xref: /openbmc/linux/mm/damon/core.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	INIT_LIST_HEAD(&region->list);
132 
133 	region->age = 0;
134 	region->last_nr_accesses = 0;
135 
136 	return region;
137 }
138 
139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 	list_add_tail(&r->list, &t->regions_list);
142 	t->nr_regions++;
143 }
144 
145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 	list_del(&r->list);
148 	t->nr_regions--;
149 }
150 
151 static void damon_free_region(struct damon_region *r)
152 {
153 	kmem_cache_free(damon_region_cache, r);
154 }
155 
156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 	damon_del_region(r, t);
159 	damon_free_region(r);
160 }
161 
162 /*
163  * Check whether a region is intersecting an address range
164  *
165  * Returns true if it is.
166  */
167 static bool damon_intersect(struct damon_region *r,
168 		struct damon_addr_range *re)
169 {
170 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172 
173 /*
174  * Fill holes in regions with new regions.
175  */
176 static int damon_fill_regions_holes(struct damon_region *first,
177 		struct damon_region *last, struct damon_target *t)
178 {
179 	struct damon_region *r = first;
180 
181 	damon_for_each_region_from(r, t) {
182 		struct damon_region *next, *newr;
183 
184 		if (r == last)
185 			break;
186 		next = damon_next_region(r);
187 		if (r->ar.end != next->ar.start) {
188 			newr = damon_new_region(r->ar.end, next->ar.start);
189 			if (!newr)
190 				return -ENOMEM;
191 			damon_insert_region(newr, r, next, t);
192 		}
193 	}
194 	return 0;
195 }
196 
197 /*
198  * damon_set_regions() - Set regions of a target for given address ranges.
199  * @t:		the given target.
200  * @ranges:	array of new monitoring target ranges.
201  * @nr_ranges:	length of @ranges.
202  *
203  * This function adds new regions to, or modify existing regions of a
204  * monitoring target to fit in specific ranges.
205  *
206  * Return: 0 if success, or negative error code otherwise.
207  */
208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 		unsigned int nr_ranges)
210 {
211 	struct damon_region *r, *next;
212 	unsigned int i;
213 	int err;
214 
215 	/* Remove regions which are not in the new ranges */
216 	damon_for_each_region_safe(r, next, t) {
217 		for (i = 0; i < nr_ranges; i++) {
218 			if (damon_intersect(r, &ranges[i]))
219 				break;
220 		}
221 		if (i == nr_ranges)
222 			damon_destroy_region(r, t);
223 	}
224 
225 	r = damon_first_region(t);
226 	/* Add new regions or resize existing regions to fit in the ranges */
227 	for (i = 0; i < nr_ranges; i++) {
228 		struct damon_region *first = NULL, *last, *newr;
229 		struct damon_addr_range *range;
230 
231 		range = &ranges[i];
232 		/* Get the first/last regions intersecting with the range */
233 		damon_for_each_region_from(r, t) {
234 			if (damon_intersect(r, range)) {
235 				if (!first)
236 					first = r;
237 				last = r;
238 			}
239 			if (r->ar.start >= range->end)
240 				break;
241 		}
242 		if (!first) {
243 			/* no region intersects with this range */
244 			newr = damon_new_region(
245 					ALIGN_DOWN(range->start,
246 						DAMON_MIN_REGION),
247 					ALIGN(range->end, DAMON_MIN_REGION));
248 			if (!newr)
249 				return -ENOMEM;
250 			damon_insert_region(newr, damon_prev_region(r), r, t);
251 		} else {
252 			/* resize intersecting regions to fit in this range */
253 			first->ar.start = ALIGN_DOWN(range->start,
254 					DAMON_MIN_REGION);
255 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256 
257 			/* fill possible holes in the range */
258 			err = damon_fill_regions_holes(first, last, t);
259 			if (err)
260 				return err;
261 		}
262 	}
263 	return 0;
264 }
265 
266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 		bool matching)
268 {
269 	struct damos_filter *filter;
270 
271 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 	if (!filter)
273 		return NULL;
274 	filter->type = type;
275 	filter->matching = matching;
276 	INIT_LIST_HEAD(&filter->list);
277 	return filter;
278 }
279 
280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 	list_add_tail(&f->list, &s->filters);
283 }
284 
285 static void damos_del_filter(struct damos_filter *f)
286 {
287 	list_del(&f->list);
288 }
289 
290 static void damos_free_filter(struct damos_filter *f)
291 {
292 	kfree(f);
293 }
294 
295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 	damos_del_filter(f);
298 	damos_free_filter(f);
299 }
300 
301 /* initialize private fields of damos_quota and return the pointer */
302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 	quota->total_charged_sz = 0;
305 	quota->total_charged_ns = 0;
306 	quota->esz = 0;
307 	quota->charged_sz = 0;
308 	quota->charged_from = 0;
309 	quota->charge_target_from = NULL;
310 	quota->charge_addr_from = 0;
311 	return quota;
312 }
313 
314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 			enum damos_action action, struct damos_quota *quota,
316 			struct damos_watermarks *wmarks)
317 {
318 	struct damos *scheme;
319 
320 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
321 	if (!scheme)
322 		return NULL;
323 	scheme->pattern = *pattern;
324 	scheme->action = action;
325 	INIT_LIST_HEAD(&scheme->filters);
326 	scheme->stat = (struct damos_stat){};
327 	INIT_LIST_HEAD(&scheme->list);
328 
329 	scheme->quota = *(damos_quota_init_priv(quota));
330 
331 	scheme->wmarks = *wmarks;
332 	scheme->wmarks.activated = true;
333 
334 	return scheme;
335 }
336 
337 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
338 {
339 	list_add_tail(&s->list, &ctx->schemes);
340 }
341 
342 static void damon_del_scheme(struct damos *s)
343 {
344 	list_del(&s->list);
345 }
346 
347 static void damon_free_scheme(struct damos *s)
348 {
349 	kfree(s);
350 }
351 
352 void damon_destroy_scheme(struct damos *s)
353 {
354 	struct damos_filter *f, *next;
355 
356 	damos_for_each_filter_safe(f, next, s)
357 		damos_destroy_filter(f);
358 	damon_del_scheme(s);
359 	damon_free_scheme(s);
360 }
361 
362 /*
363  * Construct a damon_target struct
364  *
365  * Returns the pointer to the new struct if success, or NULL otherwise
366  */
367 struct damon_target *damon_new_target(void)
368 {
369 	struct damon_target *t;
370 
371 	t = kmalloc(sizeof(*t), GFP_KERNEL);
372 	if (!t)
373 		return NULL;
374 
375 	t->pid = NULL;
376 	t->nr_regions = 0;
377 	INIT_LIST_HEAD(&t->regions_list);
378 	INIT_LIST_HEAD(&t->list);
379 
380 	return t;
381 }
382 
383 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
384 {
385 	list_add_tail(&t->list, &ctx->adaptive_targets);
386 }
387 
388 bool damon_targets_empty(struct damon_ctx *ctx)
389 {
390 	return list_empty(&ctx->adaptive_targets);
391 }
392 
393 static void damon_del_target(struct damon_target *t)
394 {
395 	list_del(&t->list);
396 }
397 
398 void damon_free_target(struct damon_target *t)
399 {
400 	struct damon_region *r, *next;
401 
402 	damon_for_each_region_safe(r, next, t)
403 		damon_free_region(r);
404 	kfree(t);
405 }
406 
407 void damon_destroy_target(struct damon_target *t)
408 {
409 	damon_del_target(t);
410 	damon_free_target(t);
411 }
412 
413 unsigned int damon_nr_regions(struct damon_target *t)
414 {
415 	return t->nr_regions;
416 }
417 
418 struct damon_ctx *damon_new_ctx(void)
419 {
420 	struct damon_ctx *ctx;
421 
422 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
423 	if (!ctx)
424 		return NULL;
425 
426 	ctx->attrs.sample_interval = 5 * 1000;
427 	ctx->attrs.aggr_interval = 100 * 1000;
428 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
429 
430 	ktime_get_coarse_ts64(&ctx->last_aggregation);
431 	ctx->last_ops_update = ctx->last_aggregation;
432 
433 	mutex_init(&ctx->kdamond_lock);
434 
435 	ctx->attrs.min_nr_regions = 10;
436 	ctx->attrs.max_nr_regions = 1000;
437 
438 	INIT_LIST_HEAD(&ctx->adaptive_targets);
439 	INIT_LIST_HEAD(&ctx->schemes);
440 
441 	return ctx;
442 }
443 
444 static void damon_destroy_targets(struct damon_ctx *ctx)
445 {
446 	struct damon_target *t, *next_t;
447 
448 	if (ctx->ops.cleanup) {
449 		ctx->ops.cleanup(ctx);
450 		return;
451 	}
452 
453 	damon_for_each_target_safe(t, next_t, ctx)
454 		damon_destroy_target(t);
455 }
456 
457 void damon_destroy_ctx(struct damon_ctx *ctx)
458 {
459 	struct damos *s, *next_s;
460 
461 	damon_destroy_targets(ctx);
462 
463 	damon_for_each_scheme_safe(s, next_s, ctx)
464 		damon_destroy_scheme(s);
465 
466 	kfree(ctx);
467 }
468 
469 static unsigned int damon_age_for_new_attrs(unsigned int age,
470 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
471 {
472 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
473 }
474 
475 /* convert access ratio in bp (per 10,000) to nr_accesses */
476 static unsigned int damon_accesses_bp_to_nr_accesses(
477 		unsigned int accesses_bp, struct damon_attrs *attrs)
478 {
479 	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
480 }
481 
482 /* convert nr_accesses to access ratio in bp (per 10,000) */
483 static unsigned int damon_nr_accesses_to_accesses_bp(
484 		unsigned int nr_accesses, struct damon_attrs *attrs)
485 {
486 	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
487 }
488 
489 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
490 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
491 {
492 	return damon_accesses_bp_to_nr_accesses(
493 			damon_nr_accesses_to_accesses_bp(
494 				nr_accesses, old_attrs),
495 			new_attrs);
496 }
497 
498 static void damon_update_monitoring_result(struct damon_region *r,
499 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
500 {
501 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
502 			old_attrs, new_attrs);
503 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
504 }
505 
506 /*
507  * region->nr_accesses is the number of sampling intervals in the last
508  * aggregation interval that access to the region has found, and region->age is
509  * the number of aggregation intervals that its access pattern has maintained.
510  * For the reason, the real meaning of the two fields depend on current
511  * sampling interval and aggregation interval.  This function updates
512  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
513  */
514 static void damon_update_monitoring_results(struct damon_ctx *ctx,
515 		struct damon_attrs *new_attrs)
516 {
517 	struct damon_attrs *old_attrs = &ctx->attrs;
518 	struct damon_target *t;
519 	struct damon_region *r;
520 
521 	/* if any interval is zero, simply forgive conversion */
522 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
523 			!new_attrs->sample_interval ||
524 			!new_attrs->aggr_interval)
525 		return;
526 
527 	damon_for_each_target(t, ctx)
528 		damon_for_each_region(r, t)
529 			damon_update_monitoring_result(
530 					r, old_attrs, new_attrs);
531 }
532 
533 /**
534  * damon_set_attrs() - Set attributes for the monitoring.
535  * @ctx:		monitoring context
536  * @attrs:		monitoring attributes
537  *
538  * This function should not be called while the kdamond is running.
539  * Every time interval is in micro-seconds.
540  *
541  * Return: 0 on success, negative error code otherwise.
542  */
543 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
544 {
545 	if (attrs->min_nr_regions < 3)
546 		return -EINVAL;
547 	if (attrs->min_nr_regions > attrs->max_nr_regions)
548 		return -EINVAL;
549 	if (attrs->sample_interval > attrs->aggr_interval)
550 		return -EINVAL;
551 
552 	damon_update_monitoring_results(ctx, attrs);
553 	ctx->attrs = *attrs;
554 	return 0;
555 }
556 
557 /**
558  * damon_set_schemes() - Set data access monitoring based operation schemes.
559  * @ctx:	monitoring context
560  * @schemes:	array of the schemes
561  * @nr_schemes:	number of entries in @schemes
562  *
563  * This function should not be called while the kdamond of the context is
564  * running.
565  */
566 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
567 			ssize_t nr_schemes)
568 {
569 	struct damos *s, *next;
570 	ssize_t i;
571 
572 	damon_for_each_scheme_safe(s, next, ctx)
573 		damon_destroy_scheme(s);
574 	for (i = 0; i < nr_schemes; i++)
575 		damon_add_scheme(ctx, schemes[i]);
576 }
577 
578 /**
579  * damon_nr_running_ctxs() - Return number of currently running contexts.
580  */
581 int damon_nr_running_ctxs(void)
582 {
583 	int nr_ctxs;
584 
585 	mutex_lock(&damon_lock);
586 	nr_ctxs = nr_running_ctxs;
587 	mutex_unlock(&damon_lock);
588 
589 	return nr_ctxs;
590 }
591 
592 /* Returns the size upper limit for each monitoring region */
593 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
594 {
595 	struct damon_target *t;
596 	struct damon_region *r;
597 	unsigned long sz = 0;
598 
599 	damon_for_each_target(t, ctx) {
600 		damon_for_each_region(r, t)
601 			sz += damon_sz_region(r);
602 	}
603 
604 	if (ctx->attrs.min_nr_regions)
605 		sz /= ctx->attrs.min_nr_regions;
606 	if (sz < DAMON_MIN_REGION)
607 		sz = DAMON_MIN_REGION;
608 
609 	return sz;
610 }
611 
612 static int kdamond_fn(void *data);
613 
614 /*
615  * __damon_start() - Starts monitoring with given context.
616  * @ctx:	monitoring context
617  *
618  * This function should be called while damon_lock is hold.
619  *
620  * Return: 0 on success, negative error code otherwise.
621  */
622 static int __damon_start(struct damon_ctx *ctx)
623 {
624 	int err = -EBUSY;
625 
626 	mutex_lock(&ctx->kdamond_lock);
627 	if (!ctx->kdamond) {
628 		err = 0;
629 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
630 				nr_running_ctxs);
631 		if (IS_ERR(ctx->kdamond)) {
632 			err = PTR_ERR(ctx->kdamond);
633 			ctx->kdamond = NULL;
634 		}
635 	}
636 	mutex_unlock(&ctx->kdamond_lock);
637 
638 	return err;
639 }
640 
641 /**
642  * damon_start() - Starts the monitorings for a given group of contexts.
643  * @ctxs:	an array of the pointers for contexts to start monitoring
644  * @nr_ctxs:	size of @ctxs
645  * @exclusive:	exclusiveness of this contexts group
646  *
647  * This function starts a group of monitoring threads for a group of monitoring
648  * contexts.  One thread per each context is created and run in parallel.  The
649  * caller should handle synchronization between the threads by itself.  If
650  * @exclusive is true and a group of threads that created by other
651  * 'damon_start()' call is currently running, this function does nothing but
652  * returns -EBUSY.
653  *
654  * Return: 0 on success, negative error code otherwise.
655  */
656 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
657 {
658 	int i;
659 	int err = 0;
660 
661 	mutex_lock(&damon_lock);
662 	if ((exclusive && nr_running_ctxs) ||
663 			(!exclusive && running_exclusive_ctxs)) {
664 		mutex_unlock(&damon_lock);
665 		return -EBUSY;
666 	}
667 
668 	for (i = 0; i < nr_ctxs; i++) {
669 		err = __damon_start(ctxs[i]);
670 		if (err)
671 			break;
672 		nr_running_ctxs++;
673 	}
674 	if (exclusive && nr_running_ctxs)
675 		running_exclusive_ctxs = true;
676 	mutex_unlock(&damon_lock);
677 
678 	return err;
679 }
680 
681 /*
682  * __damon_stop() - Stops monitoring of a given context.
683  * @ctx:	monitoring context
684  *
685  * Return: 0 on success, negative error code otherwise.
686  */
687 static int __damon_stop(struct damon_ctx *ctx)
688 {
689 	struct task_struct *tsk;
690 
691 	mutex_lock(&ctx->kdamond_lock);
692 	tsk = ctx->kdamond;
693 	if (tsk) {
694 		get_task_struct(tsk);
695 		mutex_unlock(&ctx->kdamond_lock);
696 		kthread_stop(tsk);
697 		put_task_struct(tsk);
698 		return 0;
699 	}
700 	mutex_unlock(&ctx->kdamond_lock);
701 
702 	return -EPERM;
703 }
704 
705 /**
706  * damon_stop() - Stops the monitorings for a given group of contexts.
707  * @ctxs:	an array of the pointers for contexts to stop monitoring
708  * @nr_ctxs:	size of @ctxs
709  *
710  * Return: 0 on success, negative error code otherwise.
711  */
712 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
713 {
714 	int i, err = 0;
715 
716 	for (i = 0; i < nr_ctxs; i++) {
717 		/* nr_running_ctxs is decremented in kdamond_fn */
718 		err = __damon_stop(ctxs[i]);
719 		if (err)
720 			break;
721 	}
722 	return err;
723 }
724 
725 /*
726  * damon_check_reset_time_interval() - Check if a time interval is elapsed.
727  * @baseline:	the time to check whether the interval has elapsed since
728  * @interval:	the time interval (microseconds)
729  *
730  * See whether the given time interval has passed since the given baseline
731  * time.  If so, it also updates the baseline to current time for next check.
732  *
733  * Return:	true if the time interval has passed, or false otherwise.
734  */
735 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
736 		unsigned long interval)
737 {
738 	struct timespec64 now;
739 
740 	ktime_get_coarse_ts64(&now);
741 	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
742 			interval * 1000)
743 		return false;
744 	*baseline = now;
745 	return true;
746 }
747 
748 /*
749  * Check whether it is time to flush the aggregated information
750  */
751 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
752 {
753 	return damon_check_reset_time_interval(&ctx->last_aggregation,
754 			ctx->attrs.aggr_interval);
755 }
756 
757 /*
758  * Reset the aggregated monitoring results ('nr_accesses' of each region).
759  */
760 static void kdamond_reset_aggregated(struct damon_ctx *c)
761 {
762 	struct damon_target *t;
763 	unsigned int ti = 0;	/* target's index */
764 
765 	damon_for_each_target(t, c) {
766 		struct damon_region *r;
767 
768 		damon_for_each_region(r, t) {
769 			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
770 			r->last_nr_accesses = r->nr_accesses;
771 			r->nr_accesses = 0;
772 		}
773 		ti++;
774 	}
775 }
776 
777 static void damon_split_region_at(struct damon_target *t,
778 				  struct damon_region *r, unsigned long sz_r);
779 
780 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
781 {
782 	unsigned long sz;
783 
784 	sz = damon_sz_region(r);
785 	return s->pattern.min_sz_region <= sz &&
786 		sz <= s->pattern.max_sz_region &&
787 		s->pattern.min_nr_accesses <= r->nr_accesses &&
788 		r->nr_accesses <= s->pattern.max_nr_accesses &&
789 		s->pattern.min_age_region <= r->age &&
790 		r->age <= s->pattern.max_age_region;
791 }
792 
793 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
794 		struct damon_region *r, struct damos *s)
795 {
796 	bool ret = __damos_valid_target(r, s);
797 
798 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
799 		return ret;
800 
801 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
802 }
803 
804 /*
805  * damos_skip_charged_region() - Check if the given region or starting part of
806  * it is already charged for the DAMOS quota.
807  * @t:	The target of the region.
808  * @rp:	The pointer to the region.
809  * @s:	The scheme to be applied.
810  *
811  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
812  * action would applied to only a part of the target access pattern fulfilling
813  * regions.  To avoid applying the scheme action to only already applied
814  * regions, DAMON skips applying the scheme action to the regions that charged
815  * in the previous charge window.
816  *
817  * This function checks if a given region should be skipped or not for the
818  * reason.  If only the starting part of the region has previously charged,
819  * this function splits the region into two so that the second one covers the
820  * area that not charged in the previous charge widnow and saves the second
821  * region in *rp and returns false, so that the caller can apply DAMON action
822  * to the second one.
823  *
824  * Return: true if the region should be entirely skipped, false otherwise.
825  */
826 static bool damos_skip_charged_region(struct damon_target *t,
827 		struct damon_region **rp, struct damos *s)
828 {
829 	struct damon_region *r = *rp;
830 	struct damos_quota *quota = &s->quota;
831 	unsigned long sz_to_skip;
832 
833 	/* Skip previously charged regions */
834 	if (quota->charge_target_from) {
835 		if (t != quota->charge_target_from)
836 			return true;
837 		if (r == damon_last_region(t)) {
838 			quota->charge_target_from = NULL;
839 			quota->charge_addr_from = 0;
840 			return true;
841 		}
842 		if (quota->charge_addr_from &&
843 				r->ar.end <= quota->charge_addr_from)
844 			return true;
845 
846 		if (quota->charge_addr_from && r->ar.start <
847 				quota->charge_addr_from) {
848 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
849 					r->ar.start, DAMON_MIN_REGION);
850 			if (!sz_to_skip) {
851 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
852 					return true;
853 				sz_to_skip = DAMON_MIN_REGION;
854 			}
855 			damon_split_region_at(t, r, sz_to_skip);
856 			r = damon_next_region(r);
857 			*rp = r;
858 		}
859 		quota->charge_target_from = NULL;
860 		quota->charge_addr_from = 0;
861 	}
862 	return false;
863 }
864 
865 static void damos_update_stat(struct damos *s,
866 		unsigned long sz_tried, unsigned long sz_applied)
867 {
868 	s->stat.nr_tried++;
869 	s->stat.sz_tried += sz_tried;
870 	if (sz_applied)
871 		s->stat.nr_applied++;
872 	s->stat.sz_applied += sz_applied;
873 }
874 
875 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
876 		struct damon_region *r, struct damos_filter *filter)
877 {
878 	bool matched = false;
879 	struct damon_target *ti;
880 	int target_idx = 0;
881 	unsigned long start, end;
882 
883 	switch (filter->type) {
884 	case DAMOS_FILTER_TYPE_TARGET:
885 		damon_for_each_target(ti, ctx) {
886 			if (ti == t)
887 				break;
888 			target_idx++;
889 		}
890 		matched = target_idx == filter->target_idx;
891 		break;
892 	case DAMOS_FILTER_TYPE_ADDR:
893 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
894 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
895 
896 		/* inside the range */
897 		if (start <= r->ar.start && r->ar.end <= end) {
898 			matched = true;
899 			break;
900 		}
901 		/* outside of the range */
902 		if (r->ar.end <= start || end <= r->ar.start) {
903 			matched = false;
904 			break;
905 		}
906 		/* start before the range and overlap */
907 		if (r->ar.start < start) {
908 			damon_split_region_at(t, r, start - r->ar.start);
909 			matched = false;
910 			break;
911 		}
912 		/* start inside the range */
913 		damon_split_region_at(t, r, end - r->ar.start);
914 		matched = true;
915 		break;
916 	default:
917 		return false;
918 	}
919 
920 	return matched == filter->matching;
921 }
922 
923 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
924 		struct damon_region *r, struct damos *s)
925 {
926 	struct damos_filter *filter;
927 
928 	damos_for_each_filter(filter, s) {
929 		if (__damos_filter_out(ctx, t, r, filter))
930 			return true;
931 	}
932 	return false;
933 }
934 
935 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
936 		struct damon_region *r, struct damos *s)
937 {
938 	struct damos_quota *quota = &s->quota;
939 	unsigned long sz = damon_sz_region(r);
940 	struct timespec64 begin, end;
941 	unsigned long sz_applied = 0;
942 	int err = 0;
943 
944 	if (c->ops.apply_scheme) {
945 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
946 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
947 					DAMON_MIN_REGION);
948 			if (!sz)
949 				goto update_stat;
950 			damon_split_region_at(t, r, sz);
951 		}
952 		if (damos_filter_out(c, t, r, s))
953 			return;
954 		ktime_get_coarse_ts64(&begin);
955 		if (c->callback.before_damos_apply)
956 			err = c->callback.before_damos_apply(c, t, r, s);
957 		if (!err)
958 			sz_applied = c->ops.apply_scheme(c, t, r, s);
959 		ktime_get_coarse_ts64(&end);
960 		quota->total_charged_ns += timespec64_to_ns(&end) -
961 			timespec64_to_ns(&begin);
962 		quota->charged_sz += sz;
963 		if (quota->esz && quota->charged_sz >= quota->esz) {
964 			quota->charge_target_from = t;
965 			quota->charge_addr_from = r->ar.end + 1;
966 		}
967 	}
968 	if (s->action != DAMOS_STAT)
969 		r->age = 0;
970 
971 update_stat:
972 	damos_update_stat(s, sz, sz_applied);
973 }
974 
975 static void damon_do_apply_schemes(struct damon_ctx *c,
976 				   struct damon_target *t,
977 				   struct damon_region *r)
978 {
979 	struct damos *s;
980 
981 	damon_for_each_scheme(s, c) {
982 		struct damos_quota *quota = &s->quota;
983 
984 		if (!s->wmarks.activated)
985 			continue;
986 
987 		/* Check the quota */
988 		if (quota->esz && quota->charged_sz >= quota->esz)
989 			continue;
990 
991 		if (damos_skip_charged_region(t, &r, s))
992 			continue;
993 
994 		if (!damos_valid_target(c, t, r, s))
995 			continue;
996 
997 		damos_apply_scheme(c, t, r, s);
998 	}
999 }
1000 
1001 /* Shouldn't be called if quota->ms and quota->sz are zero */
1002 static void damos_set_effective_quota(struct damos_quota *quota)
1003 {
1004 	unsigned long throughput;
1005 	unsigned long esz;
1006 
1007 	if (!quota->ms) {
1008 		quota->esz = quota->sz;
1009 		return;
1010 	}
1011 
1012 	if (quota->total_charged_ns)
1013 		throughput = quota->total_charged_sz * 1000000 /
1014 			quota->total_charged_ns;
1015 	else
1016 		throughput = PAGE_SIZE * 1024;
1017 	esz = throughput * quota->ms;
1018 
1019 	if (quota->sz && quota->sz < esz)
1020 		esz = quota->sz;
1021 	quota->esz = esz;
1022 }
1023 
1024 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1025 {
1026 	struct damos_quota *quota = &s->quota;
1027 	struct damon_target *t;
1028 	struct damon_region *r;
1029 	unsigned long cumulated_sz;
1030 	unsigned int score, max_score = 0;
1031 
1032 	if (!quota->ms && !quota->sz)
1033 		return;
1034 
1035 	/* New charge window starts */
1036 	if (time_after_eq(jiffies, quota->charged_from +
1037 				msecs_to_jiffies(quota->reset_interval))) {
1038 		if (quota->esz && quota->charged_sz >= quota->esz)
1039 			s->stat.qt_exceeds++;
1040 		quota->total_charged_sz += quota->charged_sz;
1041 		quota->charged_from = jiffies;
1042 		quota->charged_sz = 0;
1043 		damos_set_effective_quota(quota);
1044 	}
1045 
1046 	if (!c->ops.get_scheme_score)
1047 		return;
1048 
1049 	/* Fill up the score histogram */
1050 	memset(quota->histogram, 0, sizeof(quota->histogram));
1051 	damon_for_each_target(t, c) {
1052 		damon_for_each_region(r, t) {
1053 			if (!__damos_valid_target(r, s))
1054 				continue;
1055 			score = c->ops.get_scheme_score(c, t, r, s);
1056 			quota->histogram[score] += damon_sz_region(r);
1057 			if (score > max_score)
1058 				max_score = score;
1059 		}
1060 	}
1061 
1062 	/* Set the min score limit */
1063 	for (cumulated_sz = 0, score = max_score; ; score--) {
1064 		cumulated_sz += quota->histogram[score];
1065 		if (cumulated_sz >= quota->esz || !score)
1066 			break;
1067 	}
1068 	quota->min_score = score;
1069 }
1070 
1071 static void kdamond_apply_schemes(struct damon_ctx *c)
1072 {
1073 	struct damon_target *t;
1074 	struct damon_region *r, *next_r;
1075 	struct damos *s;
1076 
1077 	damon_for_each_scheme(s, c) {
1078 		if (!s->wmarks.activated)
1079 			continue;
1080 
1081 		damos_adjust_quota(c, s);
1082 	}
1083 
1084 	damon_for_each_target(t, c) {
1085 		damon_for_each_region_safe(r, next_r, t)
1086 			damon_do_apply_schemes(c, t, r);
1087 	}
1088 }
1089 
1090 /*
1091  * Merge two adjacent regions into one region
1092  */
1093 static void damon_merge_two_regions(struct damon_target *t,
1094 		struct damon_region *l, struct damon_region *r)
1095 {
1096 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1097 
1098 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1099 			(sz_l + sz_r);
1100 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1101 	l->ar.end = r->ar.end;
1102 	damon_destroy_region(r, t);
1103 }
1104 
1105 /*
1106  * Merge adjacent regions having similar access frequencies
1107  *
1108  * t		target affected by this merge operation
1109  * thres	'->nr_accesses' diff threshold for the merge
1110  * sz_limit	size upper limit of each region
1111  */
1112 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1113 				   unsigned long sz_limit)
1114 {
1115 	struct damon_region *r, *prev = NULL, *next;
1116 
1117 	damon_for_each_region_safe(r, next, t) {
1118 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1119 			r->age = 0;
1120 		else
1121 			r->age++;
1122 
1123 		if (prev && prev->ar.end == r->ar.start &&
1124 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1125 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1126 			damon_merge_two_regions(t, prev, r);
1127 		else
1128 			prev = r;
1129 	}
1130 }
1131 
1132 /*
1133  * Merge adjacent regions having similar access frequencies
1134  *
1135  * threshold	'->nr_accesses' diff threshold for the merge
1136  * sz_limit	size upper limit of each region
1137  *
1138  * This function merges monitoring target regions which are adjacent and their
1139  * access frequencies are similar.  This is for minimizing the monitoring
1140  * overhead under the dynamically changeable access pattern.  If a merge was
1141  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1142  */
1143 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1144 				  unsigned long sz_limit)
1145 {
1146 	struct damon_target *t;
1147 
1148 	damon_for_each_target(t, c)
1149 		damon_merge_regions_of(t, threshold, sz_limit);
1150 }
1151 
1152 /*
1153  * Split a region in two
1154  *
1155  * r		the region to be split
1156  * sz_r		size of the first sub-region that will be made
1157  */
1158 static void damon_split_region_at(struct damon_target *t,
1159 				  struct damon_region *r, unsigned long sz_r)
1160 {
1161 	struct damon_region *new;
1162 
1163 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1164 	if (!new)
1165 		return;
1166 
1167 	r->ar.end = new->ar.start;
1168 
1169 	new->age = r->age;
1170 	new->last_nr_accesses = r->last_nr_accesses;
1171 
1172 	damon_insert_region(new, r, damon_next_region(r), t);
1173 }
1174 
1175 /* Split every region in the given target into 'nr_subs' regions */
1176 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1177 {
1178 	struct damon_region *r, *next;
1179 	unsigned long sz_region, sz_sub = 0;
1180 	int i;
1181 
1182 	damon_for_each_region_safe(r, next, t) {
1183 		sz_region = damon_sz_region(r);
1184 
1185 		for (i = 0; i < nr_subs - 1 &&
1186 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1187 			/*
1188 			 * Randomly select size of left sub-region to be at
1189 			 * least 10 percent and at most 90% of original region
1190 			 */
1191 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1192 					sz_region / 10, DAMON_MIN_REGION);
1193 			/* Do not allow blank region */
1194 			if (sz_sub == 0 || sz_sub >= sz_region)
1195 				continue;
1196 
1197 			damon_split_region_at(t, r, sz_sub);
1198 			sz_region = sz_sub;
1199 		}
1200 	}
1201 }
1202 
1203 /*
1204  * Split every target region into randomly-sized small regions
1205  *
1206  * This function splits every target region into random-sized small regions if
1207  * current total number of the regions is equal or smaller than half of the
1208  * user-specified maximum number of regions.  This is for maximizing the
1209  * monitoring accuracy under the dynamically changeable access patterns.  If a
1210  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1211  * it.
1212  */
1213 static void kdamond_split_regions(struct damon_ctx *ctx)
1214 {
1215 	struct damon_target *t;
1216 	unsigned int nr_regions = 0;
1217 	static unsigned int last_nr_regions;
1218 	int nr_subregions = 2;
1219 
1220 	damon_for_each_target(t, ctx)
1221 		nr_regions += damon_nr_regions(t);
1222 
1223 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1224 		return;
1225 
1226 	/* Maybe the middle of the region has different access frequency */
1227 	if (last_nr_regions == nr_regions &&
1228 			nr_regions < ctx->attrs.max_nr_regions / 3)
1229 		nr_subregions = 3;
1230 
1231 	damon_for_each_target(t, ctx)
1232 		damon_split_regions_of(t, nr_subregions);
1233 
1234 	last_nr_regions = nr_regions;
1235 }
1236 
1237 /*
1238  * Check whether it is time to check and apply the operations-related data
1239  * structures.
1240  *
1241  * Returns true if it is.
1242  */
1243 static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1244 {
1245 	return damon_check_reset_time_interval(&ctx->last_ops_update,
1246 			ctx->attrs.ops_update_interval);
1247 }
1248 
1249 /*
1250  * Check whether current monitoring should be stopped
1251  *
1252  * The monitoring is stopped when either the user requested to stop, or all
1253  * monitoring targets are invalid.
1254  *
1255  * Returns true if need to stop current monitoring.
1256  */
1257 static bool kdamond_need_stop(struct damon_ctx *ctx)
1258 {
1259 	struct damon_target *t;
1260 
1261 	if (kthread_should_stop())
1262 		return true;
1263 
1264 	if (!ctx->ops.target_valid)
1265 		return false;
1266 
1267 	damon_for_each_target(t, ctx) {
1268 		if (ctx->ops.target_valid(t))
1269 			return false;
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1276 {
1277 	struct sysinfo i;
1278 
1279 	switch (metric) {
1280 	case DAMOS_WMARK_FREE_MEM_RATE:
1281 		si_meminfo(&i);
1282 		return i.freeram * 1000 / i.totalram;
1283 	default:
1284 		break;
1285 	}
1286 	return -EINVAL;
1287 }
1288 
1289 /*
1290  * Returns zero if the scheme is active.  Else, returns time to wait for next
1291  * watermark check in micro-seconds.
1292  */
1293 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1294 {
1295 	unsigned long metric;
1296 
1297 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1298 		return 0;
1299 
1300 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1301 	/* higher than high watermark or lower than low watermark */
1302 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1303 		if (scheme->wmarks.activated)
1304 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1305 					scheme->action,
1306 					metric > scheme->wmarks.high ?
1307 					"high" : "low");
1308 		scheme->wmarks.activated = false;
1309 		return scheme->wmarks.interval;
1310 	}
1311 
1312 	/* inactive and higher than middle watermark */
1313 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1314 			!scheme->wmarks.activated)
1315 		return scheme->wmarks.interval;
1316 
1317 	if (!scheme->wmarks.activated)
1318 		pr_debug("activate a scheme (%d)\n", scheme->action);
1319 	scheme->wmarks.activated = true;
1320 	return 0;
1321 }
1322 
1323 static void kdamond_usleep(unsigned long usecs)
1324 {
1325 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1326 	if (usecs > 20 * USEC_PER_MSEC)
1327 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1328 	else
1329 		usleep_idle_range(usecs, usecs + 1);
1330 }
1331 
1332 /* Returns negative error code if it's not activated but should return */
1333 static int kdamond_wait_activation(struct damon_ctx *ctx)
1334 {
1335 	struct damos *s;
1336 	unsigned long wait_time;
1337 	unsigned long min_wait_time = 0;
1338 	bool init_wait_time = false;
1339 
1340 	while (!kdamond_need_stop(ctx)) {
1341 		damon_for_each_scheme(s, ctx) {
1342 			wait_time = damos_wmark_wait_us(s);
1343 			if (!init_wait_time || wait_time < min_wait_time) {
1344 				init_wait_time = true;
1345 				min_wait_time = wait_time;
1346 			}
1347 		}
1348 		if (!min_wait_time)
1349 			return 0;
1350 
1351 		kdamond_usleep(min_wait_time);
1352 
1353 		if (ctx->callback.after_wmarks_check &&
1354 				ctx->callback.after_wmarks_check(ctx))
1355 			break;
1356 	}
1357 	return -EBUSY;
1358 }
1359 
1360 /*
1361  * The monitoring daemon that runs as a kernel thread
1362  */
1363 static int kdamond_fn(void *data)
1364 {
1365 	struct damon_ctx *ctx = data;
1366 	struct damon_target *t;
1367 	struct damon_region *r, *next;
1368 	unsigned int max_nr_accesses = 0;
1369 	unsigned long sz_limit = 0;
1370 
1371 	pr_debug("kdamond (%d) starts\n", current->pid);
1372 
1373 	if (ctx->ops.init)
1374 		ctx->ops.init(ctx);
1375 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1376 		goto done;
1377 
1378 	sz_limit = damon_region_sz_limit(ctx);
1379 
1380 	while (!kdamond_need_stop(ctx)) {
1381 		if (kdamond_wait_activation(ctx))
1382 			break;
1383 
1384 		if (ctx->ops.prepare_access_checks)
1385 			ctx->ops.prepare_access_checks(ctx);
1386 		if (ctx->callback.after_sampling &&
1387 				ctx->callback.after_sampling(ctx))
1388 			break;
1389 
1390 		kdamond_usleep(ctx->attrs.sample_interval);
1391 
1392 		if (ctx->ops.check_accesses)
1393 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1394 
1395 		if (kdamond_aggregate_interval_passed(ctx)) {
1396 			kdamond_merge_regions(ctx,
1397 					max_nr_accesses / 10,
1398 					sz_limit);
1399 			if (ctx->callback.after_aggregation &&
1400 					ctx->callback.after_aggregation(ctx))
1401 				break;
1402 			if (!list_empty(&ctx->schemes))
1403 				kdamond_apply_schemes(ctx);
1404 			kdamond_reset_aggregated(ctx);
1405 			kdamond_split_regions(ctx);
1406 			if (ctx->ops.reset_aggregated)
1407 				ctx->ops.reset_aggregated(ctx);
1408 		}
1409 
1410 		if (kdamond_need_update_operations(ctx)) {
1411 			if (ctx->ops.update)
1412 				ctx->ops.update(ctx);
1413 			sz_limit = damon_region_sz_limit(ctx);
1414 		}
1415 	}
1416 done:
1417 	damon_for_each_target(t, ctx) {
1418 		damon_for_each_region_safe(r, next, t)
1419 			damon_destroy_region(r, t);
1420 	}
1421 
1422 	if (ctx->callback.before_terminate)
1423 		ctx->callback.before_terminate(ctx);
1424 	if (ctx->ops.cleanup)
1425 		ctx->ops.cleanup(ctx);
1426 
1427 	pr_debug("kdamond (%d) finishes\n", current->pid);
1428 	mutex_lock(&ctx->kdamond_lock);
1429 	ctx->kdamond = NULL;
1430 	mutex_unlock(&ctx->kdamond_lock);
1431 
1432 	mutex_lock(&damon_lock);
1433 	nr_running_ctxs--;
1434 	if (!nr_running_ctxs && running_exclusive_ctxs)
1435 		running_exclusive_ctxs = false;
1436 	mutex_unlock(&damon_lock);
1437 
1438 	return 0;
1439 }
1440 
1441 /*
1442  * struct damon_system_ram_region - System RAM resource address region of
1443  *				    [@start, @end).
1444  * @start:	Start address of the region (inclusive).
1445  * @end:	End address of the region (exclusive).
1446  */
1447 struct damon_system_ram_region {
1448 	unsigned long start;
1449 	unsigned long end;
1450 };
1451 
1452 static int walk_system_ram(struct resource *res, void *arg)
1453 {
1454 	struct damon_system_ram_region *a = arg;
1455 
1456 	if (a->end - a->start < resource_size(res)) {
1457 		a->start = res->start;
1458 		a->end = res->end;
1459 	}
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Find biggest 'System RAM' resource and store its start and end address in
1465  * @start and @end, respectively.  If no System RAM is found, returns false.
1466  */
1467 static bool damon_find_biggest_system_ram(unsigned long *start,
1468 						unsigned long *end)
1469 
1470 {
1471 	struct damon_system_ram_region arg = {};
1472 
1473 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1474 	if (arg.end <= arg.start)
1475 		return false;
1476 
1477 	*start = arg.start;
1478 	*end = arg.end;
1479 	return true;
1480 }
1481 
1482 /**
1483  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1484  * monitoring target as requested, or biggest 'System RAM'.
1485  * @t:		The monitoring target to set the region.
1486  * @start:	The pointer to the start address of the region.
1487  * @end:	The pointer to the end address of the region.
1488  *
1489  * This function sets the region of @t as requested by @start and @end.  If the
1490  * values of @start and @end are zero, however, this function finds the biggest
1491  * 'System RAM' resource and sets the region to cover the resource.  In the
1492  * latter case, this function saves the start and end addresses of the resource
1493  * in @start and @end, respectively.
1494  *
1495  * Return: 0 on success, negative error code otherwise.
1496  */
1497 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1498 			unsigned long *start, unsigned long *end)
1499 {
1500 	struct damon_addr_range addr_range;
1501 
1502 	if (*start > *end)
1503 		return -EINVAL;
1504 
1505 	if (!*start && !*end &&
1506 		!damon_find_biggest_system_ram(start, end))
1507 		return -EINVAL;
1508 
1509 	addr_range.start = *start;
1510 	addr_range.end = *end;
1511 	return damon_set_regions(t, &addr_range, 1);
1512 }
1513 
1514 static int __init damon_init(void)
1515 {
1516 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1517 	if (unlikely(!damon_region_cache)) {
1518 		pr_err("creating damon_region_cache fails\n");
1519 		return -ENOMEM;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 subsys_initcall(damon_init);
1526 
1527 #include "core-test.h"
1528