xref: /openbmc/linux/mm/damon/core.c (revision 375af850)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Data Access Monitor
4  *
5  * Author: SeongJae Park <sjpark@amazon.de>
6  */
7 
8 #define pr_fmt(fmt) "damon: " fmt
9 
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19 
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24 
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28 
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31 
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33 
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 	struct damon_operations empty_ops = {};
38 
39 	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 		return false;
41 	return true;
42 }
43 
44 /**
45  * damon_is_registered_ops() - Check if a given damon_operations is registered.
46  * @id:	Id of the damon_operations to check if registered.
47  *
48  * Return: true if the ops is set, false otherwise.
49  */
50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 	bool registered;
53 
54 	if (id >= NR_DAMON_OPS)
55 		return false;
56 	mutex_lock(&damon_ops_lock);
57 	registered = __damon_is_registered_ops(id);
58 	mutex_unlock(&damon_ops_lock);
59 	return registered;
60 }
61 
62 /**
63  * damon_register_ops() - Register a monitoring operations set to DAMON.
64  * @ops:	monitoring operations set to register.
65  *
66  * This function registers a monitoring operations set of valid &struct
67  * damon_operations->id so that others can find and use them later.
68  *
69  * Return: 0 on success, negative error code otherwise.
70  */
71 int damon_register_ops(struct damon_operations *ops)
72 {
73 	int err = 0;
74 
75 	if (ops->id >= NR_DAMON_OPS)
76 		return -EINVAL;
77 	mutex_lock(&damon_ops_lock);
78 	/* Fail for already registered ops */
79 	if (__damon_is_registered_ops(ops->id)) {
80 		err = -EINVAL;
81 		goto out;
82 	}
83 	damon_registered_ops[ops->id] = *ops;
84 out:
85 	mutex_unlock(&damon_ops_lock);
86 	return err;
87 }
88 
89 /**
90  * damon_select_ops() - Select a monitoring operations to use with the context.
91  * @ctx:	monitoring context to use the operations.
92  * @id:		id of the registered monitoring operations to select.
93  *
94  * This function finds registered monitoring operations set of @id and make
95  * @ctx to use it.
96  *
97  * Return: 0 on success, negative error code otherwise.
98  */
99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 	int err = 0;
102 
103 	if (id >= NR_DAMON_OPS)
104 		return -EINVAL;
105 
106 	mutex_lock(&damon_ops_lock);
107 	if (!__damon_is_registered_ops(id))
108 		err = -EINVAL;
109 	else
110 		ctx->ops = damon_registered_ops[id];
111 	mutex_unlock(&damon_ops_lock);
112 	return err;
113 }
114 
115 /*
116  * Construct a damon_region struct
117  *
118  * Returns the pointer to the new struct if success, or NULL otherwise
119  */
120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 	struct damon_region *region;
123 
124 	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 	if (!region)
126 		return NULL;
127 
128 	region->ar.start = start;
129 	region->ar.end = end;
130 	region->nr_accesses = 0;
131 	INIT_LIST_HEAD(&region->list);
132 
133 	region->age = 0;
134 	region->last_nr_accesses = 0;
135 
136 	return region;
137 }
138 
139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 	list_add_tail(&r->list, &t->regions_list);
142 	t->nr_regions++;
143 }
144 
145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 	list_del(&r->list);
148 	t->nr_regions--;
149 }
150 
151 static void damon_free_region(struct damon_region *r)
152 {
153 	kmem_cache_free(damon_region_cache, r);
154 }
155 
156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 	damon_del_region(r, t);
159 	damon_free_region(r);
160 }
161 
162 /*
163  * Check whether a region is intersecting an address range
164  *
165  * Returns true if it is.
166  */
167 static bool damon_intersect(struct damon_region *r,
168 		struct damon_addr_range *re)
169 {
170 	return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172 
173 /*
174  * Fill holes in regions with new regions.
175  */
176 static int damon_fill_regions_holes(struct damon_region *first,
177 		struct damon_region *last, struct damon_target *t)
178 {
179 	struct damon_region *r = first;
180 
181 	damon_for_each_region_from(r, t) {
182 		struct damon_region *next, *newr;
183 
184 		if (r == last)
185 			break;
186 		next = damon_next_region(r);
187 		if (r->ar.end != next->ar.start) {
188 			newr = damon_new_region(r->ar.end, next->ar.start);
189 			if (!newr)
190 				return -ENOMEM;
191 			damon_insert_region(newr, r, next, t);
192 		}
193 	}
194 	return 0;
195 }
196 
197 /*
198  * damon_set_regions() - Set regions of a target for given address ranges.
199  * @t:		the given target.
200  * @ranges:	array of new monitoring target ranges.
201  * @nr_ranges:	length of @ranges.
202  *
203  * This function adds new regions to, or modify existing regions of a
204  * monitoring target to fit in specific ranges.
205  *
206  * Return: 0 if success, or negative error code otherwise.
207  */
208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 		unsigned int nr_ranges)
210 {
211 	struct damon_region *r, *next;
212 	unsigned int i;
213 	int err;
214 
215 	/* Remove regions which are not in the new ranges */
216 	damon_for_each_region_safe(r, next, t) {
217 		for (i = 0; i < nr_ranges; i++) {
218 			if (damon_intersect(r, &ranges[i]))
219 				break;
220 		}
221 		if (i == nr_ranges)
222 			damon_destroy_region(r, t);
223 	}
224 
225 	r = damon_first_region(t);
226 	/* Add new regions or resize existing regions to fit in the ranges */
227 	for (i = 0; i < nr_ranges; i++) {
228 		struct damon_region *first = NULL, *last, *newr;
229 		struct damon_addr_range *range;
230 
231 		range = &ranges[i];
232 		/* Get the first/last regions intersecting with the range */
233 		damon_for_each_region_from(r, t) {
234 			if (damon_intersect(r, range)) {
235 				if (!first)
236 					first = r;
237 				last = r;
238 			}
239 			if (r->ar.start >= range->end)
240 				break;
241 		}
242 		if (!first) {
243 			/* no region intersects with this range */
244 			newr = damon_new_region(
245 					ALIGN_DOWN(range->start,
246 						DAMON_MIN_REGION),
247 					ALIGN(range->end, DAMON_MIN_REGION));
248 			if (!newr)
249 				return -ENOMEM;
250 			damon_insert_region(newr, damon_prev_region(r), r, t);
251 		} else {
252 			/* resize intersecting regions to fit in this range */
253 			first->ar.start = ALIGN_DOWN(range->start,
254 					DAMON_MIN_REGION);
255 			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256 
257 			/* fill possible holes in the range */
258 			err = damon_fill_regions_holes(first, last, t);
259 			if (err)
260 				return err;
261 		}
262 	}
263 	return 0;
264 }
265 
266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 		bool matching)
268 {
269 	struct damos_filter *filter;
270 
271 	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 	if (!filter)
273 		return NULL;
274 	filter->type = type;
275 	filter->matching = matching;
276 	return filter;
277 }
278 
279 void damos_add_filter(struct damos *s, struct damos_filter *f)
280 {
281 	list_add_tail(&f->list, &s->filters);
282 }
283 
284 static void damos_del_filter(struct damos_filter *f)
285 {
286 	list_del(&f->list);
287 }
288 
289 static void damos_free_filter(struct damos_filter *f)
290 {
291 	kfree(f);
292 }
293 
294 void damos_destroy_filter(struct damos_filter *f)
295 {
296 	damos_del_filter(f);
297 	damos_free_filter(f);
298 }
299 
300 /* initialize private fields of damos_quota and return the pointer */
301 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
302 {
303 	quota->total_charged_sz = 0;
304 	quota->total_charged_ns = 0;
305 	quota->esz = 0;
306 	quota->charged_sz = 0;
307 	quota->charged_from = 0;
308 	quota->charge_target_from = NULL;
309 	quota->charge_addr_from = 0;
310 	return quota;
311 }
312 
313 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
314 			enum damos_action action, struct damos_quota *quota,
315 			struct damos_watermarks *wmarks)
316 {
317 	struct damos *scheme;
318 
319 	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
320 	if (!scheme)
321 		return NULL;
322 	scheme->pattern = *pattern;
323 	scheme->action = action;
324 	INIT_LIST_HEAD(&scheme->filters);
325 	scheme->stat = (struct damos_stat){};
326 	INIT_LIST_HEAD(&scheme->list);
327 
328 	scheme->quota = *(damos_quota_init_priv(quota));
329 
330 	scheme->wmarks = *wmarks;
331 	scheme->wmarks.activated = true;
332 
333 	return scheme;
334 }
335 
336 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
337 {
338 	list_add_tail(&s->list, &ctx->schemes);
339 }
340 
341 static void damon_del_scheme(struct damos *s)
342 {
343 	list_del(&s->list);
344 }
345 
346 static void damon_free_scheme(struct damos *s)
347 {
348 	kfree(s);
349 }
350 
351 void damon_destroy_scheme(struct damos *s)
352 {
353 	struct damos_filter *f, *next;
354 
355 	damos_for_each_filter_safe(f, next, s)
356 		damos_destroy_filter(f);
357 	damon_del_scheme(s);
358 	damon_free_scheme(s);
359 }
360 
361 /*
362  * Construct a damon_target struct
363  *
364  * Returns the pointer to the new struct if success, or NULL otherwise
365  */
366 struct damon_target *damon_new_target(void)
367 {
368 	struct damon_target *t;
369 
370 	t = kmalloc(sizeof(*t), GFP_KERNEL);
371 	if (!t)
372 		return NULL;
373 
374 	t->pid = NULL;
375 	t->nr_regions = 0;
376 	INIT_LIST_HEAD(&t->regions_list);
377 	INIT_LIST_HEAD(&t->list);
378 
379 	return t;
380 }
381 
382 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
383 {
384 	list_add_tail(&t->list, &ctx->adaptive_targets);
385 }
386 
387 bool damon_targets_empty(struct damon_ctx *ctx)
388 {
389 	return list_empty(&ctx->adaptive_targets);
390 }
391 
392 static void damon_del_target(struct damon_target *t)
393 {
394 	list_del(&t->list);
395 }
396 
397 void damon_free_target(struct damon_target *t)
398 {
399 	struct damon_region *r, *next;
400 
401 	damon_for_each_region_safe(r, next, t)
402 		damon_free_region(r);
403 	kfree(t);
404 }
405 
406 void damon_destroy_target(struct damon_target *t)
407 {
408 	damon_del_target(t);
409 	damon_free_target(t);
410 }
411 
412 unsigned int damon_nr_regions(struct damon_target *t)
413 {
414 	return t->nr_regions;
415 }
416 
417 struct damon_ctx *damon_new_ctx(void)
418 {
419 	struct damon_ctx *ctx;
420 
421 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
422 	if (!ctx)
423 		return NULL;
424 
425 	ctx->attrs.sample_interval = 5 * 1000;
426 	ctx->attrs.aggr_interval = 100 * 1000;
427 	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
428 
429 	ktime_get_coarse_ts64(&ctx->last_aggregation);
430 	ctx->last_ops_update = ctx->last_aggregation;
431 
432 	mutex_init(&ctx->kdamond_lock);
433 
434 	ctx->attrs.min_nr_regions = 10;
435 	ctx->attrs.max_nr_regions = 1000;
436 
437 	INIT_LIST_HEAD(&ctx->adaptive_targets);
438 	INIT_LIST_HEAD(&ctx->schemes);
439 
440 	return ctx;
441 }
442 
443 static void damon_destroy_targets(struct damon_ctx *ctx)
444 {
445 	struct damon_target *t, *next_t;
446 
447 	if (ctx->ops.cleanup) {
448 		ctx->ops.cleanup(ctx);
449 		return;
450 	}
451 
452 	damon_for_each_target_safe(t, next_t, ctx)
453 		damon_destroy_target(t);
454 }
455 
456 void damon_destroy_ctx(struct damon_ctx *ctx)
457 {
458 	struct damos *s, *next_s;
459 
460 	damon_destroy_targets(ctx);
461 
462 	damon_for_each_scheme_safe(s, next_s, ctx)
463 		damon_destroy_scheme(s);
464 
465 	kfree(ctx);
466 }
467 
468 static unsigned int damon_age_for_new_attrs(unsigned int age,
469 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
470 {
471 	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
472 }
473 
474 /* convert access ratio in bp (per 10,000) to nr_accesses */
475 static unsigned int damon_accesses_bp_to_nr_accesses(
476 		unsigned int accesses_bp, struct damon_attrs *attrs)
477 {
478 	unsigned int max_nr_accesses =
479 		attrs->aggr_interval / attrs->sample_interval;
480 
481 	return accesses_bp * max_nr_accesses / 10000;
482 }
483 
484 /* convert nr_accesses to access ratio in bp (per 10,000) */
485 static unsigned int damon_nr_accesses_to_accesses_bp(
486 		unsigned int nr_accesses, struct damon_attrs *attrs)
487 {
488 	unsigned int max_nr_accesses =
489 		attrs->aggr_interval / attrs->sample_interval;
490 
491 	return nr_accesses * 10000 / max_nr_accesses;
492 }
493 
494 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
495 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
496 {
497 	return damon_accesses_bp_to_nr_accesses(
498 			damon_nr_accesses_to_accesses_bp(
499 				nr_accesses, old_attrs),
500 			new_attrs);
501 }
502 
503 static void damon_update_monitoring_result(struct damon_region *r,
504 		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
505 {
506 	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
507 			old_attrs, new_attrs);
508 	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
509 }
510 
511 /*
512  * region->nr_accesses is the number of sampling intervals in the last
513  * aggregation interval that access to the region has found, and region->age is
514  * the number of aggregation intervals that its access pattern has maintained.
515  * For the reason, the real meaning of the two fields depend on current
516  * sampling interval and aggregation interval.  This function updates
517  * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
518  */
519 static void damon_update_monitoring_results(struct damon_ctx *ctx,
520 		struct damon_attrs *new_attrs)
521 {
522 	struct damon_attrs *old_attrs = &ctx->attrs;
523 	struct damon_target *t;
524 	struct damon_region *r;
525 
526 	/* if any interval is zero, simply forgive conversion */
527 	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
528 			!new_attrs->sample_interval ||
529 			!new_attrs->aggr_interval)
530 		return;
531 
532 	damon_for_each_target(t, ctx)
533 		damon_for_each_region(r, t)
534 			damon_update_monitoring_result(
535 					r, old_attrs, new_attrs);
536 }
537 
538 /**
539  * damon_set_attrs() - Set attributes for the monitoring.
540  * @ctx:		monitoring context
541  * @attrs:		monitoring attributes
542  *
543  * This function should not be called while the kdamond is running.
544  * Every time interval is in micro-seconds.
545  *
546  * Return: 0 on success, negative error code otherwise.
547  */
548 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
549 {
550 	if (attrs->min_nr_regions < 3)
551 		return -EINVAL;
552 	if (attrs->min_nr_regions > attrs->max_nr_regions)
553 		return -EINVAL;
554 	if (attrs->sample_interval > attrs->aggr_interval)
555 		return -EINVAL;
556 
557 	damon_update_monitoring_results(ctx, attrs);
558 	ctx->attrs = *attrs;
559 	return 0;
560 }
561 
562 /**
563  * damon_set_schemes() - Set data access monitoring based operation schemes.
564  * @ctx:	monitoring context
565  * @schemes:	array of the schemes
566  * @nr_schemes:	number of entries in @schemes
567  *
568  * This function should not be called while the kdamond of the context is
569  * running.
570  */
571 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
572 			ssize_t nr_schemes)
573 {
574 	struct damos *s, *next;
575 	ssize_t i;
576 
577 	damon_for_each_scheme_safe(s, next, ctx)
578 		damon_destroy_scheme(s);
579 	for (i = 0; i < nr_schemes; i++)
580 		damon_add_scheme(ctx, schemes[i]);
581 }
582 
583 /**
584  * damon_nr_running_ctxs() - Return number of currently running contexts.
585  */
586 int damon_nr_running_ctxs(void)
587 {
588 	int nr_ctxs;
589 
590 	mutex_lock(&damon_lock);
591 	nr_ctxs = nr_running_ctxs;
592 	mutex_unlock(&damon_lock);
593 
594 	return nr_ctxs;
595 }
596 
597 /* Returns the size upper limit for each monitoring region */
598 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
599 {
600 	struct damon_target *t;
601 	struct damon_region *r;
602 	unsigned long sz = 0;
603 
604 	damon_for_each_target(t, ctx) {
605 		damon_for_each_region(r, t)
606 			sz += damon_sz_region(r);
607 	}
608 
609 	if (ctx->attrs.min_nr_regions)
610 		sz /= ctx->attrs.min_nr_regions;
611 	if (sz < DAMON_MIN_REGION)
612 		sz = DAMON_MIN_REGION;
613 
614 	return sz;
615 }
616 
617 static int kdamond_fn(void *data);
618 
619 /*
620  * __damon_start() - Starts monitoring with given context.
621  * @ctx:	monitoring context
622  *
623  * This function should be called while damon_lock is hold.
624  *
625  * Return: 0 on success, negative error code otherwise.
626  */
627 static int __damon_start(struct damon_ctx *ctx)
628 {
629 	int err = -EBUSY;
630 
631 	mutex_lock(&ctx->kdamond_lock);
632 	if (!ctx->kdamond) {
633 		err = 0;
634 		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
635 				nr_running_ctxs);
636 		if (IS_ERR(ctx->kdamond)) {
637 			err = PTR_ERR(ctx->kdamond);
638 			ctx->kdamond = NULL;
639 		}
640 	}
641 	mutex_unlock(&ctx->kdamond_lock);
642 
643 	return err;
644 }
645 
646 /**
647  * damon_start() - Starts the monitorings for a given group of contexts.
648  * @ctxs:	an array of the pointers for contexts to start monitoring
649  * @nr_ctxs:	size of @ctxs
650  * @exclusive:	exclusiveness of this contexts group
651  *
652  * This function starts a group of monitoring threads for a group of monitoring
653  * contexts.  One thread per each context is created and run in parallel.  The
654  * caller should handle synchronization between the threads by itself.  If
655  * @exclusive is true and a group of threads that created by other
656  * 'damon_start()' call is currently running, this function does nothing but
657  * returns -EBUSY.
658  *
659  * Return: 0 on success, negative error code otherwise.
660  */
661 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
662 {
663 	int i;
664 	int err = 0;
665 
666 	mutex_lock(&damon_lock);
667 	if ((exclusive && nr_running_ctxs) ||
668 			(!exclusive && running_exclusive_ctxs)) {
669 		mutex_unlock(&damon_lock);
670 		return -EBUSY;
671 	}
672 
673 	for (i = 0; i < nr_ctxs; i++) {
674 		err = __damon_start(ctxs[i]);
675 		if (err)
676 			break;
677 		nr_running_ctxs++;
678 	}
679 	if (exclusive && nr_running_ctxs)
680 		running_exclusive_ctxs = true;
681 	mutex_unlock(&damon_lock);
682 
683 	return err;
684 }
685 
686 /*
687  * __damon_stop() - Stops monitoring of a given context.
688  * @ctx:	monitoring context
689  *
690  * Return: 0 on success, negative error code otherwise.
691  */
692 static int __damon_stop(struct damon_ctx *ctx)
693 {
694 	struct task_struct *tsk;
695 
696 	mutex_lock(&ctx->kdamond_lock);
697 	tsk = ctx->kdamond;
698 	if (tsk) {
699 		get_task_struct(tsk);
700 		mutex_unlock(&ctx->kdamond_lock);
701 		kthread_stop(tsk);
702 		put_task_struct(tsk);
703 		return 0;
704 	}
705 	mutex_unlock(&ctx->kdamond_lock);
706 
707 	return -EPERM;
708 }
709 
710 /**
711  * damon_stop() - Stops the monitorings for a given group of contexts.
712  * @ctxs:	an array of the pointers for contexts to stop monitoring
713  * @nr_ctxs:	size of @ctxs
714  *
715  * Return: 0 on success, negative error code otherwise.
716  */
717 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
718 {
719 	int i, err = 0;
720 
721 	for (i = 0; i < nr_ctxs; i++) {
722 		/* nr_running_ctxs is decremented in kdamond_fn */
723 		err = __damon_stop(ctxs[i]);
724 		if (err)
725 			break;
726 	}
727 	return err;
728 }
729 
730 /*
731  * damon_check_reset_time_interval() - Check if a time interval is elapsed.
732  * @baseline:	the time to check whether the interval has elapsed since
733  * @interval:	the time interval (microseconds)
734  *
735  * See whether the given time interval has passed since the given baseline
736  * time.  If so, it also updates the baseline to current time for next check.
737  *
738  * Return:	true if the time interval has passed, or false otherwise.
739  */
740 static bool damon_check_reset_time_interval(struct timespec64 *baseline,
741 		unsigned long interval)
742 {
743 	struct timespec64 now;
744 
745 	ktime_get_coarse_ts64(&now);
746 	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
747 			interval * 1000)
748 		return false;
749 	*baseline = now;
750 	return true;
751 }
752 
753 /*
754  * Check whether it is time to flush the aggregated information
755  */
756 static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
757 {
758 	return damon_check_reset_time_interval(&ctx->last_aggregation,
759 			ctx->attrs.aggr_interval);
760 }
761 
762 /*
763  * Reset the aggregated monitoring results ('nr_accesses' of each region).
764  */
765 static void kdamond_reset_aggregated(struct damon_ctx *c)
766 {
767 	struct damon_target *t;
768 	unsigned int ti = 0;	/* target's index */
769 
770 	damon_for_each_target(t, c) {
771 		struct damon_region *r;
772 
773 		damon_for_each_region(r, t) {
774 			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
775 			r->last_nr_accesses = r->nr_accesses;
776 			r->nr_accesses = 0;
777 		}
778 		ti++;
779 	}
780 }
781 
782 static void damon_split_region_at(struct damon_target *t,
783 				  struct damon_region *r, unsigned long sz_r);
784 
785 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
786 {
787 	unsigned long sz;
788 
789 	sz = damon_sz_region(r);
790 	return s->pattern.min_sz_region <= sz &&
791 		sz <= s->pattern.max_sz_region &&
792 		s->pattern.min_nr_accesses <= r->nr_accesses &&
793 		r->nr_accesses <= s->pattern.max_nr_accesses &&
794 		s->pattern.min_age_region <= r->age &&
795 		r->age <= s->pattern.max_age_region;
796 }
797 
798 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
799 		struct damon_region *r, struct damos *s)
800 {
801 	bool ret = __damos_valid_target(r, s);
802 
803 	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
804 		return ret;
805 
806 	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
807 }
808 
809 /*
810  * damos_skip_charged_region() - Check if the given region or starting part of
811  * it is already charged for the DAMOS quota.
812  * @t:	The target of the region.
813  * @rp:	The pointer to the region.
814  * @s:	The scheme to be applied.
815  *
816  * If a quota of a scheme has exceeded in a quota charge window, the scheme's
817  * action would applied to only a part of the target access pattern fulfilling
818  * regions.  To avoid applying the scheme action to only already applied
819  * regions, DAMON skips applying the scheme action to the regions that charged
820  * in the previous charge window.
821  *
822  * This function checks if a given region should be skipped or not for the
823  * reason.  If only the starting part of the region has previously charged,
824  * this function splits the region into two so that the second one covers the
825  * area that not charged in the previous charge widnow and saves the second
826  * region in *rp and returns false, so that the caller can apply DAMON action
827  * to the second one.
828  *
829  * Return: true if the region should be entirely skipped, false otherwise.
830  */
831 static bool damos_skip_charged_region(struct damon_target *t,
832 		struct damon_region **rp, struct damos *s)
833 {
834 	struct damon_region *r = *rp;
835 	struct damos_quota *quota = &s->quota;
836 	unsigned long sz_to_skip;
837 
838 	/* Skip previously charged regions */
839 	if (quota->charge_target_from) {
840 		if (t != quota->charge_target_from)
841 			return true;
842 		if (r == damon_last_region(t)) {
843 			quota->charge_target_from = NULL;
844 			quota->charge_addr_from = 0;
845 			return true;
846 		}
847 		if (quota->charge_addr_from &&
848 				r->ar.end <= quota->charge_addr_from)
849 			return true;
850 
851 		if (quota->charge_addr_from && r->ar.start <
852 				quota->charge_addr_from) {
853 			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
854 					r->ar.start, DAMON_MIN_REGION);
855 			if (!sz_to_skip) {
856 				if (damon_sz_region(r) <= DAMON_MIN_REGION)
857 					return true;
858 				sz_to_skip = DAMON_MIN_REGION;
859 			}
860 			damon_split_region_at(t, r, sz_to_skip);
861 			r = damon_next_region(r);
862 			*rp = r;
863 		}
864 		quota->charge_target_from = NULL;
865 		quota->charge_addr_from = 0;
866 	}
867 	return false;
868 }
869 
870 static void damos_update_stat(struct damos *s,
871 		unsigned long sz_tried, unsigned long sz_applied)
872 {
873 	s->stat.nr_tried++;
874 	s->stat.sz_tried += sz_tried;
875 	if (sz_applied)
876 		s->stat.nr_applied++;
877 	s->stat.sz_applied += sz_applied;
878 }
879 
880 static bool __damos_filter_out(struct damon_target *t, struct damon_region *r,
881 		struct damos_filter *filter)
882 {
883 	bool matched = false;
884 	unsigned long start, end;
885 
886 	switch (filter->type) {
887 	case DAMOS_FILTER_TYPE_ADDR:
888 		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
889 		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
890 
891 		/* inside the range */
892 		if (start <= r->ar.start && r->ar.end <= end) {
893 			matched = true;
894 			break;
895 		}
896 		/* outside of the range */
897 		if (r->ar.end <= start || end <= r->ar.start) {
898 			matched = false;
899 			break;
900 		}
901 		/* start before the range and overlap */
902 		if (r->ar.start < start) {
903 			damon_split_region_at(t, r, start - r->ar.start);
904 			matched = false;
905 			break;
906 		}
907 		/* start inside the range */
908 		damon_split_region_at(t, r, end - r->ar.start);
909 		matched = true;
910 		break;
911 	default:
912 		break;
913 	}
914 
915 	return matched == filter->matching;
916 }
917 
918 static bool damos_filter_out(struct damon_target *t, struct damon_region *r,
919 		struct damos *s)
920 {
921 	struct damos_filter *filter;
922 
923 	damos_for_each_filter(filter, s) {
924 		if (__damos_filter_out(t, r, filter))
925 			return true;
926 	}
927 	return false;
928 }
929 
930 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
931 		struct damon_region *r, struct damos *s)
932 {
933 	struct damos_quota *quota = &s->quota;
934 	unsigned long sz = damon_sz_region(r);
935 	struct timespec64 begin, end;
936 	unsigned long sz_applied = 0;
937 	int err = 0;
938 
939 	if (c->ops.apply_scheme) {
940 		if (quota->esz && quota->charged_sz + sz > quota->esz) {
941 			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
942 					DAMON_MIN_REGION);
943 			if (!sz)
944 				goto update_stat;
945 			damon_split_region_at(t, r, sz);
946 		}
947 		if (damos_filter_out(t, r, s))
948 			return;
949 		ktime_get_coarse_ts64(&begin);
950 		if (c->callback.before_damos_apply)
951 			err = c->callback.before_damos_apply(c, t, r, s);
952 		if (!err)
953 			sz_applied = c->ops.apply_scheme(c, t, r, s);
954 		ktime_get_coarse_ts64(&end);
955 		quota->total_charged_ns += timespec64_to_ns(&end) -
956 			timespec64_to_ns(&begin);
957 		quota->charged_sz += sz;
958 		if (quota->esz && quota->charged_sz >= quota->esz) {
959 			quota->charge_target_from = t;
960 			quota->charge_addr_from = r->ar.end + 1;
961 		}
962 	}
963 	if (s->action != DAMOS_STAT)
964 		r->age = 0;
965 
966 update_stat:
967 	damos_update_stat(s, sz, sz_applied);
968 }
969 
970 static void damon_do_apply_schemes(struct damon_ctx *c,
971 				   struct damon_target *t,
972 				   struct damon_region *r)
973 {
974 	struct damos *s;
975 
976 	damon_for_each_scheme(s, c) {
977 		struct damos_quota *quota = &s->quota;
978 
979 		if (!s->wmarks.activated)
980 			continue;
981 
982 		/* Check the quota */
983 		if (quota->esz && quota->charged_sz >= quota->esz)
984 			continue;
985 
986 		if (damos_skip_charged_region(t, &r, s))
987 			continue;
988 
989 		if (!damos_valid_target(c, t, r, s))
990 			continue;
991 
992 		damos_apply_scheme(c, t, r, s);
993 	}
994 }
995 
996 /* Shouldn't be called if quota->ms and quota->sz are zero */
997 static void damos_set_effective_quota(struct damos_quota *quota)
998 {
999 	unsigned long throughput;
1000 	unsigned long esz;
1001 
1002 	if (!quota->ms) {
1003 		quota->esz = quota->sz;
1004 		return;
1005 	}
1006 
1007 	if (quota->total_charged_ns)
1008 		throughput = quota->total_charged_sz * 1000000 /
1009 			quota->total_charged_ns;
1010 	else
1011 		throughput = PAGE_SIZE * 1024;
1012 	esz = throughput * quota->ms;
1013 
1014 	if (quota->sz && quota->sz < esz)
1015 		esz = quota->sz;
1016 	quota->esz = esz;
1017 }
1018 
1019 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1020 {
1021 	struct damos_quota *quota = &s->quota;
1022 	struct damon_target *t;
1023 	struct damon_region *r;
1024 	unsigned long cumulated_sz;
1025 	unsigned int score, max_score = 0;
1026 
1027 	if (!quota->ms && !quota->sz)
1028 		return;
1029 
1030 	/* New charge window starts */
1031 	if (time_after_eq(jiffies, quota->charged_from +
1032 				msecs_to_jiffies(quota->reset_interval))) {
1033 		if (quota->esz && quota->charged_sz >= quota->esz)
1034 			s->stat.qt_exceeds++;
1035 		quota->total_charged_sz += quota->charged_sz;
1036 		quota->charged_from = jiffies;
1037 		quota->charged_sz = 0;
1038 		damos_set_effective_quota(quota);
1039 	}
1040 
1041 	if (!c->ops.get_scheme_score)
1042 		return;
1043 
1044 	/* Fill up the score histogram */
1045 	memset(quota->histogram, 0, sizeof(quota->histogram));
1046 	damon_for_each_target(t, c) {
1047 		damon_for_each_region(r, t) {
1048 			if (!__damos_valid_target(r, s))
1049 				continue;
1050 			score = c->ops.get_scheme_score(c, t, r, s);
1051 			quota->histogram[score] += damon_sz_region(r);
1052 			if (score > max_score)
1053 				max_score = score;
1054 		}
1055 	}
1056 
1057 	/* Set the min score limit */
1058 	for (cumulated_sz = 0, score = max_score; ; score--) {
1059 		cumulated_sz += quota->histogram[score];
1060 		if (cumulated_sz >= quota->esz || !score)
1061 			break;
1062 	}
1063 	quota->min_score = score;
1064 }
1065 
1066 static void kdamond_apply_schemes(struct damon_ctx *c)
1067 {
1068 	struct damon_target *t;
1069 	struct damon_region *r, *next_r;
1070 	struct damos *s;
1071 
1072 	damon_for_each_scheme(s, c) {
1073 		if (!s->wmarks.activated)
1074 			continue;
1075 
1076 		damos_adjust_quota(c, s);
1077 	}
1078 
1079 	damon_for_each_target(t, c) {
1080 		damon_for_each_region_safe(r, next_r, t)
1081 			damon_do_apply_schemes(c, t, r);
1082 	}
1083 }
1084 
1085 /*
1086  * Merge two adjacent regions into one region
1087  */
1088 static void damon_merge_two_regions(struct damon_target *t,
1089 		struct damon_region *l, struct damon_region *r)
1090 {
1091 	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1092 
1093 	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1094 			(sz_l + sz_r);
1095 	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1096 	l->ar.end = r->ar.end;
1097 	damon_destroy_region(r, t);
1098 }
1099 
1100 /*
1101  * Merge adjacent regions having similar access frequencies
1102  *
1103  * t		target affected by this merge operation
1104  * thres	'->nr_accesses' diff threshold for the merge
1105  * sz_limit	size upper limit of each region
1106  */
1107 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1108 				   unsigned long sz_limit)
1109 {
1110 	struct damon_region *r, *prev = NULL, *next;
1111 
1112 	damon_for_each_region_safe(r, next, t) {
1113 		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1114 			r->age = 0;
1115 		else
1116 			r->age++;
1117 
1118 		if (prev && prev->ar.end == r->ar.start &&
1119 		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1120 		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1121 			damon_merge_two_regions(t, prev, r);
1122 		else
1123 			prev = r;
1124 	}
1125 }
1126 
1127 /*
1128  * Merge adjacent regions having similar access frequencies
1129  *
1130  * threshold	'->nr_accesses' diff threshold for the merge
1131  * sz_limit	size upper limit of each region
1132  *
1133  * This function merges monitoring target regions which are adjacent and their
1134  * access frequencies are similar.  This is for minimizing the monitoring
1135  * overhead under the dynamically changeable access pattern.  If a merge was
1136  * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1137  */
1138 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1139 				  unsigned long sz_limit)
1140 {
1141 	struct damon_target *t;
1142 
1143 	damon_for_each_target(t, c)
1144 		damon_merge_regions_of(t, threshold, sz_limit);
1145 }
1146 
1147 /*
1148  * Split a region in two
1149  *
1150  * r		the region to be split
1151  * sz_r		size of the first sub-region that will be made
1152  */
1153 static void damon_split_region_at(struct damon_target *t,
1154 				  struct damon_region *r, unsigned long sz_r)
1155 {
1156 	struct damon_region *new;
1157 
1158 	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1159 	if (!new)
1160 		return;
1161 
1162 	r->ar.end = new->ar.start;
1163 
1164 	new->age = r->age;
1165 	new->last_nr_accesses = r->last_nr_accesses;
1166 
1167 	damon_insert_region(new, r, damon_next_region(r), t);
1168 }
1169 
1170 /* Split every region in the given target into 'nr_subs' regions */
1171 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1172 {
1173 	struct damon_region *r, *next;
1174 	unsigned long sz_region, sz_sub = 0;
1175 	int i;
1176 
1177 	damon_for_each_region_safe(r, next, t) {
1178 		sz_region = damon_sz_region(r);
1179 
1180 		for (i = 0; i < nr_subs - 1 &&
1181 				sz_region > 2 * DAMON_MIN_REGION; i++) {
1182 			/*
1183 			 * Randomly select size of left sub-region to be at
1184 			 * least 10 percent and at most 90% of original region
1185 			 */
1186 			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1187 					sz_region / 10, DAMON_MIN_REGION);
1188 			/* Do not allow blank region */
1189 			if (sz_sub == 0 || sz_sub >= sz_region)
1190 				continue;
1191 
1192 			damon_split_region_at(t, r, sz_sub);
1193 			sz_region = sz_sub;
1194 		}
1195 	}
1196 }
1197 
1198 /*
1199  * Split every target region into randomly-sized small regions
1200  *
1201  * This function splits every target region into random-sized small regions if
1202  * current total number of the regions is equal or smaller than half of the
1203  * user-specified maximum number of regions.  This is for maximizing the
1204  * monitoring accuracy under the dynamically changeable access patterns.  If a
1205  * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1206  * it.
1207  */
1208 static void kdamond_split_regions(struct damon_ctx *ctx)
1209 {
1210 	struct damon_target *t;
1211 	unsigned int nr_regions = 0;
1212 	static unsigned int last_nr_regions;
1213 	int nr_subregions = 2;
1214 
1215 	damon_for_each_target(t, ctx)
1216 		nr_regions += damon_nr_regions(t);
1217 
1218 	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1219 		return;
1220 
1221 	/* Maybe the middle of the region has different access frequency */
1222 	if (last_nr_regions == nr_regions &&
1223 			nr_regions < ctx->attrs.max_nr_regions / 3)
1224 		nr_subregions = 3;
1225 
1226 	damon_for_each_target(t, ctx)
1227 		damon_split_regions_of(t, nr_subregions);
1228 
1229 	last_nr_regions = nr_regions;
1230 }
1231 
1232 /*
1233  * Check whether it is time to check and apply the operations-related data
1234  * structures.
1235  *
1236  * Returns true if it is.
1237  */
1238 static bool kdamond_need_update_operations(struct damon_ctx *ctx)
1239 {
1240 	return damon_check_reset_time_interval(&ctx->last_ops_update,
1241 			ctx->attrs.ops_update_interval);
1242 }
1243 
1244 /*
1245  * Check whether current monitoring should be stopped
1246  *
1247  * The monitoring is stopped when either the user requested to stop, or all
1248  * monitoring targets are invalid.
1249  *
1250  * Returns true if need to stop current monitoring.
1251  */
1252 static bool kdamond_need_stop(struct damon_ctx *ctx)
1253 {
1254 	struct damon_target *t;
1255 
1256 	if (kthread_should_stop())
1257 		return true;
1258 
1259 	if (!ctx->ops.target_valid)
1260 		return false;
1261 
1262 	damon_for_each_target(t, ctx) {
1263 		if (ctx->ops.target_valid(t))
1264 			return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1271 {
1272 	struct sysinfo i;
1273 
1274 	switch (metric) {
1275 	case DAMOS_WMARK_FREE_MEM_RATE:
1276 		si_meminfo(&i);
1277 		return i.freeram * 1000 / i.totalram;
1278 	default:
1279 		break;
1280 	}
1281 	return -EINVAL;
1282 }
1283 
1284 /*
1285  * Returns zero if the scheme is active.  Else, returns time to wait for next
1286  * watermark check in micro-seconds.
1287  */
1288 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1289 {
1290 	unsigned long metric;
1291 
1292 	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1293 		return 0;
1294 
1295 	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1296 	/* higher than high watermark or lower than low watermark */
1297 	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1298 		if (scheme->wmarks.activated)
1299 			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1300 					scheme->action,
1301 					metric > scheme->wmarks.high ?
1302 					"high" : "low");
1303 		scheme->wmarks.activated = false;
1304 		return scheme->wmarks.interval;
1305 	}
1306 
1307 	/* inactive and higher than middle watermark */
1308 	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1309 			!scheme->wmarks.activated)
1310 		return scheme->wmarks.interval;
1311 
1312 	if (!scheme->wmarks.activated)
1313 		pr_debug("activate a scheme (%d)\n", scheme->action);
1314 	scheme->wmarks.activated = true;
1315 	return 0;
1316 }
1317 
1318 static void kdamond_usleep(unsigned long usecs)
1319 {
1320 	/* See Documentation/timers/timers-howto.rst for the thresholds */
1321 	if (usecs > 20 * USEC_PER_MSEC)
1322 		schedule_timeout_idle(usecs_to_jiffies(usecs));
1323 	else
1324 		usleep_idle_range(usecs, usecs + 1);
1325 }
1326 
1327 /* Returns negative error code if it's not activated but should return */
1328 static int kdamond_wait_activation(struct damon_ctx *ctx)
1329 {
1330 	struct damos *s;
1331 	unsigned long wait_time;
1332 	unsigned long min_wait_time = 0;
1333 	bool init_wait_time = false;
1334 
1335 	while (!kdamond_need_stop(ctx)) {
1336 		damon_for_each_scheme(s, ctx) {
1337 			wait_time = damos_wmark_wait_us(s);
1338 			if (!init_wait_time || wait_time < min_wait_time) {
1339 				init_wait_time = true;
1340 				min_wait_time = wait_time;
1341 			}
1342 		}
1343 		if (!min_wait_time)
1344 			return 0;
1345 
1346 		kdamond_usleep(min_wait_time);
1347 
1348 		if (ctx->callback.after_wmarks_check &&
1349 				ctx->callback.after_wmarks_check(ctx))
1350 			break;
1351 	}
1352 	return -EBUSY;
1353 }
1354 
1355 /*
1356  * The monitoring daemon that runs as a kernel thread
1357  */
1358 static int kdamond_fn(void *data)
1359 {
1360 	struct damon_ctx *ctx = data;
1361 	struct damon_target *t;
1362 	struct damon_region *r, *next;
1363 	unsigned int max_nr_accesses = 0;
1364 	unsigned long sz_limit = 0;
1365 
1366 	pr_debug("kdamond (%d) starts\n", current->pid);
1367 
1368 	if (ctx->ops.init)
1369 		ctx->ops.init(ctx);
1370 	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1371 		goto done;
1372 
1373 	sz_limit = damon_region_sz_limit(ctx);
1374 
1375 	while (!kdamond_need_stop(ctx)) {
1376 		if (kdamond_wait_activation(ctx))
1377 			break;
1378 
1379 		if (ctx->ops.prepare_access_checks)
1380 			ctx->ops.prepare_access_checks(ctx);
1381 		if (ctx->callback.after_sampling &&
1382 				ctx->callback.after_sampling(ctx))
1383 			break;
1384 
1385 		kdamond_usleep(ctx->attrs.sample_interval);
1386 
1387 		if (ctx->ops.check_accesses)
1388 			max_nr_accesses = ctx->ops.check_accesses(ctx);
1389 
1390 		if (kdamond_aggregate_interval_passed(ctx)) {
1391 			kdamond_merge_regions(ctx,
1392 					max_nr_accesses / 10,
1393 					sz_limit);
1394 			if (ctx->callback.after_aggregation &&
1395 					ctx->callback.after_aggregation(ctx))
1396 				break;
1397 			if (!list_empty(&ctx->schemes))
1398 				kdamond_apply_schemes(ctx);
1399 			kdamond_reset_aggregated(ctx);
1400 			kdamond_split_regions(ctx);
1401 			if (ctx->ops.reset_aggregated)
1402 				ctx->ops.reset_aggregated(ctx);
1403 		}
1404 
1405 		if (kdamond_need_update_operations(ctx)) {
1406 			if (ctx->ops.update)
1407 				ctx->ops.update(ctx);
1408 			sz_limit = damon_region_sz_limit(ctx);
1409 		}
1410 	}
1411 done:
1412 	damon_for_each_target(t, ctx) {
1413 		damon_for_each_region_safe(r, next, t)
1414 			damon_destroy_region(r, t);
1415 	}
1416 
1417 	if (ctx->callback.before_terminate)
1418 		ctx->callback.before_terminate(ctx);
1419 	if (ctx->ops.cleanup)
1420 		ctx->ops.cleanup(ctx);
1421 
1422 	pr_debug("kdamond (%d) finishes\n", current->pid);
1423 	mutex_lock(&ctx->kdamond_lock);
1424 	ctx->kdamond = NULL;
1425 	mutex_unlock(&ctx->kdamond_lock);
1426 
1427 	mutex_lock(&damon_lock);
1428 	nr_running_ctxs--;
1429 	if (!nr_running_ctxs && running_exclusive_ctxs)
1430 		running_exclusive_ctxs = false;
1431 	mutex_unlock(&damon_lock);
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * struct damon_system_ram_region - System RAM resource address region of
1438  *				    [@start, @end).
1439  * @start:	Start address of the region (inclusive).
1440  * @end:	End address of the region (exclusive).
1441  */
1442 struct damon_system_ram_region {
1443 	unsigned long start;
1444 	unsigned long end;
1445 };
1446 
1447 static int walk_system_ram(struct resource *res, void *arg)
1448 {
1449 	struct damon_system_ram_region *a = arg;
1450 
1451 	if (a->end - a->start < resource_size(res)) {
1452 		a->start = res->start;
1453 		a->end = res->end;
1454 	}
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Find biggest 'System RAM' resource and store its start and end address in
1460  * @start and @end, respectively.  If no System RAM is found, returns false.
1461  */
1462 static bool damon_find_biggest_system_ram(unsigned long *start,
1463 						unsigned long *end)
1464 
1465 {
1466 	struct damon_system_ram_region arg = {};
1467 
1468 	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1469 	if (arg.end <= arg.start)
1470 		return false;
1471 
1472 	*start = arg.start;
1473 	*end = arg.end;
1474 	return true;
1475 }
1476 
1477 /**
1478  * damon_set_region_biggest_system_ram_default() - Set the region of the given
1479  * monitoring target as requested, or biggest 'System RAM'.
1480  * @t:		The monitoring target to set the region.
1481  * @start:	The pointer to the start address of the region.
1482  * @end:	The pointer to the end address of the region.
1483  *
1484  * This function sets the region of @t as requested by @start and @end.  If the
1485  * values of @start and @end are zero, however, this function finds the biggest
1486  * 'System RAM' resource and sets the region to cover the resource.  In the
1487  * latter case, this function saves the start and end addresses of the resource
1488  * in @start and @end, respectively.
1489  *
1490  * Return: 0 on success, negative error code otherwise.
1491  */
1492 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1493 			unsigned long *start, unsigned long *end)
1494 {
1495 	struct damon_addr_range addr_range;
1496 
1497 	if (*start > *end)
1498 		return -EINVAL;
1499 
1500 	if (!*start && !*end &&
1501 		!damon_find_biggest_system_ram(start, end))
1502 		return -EINVAL;
1503 
1504 	addr_range.start = *start;
1505 	addr_range.end = *end;
1506 	return damon_set_regions(t, &addr_range, 1);
1507 }
1508 
1509 static int __init damon_init(void)
1510 {
1511 	damon_region_cache = KMEM_CACHE(damon_region, 0);
1512 	if (unlikely(!damon_region_cache)) {
1513 		pr_err("creating damon_region_cache fails\n");
1514 		return -ENOMEM;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 subsys_initcall(damon_init);
1521 
1522 #include "core-test.h"
1523