1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 EXPORT_SYMBOL(PageMovable); 126 127 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 128 { 129 VM_BUG_ON_PAGE(!PageLocked(page), page); 130 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 131 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 132 } 133 EXPORT_SYMBOL(__SetPageMovable); 134 135 void __ClearPageMovable(struct page *page) 136 { 137 VM_BUG_ON_PAGE(!PageMovable(page), page); 138 /* 139 * This page still has the type of a movable page, but it's 140 * actually not movable any more. 141 */ 142 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 143 } 144 EXPORT_SYMBOL(__ClearPageMovable); 145 146 /* Do not skip compaction more than 64 times */ 147 #define COMPACT_MAX_DEFER_SHIFT 6 148 149 /* 150 * Compaction is deferred when compaction fails to result in a page 151 * allocation success. 1 << compact_defer_shift, compactions are skipped up 152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 153 */ 154 static void defer_compaction(struct zone *zone, int order) 155 { 156 zone->compact_considered = 0; 157 zone->compact_defer_shift++; 158 159 if (order < zone->compact_order_failed) 160 zone->compact_order_failed = order; 161 162 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 163 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 164 165 trace_mm_compaction_defer_compaction(zone, order); 166 } 167 168 /* Returns true if compaction should be skipped this time */ 169 static bool compaction_deferred(struct zone *zone, int order) 170 { 171 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 172 173 if (order < zone->compact_order_failed) 174 return false; 175 176 /* Avoid possible overflow */ 177 if (++zone->compact_considered >= defer_limit) { 178 zone->compact_considered = defer_limit; 179 return false; 180 } 181 182 trace_mm_compaction_deferred(zone, order); 183 184 return true; 185 } 186 187 /* 188 * Update defer tracking counters after successful compaction of given order, 189 * which means an allocation either succeeded (alloc_success == true) or is 190 * expected to succeed. 191 */ 192 void compaction_defer_reset(struct zone *zone, int order, 193 bool alloc_success) 194 { 195 if (alloc_success) { 196 zone->compact_considered = 0; 197 zone->compact_defer_shift = 0; 198 } 199 if (order >= zone->compact_order_failed) 200 zone->compact_order_failed = order + 1; 201 202 trace_mm_compaction_defer_reset(zone, order); 203 } 204 205 /* Returns true if restarting compaction after many failures */ 206 static bool compaction_restarting(struct zone *zone, int order) 207 { 208 if (order < zone->compact_order_failed) 209 return false; 210 211 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 212 zone->compact_considered >= 1UL << zone->compact_defer_shift; 213 } 214 215 /* Returns true if the pageblock should be scanned for pages to isolate. */ 216 static inline bool isolation_suitable(struct compact_control *cc, 217 struct page *page) 218 { 219 if (cc->ignore_skip_hint) 220 return true; 221 222 return !get_pageblock_skip(page); 223 } 224 225 static void reset_cached_positions(struct zone *zone) 226 { 227 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 228 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 229 zone->compact_cached_free_pfn = 230 pageblock_start_pfn(zone_end_pfn(zone) - 1); 231 } 232 233 /* 234 * Compound pages of >= pageblock_order should consistently be skipped until 235 * released. It is always pointless to compact pages of such order (if they are 236 * migratable), and the pageblocks they occupy cannot contain any free pages. 237 */ 238 static bool pageblock_skip_persistent(struct page *page) 239 { 240 if (!PageCompound(page)) 241 return false; 242 243 page = compound_head(page); 244 245 if (compound_order(page) >= pageblock_order) 246 return true; 247 248 return false; 249 } 250 251 static bool 252 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 253 bool check_target) 254 { 255 struct page *page = pfn_to_online_page(pfn); 256 struct page *block_page; 257 struct page *end_page; 258 unsigned long block_pfn; 259 260 if (!page) 261 return false; 262 if (zone != page_zone(page)) 263 return false; 264 if (pageblock_skip_persistent(page)) 265 return false; 266 267 /* 268 * If skip is already cleared do no further checking once the 269 * restart points have been set. 270 */ 271 if (check_source && check_target && !get_pageblock_skip(page)) 272 return true; 273 274 /* 275 * If clearing skip for the target scanner, do not select a 276 * non-movable pageblock as the starting point. 277 */ 278 if (!check_source && check_target && 279 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 280 return false; 281 282 /* Ensure the start of the pageblock or zone is online and valid */ 283 block_pfn = pageblock_start_pfn(pfn); 284 block_pfn = max(block_pfn, zone->zone_start_pfn); 285 block_page = pfn_to_online_page(block_pfn); 286 if (block_page) { 287 page = block_page; 288 pfn = block_pfn; 289 } 290 291 /* Ensure the end of the pageblock or zone is online and valid */ 292 block_pfn = pageblock_end_pfn(pfn) - 1; 293 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 294 end_page = pfn_to_online_page(block_pfn); 295 if (!end_page) 296 return false; 297 298 /* 299 * Only clear the hint if a sample indicates there is either a 300 * free page or an LRU page in the block. One or other condition 301 * is necessary for the block to be a migration source/target. 302 */ 303 do { 304 if (check_source && PageLRU(page)) { 305 clear_pageblock_skip(page); 306 return true; 307 } 308 309 if (check_target && PageBuddy(page)) { 310 clear_pageblock_skip(page); 311 return true; 312 } 313 314 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 315 } while (page <= end_page); 316 317 return false; 318 } 319 320 /* 321 * This function is called to clear all cached information on pageblocks that 322 * should be skipped for page isolation when the migrate and free page scanner 323 * meet. 324 */ 325 static void __reset_isolation_suitable(struct zone *zone) 326 { 327 unsigned long migrate_pfn = zone->zone_start_pfn; 328 unsigned long free_pfn = zone_end_pfn(zone) - 1; 329 unsigned long reset_migrate = free_pfn; 330 unsigned long reset_free = migrate_pfn; 331 bool source_set = false; 332 bool free_set = false; 333 334 if (!zone->compact_blockskip_flush) 335 return; 336 337 zone->compact_blockskip_flush = false; 338 339 /* 340 * Walk the zone and update pageblock skip information. Source looks 341 * for PageLRU while target looks for PageBuddy. When the scanner 342 * is found, both PageBuddy and PageLRU are checked as the pageblock 343 * is suitable as both source and target. 344 */ 345 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 346 free_pfn -= pageblock_nr_pages) { 347 cond_resched(); 348 349 /* Update the migrate PFN */ 350 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 351 migrate_pfn < reset_migrate) { 352 source_set = true; 353 reset_migrate = migrate_pfn; 354 zone->compact_init_migrate_pfn = reset_migrate; 355 zone->compact_cached_migrate_pfn[0] = reset_migrate; 356 zone->compact_cached_migrate_pfn[1] = reset_migrate; 357 } 358 359 /* Update the free PFN */ 360 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 361 free_pfn > reset_free) { 362 free_set = true; 363 reset_free = free_pfn; 364 zone->compact_init_free_pfn = reset_free; 365 zone->compact_cached_free_pfn = reset_free; 366 } 367 } 368 369 /* Leave no distance if no suitable block was reset */ 370 if (reset_migrate >= reset_free) { 371 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 372 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 373 zone->compact_cached_free_pfn = free_pfn; 374 } 375 } 376 377 void reset_isolation_suitable(pg_data_t *pgdat) 378 { 379 int zoneid; 380 381 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 382 struct zone *zone = &pgdat->node_zones[zoneid]; 383 if (!populated_zone(zone)) 384 continue; 385 386 /* Only flush if a full compaction finished recently */ 387 if (zone->compact_blockskip_flush) 388 __reset_isolation_suitable(zone); 389 } 390 } 391 392 /* 393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 394 * locks are not required for read/writers. Returns true if it was already set. 395 */ 396 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 397 unsigned long pfn) 398 { 399 bool skip; 400 401 /* Do no update if skip hint is being ignored */ 402 if (cc->ignore_skip_hint) 403 return false; 404 405 if (!pageblock_aligned(pfn)) 406 return false; 407 408 skip = get_pageblock_skip(page); 409 if (!skip && !cc->no_set_skip_hint) 410 set_pageblock_skip(page); 411 412 return skip; 413 } 414 415 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 416 { 417 struct zone *zone = cc->zone; 418 419 pfn = pageblock_end_pfn(pfn); 420 421 /* Set for isolation rather than compaction */ 422 if (cc->no_set_skip_hint) 423 return; 424 425 if (pfn > zone->compact_cached_migrate_pfn[0]) 426 zone->compact_cached_migrate_pfn[0] = pfn; 427 if (cc->mode != MIGRATE_ASYNC && 428 pfn > zone->compact_cached_migrate_pfn[1]) 429 zone->compact_cached_migrate_pfn[1] = pfn; 430 } 431 432 /* 433 * If no pages were isolated then mark this pageblock to be skipped in the 434 * future. The information is later cleared by __reset_isolation_suitable(). 435 */ 436 static void update_pageblock_skip(struct compact_control *cc, 437 struct page *page, unsigned long pfn) 438 { 439 struct zone *zone = cc->zone; 440 441 if (cc->no_set_skip_hint) 442 return; 443 444 if (!page) 445 return; 446 447 set_pageblock_skip(page); 448 449 /* Update where async and sync compaction should restart */ 450 if (pfn < zone->compact_cached_free_pfn) 451 zone->compact_cached_free_pfn = pfn; 452 } 453 #else 454 static inline bool isolation_suitable(struct compact_control *cc, 455 struct page *page) 456 { 457 return true; 458 } 459 460 static inline bool pageblock_skip_persistent(struct page *page) 461 { 462 return false; 463 } 464 465 static inline void update_pageblock_skip(struct compact_control *cc, 466 struct page *page, unsigned long pfn) 467 { 468 } 469 470 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 471 { 472 } 473 474 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 475 unsigned long pfn) 476 { 477 return false; 478 } 479 #endif /* CONFIG_COMPACTION */ 480 481 /* 482 * Compaction requires the taking of some coarse locks that are potentially 483 * very heavily contended. For async compaction, trylock and record if the 484 * lock is contended. The lock will still be acquired but compaction will 485 * abort when the current block is finished regardless of success rate. 486 * Sync compaction acquires the lock. 487 * 488 * Always returns true which makes it easier to track lock state in callers. 489 */ 490 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 491 struct compact_control *cc) 492 __acquires(lock) 493 { 494 /* Track if the lock is contended in async mode */ 495 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 496 if (spin_trylock_irqsave(lock, *flags)) 497 return true; 498 499 cc->contended = true; 500 } 501 502 spin_lock_irqsave(lock, *flags); 503 return true; 504 } 505 506 /* 507 * Compaction requires the taking of some coarse locks that are potentially 508 * very heavily contended. The lock should be periodically unlocked to avoid 509 * having disabled IRQs for a long time, even when there is nobody waiting on 510 * the lock. It might also be that allowing the IRQs will result in 511 * need_resched() becoming true. If scheduling is needed, compaction schedules. 512 * Either compaction type will also abort if a fatal signal is pending. 513 * In either case if the lock was locked, it is dropped and not regained. 514 * 515 * Returns true if compaction should abort due to fatal signal pending. 516 * Returns false when compaction can continue. 517 */ 518 static bool compact_unlock_should_abort(spinlock_t *lock, 519 unsigned long flags, bool *locked, struct compact_control *cc) 520 { 521 if (*locked) { 522 spin_unlock_irqrestore(lock, flags); 523 *locked = false; 524 } 525 526 if (fatal_signal_pending(current)) { 527 cc->contended = true; 528 return true; 529 } 530 531 cond_resched(); 532 533 return false; 534 } 535 536 /* 537 * Isolate free pages onto a private freelist. If @strict is true, will abort 538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 539 * (even though it may still end up isolating some pages). 540 */ 541 static unsigned long isolate_freepages_block(struct compact_control *cc, 542 unsigned long *start_pfn, 543 unsigned long end_pfn, 544 struct list_head *freelist, 545 unsigned int stride, 546 bool strict) 547 { 548 int nr_scanned = 0, total_isolated = 0; 549 struct page *cursor; 550 unsigned long flags = 0; 551 bool locked = false; 552 unsigned long blockpfn = *start_pfn; 553 unsigned int order; 554 555 /* Strict mode is for isolation, speed is secondary */ 556 if (strict) 557 stride = 1; 558 559 cursor = pfn_to_page(blockpfn); 560 561 /* Isolate free pages. */ 562 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 563 int isolated; 564 struct page *page = cursor; 565 566 /* 567 * Periodically drop the lock (if held) regardless of its 568 * contention, to give chance to IRQs. Abort if fatal signal 569 * pending. 570 */ 571 if (!(blockpfn % COMPACT_CLUSTER_MAX) 572 && compact_unlock_should_abort(&cc->zone->lock, flags, 573 &locked, cc)) 574 break; 575 576 nr_scanned++; 577 578 /* 579 * For compound pages such as THP and hugetlbfs, we can save 580 * potentially a lot of iterations if we skip them at once. 581 * The check is racy, but we can consider only valid values 582 * and the only danger is skipping too much. 583 */ 584 if (PageCompound(page)) { 585 const unsigned int order = compound_order(page); 586 587 if (likely(order < MAX_ORDER)) { 588 blockpfn += (1UL << order) - 1; 589 cursor += (1UL << order) - 1; 590 } 591 goto isolate_fail; 592 } 593 594 if (!PageBuddy(page)) 595 goto isolate_fail; 596 597 /* If we already hold the lock, we can skip some rechecking. */ 598 if (!locked) { 599 locked = compact_lock_irqsave(&cc->zone->lock, 600 &flags, cc); 601 602 /* Recheck this is a buddy page under lock */ 603 if (!PageBuddy(page)) 604 goto isolate_fail; 605 } 606 607 /* Found a free page, will break it into order-0 pages */ 608 order = buddy_order(page); 609 isolated = __isolate_free_page(page, order); 610 if (!isolated) 611 break; 612 set_page_private(page, order); 613 614 nr_scanned += isolated - 1; 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 bool too_many; 751 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 too_many = isolated > (inactive + active) / 2; 762 if (!too_many) 763 wake_throttle_isolated(pgdat); 764 765 return too_many; 766 } 767 768 /** 769 * isolate_migratepages_block() - isolate all migrate-able pages within 770 * a single pageblock 771 * @cc: Compaction control structure. 772 * @low_pfn: The first PFN to isolate 773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 774 * @mode: Isolation mode to be used. 775 * 776 * Isolate all pages that can be migrated from the range specified by 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 779 * -ENOMEM in case we could not allocate a page, or 0. 780 * cc->migrate_pfn will contain the next pfn to scan. 781 * 782 * The pages are isolated on cc->migratepages list (not required to be empty), 783 * and cc->nr_migratepages is updated accordingly. 784 */ 785 static int 786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 787 unsigned long end_pfn, isolate_mode_t mode) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 unsigned long nr_scanned = 0, nr_isolated = 0; 791 struct lruvec *lruvec; 792 unsigned long flags = 0; 793 struct lruvec *locked = NULL; 794 struct page *page = NULL, *valid_page = NULL; 795 struct address_space *mapping; 796 unsigned long start_pfn = low_pfn; 797 bool skip_on_failure = false; 798 unsigned long next_skip_pfn = 0; 799 bool skip_updated = false; 800 int ret = 0; 801 802 cc->migrate_pfn = low_pfn; 803 804 /* 805 * Ensure that there are not too many pages isolated from the LRU 806 * list by either parallel reclaimers or compaction. If there are, 807 * delay for some time until fewer pages are isolated 808 */ 809 while (unlikely(too_many_isolated(pgdat))) { 810 /* stop isolation if there are still pages not migrated */ 811 if (cc->nr_migratepages) 812 return -EAGAIN; 813 814 /* async migration should just abort */ 815 if (cc->mode == MIGRATE_ASYNC) 816 return -EAGAIN; 817 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 819 820 if (fatal_signal_pending(current)) 821 return -EINTR; 822 } 823 824 cond_resched(); 825 826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 827 skip_on_failure = true; 828 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 829 } 830 831 /* Time to isolate some pages for migration */ 832 for (; low_pfn < end_pfn; low_pfn++) { 833 834 if (skip_on_failure && low_pfn >= next_skip_pfn) { 835 /* 836 * We have isolated all migration candidates in the 837 * previous order-aligned block, and did not skip it due 838 * to failure. We should migrate the pages now and 839 * hopefully succeed compaction. 840 */ 841 if (nr_isolated) 842 break; 843 844 /* 845 * We failed to isolate in the previous order-aligned 846 * block. Set the new boundary to the end of the 847 * current block. Note we can't simply increase 848 * next_skip_pfn by 1 << order, as low_pfn might have 849 * been incremented by a higher number due to skipping 850 * a compound or a high-order buddy page in the 851 * previous loop iteration. 852 */ 853 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 854 } 855 856 /* 857 * Periodically drop the lock (if held) regardless of its 858 * contention, to give chance to IRQs. Abort completely if 859 * a fatal signal is pending. 860 */ 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 862 if (locked) { 863 unlock_page_lruvec_irqrestore(locked, flags); 864 locked = NULL; 865 } 866 867 if (fatal_signal_pending(current)) { 868 cc->contended = true; 869 ret = -EINTR; 870 871 goto fatal_pending; 872 } 873 874 cond_resched(); 875 } 876 877 nr_scanned++; 878 879 page = pfn_to_page(low_pfn); 880 881 /* 882 * Check if the pageblock has already been marked skipped. 883 * Only the aligned PFN is checked as the caller isolates 884 * COMPACT_CLUSTER_MAX at a time so the second call must 885 * not falsely conclude that the block should be skipped. 886 */ 887 if (!valid_page && pageblock_aligned(low_pfn)) { 888 if (!isolation_suitable(cc, page)) { 889 low_pfn = end_pfn; 890 page = NULL; 891 goto isolate_abort; 892 } 893 valid_page = page; 894 } 895 896 if (PageHuge(page) && cc->alloc_contig) { 897 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 898 899 /* 900 * Fail isolation in case isolate_or_dissolve_huge_page() 901 * reports an error. In case of -ENOMEM, abort right away. 902 */ 903 if (ret < 0) { 904 /* Do not report -EBUSY down the chain */ 905 if (ret == -EBUSY) 906 ret = 0; 907 low_pfn += compound_nr(page) - 1; 908 goto isolate_fail; 909 } 910 911 if (PageHuge(page)) { 912 /* 913 * Hugepage was successfully isolated and placed 914 * on the cc->migratepages list. 915 */ 916 low_pfn += compound_nr(page) - 1; 917 goto isolate_success_no_list; 918 } 919 920 /* 921 * Ok, the hugepage was dissolved. Now these pages are 922 * Buddy and cannot be re-allocated because they are 923 * isolated. Fall-through as the check below handles 924 * Buddy pages. 925 */ 926 } 927 928 /* 929 * Skip if free. We read page order here without zone lock 930 * which is generally unsafe, but the race window is small and 931 * the worst thing that can happen is that we skip some 932 * potential isolation targets. 933 */ 934 if (PageBuddy(page)) { 935 unsigned long freepage_order = buddy_order_unsafe(page); 936 937 /* 938 * Without lock, we cannot be sure that what we got is 939 * a valid page order. Consider only values in the 940 * valid order range to prevent low_pfn overflow. 941 */ 942 if (freepage_order > 0 && freepage_order < MAX_ORDER) 943 low_pfn += (1UL << freepage_order) - 1; 944 continue; 945 } 946 947 /* 948 * Regardless of being on LRU, compound pages such as THP and 949 * hugetlbfs are not to be compacted unless we are attempting 950 * an allocation much larger than the huge page size (eg CMA). 951 * We can potentially save a lot of iterations if we skip them 952 * at once. The check is racy, but we can consider only valid 953 * values and the only danger is skipping too much. 954 */ 955 if (PageCompound(page) && !cc->alloc_contig) { 956 const unsigned int order = compound_order(page); 957 958 if (likely(order < MAX_ORDER)) 959 low_pfn += (1UL << order) - 1; 960 goto isolate_fail; 961 } 962 963 /* 964 * Check may be lockless but that's ok as we recheck later. 965 * It's possible to migrate LRU and non-lru movable pages. 966 * Skip any other type of page 967 */ 968 if (!PageLRU(page)) { 969 /* 970 * __PageMovable can return false positive so we need 971 * to verify it under page_lock. 972 */ 973 if (unlikely(__PageMovable(page)) && 974 !PageIsolated(page)) { 975 if (locked) { 976 unlock_page_lruvec_irqrestore(locked, flags); 977 locked = NULL; 978 } 979 980 if (!isolate_movable_page(page, mode)) 981 goto isolate_success; 982 } 983 984 goto isolate_fail; 985 } 986 987 /* 988 * Be careful not to clear PageLRU until after we're 989 * sure the page is not being freed elsewhere -- the 990 * page release code relies on it. 991 */ 992 if (unlikely(!get_page_unless_zero(page))) 993 goto isolate_fail; 994 995 /* 996 * Migration will fail if an anonymous page is pinned in memory, 997 * so avoid taking lru_lock and isolating it unnecessarily in an 998 * admittedly racy check. 999 */ 1000 mapping = page_mapping(page); 1001 if (!mapping && (page_count(page) - 1) > total_mapcount(page)) 1002 goto isolate_fail_put; 1003 1004 /* 1005 * Only allow to migrate anonymous pages in GFP_NOFS context 1006 * because those do not depend on fs locks. 1007 */ 1008 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1009 goto isolate_fail_put; 1010 1011 /* Only take pages on LRU: a check now makes later tests safe */ 1012 if (!PageLRU(page)) 1013 goto isolate_fail_put; 1014 1015 /* Compaction might skip unevictable pages but CMA takes them */ 1016 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1017 goto isolate_fail_put; 1018 1019 /* 1020 * To minimise LRU disruption, the caller can indicate with 1021 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1022 * it will be able to migrate without blocking - clean pages 1023 * for the most part. PageWriteback would require blocking. 1024 */ 1025 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1026 goto isolate_fail_put; 1027 1028 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1029 bool migrate_dirty; 1030 1031 /* 1032 * Only pages without mappings or that have a 1033 * ->migrate_folio callback are possible to migrate 1034 * without blocking. However, we can be racing with 1035 * truncation so it's necessary to lock the page 1036 * to stabilise the mapping as truncation holds 1037 * the page lock until after the page is removed 1038 * from the page cache. 1039 */ 1040 if (!trylock_page(page)) 1041 goto isolate_fail_put; 1042 1043 mapping = page_mapping(page); 1044 migrate_dirty = !mapping || 1045 mapping->a_ops->migrate_folio; 1046 unlock_page(page); 1047 if (!migrate_dirty) 1048 goto isolate_fail_put; 1049 } 1050 1051 /* Try isolate the page */ 1052 if (!TestClearPageLRU(page)) 1053 goto isolate_fail_put; 1054 1055 lruvec = folio_lruvec(page_folio(page)); 1056 1057 /* If we already hold the lock, we can skip some rechecking */ 1058 if (lruvec != locked) { 1059 if (locked) 1060 unlock_page_lruvec_irqrestore(locked, flags); 1061 1062 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1063 locked = lruvec; 1064 1065 lruvec_memcg_debug(lruvec, page_folio(page)); 1066 1067 /* Try get exclusive access under lock */ 1068 if (!skip_updated) { 1069 skip_updated = true; 1070 if (test_and_set_skip(cc, page, low_pfn)) 1071 goto isolate_abort; 1072 } 1073 1074 /* 1075 * Page become compound since the non-locked check, 1076 * and it's on LRU. It can only be a THP so the order 1077 * is safe to read and it's 0 for tail pages. 1078 */ 1079 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1080 low_pfn += compound_nr(page) - 1; 1081 SetPageLRU(page); 1082 goto isolate_fail_put; 1083 } 1084 } 1085 1086 /* The whole page is taken off the LRU; skip the tail pages. */ 1087 if (PageCompound(page)) 1088 low_pfn += compound_nr(page) - 1; 1089 1090 /* Successfully isolated */ 1091 del_page_from_lru_list(page, lruvec); 1092 mod_node_page_state(page_pgdat(page), 1093 NR_ISOLATED_ANON + page_is_file_lru(page), 1094 thp_nr_pages(page)); 1095 1096 isolate_success: 1097 list_add(&page->lru, &cc->migratepages); 1098 isolate_success_no_list: 1099 cc->nr_migratepages += compound_nr(page); 1100 nr_isolated += compound_nr(page); 1101 nr_scanned += compound_nr(page) - 1; 1102 1103 /* 1104 * Avoid isolating too much unless this block is being 1105 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1106 * or a lock is contended. For contention, isolate quickly to 1107 * potentially remove one source of contention. 1108 */ 1109 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1110 !cc->rescan && !cc->contended) { 1111 ++low_pfn; 1112 break; 1113 } 1114 1115 continue; 1116 1117 isolate_fail_put: 1118 /* Avoid potential deadlock in freeing page under lru_lock */ 1119 if (locked) { 1120 unlock_page_lruvec_irqrestore(locked, flags); 1121 locked = NULL; 1122 } 1123 put_page(page); 1124 1125 isolate_fail: 1126 if (!skip_on_failure && ret != -ENOMEM) 1127 continue; 1128 1129 /* 1130 * We have isolated some pages, but then failed. Release them 1131 * instead of migrating, as we cannot form the cc->order buddy 1132 * page anyway. 1133 */ 1134 if (nr_isolated) { 1135 if (locked) { 1136 unlock_page_lruvec_irqrestore(locked, flags); 1137 locked = NULL; 1138 } 1139 putback_movable_pages(&cc->migratepages); 1140 cc->nr_migratepages = 0; 1141 nr_isolated = 0; 1142 } 1143 1144 if (low_pfn < next_skip_pfn) { 1145 low_pfn = next_skip_pfn - 1; 1146 /* 1147 * The check near the loop beginning would have updated 1148 * next_skip_pfn too, but this is a bit simpler. 1149 */ 1150 next_skip_pfn += 1UL << cc->order; 1151 } 1152 1153 if (ret == -ENOMEM) 1154 break; 1155 } 1156 1157 /* 1158 * The PageBuddy() check could have potentially brought us outside 1159 * the range to be scanned. 1160 */ 1161 if (unlikely(low_pfn > end_pfn)) 1162 low_pfn = end_pfn; 1163 1164 page = NULL; 1165 1166 isolate_abort: 1167 if (locked) 1168 unlock_page_lruvec_irqrestore(locked, flags); 1169 if (page) { 1170 SetPageLRU(page); 1171 put_page(page); 1172 } 1173 1174 /* 1175 * Updated the cached scanner pfn once the pageblock has been scanned 1176 * Pages will either be migrated in which case there is no point 1177 * scanning in the near future or migration failed in which case the 1178 * failure reason may persist. The block is marked for skipping if 1179 * there were no pages isolated in the block or if the block is 1180 * rescanned twice in a row. 1181 */ 1182 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1183 if (valid_page && !skip_updated) 1184 set_pageblock_skip(valid_page); 1185 update_cached_migrate(cc, low_pfn); 1186 } 1187 1188 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1189 nr_scanned, nr_isolated); 1190 1191 fatal_pending: 1192 cc->total_migrate_scanned += nr_scanned; 1193 if (nr_isolated) 1194 count_compact_events(COMPACTISOLATED, nr_isolated); 1195 1196 cc->migrate_pfn = low_pfn; 1197 1198 return ret; 1199 } 1200 1201 /** 1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1203 * @cc: Compaction control structure. 1204 * @start_pfn: The first PFN to start isolating. 1205 * @end_pfn: The one-past-last PFN. 1206 * 1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1208 * in case we could not allocate a page, or 0. 1209 */ 1210 int 1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1212 unsigned long end_pfn) 1213 { 1214 unsigned long pfn, block_start_pfn, block_end_pfn; 1215 int ret = 0; 1216 1217 /* Scan block by block. First and last block may be incomplete */ 1218 pfn = start_pfn; 1219 block_start_pfn = pageblock_start_pfn(pfn); 1220 if (block_start_pfn < cc->zone->zone_start_pfn) 1221 block_start_pfn = cc->zone->zone_start_pfn; 1222 block_end_pfn = pageblock_end_pfn(pfn); 1223 1224 for (; pfn < end_pfn; pfn = block_end_pfn, 1225 block_start_pfn = block_end_pfn, 1226 block_end_pfn += pageblock_nr_pages) { 1227 1228 block_end_pfn = min(block_end_pfn, end_pfn); 1229 1230 if (!pageblock_pfn_to_page(block_start_pfn, 1231 block_end_pfn, cc->zone)) 1232 continue; 1233 1234 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1235 ISOLATE_UNEVICTABLE); 1236 1237 if (ret) 1238 break; 1239 1240 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1241 break; 1242 } 1243 1244 return ret; 1245 } 1246 1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1248 #ifdef CONFIG_COMPACTION 1249 1250 static bool suitable_migration_source(struct compact_control *cc, 1251 struct page *page) 1252 { 1253 int block_mt; 1254 1255 if (pageblock_skip_persistent(page)) 1256 return false; 1257 1258 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1259 return true; 1260 1261 block_mt = get_pageblock_migratetype(page); 1262 1263 if (cc->migratetype == MIGRATE_MOVABLE) 1264 return is_migrate_movable(block_mt); 1265 else 1266 return block_mt == cc->migratetype; 1267 } 1268 1269 /* Returns true if the page is within a block suitable for migration to */ 1270 static bool suitable_migration_target(struct compact_control *cc, 1271 struct page *page) 1272 { 1273 /* If the page is a large free page, then disallow migration */ 1274 if (PageBuddy(page)) { 1275 /* 1276 * We are checking page_order without zone->lock taken. But 1277 * the only small danger is that we skip a potentially suitable 1278 * pageblock, so it's not worth to check order for valid range. 1279 */ 1280 if (buddy_order_unsafe(page) >= pageblock_order) 1281 return false; 1282 } 1283 1284 if (cc->ignore_block_suitable) 1285 return true; 1286 1287 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1288 if (is_migrate_movable(get_pageblock_migratetype(page))) 1289 return true; 1290 1291 /* Otherwise skip the block */ 1292 return false; 1293 } 1294 1295 static inline unsigned int 1296 freelist_scan_limit(struct compact_control *cc) 1297 { 1298 unsigned short shift = BITS_PER_LONG - 1; 1299 1300 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1301 } 1302 1303 /* 1304 * Test whether the free scanner has reached the same or lower pageblock than 1305 * the migration scanner, and compaction should thus terminate. 1306 */ 1307 static inline bool compact_scanners_met(struct compact_control *cc) 1308 { 1309 return (cc->free_pfn >> pageblock_order) 1310 <= (cc->migrate_pfn >> pageblock_order); 1311 } 1312 1313 /* 1314 * Used when scanning for a suitable migration target which scans freelists 1315 * in reverse. Reorders the list such as the unscanned pages are scanned 1316 * first on the next iteration of the free scanner 1317 */ 1318 static void 1319 move_freelist_head(struct list_head *freelist, struct page *freepage) 1320 { 1321 LIST_HEAD(sublist); 1322 1323 if (!list_is_last(freelist, &freepage->lru)) { 1324 list_cut_before(&sublist, freelist, &freepage->lru); 1325 list_splice_tail(&sublist, freelist); 1326 } 1327 } 1328 1329 /* 1330 * Similar to move_freelist_head except used by the migration scanner 1331 * when scanning forward. It's possible for these list operations to 1332 * move against each other if they search the free list exactly in 1333 * lockstep. 1334 */ 1335 static void 1336 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1337 { 1338 LIST_HEAD(sublist); 1339 1340 if (!list_is_first(freelist, &freepage->lru)) { 1341 list_cut_position(&sublist, freelist, &freepage->lru); 1342 list_splice_tail(&sublist, freelist); 1343 } 1344 } 1345 1346 static void 1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1348 { 1349 unsigned long start_pfn, end_pfn; 1350 struct page *page; 1351 1352 /* Do not search around if there are enough pages already */ 1353 if (cc->nr_freepages >= cc->nr_migratepages) 1354 return; 1355 1356 /* Minimise scanning during async compaction */ 1357 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1358 return; 1359 1360 /* Pageblock boundaries */ 1361 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1362 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1363 1364 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1365 if (!page) 1366 return; 1367 1368 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1369 1370 /* Skip this pageblock in the future as it's full or nearly full */ 1371 if (cc->nr_freepages < cc->nr_migratepages) 1372 set_pageblock_skip(page); 1373 1374 return; 1375 } 1376 1377 /* Search orders in round-robin fashion */ 1378 static int next_search_order(struct compact_control *cc, int order) 1379 { 1380 order--; 1381 if (order < 0) 1382 order = cc->order - 1; 1383 1384 /* Search wrapped around? */ 1385 if (order == cc->search_order) { 1386 cc->search_order--; 1387 if (cc->search_order < 0) 1388 cc->search_order = cc->order - 1; 1389 return -1; 1390 } 1391 1392 return order; 1393 } 1394 1395 static unsigned long 1396 fast_isolate_freepages(struct compact_control *cc) 1397 { 1398 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1399 unsigned int nr_scanned = 0; 1400 unsigned long low_pfn, min_pfn, highest = 0; 1401 unsigned long nr_isolated = 0; 1402 unsigned long distance; 1403 struct page *page = NULL; 1404 bool scan_start = false; 1405 int order; 1406 1407 /* Full compaction passes in a negative order */ 1408 if (cc->order <= 0) 1409 return cc->free_pfn; 1410 1411 /* 1412 * If starting the scan, use a deeper search and use the highest 1413 * PFN found if a suitable one is not found. 1414 */ 1415 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1416 limit = pageblock_nr_pages >> 1; 1417 scan_start = true; 1418 } 1419 1420 /* 1421 * Preferred point is in the top quarter of the scan space but take 1422 * a pfn from the top half if the search is problematic. 1423 */ 1424 distance = (cc->free_pfn - cc->migrate_pfn); 1425 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1426 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1427 1428 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1429 low_pfn = min_pfn; 1430 1431 /* 1432 * Search starts from the last successful isolation order or the next 1433 * order to search after a previous failure 1434 */ 1435 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1436 1437 for (order = cc->search_order; 1438 !page && order >= 0; 1439 order = next_search_order(cc, order)) { 1440 struct free_area *area = &cc->zone->free_area[order]; 1441 struct list_head *freelist; 1442 struct page *freepage; 1443 unsigned long flags; 1444 unsigned int order_scanned = 0; 1445 unsigned long high_pfn = 0; 1446 1447 if (!area->nr_free) 1448 continue; 1449 1450 spin_lock_irqsave(&cc->zone->lock, flags); 1451 freelist = &area->free_list[MIGRATE_MOVABLE]; 1452 list_for_each_entry_reverse(freepage, freelist, lru) { 1453 unsigned long pfn; 1454 1455 order_scanned++; 1456 nr_scanned++; 1457 pfn = page_to_pfn(freepage); 1458 1459 if (pfn >= highest) 1460 highest = max(pageblock_start_pfn(pfn), 1461 cc->zone->zone_start_pfn); 1462 1463 if (pfn >= low_pfn) { 1464 cc->fast_search_fail = 0; 1465 cc->search_order = order; 1466 page = freepage; 1467 break; 1468 } 1469 1470 if (pfn >= min_pfn && pfn > high_pfn) { 1471 high_pfn = pfn; 1472 1473 /* Shorten the scan if a candidate is found */ 1474 limit >>= 1; 1475 } 1476 1477 if (order_scanned >= limit) 1478 break; 1479 } 1480 1481 /* Use a minimum pfn if a preferred one was not found */ 1482 if (!page && high_pfn) { 1483 page = pfn_to_page(high_pfn); 1484 1485 /* Update freepage for the list reorder below */ 1486 freepage = page; 1487 } 1488 1489 /* Reorder to so a future search skips recent pages */ 1490 move_freelist_head(freelist, freepage); 1491 1492 /* Isolate the page if available */ 1493 if (page) { 1494 if (__isolate_free_page(page, order)) { 1495 set_page_private(page, order); 1496 nr_isolated = 1 << order; 1497 nr_scanned += nr_isolated - 1; 1498 cc->nr_freepages += nr_isolated; 1499 list_add_tail(&page->lru, &cc->freepages); 1500 count_compact_events(COMPACTISOLATED, nr_isolated); 1501 } else { 1502 /* If isolation fails, abort the search */ 1503 order = cc->search_order + 1; 1504 page = NULL; 1505 } 1506 } 1507 1508 spin_unlock_irqrestore(&cc->zone->lock, flags); 1509 1510 /* 1511 * Smaller scan on next order so the total scan is related 1512 * to freelist_scan_limit. 1513 */ 1514 if (order_scanned >= limit) 1515 limit = max(1U, limit >> 1); 1516 } 1517 1518 if (!page) { 1519 cc->fast_search_fail++; 1520 if (scan_start) { 1521 /* 1522 * Use the highest PFN found above min. If one was 1523 * not found, be pessimistic for direct compaction 1524 * and use the min mark. 1525 */ 1526 if (highest >= min_pfn) { 1527 page = pfn_to_page(highest); 1528 cc->free_pfn = highest; 1529 } else { 1530 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1531 page = pageblock_pfn_to_page(min_pfn, 1532 min(pageblock_end_pfn(min_pfn), 1533 zone_end_pfn(cc->zone)), 1534 cc->zone); 1535 cc->free_pfn = min_pfn; 1536 } 1537 } 1538 } 1539 } 1540 1541 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1542 highest -= pageblock_nr_pages; 1543 cc->zone->compact_cached_free_pfn = highest; 1544 } 1545 1546 cc->total_free_scanned += nr_scanned; 1547 if (!page) 1548 return cc->free_pfn; 1549 1550 low_pfn = page_to_pfn(page); 1551 fast_isolate_around(cc, low_pfn); 1552 return low_pfn; 1553 } 1554 1555 /* 1556 * Based on information in the current compact_control, find blocks 1557 * suitable for isolating free pages from and then isolate them. 1558 */ 1559 static void isolate_freepages(struct compact_control *cc) 1560 { 1561 struct zone *zone = cc->zone; 1562 struct page *page; 1563 unsigned long block_start_pfn; /* start of current pageblock */ 1564 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1565 unsigned long block_end_pfn; /* end of current pageblock */ 1566 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1567 struct list_head *freelist = &cc->freepages; 1568 unsigned int stride; 1569 1570 /* Try a small search of the free lists for a candidate */ 1571 fast_isolate_freepages(cc); 1572 if (cc->nr_freepages) 1573 goto splitmap; 1574 1575 /* 1576 * Initialise the free scanner. The starting point is where we last 1577 * successfully isolated from, zone-cached value, or the end of the 1578 * zone when isolating for the first time. For looping we also need 1579 * this pfn aligned down to the pageblock boundary, because we do 1580 * block_start_pfn -= pageblock_nr_pages in the for loop. 1581 * For ending point, take care when isolating in last pageblock of a 1582 * zone which ends in the middle of a pageblock. 1583 * The low boundary is the end of the pageblock the migration scanner 1584 * is using. 1585 */ 1586 isolate_start_pfn = cc->free_pfn; 1587 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1588 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1589 zone_end_pfn(zone)); 1590 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1591 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1592 1593 /* 1594 * Isolate free pages until enough are available to migrate the 1595 * pages on cc->migratepages. We stop searching if the migrate 1596 * and free page scanners meet or enough free pages are isolated. 1597 */ 1598 for (; block_start_pfn >= low_pfn; 1599 block_end_pfn = block_start_pfn, 1600 block_start_pfn -= pageblock_nr_pages, 1601 isolate_start_pfn = block_start_pfn) { 1602 unsigned long nr_isolated; 1603 1604 /* 1605 * This can iterate a massively long zone without finding any 1606 * suitable migration targets, so periodically check resched. 1607 */ 1608 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1609 cond_resched(); 1610 1611 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1612 zone); 1613 if (!page) 1614 continue; 1615 1616 /* Check the block is suitable for migration */ 1617 if (!suitable_migration_target(cc, page)) 1618 continue; 1619 1620 /* If isolation recently failed, do not retry */ 1621 if (!isolation_suitable(cc, page)) 1622 continue; 1623 1624 /* Found a block suitable for isolating free pages from. */ 1625 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1626 block_end_pfn, freelist, stride, false); 1627 1628 /* Update the skip hint if the full pageblock was scanned */ 1629 if (isolate_start_pfn == block_end_pfn) 1630 update_pageblock_skip(cc, page, block_start_pfn); 1631 1632 /* Are enough freepages isolated? */ 1633 if (cc->nr_freepages >= cc->nr_migratepages) { 1634 if (isolate_start_pfn >= block_end_pfn) { 1635 /* 1636 * Restart at previous pageblock if more 1637 * freepages can be isolated next time. 1638 */ 1639 isolate_start_pfn = 1640 block_start_pfn - pageblock_nr_pages; 1641 } 1642 break; 1643 } else if (isolate_start_pfn < block_end_pfn) { 1644 /* 1645 * If isolation failed early, do not continue 1646 * needlessly. 1647 */ 1648 break; 1649 } 1650 1651 /* Adjust stride depending on isolation */ 1652 if (nr_isolated) { 1653 stride = 1; 1654 continue; 1655 } 1656 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1657 } 1658 1659 /* 1660 * Record where the free scanner will restart next time. Either we 1661 * broke from the loop and set isolate_start_pfn based on the last 1662 * call to isolate_freepages_block(), or we met the migration scanner 1663 * and the loop terminated due to isolate_start_pfn < low_pfn 1664 */ 1665 cc->free_pfn = isolate_start_pfn; 1666 1667 splitmap: 1668 /* __isolate_free_page() does not map the pages */ 1669 split_map_pages(freelist); 1670 } 1671 1672 /* 1673 * This is a migrate-callback that "allocates" freepages by taking pages 1674 * from the isolated freelists in the block we are migrating to. 1675 */ 1676 static struct page *compaction_alloc(struct page *migratepage, 1677 unsigned long data) 1678 { 1679 struct compact_control *cc = (struct compact_control *)data; 1680 struct page *freepage; 1681 1682 if (list_empty(&cc->freepages)) { 1683 isolate_freepages(cc); 1684 1685 if (list_empty(&cc->freepages)) 1686 return NULL; 1687 } 1688 1689 freepage = list_entry(cc->freepages.next, struct page, lru); 1690 list_del(&freepage->lru); 1691 cc->nr_freepages--; 1692 1693 return freepage; 1694 } 1695 1696 /* 1697 * This is a migrate-callback that "frees" freepages back to the isolated 1698 * freelist. All pages on the freelist are from the same zone, so there is no 1699 * special handling needed for NUMA. 1700 */ 1701 static void compaction_free(struct page *page, unsigned long data) 1702 { 1703 struct compact_control *cc = (struct compact_control *)data; 1704 1705 list_add(&page->lru, &cc->freepages); 1706 cc->nr_freepages++; 1707 } 1708 1709 /* possible outcome of isolate_migratepages */ 1710 typedef enum { 1711 ISOLATE_ABORT, /* Abort compaction now */ 1712 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1713 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1714 } isolate_migrate_t; 1715 1716 /* 1717 * Allow userspace to control policy on scanning the unevictable LRU for 1718 * compactable pages. 1719 */ 1720 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1721 1722 static inline void 1723 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1724 { 1725 if (cc->fast_start_pfn == ULONG_MAX) 1726 return; 1727 1728 if (!cc->fast_start_pfn) 1729 cc->fast_start_pfn = pfn; 1730 1731 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1732 } 1733 1734 static inline unsigned long 1735 reinit_migrate_pfn(struct compact_control *cc) 1736 { 1737 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1738 return cc->migrate_pfn; 1739 1740 cc->migrate_pfn = cc->fast_start_pfn; 1741 cc->fast_start_pfn = ULONG_MAX; 1742 1743 return cc->migrate_pfn; 1744 } 1745 1746 /* 1747 * Briefly search the free lists for a migration source that already has 1748 * some free pages to reduce the number of pages that need migration 1749 * before a pageblock is free. 1750 */ 1751 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1752 { 1753 unsigned int limit = freelist_scan_limit(cc); 1754 unsigned int nr_scanned = 0; 1755 unsigned long distance; 1756 unsigned long pfn = cc->migrate_pfn; 1757 unsigned long high_pfn; 1758 int order; 1759 bool found_block = false; 1760 1761 /* Skip hints are relied on to avoid repeats on the fast search */ 1762 if (cc->ignore_skip_hint) 1763 return pfn; 1764 1765 /* 1766 * If the migrate_pfn is not at the start of a zone or the start 1767 * of a pageblock then assume this is a continuation of a previous 1768 * scan restarted due to COMPACT_CLUSTER_MAX. 1769 */ 1770 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1771 return pfn; 1772 1773 /* 1774 * For smaller orders, just linearly scan as the number of pages 1775 * to migrate should be relatively small and does not necessarily 1776 * justify freeing up a large block for a small allocation. 1777 */ 1778 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1779 return pfn; 1780 1781 /* 1782 * Only allow kcompactd and direct requests for movable pages to 1783 * quickly clear out a MOVABLE pageblock for allocation. This 1784 * reduces the risk that a large movable pageblock is freed for 1785 * an unmovable/reclaimable small allocation. 1786 */ 1787 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1788 return pfn; 1789 1790 /* 1791 * When starting the migration scanner, pick any pageblock within the 1792 * first half of the search space. Otherwise try and pick a pageblock 1793 * within the first eighth to reduce the chances that a migration 1794 * target later becomes a source. 1795 */ 1796 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1797 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1798 distance >>= 2; 1799 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1800 1801 for (order = cc->order - 1; 1802 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1803 order--) { 1804 struct free_area *area = &cc->zone->free_area[order]; 1805 struct list_head *freelist; 1806 unsigned long flags; 1807 struct page *freepage; 1808 1809 if (!area->nr_free) 1810 continue; 1811 1812 spin_lock_irqsave(&cc->zone->lock, flags); 1813 freelist = &area->free_list[MIGRATE_MOVABLE]; 1814 list_for_each_entry(freepage, freelist, lru) { 1815 unsigned long free_pfn; 1816 1817 if (nr_scanned++ >= limit) { 1818 move_freelist_tail(freelist, freepage); 1819 break; 1820 } 1821 1822 free_pfn = page_to_pfn(freepage); 1823 if (free_pfn < high_pfn) { 1824 /* 1825 * Avoid if skipped recently. Ideally it would 1826 * move to the tail but even safe iteration of 1827 * the list assumes an entry is deleted, not 1828 * reordered. 1829 */ 1830 if (get_pageblock_skip(freepage)) 1831 continue; 1832 1833 /* Reorder to so a future search skips recent pages */ 1834 move_freelist_tail(freelist, freepage); 1835 1836 update_fast_start_pfn(cc, free_pfn); 1837 pfn = pageblock_start_pfn(free_pfn); 1838 if (pfn < cc->zone->zone_start_pfn) 1839 pfn = cc->zone->zone_start_pfn; 1840 cc->fast_search_fail = 0; 1841 found_block = true; 1842 set_pageblock_skip(freepage); 1843 break; 1844 } 1845 } 1846 spin_unlock_irqrestore(&cc->zone->lock, flags); 1847 } 1848 1849 cc->total_migrate_scanned += nr_scanned; 1850 1851 /* 1852 * If fast scanning failed then use a cached entry for a page block 1853 * that had free pages as the basis for starting a linear scan. 1854 */ 1855 if (!found_block) { 1856 cc->fast_search_fail++; 1857 pfn = reinit_migrate_pfn(cc); 1858 } 1859 return pfn; 1860 } 1861 1862 /* 1863 * Isolate all pages that can be migrated from the first suitable block, 1864 * starting at the block pointed to by the migrate scanner pfn within 1865 * compact_control. 1866 */ 1867 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1868 { 1869 unsigned long block_start_pfn; 1870 unsigned long block_end_pfn; 1871 unsigned long low_pfn; 1872 struct page *page; 1873 const isolate_mode_t isolate_mode = 1874 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1875 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1876 bool fast_find_block; 1877 1878 /* 1879 * Start at where we last stopped, or beginning of the zone as 1880 * initialized by compact_zone(). The first failure will use 1881 * the lowest PFN as the starting point for linear scanning. 1882 */ 1883 low_pfn = fast_find_migrateblock(cc); 1884 block_start_pfn = pageblock_start_pfn(low_pfn); 1885 if (block_start_pfn < cc->zone->zone_start_pfn) 1886 block_start_pfn = cc->zone->zone_start_pfn; 1887 1888 /* 1889 * fast_find_migrateblock marks a pageblock skipped so to avoid 1890 * the isolation_suitable check below, check whether the fast 1891 * search was successful. 1892 */ 1893 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1894 1895 /* Only scan within a pageblock boundary */ 1896 block_end_pfn = pageblock_end_pfn(low_pfn); 1897 1898 /* 1899 * Iterate over whole pageblocks until we find the first suitable. 1900 * Do not cross the free scanner. 1901 */ 1902 for (; block_end_pfn <= cc->free_pfn; 1903 fast_find_block = false, 1904 cc->migrate_pfn = low_pfn = block_end_pfn, 1905 block_start_pfn = block_end_pfn, 1906 block_end_pfn += pageblock_nr_pages) { 1907 1908 /* 1909 * This can potentially iterate a massively long zone with 1910 * many pageblocks unsuitable, so periodically check if we 1911 * need to schedule. 1912 */ 1913 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1914 cond_resched(); 1915 1916 page = pageblock_pfn_to_page(block_start_pfn, 1917 block_end_pfn, cc->zone); 1918 if (!page) 1919 continue; 1920 1921 /* 1922 * If isolation recently failed, do not retry. Only check the 1923 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1924 * to be visited multiple times. Assume skip was checked 1925 * before making it "skip" so other compaction instances do 1926 * not scan the same block. 1927 */ 1928 if (pageblock_aligned(low_pfn) && 1929 !fast_find_block && !isolation_suitable(cc, page)) 1930 continue; 1931 1932 /* 1933 * For async direct compaction, only scan the pageblocks of the 1934 * same migratetype without huge pages. Async direct compaction 1935 * is optimistic to see if the minimum amount of work satisfies 1936 * the allocation. The cached PFN is updated as it's possible 1937 * that all remaining blocks between source and target are 1938 * unsuitable and the compaction scanners fail to meet. 1939 */ 1940 if (!suitable_migration_source(cc, page)) { 1941 update_cached_migrate(cc, block_end_pfn); 1942 continue; 1943 } 1944 1945 /* Perform the isolation */ 1946 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1947 isolate_mode)) 1948 return ISOLATE_ABORT; 1949 1950 /* 1951 * Either we isolated something and proceed with migration. Or 1952 * we failed and compact_zone should decide if we should 1953 * continue or not. 1954 */ 1955 break; 1956 } 1957 1958 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1959 } 1960 1961 /* 1962 * order == -1 is expected when compacting via 1963 * /proc/sys/vm/compact_memory 1964 */ 1965 static inline bool is_via_compact_memory(int order) 1966 { 1967 return order == -1; 1968 } 1969 1970 /* 1971 * Determine whether kswapd is (or recently was!) running on this node. 1972 * 1973 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 1974 * zero it. 1975 */ 1976 static bool kswapd_is_running(pg_data_t *pgdat) 1977 { 1978 bool running; 1979 1980 pgdat_kswapd_lock(pgdat); 1981 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 1982 pgdat_kswapd_unlock(pgdat); 1983 1984 return running; 1985 } 1986 1987 /* 1988 * A zone's fragmentation score is the external fragmentation wrt to the 1989 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1990 */ 1991 static unsigned int fragmentation_score_zone(struct zone *zone) 1992 { 1993 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1994 } 1995 1996 /* 1997 * A weighted zone's fragmentation score is the external fragmentation 1998 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1999 * returns a value in the range [0, 100]. 2000 * 2001 * The scaling factor ensures that proactive compaction focuses on larger 2002 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2003 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2004 * and thus never exceeds the high threshold for proactive compaction. 2005 */ 2006 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2007 { 2008 unsigned long score; 2009 2010 score = zone->present_pages * fragmentation_score_zone(zone); 2011 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2012 } 2013 2014 /* 2015 * The per-node proactive (background) compaction process is started by its 2016 * corresponding kcompactd thread when the node's fragmentation score 2017 * exceeds the high threshold. The compaction process remains active till 2018 * the node's score falls below the low threshold, or one of the back-off 2019 * conditions is met. 2020 */ 2021 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2022 { 2023 unsigned int score = 0; 2024 int zoneid; 2025 2026 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2027 struct zone *zone; 2028 2029 zone = &pgdat->node_zones[zoneid]; 2030 score += fragmentation_score_zone_weighted(zone); 2031 } 2032 2033 return score; 2034 } 2035 2036 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2037 { 2038 unsigned int wmark_low; 2039 2040 /* 2041 * Cap the low watermark to avoid excessive compaction 2042 * activity in case a user sets the proactiveness tunable 2043 * close to 100 (maximum). 2044 */ 2045 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2046 return low ? wmark_low : min(wmark_low + 10, 100U); 2047 } 2048 2049 static bool should_proactive_compact_node(pg_data_t *pgdat) 2050 { 2051 int wmark_high; 2052 2053 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2054 return false; 2055 2056 wmark_high = fragmentation_score_wmark(pgdat, false); 2057 return fragmentation_score_node(pgdat) > wmark_high; 2058 } 2059 2060 static enum compact_result __compact_finished(struct compact_control *cc) 2061 { 2062 unsigned int order; 2063 const int migratetype = cc->migratetype; 2064 int ret; 2065 2066 /* Compaction run completes if the migrate and free scanner meet */ 2067 if (compact_scanners_met(cc)) { 2068 /* Let the next compaction start anew. */ 2069 reset_cached_positions(cc->zone); 2070 2071 /* 2072 * Mark that the PG_migrate_skip information should be cleared 2073 * by kswapd when it goes to sleep. kcompactd does not set the 2074 * flag itself as the decision to be clear should be directly 2075 * based on an allocation request. 2076 */ 2077 if (cc->direct_compaction) 2078 cc->zone->compact_blockskip_flush = true; 2079 2080 if (cc->whole_zone) 2081 return COMPACT_COMPLETE; 2082 else 2083 return COMPACT_PARTIAL_SKIPPED; 2084 } 2085 2086 if (cc->proactive_compaction) { 2087 int score, wmark_low; 2088 pg_data_t *pgdat; 2089 2090 pgdat = cc->zone->zone_pgdat; 2091 if (kswapd_is_running(pgdat)) 2092 return COMPACT_PARTIAL_SKIPPED; 2093 2094 score = fragmentation_score_zone(cc->zone); 2095 wmark_low = fragmentation_score_wmark(pgdat, true); 2096 2097 if (score > wmark_low) 2098 ret = COMPACT_CONTINUE; 2099 else 2100 ret = COMPACT_SUCCESS; 2101 2102 goto out; 2103 } 2104 2105 if (is_via_compact_memory(cc->order)) 2106 return COMPACT_CONTINUE; 2107 2108 /* 2109 * Always finish scanning a pageblock to reduce the possibility of 2110 * fallbacks in the future. This is particularly important when 2111 * migration source is unmovable/reclaimable but it's not worth 2112 * special casing. 2113 */ 2114 if (!pageblock_aligned(cc->migrate_pfn)) 2115 return COMPACT_CONTINUE; 2116 2117 /* Direct compactor: Is a suitable page free? */ 2118 ret = COMPACT_NO_SUITABLE_PAGE; 2119 for (order = cc->order; order < MAX_ORDER; order++) { 2120 struct free_area *area = &cc->zone->free_area[order]; 2121 bool can_steal; 2122 2123 /* Job done if page is free of the right migratetype */ 2124 if (!free_area_empty(area, migratetype)) 2125 return COMPACT_SUCCESS; 2126 2127 #ifdef CONFIG_CMA 2128 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2129 if (migratetype == MIGRATE_MOVABLE && 2130 !free_area_empty(area, MIGRATE_CMA)) 2131 return COMPACT_SUCCESS; 2132 #endif 2133 /* 2134 * Job done if allocation would steal freepages from 2135 * other migratetype buddy lists. 2136 */ 2137 if (find_suitable_fallback(area, order, migratetype, 2138 true, &can_steal) != -1) 2139 /* 2140 * Movable pages are OK in any pageblock. If we are 2141 * stealing for a non-movable allocation, make sure 2142 * we finish compacting the current pageblock first 2143 * (which is assured by the above migrate_pfn align 2144 * check) so it is as free as possible and we won't 2145 * have to steal another one soon. 2146 */ 2147 return COMPACT_SUCCESS; 2148 } 2149 2150 out: 2151 if (cc->contended || fatal_signal_pending(current)) 2152 ret = COMPACT_CONTENDED; 2153 2154 return ret; 2155 } 2156 2157 static enum compact_result compact_finished(struct compact_control *cc) 2158 { 2159 int ret; 2160 2161 ret = __compact_finished(cc); 2162 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2163 if (ret == COMPACT_NO_SUITABLE_PAGE) 2164 ret = COMPACT_CONTINUE; 2165 2166 return ret; 2167 } 2168 2169 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2170 unsigned int alloc_flags, 2171 int highest_zoneidx, 2172 unsigned long wmark_target) 2173 { 2174 unsigned long watermark; 2175 2176 if (is_via_compact_memory(order)) 2177 return COMPACT_CONTINUE; 2178 2179 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2180 /* 2181 * If watermarks for high-order allocation are already met, there 2182 * should be no need for compaction at all. 2183 */ 2184 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2185 alloc_flags)) 2186 return COMPACT_SUCCESS; 2187 2188 /* 2189 * Watermarks for order-0 must be met for compaction to be able to 2190 * isolate free pages for migration targets. This means that the 2191 * watermark and alloc_flags have to match, or be more pessimistic than 2192 * the check in __isolate_free_page(). We don't use the direct 2193 * compactor's alloc_flags, as they are not relevant for freepage 2194 * isolation. We however do use the direct compactor's highest_zoneidx 2195 * to skip over zones where lowmem reserves would prevent allocation 2196 * even if compaction succeeds. 2197 * For costly orders, we require low watermark instead of min for 2198 * compaction to proceed to increase its chances. 2199 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2200 * suitable migration targets 2201 */ 2202 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2203 low_wmark_pages(zone) : min_wmark_pages(zone); 2204 watermark += compact_gap(order); 2205 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2206 ALLOC_CMA, wmark_target)) 2207 return COMPACT_SKIPPED; 2208 2209 return COMPACT_CONTINUE; 2210 } 2211 2212 /* 2213 * compaction_suitable: Is this suitable to run compaction on this zone now? 2214 * Returns 2215 * COMPACT_SKIPPED - If there are too few free pages for compaction 2216 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2217 * COMPACT_CONTINUE - If compaction should run now 2218 */ 2219 enum compact_result compaction_suitable(struct zone *zone, int order, 2220 unsigned int alloc_flags, 2221 int highest_zoneidx) 2222 { 2223 enum compact_result ret; 2224 int fragindex; 2225 2226 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2227 zone_page_state(zone, NR_FREE_PAGES)); 2228 /* 2229 * fragmentation index determines if allocation failures are due to 2230 * low memory or external fragmentation 2231 * 2232 * index of -1000 would imply allocations might succeed depending on 2233 * watermarks, but we already failed the high-order watermark check 2234 * index towards 0 implies failure is due to lack of memory 2235 * index towards 1000 implies failure is due to fragmentation 2236 * 2237 * Only compact if a failure would be due to fragmentation. Also 2238 * ignore fragindex for non-costly orders where the alternative to 2239 * a successful reclaim/compaction is OOM. Fragindex and the 2240 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2241 * excessive compaction for costly orders, but it should not be at the 2242 * expense of system stability. 2243 */ 2244 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2245 fragindex = fragmentation_index(zone, order); 2246 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2247 ret = COMPACT_NOT_SUITABLE_ZONE; 2248 } 2249 2250 trace_mm_compaction_suitable(zone, order, ret); 2251 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2252 ret = COMPACT_SKIPPED; 2253 2254 return ret; 2255 } 2256 2257 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2258 int alloc_flags) 2259 { 2260 struct zone *zone; 2261 struct zoneref *z; 2262 2263 /* 2264 * Make sure at least one zone would pass __compaction_suitable if we continue 2265 * retrying the reclaim. 2266 */ 2267 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2268 ac->highest_zoneidx, ac->nodemask) { 2269 unsigned long available; 2270 enum compact_result compact_result; 2271 2272 /* 2273 * Do not consider all the reclaimable memory because we do not 2274 * want to trash just for a single high order allocation which 2275 * is even not guaranteed to appear even if __compaction_suitable 2276 * is happy about the watermark check. 2277 */ 2278 available = zone_reclaimable_pages(zone) / order; 2279 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2280 compact_result = __compaction_suitable(zone, order, alloc_flags, 2281 ac->highest_zoneidx, available); 2282 if (compact_result == COMPACT_CONTINUE) 2283 return true; 2284 } 2285 2286 return false; 2287 } 2288 2289 static enum compact_result 2290 compact_zone(struct compact_control *cc, struct capture_control *capc) 2291 { 2292 enum compact_result ret; 2293 unsigned long start_pfn = cc->zone->zone_start_pfn; 2294 unsigned long end_pfn = zone_end_pfn(cc->zone); 2295 unsigned long last_migrated_pfn; 2296 const bool sync = cc->mode != MIGRATE_ASYNC; 2297 bool update_cached; 2298 unsigned int nr_succeeded = 0; 2299 2300 /* 2301 * These counters track activities during zone compaction. Initialize 2302 * them before compacting a new zone. 2303 */ 2304 cc->total_migrate_scanned = 0; 2305 cc->total_free_scanned = 0; 2306 cc->nr_migratepages = 0; 2307 cc->nr_freepages = 0; 2308 INIT_LIST_HEAD(&cc->freepages); 2309 INIT_LIST_HEAD(&cc->migratepages); 2310 2311 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2312 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2313 cc->highest_zoneidx); 2314 /* Compaction is likely to fail */ 2315 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2316 return ret; 2317 2318 /* huh, compaction_suitable is returning something unexpected */ 2319 VM_BUG_ON(ret != COMPACT_CONTINUE); 2320 2321 /* 2322 * Clear pageblock skip if there were failures recently and compaction 2323 * is about to be retried after being deferred. 2324 */ 2325 if (compaction_restarting(cc->zone, cc->order)) 2326 __reset_isolation_suitable(cc->zone); 2327 2328 /* 2329 * Setup to move all movable pages to the end of the zone. Used cached 2330 * information on where the scanners should start (unless we explicitly 2331 * want to compact the whole zone), but check that it is initialised 2332 * by ensuring the values are within zone boundaries. 2333 */ 2334 cc->fast_start_pfn = 0; 2335 if (cc->whole_zone) { 2336 cc->migrate_pfn = start_pfn; 2337 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2338 } else { 2339 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2340 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2341 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2342 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2343 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2344 } 2345 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2346 cc->migrate_pfn = start_pfn; 2347 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2348 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2349 } 2350 2351 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2352 cc->whole_zone = true; 2353 } 2354 2355 last_migrated_pfn = 0; 2356 2357 /* 2358 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2359 * the basis that some migrations will fail in ASYNC mode. However, 2360 * if the cached PFNs match and pageblocks are skipped due to having 2361 * no isolation candidates, then the sync state does not matter. 2362 * Until a pageblock with isolation candidates is found, keep the 2363 * cached PFNs in sync to avoid revisiting the same blocks. 2364 */ 2365 update_cached = !sync && 2366 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2367 2368 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2369 2370 /* lru_add_drain_all could be expensive with involving other CPUs */ 2371 lru_add_drain(); 2372 2373 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2374 int err; 2375 unsigned long iteration_start_pfn = cc->migrate_pfn; 2376 2377 /* 2378 * Avoid multiple rescans which can happen if a page cannot be 2379 * isolated (dirty/writeback in async mode) or if the migrated 2380 * pages are being allocated before the pageblock is cleared. 2381 * The first rescan will capture the entire pageblock for 2382 * migration. If it fails, it'll be marked skip and scanning 2383 * will proceed as normal. 2384 */ 2385 cc->rescan = false; 2386 if (pageblock_start_pfn(last_migrated_pfn) == 2387 pageblock_start_pfn(iteration_start_pfn)) { 2388 cc->rescan = true; 2389 } 2390 2391 switch (isolate_migratepages(cc)) { 2392 case ISOLATE_ABORT: 2393 ret = COMPACT_CONTENDED; 2394 putback_movable_pages(&cc->migratepages); 2395 cc->nr_migratepages = 0; 2396 goto out; 2397 case ISOLATE_NONE: 2398 if (update_cached) { 2399 cc->zone->compact_cached_migrate_pfn[1] = 2400 cc->zone->compact_cached_migrate_pfn[0]; 2401 } 2402 2403 /* 2404 * We haven't isolated and migrated anything, but 2405 * there might still be unflushed migrations from 2406 * previous cc->order aligned block. 2407 */ 2408 goto check_drain; 2409 case ISOLATE_SUCCESS: 2410 update_cached = false; 2411 last_migrated_pfn = iteration_start_pfn; 2412 } 2413 2414 err = migrate_pages(&cc->migratepages, compaction_alloc, 2415 compaction_free, (unsigned long)cc, cc->mode, 2416 MR_COMPACTION, &nr_succeeded); 2417 2418 trace_mm_compaction_migratepages(cc, nr_succeeded); 2419 2420 /* All pages were either migrated or will be released */ 2421 cc->nr_migratepages = 0; 2422 if (err) { 2423 putback_movable_pages(&cc->migratepages); 2424 /* 2425 * migrate_pages() may return -ENOMEM when scanners meet 2426 * and we want compact_finished() to detect it 2427 */ 2428 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2429 ret = COMPACT_CONTENDED; 2430 goto out; 2431 } 2432 /* 2433 * We failed to migrate at least one page in the current 2434 * order-aligned block, so skip the rest of it. 2435 */ 2436 if (cc->direct_compaction && 2437 (cc->mode == MIGRATE_ASYNC)) { 2438 cc->migrate_pfn = block_end_pfn( 2439 cc->migrate_pfn - 1, cc->order); 2440 /* Draining pcplists is useless in this case */ 2441 last_migrated_pfn = 0; 2442 } 2443 } 2444 2445 check_drain: 2446 /* 2447 * Has the migration scanner moved away from the previous 2448 * cc->order aligned block where we migrated from? If yes, 2449 * flush the pages that were freed, so that they can merge and 2450 * compact_finished() can detect immediately if allocation 2451 * would succeed. 2452 */ 2453 if (cc->order > 0 && last_migrated_pfn) { 2454 unsigned long current_block_start = 2455 block_start_pfn(cc->migrate_pfn, cc->order); 2456 2457 if (last_migrated_pfn < current_block_start) { 2458 lru_add_drain_cpu_zone(cc->zone); 2459 /* No more flushing until we migrate again */ 2460 last_migrated_pfn = 0; 2461 } 2462 } 2463 2464 /* Stop if a page has been captured */ 2465 if (capc && capc->page) { 2466 ret = COMPACT_SUCCESS; 2467 break; 2468 } 2469 } 2470 2471 out: 2472 /* 2473 * Release free pages and update where the free scanner should restart, 2474 * so we don't leave any returned pages behind in the next attempt. 2475 */ 2476 if (cc->nr_freepages > 0) { 2477 unsigned long free_pfn = release_freepages(&cc->freepages); 2478 2479 cc->nr_freepages = 0; 2480 VM_BUG_ON(free_pfn == 0); 2481 /* The cached pfn is always the first in a pageblock */ 2482 free_pfn = pageblock_start_pfn(free_pfn); 2483 /* 2484 * Only go back, not forward. The cached pfn might have been 2485 * already reset to zone end in compact_finished() 2486 */ 2487 if (free_pfn > cc->zone->compact_cached_free_pfn) 2488 cc->zone->compact_cached_free_pfn = free_pfn; 2489 } 2490 2491 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2492 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2493 2494 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2495 2496 return ret; 2497 } 2498 2499 static enum compact_result compact_zone_order(struct zone *zone, int order, 2500 gfp_t gfp_mask, enum compact_priority prio, 2501 unsigned int alloc_flags, int highest_zoneidx, 2502 struct page **capture) 2503 { 2504 enum compact_result ret; 2505 struct compact_control cc = { 2506 .order = order, 2507 .search_order = order, 2508 .gfp_mask = gfp_mask, 2509 .zone = zone, 2510 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2511 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2512 .alloc_flags = alloc_flags, 2513 .highest_zoneidx = highest_zoneidx, 2514 .direct_compaction = true, 2515 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2516 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2517 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2518 }; 2519 struct capture_control capc = { 2520 .cc = &cc, 2521 .page = NULL, 2522 }; 2523 2524 /* 2525 * Make sure the structs are really initialized before we expose the 2526 * capture control, in case we are interrupted and the interrupt handler 2527 * frees a page. 2528 */ 2529 barrier(); 2530 WRITE_ONCE(current->capture_control, &capc); 2531 2532 ret = compact_zone(&cc, &capc); 2533 2534 VM_BUG_ON(!list_empty(&cc.freepages)); 2535 VM_BUG_ON(!list_empty(&cc.migratepages)); 2536 2537 /* 2538 * Make sure we hide capture control first before we read the captured 2539 * page pointer, otherwise an interrupt could free and capture a page 2540 * and we would leak it. 2541 */ 2542 WRITE_ONCE(current->capture_control, NULL); 2543 *capture = READ_ONCE(capc.page); 2544 /* 2545 * Technically, it is also possible that compaction is skipped but 2546 * the page is still captured out of luck(IRQ came and freed the page). 2547 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2548 * the COMPACT[STALL|FAIL] when compaction is skipped. 2549 */ 2550 if (*capture) 2551 ret = COMPACT_SUCCESS; 2552 2553 return ret; 2554 } 2555 2556 int sysctl_extfrag_threshold = 500; 2557 2558 /** 2559 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2560 * @gfp_mask: The GFP mask of the current allocation 2561 * @order: The order of the current allocation 2562 * @alloc_flags: The allocation flags of the current allocation 2563 * @ac: The context of current allocation 2564 * @prio: Determines how hard direct compaction should try to succeed 2565 * @capture: Pointer to free page created by compaction will be stored here 2566 * 2567 * This is the main entry point for direct page compaction. 2568 */ 2569 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2570 unsigned int alloc_flags, const struct alloc_context *ac, 2571 enum compact_priority prio, struct page **capture) 2572 { 2573 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2574 struct zoneref *z; 2575 struct zone *zone; 2576 enum compact_result rc = COMPACT_SKIPPED; 2577 2578 /* 2579 * Check if the GFP flags allow compaction - GFP_NOIO is really 2580 * tricky context because the migration might require IO 2581 */ 2582 if (!may_perform_io) 2583 return COMPACT_SKIPPED; 2584 2585 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2586 2587 /* Compact each zone in the list */ 2588 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2589 ac->highest_zoneidx, ac->nodemask) { 2590 enum compact_result status; 2591 2592 if (prio > MIN_COMPACT_PRIORITY 2593 && compaction_deferred(zone, order)) { 2594 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2595 continue; 2596 } 2597 2598 status = compact_zone_order(zone, order, gfp_mask, prio, 2599 alloc_flags, ac->highest_zoneidx, capture); 2600 rc = max(status, rc); 2601 2602 /* The allocation should succeed, stop compacting */ 2603 if (status == COMPACT_SUCCESS) { 2604 /* 2605 * We think the allocation will succeed in this zone, 2606 * but it is not certain, hence the false. The caller 2607 * will repeat this with true if allocation indeed 2608 * succeeds in this zone. 2609 */ 2610 compaction_defer_reset(zone, order, false); 2611 2612 break; 2613 } 2614 2615 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2616 status == COMPACT_PARTIAL_SKIPPED)) 2617 /* 2618 * We think that allocation won't succeed in this zone 2619 * so we defer compaction there. If it ends up 2620 * succeeding after all, it will be reset. 2621 */ 2622 defer_compaction(zone, order); 2623 2624 /* 2625 * We might have stopped compacting due to need_resched() in 2626 * async compaction, or due to a fatal signal detected. In that 2627 * case do not try further zones 2628 */ 2629 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2630 || fatal_signal_pending(current)) 2631 break; 2632 } 2633 2634 return rc; 2635 } 2636 2637 /* 2638 * Compact all zones within a node till each zone's fragmentation score 2639 * reaches within proactive compaction thresholds (as determined by the 2640 * proactiveness tunable). 2641 * 2642 * It is possible that the function returns before reaching score targets 2643 * due to various back-off conditions, such as, contention on per-node or 2644 * per-zone locks. 2645 */ 2646 static void proactive_compact_node(pg_data_t *pgdat) 2647 { 2648 int zoneid; 2649 struct zone *zone; 2650 struct compact_control cc = { 2651 .order = -1, 2652 .mode = MIGRATE_SYNC_LIGHT, 2653 .ignore_skip_hint = true, 2654 .whole_zone = true, 2655 .gfp_mask = GFP_KERNEL, 2656 .proactive_compaction = true, 2657 }; 2658 2659 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2660 zone = &pgdat->node_zones[zoneid]; 2661 if (!populated_zone(zone)) 2662 continue; 2663 2664 cc.zone = zone; 2665 2666 compact_zone(&cc, NULL); 2667 2668 VM_BUG_ON(!list_empty(&cc.freepages)); 2669 VM_BUG_ON(!list_empty(&cc.migratepages)); 2670 } 2671 } 2672 2673 /* Compact all zones within a node */ 2674 static void compact_node(int nid) 2675 { 2676 pg_data_t *pgdat = NODE_DATA(nid); 2677 int zoneid; 2678 struct zone *zone; 2679 struct compact_control cc = { 2680 .order = -1, 2681 .mode = MIGRATE_SYNC, 2682 .ignore_skip_hint = true, 2683 .whole_zone = true, 2684 .gfp_mask = GFP_KERNEL, 2685 }; 2686 2687 2688 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2689 2690 zone = &pgdat->node_zones[zoneid]; 2691 if (!populated_zone(zone)) 2692 continue; 2693 2694 cc.zone = zone; 2695 2696 compact_zone(&cc, NULL); 2697 2698 VM_BUG_ON(!list_empty(&cc.freepages)); 2699 VM_BUG_ON(!list_empty(&cc.migratepages)); 2700 } 2701 } 2702 2703 /* Compact all nodes in the system */ 2704 static void compact_nodes(void) 2705 { 2706 int nid; 2707 2708 /* Flush pending updates to the LRU lists */ 2709 lru_add_drain_all(); 2710 2711 for_each_online_node(nid) 2712 compact_node(nid); 2713 } 2714 2715 /* 2716 * Tunable for proactive compaction. It determines how 2717 * aggressively the kernel should compact memory in the 2718 * background. It takes values in the range [0, 100]. 2719 */ 2720 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2721 2722 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2723 void *buffer, size_t *length, loff_t *ppos) 2724 { 2725 int rc, nid; 2726 2727 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2728 if (rc) 2729 return rc; 2730 2731 if (write && sysctl_compaction_proactiveness) { 2732 for_each_online_node(nid) { 2733 pg_data_t *pgdat = NODE_DATA(nid); 2734 2735 if (pgdat->proactive_compact_trigger) 2736 continue; 2737 2738 pgdat->proactive_compact_trigger = true; 2739 wake_up_interruptible(&pgdat->kcompactd_wait); 2740 } 2741 } 2742 2743 return 0; 2744 } 2745 2746 /* 2747 * This is the entry point for compacting all nodes via 2748 * /proc/sys/vm/compact_memory 2749 */ 2750 int sysctl_compaction_handler(struct ctl_table *table, int write, 2751 void *buffer, size_t *length, loff_t *ppos) 2752 { 2753 if (write) 2754 compact_nodes(); 2755 2756 return 0; 2757 } 2758 2759 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2760 static ssize_t compact_store(struct device *dev, 2761 struct device_attribute *attr, 2762 const char *buf, size_t count) 2763 { 2764 int nid = dev->id; 2765 2766 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2767 /* Flush pending updates to the LRU lists */ 2768 lru_add_drain_all(); 2769 2770 compact_node(nid); 2771 } 2772 2773 return count; 2774 } 2775 static DEVICE_ATTR_WO(compact); 2776 2777 int compaction_register_node(struct node *node) 2778 { 2779 return device_create_file(&node->dev, &dev_attr_compact); 2780 } 2781 2782 void compaction_unregister_node(struct node *node) 2783 { 2784 return device_remove_file(&node->dev, &dev_attr_compact); 2785 } 2786 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2787 2788 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2789 { 2790 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2791 pgdat->proactive_compact_trigger; 2792 } 2793 2794 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2795 { 2796 int zoneid; 2797 struct zone *zone; 2798 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2799 2800 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2801 zone = &pgdat->node_zones[zoneid]; 2802 2803 if (!populated_zone(zone)) 2804 continue; 2805 2806 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2807 highest_zoneidx) == COMPACT_CONTINUE) 2808 return true; 2809 } 2810 2811 return false; 2812 } 2813 2814 static void kcompactd_do_work(pg_data_t *pgdat) 2815 { 2816 /* 2817 * With no special task, compact all zones so that a page of requested 2818 * order is allocatable. 2819 */ 2820 int zoneid; 2821 struct zone *zone; 2822 struct compact_control cc = { 2823 .order = pgdat->kcompactd_max_order, 2824 .search_order = pgdat->kcompactd_max_order, 2825 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2826 .mode = MIGRATE_SYNC_LIGHT, 2827 .ignore_skip_hint = false, 2828 .gfp_mask = GFP_KERNEL, 2829 }; 2830 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2831 cc.highest_zoneidx); 2832 count_compact_event(KCOMPACTD_WAKE); 2833 2834 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2835 int status; 2836 2837 zone = &pgdat->node_zones[zoneid]; 2838 if (!populated_zone(zone)) 2839 continue; 2840 2841 if (compaction_deferred(zone, cc.order)) 2842 continue; 2843 2844 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2845 COMPACT_CONTINUE) 2846 continue; 2847 2848 if (kthread_should_stop()) 2849 return; 2850 2851 cc.zone = zone; 2852 status = compact_zone(&cc, NULL); 2853 2854 if (status == COMPACT_SUCCESS) { 2855 compaction_defer_reset(zone, cc.order, false); 2856 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2857 /* 2858 * Buddy pages may become stranded on pcps that could 2859 * otherwise coalesce on the zone's free area for 2860 * order >= cc.order. This is ratelimited by the 2861 * upcoming deferral. 2862 */ 2863 drain_all_pages(zone); 2864 2865 /* 2866 * We use sync migration mode here, so we defer like 2867 * sync direct compaction does. 2868 */ 2869 defer_compaction(zone, cc.order); 2870 } 2871 2872 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2873 cc.total_migrate_scanned); 2874 count_compact_events(KCOMPACTD_FREE_SCANNED, 2875 cc.total_free_scanned); 2876 2877 VM_BUG_ON(!list_empty(&cc.freepages)); 2878 VM_BUG_ON(!list_empty(&cc.migratepages)); 2879 } 2880 2881 /* 2882 * Regardless of success, we are done until woken up next. But remember 2883 * the requested order/highest_zoneidx in case it was higher/tighter 2884 * than our current ones 2885 */ 2886 if (pgdat->kcompactd_max_order <= cc.order) 2887 pgdat->kcompactd_max_order = 0; 2888 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2889 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2890 } 2891 2892 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2893 { 2894 if (!order) 2895 return; 2896 2897 if (pgdat->kcompactd_max_order < order) 2898 pgdat->kcompactd_max_order = order; 2899 2900 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2901 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2902 2903 /* 2904 * Pairs with implicit barrier in wait_event_freezable() 2905 * such that wakeups are not missed. 2906 */ 2907 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2908 return; 2909 2910 if (!kcompactd_node_suitable(pgdat)) 2911 return; 2912 2913 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2914 highest_zoneidx); 2915 wake_up_interruptible(&pgdat->kcompactd_wait); 2916 } 2917 2918 /* 2919 * The background compaction daemon, started as a kernel thread 2920 * from the init process. 2921 */ 2922 static int kcompactd(void *p) 2923 { 2924 pg_data_t *pgdat = (pg_data_t *)p; 2925 struct task_struct *tsk = current; 2926 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2927 long timeout = default_timeout; 2928 2929 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2930 2931 if (!cpumask_empty(cpumask)) 2932 set_cpus_allowed_ptr(tsk, cpumask); 2933 2934 set_freezable(); 2935 2936 pgdat->kcompactd_max_order = 0; 2937 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2938 2939 while (!kthread_should_stop()) { 2940 unsigned long pflags; 2941 2942 /* 2943 * Avoid the unnecessary wakeup for proactive compaction 2944 * when it is disabled. 2945 */ 2946 if (!sysctl_compaction_proactiveness) 2947 timeout = MAX_SCHEDULE_TIMEOUT; 2948 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2949 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2950 kcompactd_work_requested(pgdat), timeout) && 2951 !pgdat->proactive_compact_trigger) { 2952 2953 psi_memstall_enter(&pflags); 2954 kcompactd_do_work(pgdat); 2955 psi_memstall_leave(&pflags); 2956 /* 2957 * Reset the timeout value. The defer timeout from 2958 * proactive compaction is lost here but that is fine 2959 * as the condition of the zone changing substantionally 2960 * then carrying on with the previous defer interval is 2961 * not useful. 2962 */ 2963 timeout = default_timeout; 2964 continue; 2965 } 2966 2967 /* 2968 * Start the proactive work with default timeout. Based 2969 * on the fragmentation score, this timeout is updated. 2970 */ 2971 timeout = default_timeout; 2972 if (should_proactive_compact_node(pgdat)) { 2973 unsigned int prev_score, score; 2974 2975 prev_score = fragmentation_score_node(pgdat); 2976 proactive_compact_node(pgdat); 2977 score = fragmentation_score_node(pgdat); 2978 /* 2979 * Defer proactive compaction if the fragmentation 2980 * score did not go down i.e. no progress made. 2981 */ 2982 if (unlikely(score >= prev_score)) 2983 timeout = 2984 default_timeout << COMPACT_MAX_DEFER_SHIFT; 2985 } 2986 if (unlikely(pgdat->proactive_compact_trigger)) 2987 pgdat->proactive_compact_trigger = false; 2988 } 2989 2990 return 0; 2991 } 2992 2993 /* 2994 * This kcompactd start function will be called by init and node-hot-add. 2995 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2996 */ 2997 void kcompactd_run(int nid) 2998 { 2999 pg_data_t *pgdat = NODE_DATA(nid); 3000 3001 if (pgdat->kcompactd) 3002 return; 3003 3004 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3005 if (IS_ERR(pgdat->kcompactd)) { 3006 pr_err("Failed to start kcompactd on node %d\n", nid); 3007 pgdat->kcompactd = NULL; 3008 } 3009 } 3010 3011 /* 3012 * Called by memory hotplug when all memory in a node is offlined. Caller must 3013 * be holding mem_hotplug_begin/done(). 3014 */ 3015 void kcompactd_stop(int nid) 3016 { 3017 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3018 3019 if (kcompactd) { 3020 kthread_stop(kcompactd); 3021 NODE_DATA(nid)->kcompactd = NULL; 3022 } 3023 } 3024 3025 /* 3026 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3027 * not required for correctness. So if the last cpu in a node goes 3028 * away, we get changed to run anywhere: as the first one comes back, 3029 * restore their cpu bindings. 3030 */ 3031 static int kcompactd_cpu_online(unsigned int cpu) 3032 { 3033 int nid; 3034 3035 for_each_node_state(nid, N_MEMORY) { 3036 pg_data_t *pgdat = NODE_DATA(nid); 3037 const struct cpumask *mask; 3038 3039 mask = cpumask_of_node(pgdat->node_id); 3040 3041 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3042 /* One of our CPUs online: restore mask */ 3043 if (pgdat->kcompactd) 3044 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3045 } 3046 return 0; 3047 } 3048 3049 static int __init kcompactd_init(void) 3050 { 3051 int nid; 3052 int ret; 3053 3054 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3055 "mm/compaction:online", 3056 kcompactd_cpu_online, NULL); 3057 if (ret < 0) { 3058 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3059 return ret; 3060 } 3061 3062 for_each_node_state(nid, N_MEMORY) 3063 kcompactd_run(nid); 3064 return 0; 3065 } 3066 subsys_initcall(kcompactd_init) 3067 3068 #endif /* CONFIG_COMPACTION */ 3069