xref: /openbmc/linux/mm/damon/core.c (revision 8957261c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	INIT_LIST_HEAD(&region->list);
132 
133 	region->age = 0;
134 	region->last_nr_accesses = 0;
135 
136 	return region;
137 }
138 
139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 	list_add_tail(&r->list, &t->regions_list);
142 	t->nr_regions++;
143 }
144 
145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 	list_del(&r->list);
148 	t->nr_regions--;
149 }
150 
151 static void damon_free_region(struct damon_region *r)
152 {
153 	kmem_cache_free(damon_region_cache, r);
154 }
155 
156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 	damon_del_region(r, t);
159 	damon_free_region(r);
160 }
161 
162 /*
163  * Check whether a region is intersecting an address range
164  *
165  * Returns true if it is.
166  */
167 static bool damon_intersect(struct damon_region *r,
168 		struct damon_addr_range *re)
169 {
170 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172 
173 /*
174  * Fill holes in regions with new regions.
175  */
176 static int damon_fill_regions_holes(struct damon_region *first,
177 		struct damon_region *last, struct damon_target *t)
178 {
179 	struct damon_region *r = first;
180 
181 	damon_for_each_region_from(r, t) {
182 		struct damon_region *next, *newr;
183 
184 		if (r == last)
185 			break;
186 		next = damon_next_region(r);
187 		if (r->ar.end != next->ar.start) {
188 			newr = damon_new_region(r->ar.end, next->ar.start);
189 			if (!newr)
190 				return -ENOMEM;
191 			damon_insert_region(newr, r, next, t);
192 		}
193 	}
194 	return 0;
195 }
196 
197 /*
198  * damon_set_regions() - Set regions of a target for given address ranges.
199  * @t:		the given target.
200  * @ranges:	array of new monitoring target ranges.
201  * @nr_ranges:	length of @ranges.
202  *
203  * This function adds new regions to, or modify existing regions of a
204  * monitoring target to fit in specific ranges.
205  *
206  * Return: 0 if success, or negative error code otherwise.
207  */
208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 		unsigned int nr_ranges)
210 {
211 	struct damon_region *r, *next;
212 	unsigned int i;
213 	int err;
214 
215 	/* Remove regions which are not in the new ranges */
216 	damon_for_each_region_safe(r, next, t) {
217 		for (i = 0; i < nr_ranges; i++) {
218 			if (damon_intersect(r, &ranges[i]))
219 				break;
220 		}
221 		if (i == nr_ranges)
222 			damon_destroy_region(r, t);
223 	}
224 
225 	r = damon_first_region(t);
226 	/* Add new regions or resize existing regions to fit in the ranges */
227 	for (i = 0; i < nr_ranges; i++) {
228 		struct damon_region *first = NULL, *last, *newr;
229 		struct damon_addr_range *range;
230 
231 		range = &ranges[i];
232 		/* Get the first/last regions intersecting with the range */
233 		damon_for_each_region_from(r, t) {
234 			if (damon_intersect(r, range)) {
235 				if (!first)
236 					first = r;
237 				last = r;
238 			}
239 			if (r->ar.start >= range->end)
240 				break;
241 		}
242 		if (!first) {
243 			/* no region intersects with this range */
244 			newr = damon_new_region(
245 					ALIGN_DOWN(range->start,
246 						DAMON_MIN_REGION),
247 					ALIGN(range->end, DAMON_MIN_REGION));
248 			if (!newr)
249 				return -ENOMEM;
250 			damon_insert_region(newr, damon_prev_region(r), r, t);
251 		} else {
252 			/* resize intersecting regions to fit in this range */
253 			first->ar.start = ALIGN_DOWN(range->start,
254 					DAMON_MIN_REGION);
255 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256 
257 			/* fill possible holes in the range */
258 			err = damon_fill_regions_holes(first, last, t);
259 			if (err)
260 				return err;
261 		}
262 	}
263 	return 0;
264 }
265 
266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 		bool matching)
268 {
269 	struct damos_filter *filter;
270 
271 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 	if (!filter)
273 		return NULL;
274 	filter->type = type;
275 	filter->matching = matching;
276 	INIT_LIST_HEAD(&filter->list);
277 	return filter;
278 }
279 
280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 	list_add_tail(&f->list, &s->filters);
283 }
284 
285 static void damos_del_filter(struct damos_filter *f)
286 {
287 	list_del(&f->list);
288 }
289 
290 static void damos_free_filter(struct damos_filter *f)
291 {
292 	kfree(f);
293 }
294 
295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 	damos_del_filter(f);
298 	damos_free_filter(f);
299 }
300 
301 /* initialize private fields of damos_quota and return the pointer */
302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 	quota->total_charged_sz = 0;
305 	quota->total_charged_ns = 0;
306 	quota->esz = 0;
307 	quota->charged_sz = 0;
308 	quota->charged_from = 0;
309 	quota->charge_target_from = NULL;
310 	quota->charge_addr_from = 0;
311 	return quota;
312 }
313 
314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 			enum damos_action action, struct damos_quota *quota,
316 			struct damos_watermarks *wmarks)
317 {
318 	struct damos *scheme;
319 
320 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
321 	if (!scheme)
322 		return NULL;
323 	scheme->pattern = *pattern;
324 	scheme->action = action;
325 	INIT_LIST_HEAD(&scheme->filters);
326 	scheme->stat = (struct damos_stat){};
327 	INIT_LIST_HEAD(&scheme->list);
328 
329 	scheme->quota = *(damos_quota_init_priv(quota));
330 
331 	scheme->wmarks = *wmarks;
332 	scheme->wmarks.activated = true;
333 
334 	return scheme;
335 }
336 
337 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
338 {
339 	list_add_tail(&s->list, &ctx->schemes);
340 }
341 
342 static void damon_del_scheme(struct damos *s)
343 {
344 	list_del(&s->list);
345 }
346 
347 static void damon_free_scheme(struct damos *s)
348 {
349 	kfree(s);
350 }
351 
352 void damon_destroy_scheme(struct damos *s)
353 {
354 	struct damos_filter *f, *next;
355 
356 	damos_for_each_filter_safe(f, next, s)
357 		damos_destroy_filter(f);
358 	damon_del_scheme(s);
359 	damon_free_scheme(s);
360 }
361 
362 /*
363  * Construct a damon_target struct
364  *
365  * Returns the pointer to the new struct if success, or NULL otherwise
366  */
367 struct damon_target *damon_new_target(void)
368 {
369 	struct damon_target *t;
370 
371 	t = kmalloc(sizeof(*t), GFP_KERNEL);
372 	if (!t)
373 		return NULL;
374 
375 	t->pid = NULL;
376 	t->nr_regions = 0;
377 	INIT_LIST_HEAD(&t->regions_list);
378 	INIT_LIST_HEAD(&t->list);
379 
380 	return t;
381 }
382 
383 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
384 {
385 	list_add_tail(&t->list, &ctx->adaptive_targets);
386 }
387 
388 bool damon_targets_empty(struct damon_ctx *ctx)
389 {
390 	return list_empty(&ctx->adaptive_targets);
391 }
392 
393 static void damon_del_target(struct damon_target *t)
394 {
395 	list_del(&t->list);
396 }
397 
398 void damon_free_target(struct damon_target *t)
399 {
400 	struct damon_region *r, *next;
401 
402 	damon_for_each_region_safe(r, next, t)
403 		damon_free_region(r);
404 	kfree(t);
405 }
406 
407 void damon_destroy_target(struct damon_target *t)
408 {
409 	damon_del_target(t);
410 	damon_free_target(t);
411 }
412 
413 unsigned int damon_nr_regions(struct damon_target *t)
414 {
415 	return t->nr_regions;
416 }
417 
418 struct damon_ctx *damon_new_ctx(void)
419 {
420 	struct damon_ctx *ctx;
421 
422 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
423 	if (!ctx)
424 		return NULL;
425 
426 	ctx->attrs.sample_interval = 5 * 1000;
427 	ctx->attrs.aggr_interval = 100 * 1000;
428 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
429 
430 	ktime_get_coarse_ts64(&ctx->last_aggregation);
431 	ctx->last_ops_update = ctx->last_aggregation;
432 
433 	mutex_init(&ctx->kdamond_lock);
434 
435 	ctx->attrs.min_nr_regions = 10;
436 	ctx->attrs.max_nr_regions = 1000;
437 
438 	INIT_LIST_HEAD(&ctx->adaptive_targets);
439 	INIT_LIST_HEAD(&ctx->schemes);
440 
441 	return ctx;
442 }
443 
444 static void damon_destroy_targets(struct damon_ctx *ctx)
445 {
446 	struct damon_target *t, *next_t;
447 
448 	if (ctx->ops.cleanup) {
449 		ctx->ops.cleanup(ctx);
450 		return;
451 	}
452 
453 	damon_for_each_target_safe(t, next_t, ctx)
454 		damon_destroy_target(t);
455 }
456 
457 void damon_destroy_ctx(struct damon_ctx *ctx)
458 {
459 	struct damos *s, *next_s;
460 
461 	damon_destroy_targets(ctx);
462 
463 	damon_for_each_scheme_safe(s, next_s, ctx)
464 		damon_destroy_scheme(s);
465 
466 	kfree(ctx);
467 }
468 
469 static unsigned int damon_age_for_new_attrs(unsigned int age,
470 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
471 {
472 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
473 }
474 
475 /* convert access ratio in bp (per 10,000) to nr_accesses */
476 static unsigned int damon_accesses_bp_to_nr_accesses(
477 		unsigned int accesses_bp, struct damon_attrs *attrs)
478 {
479 	unsigned int max_nr_accesses =
480 		attrs->aggr_interval / attrs->sample_interval;
481 
482 	return accesses_bp * max_nr_accesses / 10000;
483 }
484 
485 /* convert nr_accesses to access ratio in bp (per 10,000) */
486 static unsigned int damon_nr_accesses_to_accesses_bp(
487 		unsigned int nr_accesses, struct damon_attrs *attrs)
488 {
489 	unsigned int max_nr_accesses =
490 		attrs->aggr_interval / attrs->sample_interval;
491 
492 	return nr_accesses * 10000 / max_nr_accesses;
493 }
494 
495 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
496 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
497 {
498 	return damon_accesses_bp_to_nr_accesses(
499 			damon_nr_accesses_to_accesses_bp(
500 				nr_accesses, old_attrs),
501 			new_attrs);
502 }
503 
504 static void damon_update_monitoring_result(struct damon_region *r,
505 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
506 {
507 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
508 			old_attrs, new_attrs);
509 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
510 }
511 
512 /*
513  * region->nr_accesses is the number of sampling intervals in the last
514  * aggregation interval that access to the region has found, and region->age is
515  * the number of aggregation intervals that its access pattern has maintained.
516  * For the reason, the real meaning of the two fields depend on current
517  * sampling interval and aggregation interval.  This function updates
518  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
519  */
520 static void damon_update_monitoring_results(struct damon_ctx *ctx,
521 		struct damon_attrs *new_attrs)
522 {
523 	struct damon_attrs *old_attrs = &ctx->attrs;
524 	struct damon_target *t;
525 	struct damon_region *r;
526 
527 	/* if any interval is zero, simply forgive conversion */
528 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
529 			!new_attrs->sample_interval ||
530 			!new_attrs->aggr_interval)
531 		return;
532 
533 	damon_for_each_target(t, ctx)
534 		damon_for_each_region(r, t)
535 			damon_update_monitoring_result(
536 					r, old_attrs, new_attrs);
537 }
538 
539 /**
540  * damon_set_attrs() - Set attributes for the monitoring.
541  * @ctx:		monitoring context
542  * @attrs:		monitoring attributes
543  *
544  * This function should not be called while the kdamond is running.
545  * Every time interval is in micro-seconds.
546  *
547  * Return: 0 on success, negative error code otherwise.
548  */
549 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
550 {
551 	if (attrs->min_nr_regions < 3)
552 		return -EINVAL;
553 	if (attrs->min_nr_regions > attrs->max_nr_regions)
554 		return -EINVAL;
555 	if (attrs->sample_interval > attrs->aggr_interval)
556 		return -EINVAL;
557 
558 	damon_update_monitoring_results(ctx, attrs);
559 	ctx->attrs = *attrs;
560 	return 0;
561 }
562 
563 /**
564  * damon_set_schemes() - Set data access monitoring based operation schemes.
565  * @ctx:	monitoring context
566  * @schemes:	array of the schemes
567  * @nr_schemes:	number of entries in @schemes
568  *
569  * This function should not be called while the kdamond of the context is
570  * running.
571  */
572 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
573 			ssize_t nr_schemes)
574 {
575 	struct damos *s, *next;
576 	ssize_t i;
577 
578 	damon_for_each_scheme_safe(s, next, ctx)
579 		damon_destroy_scheme(s);
580 	for (i = 0; i < nr_schemes; i++)
581 		damon_add_scheme(ctx, schemes[i]);
582 }
583 
584 /**
585  * damon_nr_running_ctxs() - Return number of currently running contexts.
586  */
587 int damon_nr_running_ctxs(void)
588 {
589 	int nr_ctxs;
590 
591 	mutex_lock(&damon_lock);
592 	nr_ctxs = nr_running_ctxs;
593 	mutex_unlock(&damon_lock);
594 
595 	return nr_ctxs;
596 }
597 
598 /* Returns the size upper limit for each monitoring region */
599 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
600 {
601 	struct damon_target *t;
602 	struct damon_region *r;
603 	unsigned long sz = 0;
604 
605 	damon_for_each_target(t, ctx) {
606 		damon_for_each_region(r, t)
607 			sz += damon_sz_region(r);
608 	}
609 
610 	if (ctx->attrs.min_nr_regions)
611 		sz /= ctx->attrs.min_nr_regions;
612 	if (sz < DAMON_MIN_REGION)
613 		sz = DAMON_MIN_REGION;
614 
615 	return sz;
616 }
617 
618 static int kdamond_fn(void *data);
619 
620 /*
621  * __damon_start() - Starts monitoring with given context.
622  * @ctx:	monitoring context
623  *
624  * This function should be called while damon_lock is hold.
625  *
626  * Return: 0 on success, negative error code otherwise.
627  */
628 static int __damon_start(struct damon_ctx *ctx)
629 {
630 	int err = -EBUSY;
631 
632 	mutex_lock(&ctx->kdamond_lock);
633 	if (!ctx->kdamond) {
634 		err = 0;
635 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
636 				nr_running_ctxs);
637 		if (IS_ERR(ctx->kdamond)) {
638 			err = PTR_ERR(ctx->kdamond);
639 			ctx->kdamond = NULL;
640 		}
641 	}
642 	mutex_unlock(&ctx->kdamond_lock);
643 
644 	return err;
645 }
646 
647 /**
648  * damon_start() - Starts the monitorings for a given group of contexts.
649  * @ctxs:	an array of the pointers for contexts to start monitoring
650  * @nr_ctxs:	size of @ctxs
651  * @exclusive:	exclusiveness of this contexts group
652  *
653  * This function starts a group of monitoring threads for a group of monitoring
654  * contexts.  One thread per each context is created and run in parallel.  The
655  * caller should handle synchronization between the threads by itself.  If
656  * @exclusive is true and a group of threads that created by other
657  * 'damon_start()' call is currently running, this function does nothing but
658  * returns -EBUSY.
659  *
660  * Return: 0 on success, negative error code otherwise.
661  */
662 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
663 {
664 	int i;
665 	int err = 0;
666 
667 	mutex_lock(&damon_lock);
668 	if ((exclusive && nr_running_ctxs) ||
669 			(!exclusive && running_exclusive_ctxs)) {
670 		mutex_unlock(&damon_lock);
671 		return -EBUSY;
672 	}
673 
674 	for (i = 0; i < nr_ctxs; i++) {
675 		err = __damon_start(ctxs[i]);
676 		if (err)
677 			break;
678 		nr_running_ctxs++;
679 	}
680 	if (exclusive && nr_running_ctxs)
681 		running_exclusive_ctxs = true;
682 	mutex_unlock(&damon_lock);
683 
684 	return err;
685 }
686 
687 /*
688  * __damon_stop() - Stops monitoring of a given context.
689  * @ctx:	monitoring context
690  *
691  * Return: 0 on success, negative error code otherwise.
692  */
693 static int __damon_stop(struct damon_ctx *ctx)
694 {
695 	struct task_struct *tsk;
696 
697 	mutex_lock(&ctx->kdamond_lock);
698 	tsk = ctx->kdamond;
699 	if (tsk) {
700 		get_task_struct(tsk);
701 		mutex_unlock(&ctx->kdamond_lock);
702 		kthread_stop(tsk);
703 		put_task_struct(tsk);
704 		return 0;
705 	}
706 	mutex_unlock(&ctx->kdamond_lock);
707 
708 	return -EPERM;
709 }
710 
711 /**
712  * damon_stop() - Stops the monitorings for a given group of contexts.
713  * @ctxs:	an array of the pointers for contexts to stop monitoring
714  * @nr_ctxs:	size of @ctxs
715  *
716  * Return: 0 on success, negative error code otherwise.
717  */
718 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
719 {
720 	int i, err = 0;
721 
722 	for (i = 0; i < nr_ctxs; i++) {
723 		/* nr_running_ctxs is decremented in kdamond_fn */
724 		err = __damon_stop(ctxs[i]);
725 		if (err)
726 			break;
727 	}
728 	return err;
729 }
730 
731 /*
732  * damon_check_reset_time_interval() - Check if a time interval is elapsed.
733  * @baseline:	the time to check whether the interval has elapsed since
734  * @interval:	the time interval (microseconds)
735  *
736  * See whether the given time interval has passed since the given baseline
737  * time.  If so, it also updates the baseline to current time for next check.
738  *
739  * Return:	true if the time interval has passed, or false otherwise.
740  */
741 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
742 		unsigned long interval)
743 {
744 	struct timespec64 now;
745 
746 	ktime_get_coarse_ts64(&now);
747 	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
748 			interval * 1000)
749 		return false;
750 	*baseline = now;
751 	return true;
752 }
753 
754 /*
755  * Check whether it is time to flush the aggregated information
756  */
757 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
758 {
759 	return damon_check_reset_time_interval(&ctx->last_aggregation,
760 			ctx->attrs.aggr_interval);
761 }
762 
763 /*
764  * Reset the aggregated monitoring results ('nr_accesses' of each region).
765  */
766 static void kdamond_reset_aggregated(struct damon_ctx *c)
767 {
768 	struct damon_target *t;
769 	unsigned int ti = 0;	/* target's index */
770 
771 	damon_for_each_target(t, c) {
772 		struct damon_region *r;
773 
774 		damon_for_each_region(r, t) {
775 			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
776 			r->last_nr_accesses = r->nr_accesses;
777 			r->nr_accesses = 0;
778 		}
779 		ti++;
780 	}
781 }
782 
783 static void damon_split_region_at(struct damon_target *t,
784 				  struct damon_region *r, unsigned long sz_r);
785 
786 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
787 {
788 	unsigned long sz;
789 
790 	sz = damon_sz_region(r);
791 	return s->pattern.min_sz_region <= sz &&
792 		sz <= s->pattern.max_sz_region &&
793 		s->pattern.min_nr_accesses <= r->nr_accesses &&
794 		r->nr_accesses <= s->pattern.max_nr_accesses &&
795 		s->pattern.min_age_region <= r->age &&
796 		r->age <= s->pattern.max_age_region;
797 }
798 
799 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
800 		struct damon_region *r, struct damos *s)
801 {
802 	bool ret = __damos_valid_target(r, s);
803 
804 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
805 		return ret;
806 
807 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
808 }
809 
810 /*
811  * damos_skip_charged_region() - Check if the given region or starting part of
812  * it is already charged for the DAMOS quota.
813  * @t:	The target of the region.
814  * @rp:	The pointer to the region.
815  * @s:	The scheme to be applied.
816  *
817  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
818  * action would applied to only a part of the target access pattern fulfilling
819  * regions.  To avoid applying the scheme action to only already applied
820  * regions, DAMON skips applying the scheme action to the regions that charged
821  * in the previous charge window.
822  *
823  * This function checks if a given region should be skipped or not for the
824  * reason.  If only the starting part of the region has previously charged,
825  * this function splits the region into two so that the second one covers the
826  * area that not charged in the previous charge widnow and saves the second
827  * region in *rp and returns false, so that the caller can apply DAMON action
828  * to the second one.
829  *
830  * Return: true if the region should be entirely skipped, false otherwise.
831  */
832 static bool damos_skip_charged_region(struct damon_target *t,
833 		struct damon_region **rp, struct damos *s)
834 {
835 	struct damon_region *r = *rp;
836 	struct damos_quota *quota = &s->quota;
837 	unsigned long sz_to_skip;
838 
839 	/* Skip previously charged regions */
840 	if (quota->charge_target_from) {
841 		if (t != quota->charge_target_from)
842 			return true;
843 		if (r == damon_last_region(t)) {
844 			quota->charge_target_from = NULL;
845 			quota->charge_addr_from = 0;
846 			return true;
847 		}
848 		if (quota->charge_addr_from &&
849 				r->ar.end <= quota->charge_addr_from)
850 			return true;
851 
852 		if (quota->charge_addr_from && r->ar.start <
853 				quota->charge_addr_from) {
854 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
855 					r->ar.start, DAMON_MIN_REGION);
856 			if (!sz_to_skip) {
857 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
858 					return true;
859 				sz_to_skip = DAMON_MIN_REGION;
860 			}
861 			damon_split_region_at(t, r, sz_to_skip);
862 			r = damon_next_region(r);
863 			*rp = r;
864 		}
865 		quota->charge_target_from = NULL;
866 		quota->charge_addr_from = 0;
867 	}
868 	return false;
869 }
870 
871 static void damos_update_stat(struct damos *s,
872 		unsigned long sz_tried, unsigned long sz_applied)
873 {
874 	s->stat.nr_tried++;
875 	s->stat.sz_tried += sz_tried;
876 	if (sz_applied)
877 		s->stat.nr_applied++;
878 	s->stat.sz_applied += sz_applied;
879 }
880 
881 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
882 		struct damon_region *r, struct damos_filter *filter)
883 {
884 	bool matched = false;
885 	struct damon_target *ti;
886 	int target_idx = 0;
887 	unsigned long start, end;
888 
889 	switch (filter->type) {
890 	case DAMOS_FILTER_TYPE_TARGET:
891 		damon_for_each_target(ti, ctx) {
892 			if (ti == t)
893 				break;
894 			target_idx++;
895 		}
896 		matched = target_idx == filter->target_idx;
897 		break;
898 	case DAMOS_FILTER_TYPE_ADDR:
899 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
900 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
901 
902 		/* inside the range */
903 		if (start <= r->ar.start && r->ar.end <= end) {
904 			matched = true;
905 			break;
906 		}
907 		/* outside of the range */
908 		if (r->ar.end <= start || end <= r->ar.start) {
909 			matched = false;
910 			break;
911 		}
912 		/* start before the range and overlap */
913 		if (r->ar.start < start) {
914 			damon_split_region_at(t, r, start - r->ar.start);
915 			matched = false;
916 			break;
917 		}
918 		/* start inside the range */
919 		damon_split_region_at(t, r, end - r->ar.start);
920 		matched = true;
921 		break;
922 	default:
923 		break;
924 	}
925 
926 	return matched == filter->matching;
927 }
928 
929 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
930 		struct damon_region *r, struct damos *s)
931 {
932 	struct damos_filter *filter;
933 
934 	damos_for_each_filter(filter, s) {
935 		if (__damos_filter_out(ctx, t, r, filter))
936 			return true;
937 	}
938 	return false;
939 }
940 
941 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
942 		struct damon_region *r, struct damos *s)
943 {
944 	struct damos_quota *quota = &s->quota;
945 	unsigned long sz = damon_sz_region(r);
946 	struct timespec64 begin, end;
947 	unsigned long sz_applied = 0;
948 	int err = 0;
949 
950 	if (c->ops.apply_scheme) {
951 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
952 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
953 					DAMON_MIN_REGION);
954 			if (!sz)
955 				goto update_stat;
956 			damon_split_region_at(t, r, sz);
957 		}
958 		if (damos_filter_out(c, t, r, s))
959 			return;
960 		ktime_get_coarse_ts64(&begin);
961 		if (c->callback.before_damos_apply)
962 			err = c->callback.before_damos_apply(c, t, r, s);
963 		if (!err)
964 			sz_applied = c->ops.apply_scheme(c, t, r, s);
965 		ktime_get_coarse_ts64(&end);
966 		quota->total_charged_ns += timespec64_to_ns(&end) -
967 			timespec64_to_ns(&begin);
968 		quota->charged_sz += sz;
969 		if (quota->esz && quota->charged_sz >= quota->esz) {
970 			quota->charge_target_from = t;
971 			quota->charge_addr_from = r->ar.end + 1;
972 		}
973 	}
974 	if (s->action != DAMOS_STAT)
975 		r->age = 0;
976 
977 update_stat:
978 	damos_update_stat(s, sz, sz_applied);
979 }
980 
981 static void damon_do_apply_schemes(struct damon_ctx *c,
982 				   struct damon_target *t,
983 				   struct damon_region *r)
984 {
985 	struct damos *s;
986 
987 	damon_for_each_scheme(s, c) {
988 		struct damos_quota *quota = &s->quota;
989 
990 		if (!s->wmarks.activated)
991 			continue;
992 
993 		/* Check the quota */
994 		if (quota->esz && quota->charged_sz >= quota->esz)
995 			continue;
996 
997 		if (damos_skip_charged_region(t, &r, s))
998 			continue;
999 
1000 		if (!damos_valid_target(c, t, r, s))
1001 			continue;
1002 
1003 		damos_apply_scheme(c, t, r, s);
1004 	}
1005 }
1006 
1007 /* Shouldn't be called if quota->ms and quota->sz are zero */
1008 static void damos_set_effective_quota(struct damos_quota *quota)
1009 {
1010 	unsigned long throughput;
1011 	unsigned long esz;
1012 
1013 	if (!quota->ms) {
1014 		quota->esz = quota->sz;
1015 		return;
1016 	}
1017 
1018 	if (quota->total_charged_ns)
1019 		throughput = quota->total_charged_sz * 1000000 /
1020 			quota->total_charged_ns;
1021 	else
1022 		throughput = PAGE_SIZE * 1024;
1023 	esz = throughput * quota->ms;
1024 
1025 	if (quota->sz && quota->sz < esz)
1026 		esz = quota->sz;
1027 	quota->esz = esz;
1028 }
1029 
1030 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1031 {
1032 	struct damos_quota *quota = &s->quota;
1033 	struct damon_target *t;
1034 	struct damon_region *r;
1035 	unsigned long cumulated_sz;
1036 	unsigned int score, max_score = 0;
1037 
1038 	if (!quota->ms && !quota->sz)
1039 		return;
1040 
1041 	/* New charge window starts */
1042 	if (time_after_eq(jiffies, quota->charged_from +
1043 				msecs_to_jiffies(quota->reset_interval))) {
1044 		if (quota->esz && quota->charged_sz >= quota->esz)
1045 			s->stat.qt_exceeds++;
1046 		quota->total_charged_sz += quota->charged_sz;
1047 		quota->charged_from = jiffies;
1048 		quota->charged_sz = 0;
1049 		damos_set_effective_quota(quota);
1050 	}
1051 
1052 	if (!c->ops.get_scheme_score)
1053 		return;
1054 
1055 	/* Fill up the score histogram */
1056 	memset(quota->histogram, 0, sizeof(quota->histogram));
1057 	damon_for_each_target(t, c) {
1058 		damon_for_each_region(r, t) {
1059 			if (!__damos_valid_target(r, s))
1060 				continue;
1061 			score = c->ops.get_scheme_score(c, t, r, s);
1062 			quota->histogram[score] += damon_sz_region(r);
1063 			if (score > max_score)
1064 				max_score = score;
1065 		}
1066 	}
1067 
1068 	/* Set the min score limit */
1069 	for (cumulated_sz = 0, score = max_score; ; score--) {
1070 		cumulated_sz += quota->histogram[score];
1071 		if (cumulated_sz >= quota->esz || !score)
1072 			break;
1073 	}
1074 	quota->min_score = score;
1075 }
1076 
1077 static void kdamond_apply_schemes(struct damon_ctx *c)
1078 {
1079 	struct damon_target *t;
1080 	struct damon_region *r, *next_r;
1081 	struct damos *s;
1082 
1083 	damon_for_each_scheme(s, c) {
1084 		if (!s->wmarks.activated)
1085 			continue;
1086 
1087 		damos_adjust_quota(c, s);
1088 	}
1089 
1090 	damon_for_each_target(t, c) {
1091 		damon_for_each_region_safe(r, next_r, t)
1092 			damon_do_apply_schemes(c, t, r);
1093 	}
1094 }
1095 
1096 /*
1097  * Merge two adjacent regions into one region
1098  */
1099 static void damon_merge_two_regions(struct damon_target *t,
1100 		struct damon_region *l, struct damon_region *r)
1101 {
1102 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1103 
1104 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1105 			(sz_l + sz_r);
1106 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1107 	l->ar.end = r->ar.end;
1108 	damon_destroy_region(r, t);
1109 }
1110 
1111 /*
1112  * Merge adjacent regions having similar access frequencies
1113  *
1114  * t		target affected by this merge operation
1115  * thres	'->nr_accesses' diff threshold for the merge
1116  * sz_limit	size upper limit of each region
1117  */
1118 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1119 				   unsigned long sz_limit)
1120 {
1121 	struct damon_region *r, *prev = NULL, *next;
1122 
1123 	damon_for_each_region_safe(r, next, t) {
1124 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1125 			r->age = 0;
1126 		else
1127 			r->age++;
1128 
1129 		if (prev && prev->ar.end == r->ar.start &&
1130 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1131 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1132 			damon_merge_two_regions(t, prev, r);
1133 		else
1134 			prev = r;
1135 	}
1136 }
1137 
1138 /*
1139  * Merge adjacent regions having similar access frequencies
1140  *
1141  * threshold	'->nr_accesses' diff threshold for the merge
1142  * sz_limit	size upper limit of each region
1143  *
1144  * This function merges monitoring target regions which are adjacent and their
1145  * access frequencies are similar.  This is for minimizing the monitoring
1146  * overhead under the dynamically changeable access pattern.  If a merge was
1147  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1148  */
1149 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1150 				  unsigned long sz_limit)
1151 {
1152 	struct damon_target *t;
1153 
1154 	damon_for_each_target(t, c)
1155 		damon_merge_regions_of(t, threshold, sz_limit);
1156 }
1157 
1158 /*
1159  * Split a region in two
1160  *
1161  * r		the region to be split
1162  * sz_r		size of the first sub-region that will be made
1163  */
1164 static void damon_split_region_at(struct damon_target *t,
1165 				  struct damon_region *r, unsigned long sz_r)
1166 {
1167 	struct damon_region *new;
1168 
1169 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1170 	if (!new)
1171 		return;
1172 
1173 	r->ar.end = new->ar.start;
1174 
1175 	new->age = r->age;
1176 	new->last_nr_accesses = r->last_nr_accesses;
1177 
1178 	damon_insert_region(new, r, damon_next_region(r), t);
1179 }
1180 
1181 /* Split every region in the given target into 'nr_subs' regions */
1182 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1183 {
1184 	struct damon_region *r, *next;
1185 	unsigned long sz_region, sz_sub = 0;
1186 	int i;
1187 
1188 	damon_for_each_region_safe(r, next, t) {
1189 		sz_region = damon_sz_region(r);
1190 
1191 		for (i = 0; i < nr_subs - 1 &&
1192 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1193 			/*
1194 			 * Randomly select size of left sub-region to be at
1195 			 * least 10 percent and at most 90% of original region
1196 			 */
1197 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1198 					sz_region / 10, DAMON_MIN_REGION);
1199 			/* Do not allow blank region */
1200 			if (sz_sub == 0 || sz_sub >= sz_region)
1201 				continue;
1202 
1203 			damon_split_region_at(t, r, sz_sub);
1204 			sz_region = sz_sub;
1205 		}
1206 	}
1207 }
1208 
1209 /*
1210  * Split every target region into randomly-sized small regions
1211  *
1212  * This function splits every target region into random-sized small regions if
1213  * current total number of the regions is equal or smaller than half of the
1214  * user-specified maximum number of regions.  This is for maximizing the
1215  * monitoring accuracy under the dynamically changeable access patterns.  If a
1216  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1217  * it.
1218  */
1219 static void kdamond_split_regions(struct damon_ctx *ctx)
1220 {
1221 	struct damon_target *t;
1222 	unsigned int nr_regions = 0;
1223 	static unsigned int last_nr_regions;
1224 	int nr_subregions = 2;
1225 
1226 	damon_for_each_target(t, ctx)
1227 		nr_regions += damon_nr_regions(t);
1228 
1229 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1230 		return;
1231 
1232 	/* Maybe the middle of the region has different access frequency */
1233 	if (last_nr_regions == nr_regions &&
1234 			nr_regions < ctx->attrs.max_nr_regions / 3)
1235 		nr_subregions = 3;
1236 
1237 	damon_for_each_target(t, ctx)
1238 		damon_split_regions_of(t, nr_subregions);
1239 
1240 	last_nr_regions = nr_regions;
1241 }
1242 
1243 /*
1244  * Check whether it is time to check and apply the operations-related data
1245  * structures.
1246  *
1247  * Returns true if it is.
1248  */
1249 static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1250 {
1251 	return damon_check_reset_time_interval(&ctx->last_ops_update,
1252 			ctx->attrs.ops_update_interval);
1253 }
1254 
1255 /*
1256  * Check whether current monitoring should be stopped
1257  *
1258  * The monitoring is stopped when either the user requested to stop, or all
1259  * monitoring targets are invalid.
1260  *
1261  * Returns true if need to stop current monitoring.
1262  */
1263 static bool kdamond_need_stop(struct damon_ctx *ctx)
1264 {
1265 	struct damon_target *t;
1266 
1267 	if (kthread_should_stop())
1268 		return true;
1269 
1270 	if (!ctx->ops.target_valid)
1271 		return false;
1272 
1273 	damon_for_each_target(t, ctx) {
1274 		if (ctx->ops.target_valid(t))
1275 			return false;
1276 	}
1277 
1278 	return true;
1279 }
1280 
1281 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1282 {
1283 	struct sysinfo i;
1284 
1285 	switch (metric) {
1286 	case DAMOS_WMARK_FREE_MEM_RATE:
1287 		si_meminfo(&i);
1288 		return i.freeram * 1000 / i.totalram;
1289 	default:
1290 		break;
1291 	}
1292 	return -EINVAL;
1293 }
1294 
1295 /*
1296  * Returns zero if the scheme is active.  Else, returns time to wait for next
1297  * watermark check in micro-seconds.
1298  */
1299 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1300 {
1301 	unsigned long metric;
1302 
1303 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1304 		return 0;
1305 
1306 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1307 	/* higher than high watermark or lower than low watermark */
1308 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1309 		if (scheme->wmarks.activated)
1310 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1311 					scheme->action,
1312 					metric > scheme->wmarks.high ?
1313 					"high" : "low");
1314 		scheme->wmarks.activated = false;
1315 		return scheme->wmarks.interval;
1316 	}
1317 
1318 	/* inactive and higher than middle watermark */
1319 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1320 			!scheme->wmarks.activated)
1321 		return scheme->wmarks.interval;
1322 
1323 	if (!scheme->wmarks.activated)
1324 		pr_debug("activate a scheme (%d)\n", scheme->action);
1325 	scheme->wmarks.activated = true;
1326 	return 0;
1327 }
1328 
1329 static void kdamond_usleep(unsigned long usecs)
1330 {
1331 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1332 	if (usecs > 20 * USEC_PER_MSEC)
1333 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1334 	else
1335 		usleep_idle_range(usecs, usecs + 1);
1336 }
1337 
1338 /* Returns negative error code if it's not activated but should return */
1339 static int kdamond_wait_activation(struct damon_ctx *ctx)
1340 {
1341 	struct damos *s;
1342 	unsigned long wait_time;
1343 	unsigned long min_wait_time = 0;
1344 	bool init_wait_time = false;
1345 
1346 	while (!kdamond_need_stop(ctx)) {
1347 		damon_for_each_scheme(s, ctx) {
1348 			wait_time = damos_wmark_wait_us(s);
1349 			if (!init_wait_time || wait_time < min_wait_time) {
1350 				init_wait_time = true;
1351 				min_wait_time = wait_time;
1352 			}
1353 		}
1354 		if (!min_wait_time)
1355 			return 0;
1356 
1357 		kdamond_usleep(min_wait_time);
1358 
1359 		if (ctx->callback.after_wmarks_check &&
1360 				ctx->callback.after_wmarks_check(ctx))
1361 			break;
1362 	}
1363 	return -EBUSY;
1364 }
1365 
1366 /*
1367  * The monitoring daemon that runs as a kernel thread
1368  */
1369 static int kdamond_fn(void *data)
1370 {
1371 	struct damon_ctx *ctx = data;
1372 	struct damon_target *t;
1373 	struct damon_region *r, *next;
1374 	unsigned int max_nr_accesses = 0;
1375 	unsigned long sz_limit = 0;
1376 
1377 	pr_debug("kdamond (%d) starts\n", current->pid);
1378 
1379 	if (ctx->ops.init)
1380 		ctx->ops.init(ctx);
1381 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1382 		goto done;
1383 
1384 	sz_limit = damon_region_sz_limit(ctx);
1385 
1386 	while (!kdamond_need_stop(ctx)) {
1387 		if (kdamond_wait_activation(ctx))
1388 			break;
1389 
1390 		if (ctx->ops.prepare_access_checks)
1391 			ctx->ops.prepare_access_checks(ctx);
1392 		if (ctx->callback.after_sampling &&
1393 				ctx->callback.after_sampling(ctx))
1394 			break;
1395 
1396 		kdamond_usleep(ctx->attrs.sample_interval);
1397 
1398 		if (ctx->ops.check_accesses)
1399 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1400 
1401 		if (kdamond_aggregate_interval_passed(ctx)) {
1402 			kdamond_merge_regions(ctx,
1403 					max_nr_accesses / 10,
1404 					sz_limit);
1405 			if (ctx->callback.after_aggregation &&
1406 					ctx->callback.after_aggregation(ctx))
1407 				break;
1408 			if (!list_empty(&ctx->schemes))
1409 				kdamond_apply_schemes(ctx);
1410 			kdamond_reset_aggregated(ctx);
1411 			kdamond_split_regions(ctx);
1412 			if (ctx->ops.reset_aggregated)
1413 				ctx->ops.reset_aggregated(ctx);
1414 		}
1415 
1416 		if (kdamond_need_update_operations(ctx)) {
1417 			if (ctx->ops.update)
1418 				ctx->ops.update(ctx);
1419 			sz_limit = damon_region_sz_limit(ctx);
1420 		}
1421 	}
1422 done:
1423 	damon_for_each_target(t, ctx) {
1424 		damon_for_each_region_safe(r, next, t)
1425 			damon_destroy_region(r, t);
1426 	}
1427 
1428 	if (ctx->callback.before_terminate)
1429 		ctx->callback.before_terminate(ctx);
1430 	if (ctx->ops.cleanup)
1431 		ctx->ops.cleanup(ctx);
1432 
1433 	pr_debug("kdamond (%d) finishes\n", current->pid);
1434 	mutex_lock(&ctx->kdamond_lock);
1435 	ctx->kdamond = NULL;
1436 	mutex_unlock(&ctx->kdamond_lock);
1437 
1438 	mutex_lock(&damon_lock);
1439 	nr_running_ctxs--;
1440 	if (!nr_running_ctxs && running_exclusive_ctxs)
1441 		running_exclusive_ctxs = false;
1442 	mutex_unlock(&damon_lock);
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * struct damon_system_ram_region - System RAM resource address region of
1449  *				    [@start, @end).
1450  * @start:	Start address of the region (inclusive).
1451  * @end:	End address of the region (exclusive).
1452  */
1453 struct damon_system_ram_region {
1454 	unsigned long start;
1455 	unsigned long end;
1456 };
1457 
1458 static int walk_system_ram(struct resource *res, void *arg)
1459 {
1460 	struct damon_system_ram_region *a = arg;
1461 
1462 	if (a->end - a->start < resource_size(res)) {
1463 		a->start = res->start;
1464 		a->end = res->end;
1465 	}
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Find biggest 'System RAM' resource and store its start and end address in
1471  * @start and @end, respectively.  If no System RAM is found, returns false.
1472  */
1473 static bool damon_find_biggest_system_ram(unsigned long *start,
1474 						unsigned long *end)
1475 
1476 {
1477 	struct damon_system_ram_region arg = {};
1478 
1479 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1480 	if (arg.end <= arg.start)
1481 		return false;
1482 
1483 	*start = arg.start;
1484 	*end = arg.end;
1485 	return true;
1486 }
1487 
1488 /**
1489  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1490  * monitoring target as requested, or biggest 'System RAM'.
1491  * @t:		The monitoring target to set the region.
1492  * @start:	The pointer to the start address of the region.
1493  * @end:	The pointer to the end address of the region.
1494  *
1495  * This function sets the region of @t as requested by @start and @end.  If the
1496  * values of @start and @end are zero, however, this function finds the biggest
1497  * 'System RAM' resource and sets the region to cover the resource.  In the
1498  * latter case, this function saves the start and end addresses of the resource
1499  * in @start and @end, respectively.
1500  *
1501  * Return: 0 on success, negative error code otherwise.
1502  */
1503 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1504 			unsigned long *start, unsigned long *end)
1505 {
1506 	struct damon_addr_range addr_range;
1507 
1508 	if (*start > *end)
1509 		return -EINVAL;
1510 
1511 	if (!*start && !*end &&
1512 		!damon_find_biggest_system_ram(start, end))
1513 		return -EINVAL;
1514 
1515 	addr_range.start = *start;
1516 	addr_range.end = *end;
1517 	return damon_set_regions(t, &addr_range, 1);
1518 }
1519 
1520 static int __init damon_init(void)
1521 {
1522 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1523 	if (unlikely(!damon_region_cache)) {
1524 		pr_err("creating damon_region_cache fails\n");
1525 		return -ENOMEM;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 subsys_initcall(damon_init);
1532 
1533 #include "core-test.h"
1534