis = 0;
334 	INIT_LIST_HEAD(&scheme->filters);
335 	scheme->stat = (struct damos_stat){};
336 	INIT_LIST_HEAD(&scheme->list);
337 
338 	scheme->quota = *(damos_quota_init_priv(quota));
339 
340 	scheme->wmarks = *wmarks;
341 	scheme->wmarks.activated = true;
342 
343 	return scheme;
344 }
345 
346 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
347 {
348 	unsigned long sample_interval = ctx->attrs.sample_interval ?
349 		ctx->attrs.sample_interval : 1;
350 	unsigned long apply_interval = s->apply_interval_us ?
351 		s->apply_interval_us : ctx->attrs.aggr_interval;
352 
353 	s->next_apply_sis = ctx->passed_sample_intervals +
354 		apply_interval / sample_interval;
355 }
356 
357 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
358 {
359 	list_add_tail(&s->list, &ctx->schemes);
360 	damos_set_next_apply_sis(s, ctx);
361 }
362 
363 static void damon_del_scheme(struct damos *s)
364 {
365 	list_del(&s->list);
366 }
367 
368 static void damon_free_scheme(struct damos *s)
369 {
370 	kfree(s);
371 }
372 
373 void damon_destroy_scheme(struct damos *s)
374 {
375 	struct damos_filter *f, *next;
376 
377 	damos_for_each_filter_safe(f, next, s)
378 		damos_destroy_filter(f);
379 	damon_del_scheme(s);
380 	damon_free_scheme(s);
381 }
382 
383 /*
384  * Construct a damon_target struct
385  *
386  * Returns the pointer to the new struct if success, or NULL otherwise
387  */
388 struct damon_target *damon_new_target(void)
389 {
390 	struct damon_target *t;
391 
392 	t = kmalloc(sizeof(*t), GFP_KERNEL);
393 	if (!t)
394 		return NULL;
395 
396 	t->pid = NULL;
397 	t->nr_regions = 0;
398 	INIT_LIST_HEAD(&t->regions_list);
399 	INIT_LIST_HEAD(&t->list);
400 
401 	return t;
402 }
403 
404 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
405 {
406 	list_add_tail(&t->list, &ctx->adaptive_targets);
407 }
408 
409 bool damon_targets_empty(struct damon_ctx *ctx)
410 {
411 	return list_empty(&ctx->adaptive_targets);
412 }
413 
414 static void damon_del_target(struct damon_target *t)
415 {
416 	list_del(&t->list);
417 }
418 
419 void damon_free_target(struct damon_target *t)
420 {
421 	struct damon_region *r, *next;
422 
423 	damon_for_each_region_safe(r, next, t)
424 		damon_free_region(r);
425 	kfree(t);
426 }
427 
428 void damon_destroy_target(struct damon_target *t)
429 {
430 	damon_del_target(t);
431 	damon_free_target(t);
432 }
433 
434 unsigned int damon_nr_regions(struct damon_target *t)
435 {
436 	return t->nr_regions;
437 }
438 
439 struct damon_ctx *damon_new_ctx(void)
440 {
441 	struct damon_ctx *ctx;
442 
443 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
444 	if (!ctx)
445 		return NULL;
446 
447 	init_completion(&ctx->kdamond_started);
448 
449 	ctx->attrs.sample_interval = 5 * 1000;
450 	ctx->attrs.aggr_interval = 100 * 1000;
451 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
452 
453 	ctx->passed_sample_intervals = 0;
454 	/* These will be set from kdamond_init_intervals_sis() */
455 	ctx->next_aggregation_sis = 0;
456 	ctx->next_ops_update_sis = 0;
457 
458 	mutex_init(&ctx->kdamond_lock);
459 
460 	ctx->attrs.min_nr_regions = 10;
461 	ctx->attrs.max_nr_regions = 1000;
462 
463 	INIT_LIST_HEAD(&ctx->adaptive_targets);
464 	INIT_LIST_HEAD(&ctx->schemes);
465 
466 	return ctx;
467 }
468 
469 static void damon_destroy_targets(struct damon_ctx *ctx)
470 {
471 	struct damon_target *t, *next_t;
472 
473 	if (ctx->ops.cleanup) {
474 		ctx->ops.cleanup(ctx);
475 		return;
476 	}
477 
478 	damon_for_each_target_safe(t, next_t, ctx)
479 		damon_destroy_target(t);
480 }
481 
482 void damon_destroy_ctx(struct damon_ctx *ctx)
483 {
484 	struct damos *s, *next_s;
485 
486 	damon_destroy_targets(ctx);
487 
488 	damon_for_each_scheme_safe(s, next_s, ctx)
489 		damon_destroy_scheme(s);
490 
491 	kfree(ctx);
492 }
493 
494 static unsigned int damon_age_for_new_attrs(unsigned int age,
495 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
496 {
497 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
498 }
499 
500 /* convert access ratio in bp (per 10,000) to nr_accesses */
501 static unsigned int damon_accesses_bp_to_nr_accesses(
502 		unsigned int accesses_bp, struct damon_attrs *attrs)
503 {
504 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
505 }
506 
507 /* convert nr_accesses to access ratio in bp (per 10,000) */
508 static unsigned int damon_nr_accesses_to_accesses_bp(
509 		unsigned int nr_accesses, struct damon_attrs *attrs)
510 {
511 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
512 }
513 
514 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
515 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
516 {
517 	return damon_accesses_bp_to_nr_accesses(
518 			damon_nr_accesses_to_accesses_bp(
519 				nr_accesses, old_attrs),
520 			new_attrs);
521 }
522 
523 static void damon_update_monitoring_result(struct damon_region *r,
524 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
525 {
526 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
527 			old_attrs, new_attrs);
528 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
529 }
530 
531 /*
532  * region->nr_accesses is the number of sampling intervals in the last
533  * aggregation interval that access to the region has found, and region->age is
534  * the number of aggregation intervals that its access pattern has maintained.
535  * For the reason, the real meaning of the two fields depend on current
536  * sampling interval and aggregation interval.  This function updates
537  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
538  */
539 static void damon_update_monitoring_results(struct damon_ctx *ctx,
540 		struct damon_attrs *new_attrs)
541 {
542 	struct damon_attrs *old_attrs = &ctx->attrs;
543 	struct damon_target *t;
544 	struct damon_region *r;
545 
546 	/* if any interval is zero, simply forgive conversion */
547 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
548 			!new_attrs->sample_interval ||
549 			!new_attrs->aggr_interval)
550 		return;
551 
552 	damon_for_each_target(t, ctx)
553 		damon_for_each_region(r, t)
554 			damon_update_monitoring_result(
555 					r, old_attrs, new_attrs);
556 }
557 
558 /**
559  * damon_set_attrs() - Set attributes for the monitoring.
560  * @ctx:		monitoring context
561  * @attrs:		monitoring attributes
562  *
563  * This function should not be called while the kdamond is running.
564  * Every time interval is in micro-seconds.
565  *
566  * Return: 0 on success, negative error code otherwise.
567  */
568 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
569 {
570 	unsigned long sample_interval = attrs->sample_interval ?
571 		attrs->sample_interval : 1;
572 	struct damos *s;
573 
574 	if (attrs->min_nr_regions < 3)
575 		return -EINVAL;
576 	if (attrs->min_nr_regions > attrs->max_nr_regions)
577 		return -EINVAL;
578 	if (attrs->sample_interval > attrs->aggr_interval)
579 		return -EINVAL;
580 
581 	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
582 		attrs->aggr_interval / sample_interval;
583 	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
584 		attrs->ops_update_interval / sample_interval;
585 
586 	damon_update_monitoring_results(ctx, attrs);
587 	ctx->attrs = *attrs;
588 
589 	damon_for_each_scheme(s, ctx)
590 		damos_set_next_apply_sis(s, ctx);
591 
592 	return 0;
593 }
594 
595 /**
596  * damon_set_schemes() - Set data access monitoring based operation schemes.
597  * @ctx:	monitoring context
598  * @schemes:	array of the schemes
599  * @nr_schemes:	number of entries in @schemes
600  *
601  * This function should not be called while the kdamond of the context is
602  * running.
603  */
604 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
605 			ssize_t nr_schemes)
606 {
607 	struct damos *s, *next;
608 	ssize_t i;
609 
610 	damon_for_each_scheme_safe(s, next, ctx)
611 		damon_destroy_scheme(s);
612 	for (i = 0; i < nr_schemes; i++)
613 		damon_add_scheme(ctx, schemes[i]);
614 }
615 
616 /**
617  * damon_nr_running_ctxs() - Return number of currently running contexts.
618  */
619 int damon_nr_running_ctxs(void)
620 {
621 	int nr_ctxs;
622 
623 	mutex_lock(&damon_lock);
624 	nr_ctxs = nr_running_ctxs;
625 	mutex_unlock(&damon_lock);
626 
627 	return nr_ctxs;
628 }
629 
630 /* Returns the size upper limit for each monitoring region */
631 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
632 {
633 	struct damon_target *t;
634 	struct damon_region *r;
635 	unsigned long sz = 0;
636 
637 	damon_for_each_target(t, ctx) {
638 		damon_for_each_region(r, t)
639 			sz += damon_sz_region(r);
640 	}
641 
642 	if (ctx->attrs.min_nr_regions)
643 		sz /= ctx->attrs.min_nr_regions;
644 	if (sz < DAMON_MIN_REGION)
645 		sz = DAMON_MIN_REGION;
646 
647 	return sz;
648 }
649 
650 static int kdamond_fn(void *data);
651 
652 /*
653  * __damon_start() - Starts monitoring with given context.
654  * @ctx:	monitoring context
655  *
656  * This function should be called while damon_lock is hold.
657  *
658  * Return: 0 on success, negative error code otherwise.
659  */
660 static int __damon_start(struct damon_ctx *ctx)
661 {
662 	int err = -EBUSY;
663 
664 	mutex_lock(&ctx->kdamond_lock);
665 	if (!ctx->kdamond) {
666 		err = 0;
667 		reinit_completion(&ctx->kdamond_started);
668 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
669 				nr_running_ctxs);
670 		if (IS_ERR(ctx->kdamond)) {
671 			err = PTR_ERR(ctx->kdamond);
672 			ctx->kdamond = NULL;
673 		} else {
674 			wait_for_completion(&ctx->kdamond_started);
675 		}
676 	}
677 	mutex_unlock(&ctx->kdamond_lock);
678 
679 	return err;
680 }
681 
682 /**
683  * damon_start() - Starts the monitorings for a given group of contexts.
684  * @ctxs:	an array of the pointers for contexts to start monitoring
685  * @nr_ctxs:	size of @ctxs
686  * @exclusive:	exclusiveness of this contexts group
687  *
688  * This function starts a group of monitoring threads for a group of monitoring
689  * contexts.  One thread per each context is created and run in parallel.  The
690  * caller should handle synchronization between the threads by itself.  If
691  * @exclusive is true and a group of threads that created by other
692  * 'damon_start()' call is currently running, this function does nothing but
693  * returns -EBUSY.
694  *
695  * Return: 0 on success, negative error code otherwise.
696  */
697 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
698 {
699 	int i;
700 	int err = 0;
701 
702 	mutex_lock(&damon_lock);
703 	if ((exclusive && nr_running_ctxs) ||
704 			(!exclusive && running_exclusive_ctxs)) {
705 		mutex_unlock(&damon_lock);
706 		return -EBUSY;
707 	}
708 
709 	for (i = 0; i < nr_ctxs; i++) {
710 		err = __damon_start(ctxs[i]);
711 		if (err)
712 			break;
713 		nr_running_ctxs++;
714 	}
715 	if (exclusive && nr_running_ctxs)
716 		running_exclusive_ctxs = true;
717 	mutex_unlock(&damon_lock);
718 
719 	return err;
720 }
721 
722 /*
723  * __damon_stop() - Stops monitoring of a given context.
724  * @ctx:	monitoring context
725  *
726  * Return: 0 on success, negative error code otherwise.
727  */
728 static int __damon_stop(struct damon_ctx *ctx)
729 {
730 	struct task_struct *tsk;
731 
732 	mutex_lock(&ctx->kdamond_lock);
733 	tsk = ctx->kdamond;
734 	if (tsk) {
735 		get_task_struct(tsk);
736 		mutex_unlock(&ctx->kdamond_lock);
737 		kthread_stop_put(tsk);
738 		return 0;
739 	}
740 	mutex_unlock(&ctx->kdamond_lock);
741 
742 	return -EPERM;
743 }
744 
745 /**
746  * damon_stop() - Stops the monitorings for a given group of contexts.
747  * @ctxs:	an array of the pointers for contexts to stop monitoring
748  * @nr_ctxs:	size of @ctxs
749  *
750  * Return: 0 on success, negative error code otherwise.
751  */
752 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
753 {
754 	int i, err = 0;
755 
756 	for (i = 0; i < nr_ctxs; i++) {
757 		/* nr_running_ctxs is decremented in kdamond_fn */
758 		err = __damon_stop(ctxs[i]);
759 		if (err)
760 			break;
761 	}
762 	return err;
763 }
764 
765 /*
766  * Reset the aggregated monitoring results ('nr_accesses' of each region).
767  */
768 static void kdamond_reset_aggregated(struct damon_ctx *c)
769 {
770 	struct damon_target *t;
771 	unsigned int ti = 0;	/* target's index */
772 
773 	damon_for_each_target(t, c) {
774 		struct damon_region *r;
775 
776 		damon_for_each_region(r, t) {
777 			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
778 			r->last_nr_accesses = r->nr_accesses;
779 			r->nr_accesses = 0;
780 		}
781 		ti++;
782 	}
783 }
784 
785 static void damon_split_region_at(struct damon_target *t,
786 				  struct damon_region *r, unsigned long sz_r);
787 
788 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
789 {
790 	unsigned long sz;
791 
792 	sz = damon_sz_region(r);
793 	return s->pattern.min_sz_region <= sz &&
794 		sz <= s->pattern.max_sz_region &&
795 		s->pattern.min_nr_accesses <= r->nr_accesses &&
796 		r->nr_accesses <= s->pattern.max_nr_accesses &&
797 		s->pattern.min_age_region <= r->age &&
798 		r->age <= s->pattern.max_age_region;
799 }
800 
801 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
802 		struct damon_region *r, struct damos *s)
803 {
804 	bool ret = __damos_valid_target(r, s);
805 
806 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
807 		return ret;
808 
809 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
810 }
811 
812 /*
813  * damos_skip_charged_region() - Check if the given region or starting part of
814  * it is already charged for the DAMOS quota.
815  * @t:	The target of the region.
816  * @rp:	The pointer to the region.
817  * @s:	The scheme to be applied.
818  *
819  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
820  * action would applied to only a part of the target access pattern fulfilling
821  * regions.  To avoid applying the scheme action to only already applied
822  * regions, DAMON skips applying the scheme action to the regions that charged
823  * in the previous charge window.
824  *
825  * This function checks if a given region should be skipped or not for the
826  * reason.  If only the starting part of the region has previously charged,
827  * this function splits the region into two so that the second one covers the
828  * area that not charged in the previous charge widnow and saves the second
829  * region in *rp and returns false, so that the caller can apply DAMON action
830  * to the second one.
831  *
832  * Return: true if the region should be entirely skipped, false otherwise.
833  */
834 static bool damos_skip_charged_region(struct damon_target *t,
835 		struct damon_region **rp, struct damos *s)
836 {
837 	struct damon_region *r = *rp;
838 	struct damos_quota *quota = &s->quota;
839 	unsigned long sz_to_skip;
840 
841 	/* Skip previously charged regions */
842 	if (quota->charge_target_from) {
843 		if (t != quota->charge_target_from)
844 			return true;
845 		if (r == damon_last_region(t)) {
846 			quota->charge_target_from = NULL;
847 			quota->charge_addr_from = 0;
848 			return true;
849 		}
850 		if (quota->charge_addr_from &&
851 				r->ar.end <= quota->charge_addr_from)
852 			return true;
853 
854 		if (quota->charge_addr_from && r->ar.start <
855 				quota->charge_addr_from) {
856 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
857 					r->ar.start, DAMON_MIN_REGION);
858 			if (!sz_to_skip) {
859 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
860 					return true;
861 				sz_to_skip = DAMON_MIN_REGION;
862 			}
863 			damon_split_region_at(t, r, sz_to_skip);
864 			r = damon_next_region(r);
865 			*rp = r;
866 		}
867 		quota->charge_target_from = NULL;
868 		quota->charge_addr_from = 0;
869 	}
870 	return false;
871 }
872 
873 static void damos_update_stat(struct damos *s,
874 		unsigned long sz_tried, unsigned long sz_applied)
875 {
876 	s->stat.nr_tried++;
877 	s->stat.sz_tried += sz_tried;
878 	if (sz_applied)
879 		s->stat.nr_applied++;
880 	s->stat.sz_applied += sz_applied;
881 }
882 
883 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
884 		struct damon_region *r, struct damos_filter *filter)
885 {
886 	bool matched = false;
887 	struct damon_target *ti;
888 	int target_idx = 0;
889 	unsigned long start, end;
890 
891 	switch (filter->type) {
892 	case DAMOS_FILTER_TYPE_TARGET:
893 		damon_for_each_target(ti, ctx) {
894 			if (ti == t)
895 				break;
896 			target_idx++;
897 		}
898 		matched = target_idx == filter->target_idx;
899 		break;
900 	case DAMOS_FILTER_TYPE_ADDR:
901 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
902 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
903 
904 		/* inside the range */
905 		if (start <= r->ar.start && r->ar.end <= end) {
906 			matched = true;
907 			break;
908 		}
909 		/* outside of the range */
910 		if (r->ar.end <= start || end <= r->ar.start) {
911 			matched = false;
912 			break;
913 		}
914 		/* start before the range and overlap */
915 		if (r->ar.start < start) {
916 			damon_split_region_at(t, r, start - r->ar.start);
917 			matched = false;
918 			break;
919 		}
920 		/* start inside the range */
921 		damon_split_region_at(t, r, end - r->ar.start);
922 		matched = true;
923 		break;
924 	default:
925 		return false;
926 	}
927 
928 	return matched == filter->matching;
929 }
930 
931 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
932 		struct damon_region *r, struct damos *s)
933 {
934 	struct damos_filter *filter;
935 
936 	damos_for_each_filter(filter, s) {
937 		if (__damos_filter_out(ctx, t, r, filter))
938 			return true;
939 	}
940 	return false;
941 }
942 
943 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
944 		struct damon_region *r, struct damos *s)
945 {
946 	struct damos_quota *quota = &s->quota;
947 	unsigned long sz = damon_sz_region(r);
948 	struct timespec64 begin, end;
949 	unsigned long sz_applied = 0;
950 	int err = 0;
951 
952 	if (c->ops.apply_scheme) {
953 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
954 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
955 					DAMON_MIN_REGION);
956 			if (!sz)
957 				goto update_stat;
958 			damon_split_region_at(t, r, sz);
959 		}
960 		if (damos_filter_out(c, t, r, s))
961 			return;
962 		ktime_get_coarse_ts64(&begin);
963 		if (c->callback.before_damos_apply)
964 			err = c->callback.before_damos_apply(c, t, r, s);
965 		if (!err)
966 			sz_applied = c->ops.apply_scheme(c, t, r, s);
967 		ktime_get_coarse_ts64(&end);
968 		quota->total_charged_ns += timespec64_to_ns(&end) -
969 			timespec64_to_ns(&begin);
970 		quota->charged_sz += sz;
971 		if (quota->esz && quota->charged_sz >= quota->esz) {
972 			quota->charge_target_from = t;
973 			quota->charge_addr_from = r->ar.end + 1;
974 		}
975 	}
976 	if (s->action != DAMOS_STAT)
977 		r->age = 0;
978 
979 update_stat:
980 	damos_update_stat(s, sz, sz_applied);
981 }
982 
983 static void damon_do_apply_schemes(struct damon_ctx *c,
984 				   struct damon_target *t,
985 				   struct damon_region *r)
986 {
987 	struct damos *s;
988 
989 	damon_for_each_scheme(s, c) {
990 		struct damos_quota *quota = &s->quota;
991 
992 		if (c->passed_sample_intervals < s->next_apply_sis)
993 			continue;
994 
995 		if (!s->wmarks.activated)
996 			continue;
997 
998 		/* Check the quota */
999 		if (quota->esz && quota->charged_sz >= quota->esz)
1000 			continue;
1001 
1002 		if (damos_skip_charged_region(t, &r, s))
1003 			continue;
1004 
1005 		if (!damos_valid_target(c, t, r, s))
1006 			continue;
1007 
1008 		damos_apply_scheme(c, t, r, s);
1009 	}
1010 }
1011 
1012 /* Shouldn't be called if quota->ms and quota->sz are zero */
1013 static void damos_set_effective_quota(struct damos_quota *quota)
1014 {
1015 	unsigned long throughput;
1016 	unsigned long esz;
1017 
1018 	if (!quota->ms) {
1019 		quota->esz = quota->sz;
1020 		return;
1021 	}
1022 
1023 	if (quota->total_charged_ns)
1024 		throughput = quota->total_charged_sz * 1000000 /
1025 			quota->total_charged_ns;
1026 	else
1027 		throughput = PAGE_SIZE * 1024;
1028 	esz = throughput * quota->ms;
1029 
1030 	if (quota->sz && quota->sz < esz)
1031 		esz = quota->sz;
1032 	quota->esz = esz;
1033 }
1034 
1035 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1036 {
1037 	struct damos_quota *quota = &s->quota;
1038 	struct damon_target *t;
1039 	struct damon_region *r;
1040 	unsigned long cumulated_sz;
1041 	unsigned int score, max_score = 0;
1042 
1043 	if (!quota->ms && !quota->sz)
1044 		return;
1045 
1046 	/* New charge window starts */
1047 	if (time_after_eq(jiffies, quota->charged_from +
1048 				msecs_to_jiffies(quota->reset_interval))) {
1049 		if (quota->esz && quota->charged_sz >= quota->esz)
1050 			s->stat.qt_exceeds++;
1051 		quota->total_charged_sz += quota->charged_sz;
1052 		quota->charged_from = jiffies;
1053 		quota->charged_sz = 0;
1054 		damos_set_effective_quota(quota);
1055 	}
1056 
1057 	if (!c->ops.get_scheme_score)
1058 		return;
1059 
1060 	/* Fill up the score histogram */
1061 	memset(quota->histogram, 0, sizeof(quota->histogram));
1062 	damon_for_each_target(t, c) {
1063 		damon_for_each_region(r, t) {
1064 			if (!__damos_valid_target(r, s))
1065 				continue;
1066 			score = c->ops.get_scheme_score(c, t, r, s);
1067 			quota->histogram[score] += damon_sz_region(r);
1068 			if (score > max_score)
1069 				max_score = score;
1070 		}
1071 	}
1072 
1073 	/* Set the min score limit */
1074 	for (cumulated_sz = 0, score = max_score; ; score--) {
1075 		cumulated_sz += quota->histogram[score];
1076 		if (cumulated_sz >= quota->esz || !score)
1077 			break;
1078 	}
1079 	quota->min_score = score;
1080 }
1081 
1082 static void kdamond_apply_schemes(struct damon_ctx *c)
1083 {
1084 	struct damon_target *t;
1085 	struct damon_region *r, *next_r;
1086 	struct damos *s;
1087 	unsigned long sample_interval = c->attrs.sample_interval ?
1088 		c->attrs.sample_interval : 1;
1089 	bool has_schemes_to_apply = false;
1090 
1091 	damon_for_each_scheme(s, c) {
1092 		if (c->passed_sample_intervals < s->next_apply_sis)
1093 			continue;
1094 
1095 		if (!s->wmarks.activated)
1096 			continue;
1097 
1098 		has_schemes_to_apply = true;
1099 
1100 		damos_adjust_quota(c, s);
1101 	}
1102 
1103 	if (!has_schemes_to_apply)
1104 		return;
1105 
1106 	damon_for_each_target(t, c) {
1107 		damon_for_each_region_safe(r, next_r, t)
1108 			damon_do_apply_schemes(c, t, r);
1109 	}
1110 
1111 	damon_for_each_scheme(s, c) {
1112 		if (c->passed_sample_intervals < s->next_apply_sis)
1113 			continue;
1114 		s->next_apply_sis = c->passed_sample_intervals +
1115 			(s->apply_interval_us ? s->apply_interval_us :
1116 			 c->attrs.aggr_interval) / sample_interval;
1117 	}
1118 }
1119 
1120 /*
1121  * Merge two adjacent regions into one region
1122  */
1123 static void damon_merge_two_regions(struct damon_target *t,
1124 		struct damon_region *l, struct damon_region *r)
1125 {
1126 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1127 
1128 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1129 			(sz_l + sz_r);
1130 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1131 	l->ar.end = r->ar.end;
1132 	damon_destroy_region(r, t);
1133 }
1134 
1135 /*
1136  * Merge adjacent regions having similar access frequencies
1137  *
1138  * t		target affected by this merge operation
1139  * thres	'->nr_accesses' diff threshold for the merge
1140  * sz_limit	size upper limit of each region
1141  */
1142 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1143 				   unsigned long sz_limit)
1144 {
1145 	struct damon_region *r, *prev = NULL, *next;
1146 
1147 	damon_for_each_region_safe(r, next, t) {
1148 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1149 			r->age = 0;
1150 		else
1151 			r->age++;
1152 
1153 		if (prev && prev->ar.end == r->ar.start &&
1154 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1155 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1156 			damon_merge_two_regions(t, prev, r);
1157 		else
1158 			prev = r;
1159 	}
1160 }
1161 
1162 /*
1163  * Merge adjacent regions having similar access frequencies
1164  *
1165  * threshold	'->nr_accesses' diff threshold for the merge
1166  * sz_limit	size upper limit of each region
1167  *
1168  * This function merges monitoring target regions which are adjacent and their
1169  * access frequencies are similar.  This is for minimizing the monitoring
1170  * overhead under the dynamically changeable access pattern.  If a merge was
1171  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1172  *
1173  * The total number of regions could be higher than the user-defined limit,
1174  * max_nr_regions for some cases.  For example, the user can update
1175  * max_nr_regions to a number that lower than the current number of regions
1176  * while DAMON is running.  For such a case, repeat merging until the limit is
1177  * met while increasing @threshold up to possible maximum level.
1178  */
1179 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1180 				  unsigned long sz_limit)
1181 {
1182 	struct damon_target *t;
1183 	unsigned int nr_regions;
1184 	unsigned int max_thres;
1185 
1186 	max_thres = c->attrs.aggr_interval /
1187 		(c->attrs.sample_interval ?  c->attrs.sample_interval : 1);
1188 	do {
1189 		nr_regions = 0;
1190 		damon_for_each_target(t, c) {
1191 			damon_merge_regions_of(t, threshold, sz_limit);
1192 			nr_regions += damon_nr_regions(t);
1193 		}
1194 		threshold = max(1, threshold * 2);
1195 	} while (nr_regions > c->attrs.max_nr_regions &&
1196 			threshold / 2 < max_thres);
1197 }
1198 
1199 /*
1200  * Split a region in two
1201  *
1202  * r		the region to be split
1203  * sz_r		size of the first sub-region that will be made
1204  */
1205 static void damon_split_region_at(struct damon_target *t,
1206 				  struct damon_region *r, unsigned long sz_r)
1207 {
1208 	struct damon_region *new;
1209 
1210 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1211 	if (!new)
1212 		return;
1213 
1214 	r->ar.end = new->ar.start;
1215 
1216 	new->age = r->age;
1217 	new->last_nr_accesses = r->last_nr_accesses;
1218 	new->nr_accesses = r->nr_accesses;
1219 
1220 	damon_insert_region(new, r, damon_next_region(r), t);
1221 }
1222 
1223 /* Split every region in the given target into 'nr_subs' regions */
1224 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1225 {
1226 	struct damon_region *r, *next;
1227 	unsigned long sz_region, sz_sub = 0;
1228 	int i;
1229 
1230 	damon_for_each_region_safe(r, next, t) {
1231 		sz_region = damon_sz_region(r);
1232 
1233 		for (i = 0; i < nr_subs - 1 &&
1234 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1235 			/*
1236 			 * Randomly select size of left sub-region to be at
1237 			 * least 10 percent and at most 90% of original region
1238 			 */
1239 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1240 					sz_region / 10, DAMON_MIN_REGION);
1241 			/* Do not allow blank region */
1242 			if (sz_sub == 0 || sz_sub >= sz_region)
1243 				continue;
1244 
1245 			damon_split_region_at(t, r, sz_sub);
1246 			sz_region = sz_sub;
1247 		}
1248 	}
1249 }
1250 
1251 /*
1252  * Split every target region into randomly-sized small regions
1253  *
1254  * This function splits every target region into random-sized small regions if
1255  * current total number of the regions is equal or smaller than half of the
1256  * user-specified maximum number of regions.  This is for maximizing the
1257  * monitoring accuracy under the dynamically changeable access patterns.  If a
1258  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1259  * it.
1260  */
1261 static void kdamond_split_regions(struct damon_ctx *ctx)
1262 {
1263 	struct damon_target *t;
1264 	unsigned int nr_regions = 0;
1265 	static unsigned int last_nr_regions;
1266 	int nr_subregions = 2;
1267 
1268 	damon_for_each_target(t, ctx)
1269 		nr_regions += damon_nr_regions(t);
1270 
1271 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1272 		return;
1273 
1274 	/* Maybe the middle of the region has different access frequency */
1275 	if (last_nr_regions == nr_regions &&
1276 			nr_regions < ctx->attrs.max_nr_regions / 3)
1277 		nr_subregions = 3;
1278 
1279 	damon_for_each_target(t, ctx)
1280 		damon_split_regions_of(t, nr_subregions);
1281 
1282 	last_nr_regions = nr_regions;
1283 }
1284 
1285 /*
1286  * Check whether current monitoring should be stopped
1287  *
1288  * The monitoring is stopped when either the user requested to stop, or all
1289  * monitoring targets are invalid.
1290  *
1291  * Returns true if need to stop current monitoring.
1292  */
1293 static bool kdamond_need_stop(struct damon_ctx *ctx)
1294 {
1295 	struct damon_target *t;
1296 
1297 	if (kthread_should_stop())
1298 		return true;
1299 
1300 	if (!ctx->ops.target_valid)
1301 		return false;
1302 
1303 	damon_for_each_target(t, ctx) {
1304 		if (ctx->ops.target_valid(t))
1305 			return false;
1306 	}
1307 
1308 	return true;
1309 }
1310 
1311 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1312 {
1313 	struct sysinfo i;
1314 
1315 	switch (metric) {
1316 	case DAMOS_WMARK_FREE_MEM_RATE:
1317 		si_meminfo(&i);
1318 		return i.freeram * 1000 / i.totalram;
1319 	default:
1320 		break;
1321 	}
1322 	return -EINVAL;
1323 }
1324 
1325 /*
1326  * Returns zero if the scheme is active.  Else, returns time to wait for next
1327  * watermark check in micro-seconds.
1328  */
1329 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1330 {
1331 	unsigned long metric;
1332 
1333 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1334 		return 0;
1335 
1336 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1337 	/* higher than high watermark or lower than low watermark */
1338 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1339 		if (scheme->wmarks.activated)
1340 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1341 					scheme->action,
1342 					metric > scheme->wmarks.high ?
1343 					"high" : "low");
1344 		scheme->wmarks.activated = false;
1345 		return scheme->wmarks.interval;
1346 	}
1347 
1348 	/* inactive and higher than middle watermark */
1349 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1350 			!scheme->wmarks.activated)
1351 		return scheme->wmarks.interval;
1352 
1353 	if (!scheme->wmarks.activated)
1354 		pr_debug("activate a scheme (%d)\n", scheme->action);
1355 	scheme->wmarks.activated = true;
1356 	return 0;
1357 }
1358 
1359 static void kdamond_usleep(unsigned long usecs)
1360 {
1361 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1362 	if (usecs > 20 * USEC_PER_MSEC)
1363 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1364 	else
1365 		usleep_idle_range(usecs, usecs + 1);
1366 }
1367 
1368 /* Returns negative error code if it's not activated but should return */
1369 static int kdamond_wait_activation(struct damon_ctx *ctx)
1370 {
1371 	struct damos *s;
1372 	unsigned long wait_time;
1373 	unsigned long min_wait_time = 0;
1374 	bool init_wait_time = false;
1375 
1376 	while (!kdamond_need_stop(ctx)) {
1377 		damon_for_each_scheme(s, ctx) {
1378 			wait_time = damos_wmark_wait_us(s);
1379 			if (!init_wait_time || wait_time < min_wait_time) {
1380 				init_wait_time = true;
1381 				min_wait_time = wait_time;
1382 			}
1383 		}
1384 		if (!min_wait_time)
1385 			return 0;
1386 
1387 		kdamond_usleep(min_wait_time);
1388 
1389 		if (ctx->callback.after_wmarks_check &&
1390 				ctx->callback.after_wmarks_check(ctx))
1391 			break;
1392 	}
1393 	return -EBUSY;
1394 }
1395 
1396 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1397 {
1398 	unsigned long sample_interval = ctx->attrs.sample_interval ?
1399 		ctx->attrs.sample_interval : 1;
1400 	unsigned long apply_interval;
1401 	struct damos *scheme;
1402 
1403 	ctx->passed_sample_intervals = 0;
1404 	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1405 	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1406 		sample_interval;
1407 
1408 	damon_for_each_scheme(scheme, ctx) {
1409 		apply_interval = scheme->apply_interval_us ?
1410 			scheme->apply_interval_us : ctx->attrs.aggr_interval;
1411 		scheme->next_apply_sis = apply_interval / sample_interval;
1412 	}
1413 }
1414 
1415 /*
1416  * The monitoring daemon that runs as a kernel thread
1417  */
1418 static int kdamond_fn(void *data)
1419 {
1420 	struct damon_ctx *ctx = data;
1421 	struct damon_target *t;
1422 	struct damon_region *r, *next;
1423 	unsigned int max_nr_accesses = 0;
1424 	unsigned long sz_limit = 0;
1425 
1426 	pr_debug("kdamond (%d) starts\n", current->pid);
1427 
1428 	complete(&ctx->kdamond_started);
1429 	kdamond_init_intervals_sis(ctx);
1430 
1431 	if (ctx->ops.init)
1432 		ctx->ops.init(ctx);
1433 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1434 		goto done;
1435 
1436 	sz_limit = damon_region_sz_limit(ctx);
1437 
1438 	while (!kdamond_need_stop(ctx)) {
1439 		/*
1440 		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1441 		 * be changed from after_wmarks_check() or after_aggregation()
1442 		 * callbacks.  Read the values here, and use those for this
1443 		 * iteration.  That is, damon_set_attrs() updated new values
1444 		 * are respected from next iteration.
1445 		 */
1446 		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1447 		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1448 		unsigned long sample_interval = ctx->attrs.sample_interval;
1449 
1450 		if (kdamond_wait_activation(ctx))
1451 			break;
1452 
1453 		if (ctx->ops.prepare_access_checks)
1454 			ctx->ops.prepare_access_checks(ctx);
1455 		if (ctx->callback.after_sampling &&
1456 				ctx->callback.after_sampling(ctx))
1457 			break;
1458 
1459 		kdamond_usleep(sample_interval);
1460 		ctx->passed_sample_intervals++;
1461 
1462 		if (ctx->ops.check_accesses)
1463 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1464 
1465 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
1466 			kdamond_merge_regions(ctx,
1467 					max_nr_accesses / 10,
1468 					sz_limit);
1469 			if (ctx->callback.after_aggregation &&
1470 					ctx->callback.after_aggregation(ctx))
1471 				break;
1472 		}
1473 
1474 		/*
1475 		 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1476 		 * possible, to reduce overhead
1477 		 */
1478 		if (!list_empty(&ctx->schemes))
1479 			kdamond_apply_schemes(ctx);
1480 
1481 		sample_interval = ctx->attrs.sample_interval ?
1482 			ctx->attrs.sample_interval : 1;
1483 		if (ctx->passed_sample_intervals >= next_aggregation_sis) {
1484 			ctx->next_aggregation_sis = next_aggregation_sis +
1485 				ctx->attrs.aggr_interval / sample_interval;
1486 
1487 			kdamond_reset_aggregated(ctx);
1488 			kdamond_split_regions(ctx);
1489 			if (ctx->ops.reset_aggregated)
1490 				ctx->ops.reset_aggregated(ctx);
1491 		}
1492 
1493 		if (ctx->passed_sample_intervals >= next_ops_update_sis) {
1494 			ctx->next_ops_update_sis = next_ops_update_sis +
1495 				ctx->attrs.ops_update_interval /
1496 				sample_interval;
1497 			if (ctx->ops.update)
1498 				ctx->ops.update(ctx);
1499 			sz_limit = damon_region_sz_limit(ctx);
1500 		}
1501 	}
1502 done:
1503 	damon_for_each_target(t, ctx) {
1504 		damon_for_each_region_safe(r, next, t)
1505 			damon_destroy_region(r, t);
1506 	}
1507 
1508 	if (ctx->callback.before_terminate)
1509 		ctx->callback.before_terminate(ctx);
1510 	if (ctx->ops.cleanup)
1511 		ctx->ops.cleanup(ctx);
1512 
1513 	pr_debug("kdamond (%d) finishes\n", current->pid);
1514 	mutex_lock(&ctx->kdamond_lock);
1515 	ctx->kdamond = NULL;
1516 	mutex_unlock(&ctx->kdamond_lock);
1517 
1518 	mutex_lock(&damon_lock);
1519 	nr_running_ctxs--;
1520 	if (!nr_running_ctxs && running_exclusive_ctxs)
1521 		running_exclusive_ctxs = false;
1522 	mutex_unlock(&damon_lock);
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * struct damon_system_ram_region - System RAM resource address region of
1529  *				    [@start, @end).
1530  * @start:	Start address of the region (inclusive).
1531  * @end:	End address of the region (exclusive).
1532  */
1533 struct damon_system_ram_region {
1534 	unsigned long start;
1535 	unsigned long end;
1536 };
1537 
1538 static int walk_system_ram(struct resource *res, void *arg)
1539 {
1540 	struct damon_system_ram_region *a = arg;
1541 
1542 	if (a->end - a->start < resource_size(res)) {
1543 		a->start = res->start;
1544 		a->end = res->end;
1545 	}
1546 	return 0;
1547 }
1548 
1549 /*
1550  * Find biggest 'System RAM' resource and store its start and end address in
1551  * @start and @end, respectively.  If no System RAM is found, returns false.
1552  */
1553 static bool damon_find_biggest_system_ram(unsigned long *start,
1554 						unsigned long *end)
1555 
1556 {
1557 	struct damon_system_ram_region arg = {};
1558 
1559 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1560 	if (arg.end <= arg.start)
1561 		return false;
1562 
1563 	*start = arg.start;
1564 	*end = arg.end;
1565 	return true;
1566 }
1567 
1568 /**
1569  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1570  * monitoring target as requested, or biggest 'System RAM'.
1571  * @t:		The monitoring target to set the region.
1572  * @start:	The pointer to the start address of the region.
1573  * @end:	The pointer to the end address of the region.
1574  *
1575  * This function sets the region of @t as requested by @start and @end.  If the
1576  * values of @start and @end are zero, however, this function finds the biggest
1577  * 'System RAM' resource and sets the region to cover the resource.  In the
1578  * latter case, this function saves the start and end addresses of the resource
1579  * in @start and @end, respectively.
1580  *
1581  * Return: 0 on success, negative error code otherwise.
1582  */
1583 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1584 			unsigned long *start, unsigned long *end)
1585 {
1586 	struct damon_addr_range addr_range;
1587 
1588 	if (*start > *end)
1589 		return -EINVAL;
1590 
1591 	if (!*start && !*end &&
1592 		!damon_find_biggest_system_ram(start, end))
1593 		return -EINVAL;
1594 
1595 	addr_range.start = *start;
1596 	addr_range.end = *end;
1597 	return damon_set_regions(t, &addr_range, 1);
1598 }
1599 
1600 static int __init damon_init(void)
1601 {
1602 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1603 	if (unlikely(!damon_region_cache)) {
1604 		pr_err("creating damon_region_cache fails\n");
1605 		return -ENOMEM;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 subsys_initcall(damon_init);
1612 
1613 #include "core-test.h"
1614