xref: /openbmc/linux/mm/compaction.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 EXPORT_SYMBOL(PageMovable);
126 
127 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
128 {
129 	VM_BUG_ON_PAGE(!PageLocked(page), page);
130 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
131 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
132 }
133 EXPORT_SYMBOL(__SetPageMovable);
134 
135 void __ClearPageMovable(struct page *page)
136 {
137 	VM_BUG_ON_PAGE(!PageMovable(page), page);
138 	/*
139 	 * This page still has the type of a movable page, but it's
140 	 * actually not movable any more.
141 	 */
142 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
143 }
144 EXPORT_SYMBOL(__ClearPageMovable);
145 
146 /* Do not skip compaction more than 64 times */
147 #define COMPACT_MAX_DEFER_SHIFT 6
148 
149 /*
150  * Compaction is deferred when compaction fails to result in a page
151  * allocation success. 1 << compact_defer_shift, compactions are skipped up
152  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153  */
154 static void defer_compaction(struct zone *zone, int order)
155 {
156 	zone->compact_considered = 0;
157 	zone->compact_defer_shift++;
158 
159 	if (order < zone->compact_order_failed)
160 		zone->compact_order_failed = order;
161 
162 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
163 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164 
165 	trace_mm_compaction_defer_compaction(zone, order);
166 }
167 
168 /* Returns true if compaction should be skipped this time */
169 static bool compaction_deferred(struct zone *zone, int order)
170 {
171 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172 
173 	if (order < zone->compact_order_failed)
174 		return false;
175 
176 	/* Avoid possible overflow */
177 	if (++zone->compact_considered >= defer_limit) {
178 		zone->compact_considered = defer_limit;
179 		return false;
180 	}
181 
182 	trace_mm_compaction_deferred(zone, order);
183 
184 	return true;
185 }
186 
187 /*
188  * Update defer tracking counters after successful compaction of given order,
189  * which means an allocation either succeeded (alloc_success == true) or is
190  * expected to succeed.
191  */
192 void compaction_defer_reset(struct zone *zone, int order,
193 		bool alloc_success)
194 {
195 	if (alloc_success) {
196 		zone->compact_considered = 0;
197 		zone->compact_defer_shift = 0;
198 	}
199 	if (order >= zone->compact_order_failed)
200 		zone->compact_order_failed = order + 1;
201 
202 	trace_mm_compaction_defer_reset(zone, order);
203 }
204 
205 /* Returns true if restarting compaction after many failures */
206 static bool compaction_restarting(struct zone *zone, int order)
207 {
208 	if (order < zone->compact_order_failed)
209 		return false;
210 
211 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
212 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
213 }
214 
215 /* Returns true if the pageblock should be scanned for pages to isolate. */
216 static inline bool isolation_suitable(struct compact_control *cc,
217 					struct page *page)
218 {
219 	if (cc->ignore_skip_hint)
220 		return true;
221 
222 	return !get_pageblock_skip(page);
223 }
224 
225 static void reset_cached_positions(struct zone *zone)
226 {
227 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
228 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
229 	zone->compact_cached_free_pfn =
230 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
231 }
232 
233 /*
234  * Compound pages of >= pageblock_order should consistently be skipped until
235  * released. It is always pointless to compact pages of such order (if they are
236  * migratable), and the pageblocks they occupy cannot contain any free pages.
237  */
238 static bool pageblock_skip_persistent(struct page *page)
239 {
240 	if (!PageCompound(page))
241 		return false;
242 
243 	page = compound_head(page);
244 
245 	if (compound_order(page) >= pageblock_order)
246 		return true;
247 
248 	return false;
249 }
250 
251 static bool
252 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
253 							bool check_target)
254 {
255 	struct page *page = pfn_to_online_page(pfn);
256 	struct page *block_page;
257 	struct page *end_page;
258 	unsigned long block_pfn;
259 
260 	if (!page)
261 		return false;
262 	if (zone != page_zone(page))
263 		return false;
264 	if (pageblock_skip_persistent(page))
265 		return false;
266 
267 	/*
268 	 * If skip is already cleared do no further checking once the
269 	 * restart points have been set.
270 	 */
271 	if (check_source && check_target && !get_pageblock_skip(page))
272 		return true;
273 
274 	/*
275 	 * If clearing skip for the target scanner, do not select a
276 	 * non-movable pageblock as the starting point.
277 	 */
278 	if (!check_source && check_target &&
279 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
280 		return false;
281 
282 	/* Ensure the start of the pageblock or zone is online and valid */
283 	block_pfn = pageblock_start_pfn(pfn);
284 	block_pfn = max(block_pfn, zone->zone_start_pfn);
285 	block_page = pfn_to_online_page(block_pfn);
286 	if (block_page) {
287 		page = block_page;
288 		pfn = block_pfn;
289 	}
290 
291 	/* Ensure the end of the pageblock or zone is online and valid */
292 	block_pfn = pageblock_end_pfn(pfn) - 1;
293 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
294 	end_page = pfn_to_online_page(block_pfn);
295 	if (!end_page)
296 		return false;
297 
298 	/*
299 	 * Only clear the hint if a sample indicates there is either a
300 	 * free page or an LRU page in the block. One or other condition
301 	 * is necessary for the block to be a migration source/target.
302 	 */
303 	do {
304 		if (check_source && PageLRU(page)) {
305 			clear_pageblock_skip(page);
306 			return true;
307 		}
308 
309 		if (check_target && PageBuddy(page)) {
310 			clear_pageblock_skip(page);
311 			return true;
312 		}
313 
314 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
315 	} while (page <= end_page);
316 
317 	return false;
318 }
319 
320 /*
321  * This function is called to clear all cached information on pageblocks that
322  * should be skipped for page isolation when the migrate and free page scanner
323  * meet.
324  */
325 static void __reset_isolation_suitable(struct zone *zone)
326 {
327 	unsigned long migrate_pfn = zone->zone_start_pfn;
328 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
329 	unsigned long reset_migrate = free_pfn;
330 	unsigned long reset_free = migrate_pfn;
331 	bool source_set = false;
332 	bool free_set = false;
333 
334 	if (!zone->compact_blockskip_flush)
335 		return;
336 
337 	zone->compact_blockskip_flush = false;
338 
339 	/*
340 	 * Walk the zone and update pageblock skip information. Source looks
341 	 * for PageLRU while target looks for PageBuddy. When the scanner
342 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
343 	 * is suitable as both source and target.
344 	 */
345 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
346 					free_pfn -= pageblock_nr_pages) {
347 		cond_resched();
348 
349 		/* Update the migrate PFN */
350 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
351 		    migrate_pfn < reset_migrate) {
352 			source_set = true;
353 			reset_migrate = migrate_pfn;
354 			zone->compact_init_migrate_pfn = reset_migrate;
355 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
356 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
357 		}
358 
359 		/* Update the free PFN */
360 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
361 		    free_pfn > reset_free) {
362 			free_set = true;
363 			reset_free = free_pfn;
364 			zone->compact_init_free_pfn = reset_free;
365 			zone->compact_cached_free_pfn = reset_free;
366 		}
367 	}
368 
369 	/* Leave no distance if no suitable block was reset */
370 	if (reset_migrate >= reset_free) {
371 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
372 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
373 		zone->compact_cached_free_pfn = free_pfn;
374 	}
375 }
376 
377 void reset_isolation_suitable(pg_data_t *pgdat)
378 {
379 	int zoneid;
380 
381 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
382 		struct zone *zone = &pgdat->node_zones[zoneid];
383 		if (!populated_zone(zone))
384 			continue;
385 
386 		/* Only flush if a full compaction finished recently */
387 		if (zone->compact_blockskip_flush)
388 			__reset_isolation_suitable(zone);
389 	}
390 }
391 
392 /*
393  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
394  * locks are not required for read/writers. Returns true if it was already set.
395  */
396 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
397 							unsigned long pfn)
398 {
399 	bool skip;
400 
401 	/* Do no update if skip hint is being ignored */
402 	if (cc->ignore_skip_hint)
403 		return false;
404 
405 	if (!pageblock_aligned(pfn))
406 		return false;
407 
408 	skip = get_pageblock_skip(page);
409 	if (!skip && !cc->no_set_skip_hint)
410 		set_pageblock_skip(page);
411 
412 	return skip;
413 }
414 
415 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
416 {
417 	struct zone *zone = cc->zone;
418 
419 	pfn = pageblock_end_pfn(pfn);
420 
421 	/* Set for isolation rather than compaction */
422 	if (cc->no_set_skip_hint)
423 		return;
424 
425 	if (pfn > zone->compact_cached_migrate_pfn[0])
426 		zone->compact_cached_migrate_pfn[0] = pfn;
427 	if (cc->mode != MIGRATE_ASYNC &&
428 	    pfn > zone->compact_cached_migrate_pfn[1])
429 		zone->compact_cached_migrate_pfn[1] = pfn;
430 }
431 
432 /*
433  * If no pages were isolated then mark this pageblock to be skipped in the
434  * future. The information is later cleared by __reset_isolation_suitable().
435  */
436 static void update_pageblock_skip(struct compact_control *cc,
437 			struct page *page, unsigned long pfn)
438 {
439 	struct zone *zone = cc->zone;
440 
441 	if (cc->no_set_skip_hint)
442 		return;
443 
444 	if (!page)
445 		return;
446 
447 	set_pageblock_skip(page);
448 
449 	/* Update where async and sync compaction should restart */
450 	if (pfn < zone->compact_cached_free_pfn)
451 		zone->compact_cached_free_pfn = pfn;
452 }
453 #else
454 static inline bool isolation_suitable(struct compact_control *cc,
455 					struct page *page)
456 {
457 	return true;
458 }
459 
460 static inline bool pageblock_skip_persistent(struct page *page)
461 {
462 	return false;
463 }
464 
465 static inline void update_pageblock_skip(struct compact_control *cc,
466 			struct page *page, unsigned long pfn)
467 {
468 }
469 
470 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
471 {
472 }
473 
474 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
475 							unsigned long pfn)
476 {
477 	return false;
478 }
479 #endif /* CONFIG_COMPACTION */
480 
481 /*
482  * Compaction requires the taking of some coarse locks that are potentially
483  * very heavily contended. For async compaction, trylock and record if the
484  * lock is contended. The lock will still be acquired but compaction will
485  * abort when the current block is finished regardless of success rate.
486  * Sync compaction acquires the lock.
487  *
488  * Always returns true which makes it easier to track lock state in callers.
489  */
490 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
491 						struct compact_control *cc)
492 	__acquires(lock)
493 {
494 	/* Track if the lock is contended in async mode */
495 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
496 		if (spin_trylock_irqsave(lock, *flags))
497 			return true;
498 
499 		cc->contended = true;
500 	}
501 
502 	spin_lock_irqsave(lock, *flags);
503 	return true;
504 }
505 
506 /*
507  * Compaction requires the taking of some coarse locks that are potentially
508  * very heavily contended. The lock should be periodically unlocked to avoid
509  * having disabled IRQs for a long time, even when there is nobody waiting on
510  * the lock. It might also be that allowing the IRQs will result in
511  * need_resched() becoming true. If scheduling is needed, compaction schedules.
512  * Either compaction type will also abort if a fatal signal is pending.
513  * In either case if the lock was locked, it is dropped and not regained.
514  *
515  * Returns true if compaction should abort due to fatal signal pending.
516  * Returns false when compaction can continue.
517  */
518 static bool compact_unlock_should_abort(spinlock_t *lock,
519 		unsigned long flags, bool *locked, struct compact_control *cc)
520 {
521 	if (*locked) {
522 		spin_unlock_irqrestore(lock, flags);
523 		*locked = false;
524 	}
525 
526 	if (fatal_signal_pending(current)) {
527 		cc->contended = true;
528 		return true;
529 	}
530 
531 	cond_resched();
532 
533 	return false;
534 }
535 
536 /*
537  * Isolate free pages onto a private freelist. If @strict is true, will abort
538  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
539  * (even though it may still end up isolating some pages).
540  */
541 static unsigned long isolate_freepages_block(struct compact_control *cc,
542 				unsigned long *start_pfn,
543 				unsigned long end_pfn,
544 				struct list_head *freelist,
545 				unsigned int stride,
546 				bool strict)
547 {
548 	int nr_scanned = 0, total_isolated = 0;
549 	struct page *cursor;
550 	unsigned long flags = 0;
551 	bool locked = false;
552 	unsigned long blockpfn = *start_pfn;
553 	unsigned int order;
554 
555 	/* Strict mode is for isolation, speed is secondary */
556 	if (strict)
557 		stride = 1;
558 
559 	cursor = pfn_to_page(blockpfn);
560 
561 	/* Isolate free pages. */
562 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
563 		int isolated;
564 		struct page *page = cursor;
565 
566 		/*
567 		 * Periodically drop the lock (if held) regardless of its
568 		 * contention, to give chance to IRQs. Abort if fatal signal
569 		 * pending.
570 		 */
571 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
572 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
573 								&locked, cc))
574 			break;
575 
576 		nr_scanned++;
577 
578 		/*
579 		 * For compound pages such as THP and hugetlbfs, we can save
580 		 * potentially a lot of iterations if we skip them at once.
581 		 * The check is racy, but we can consider only valid values
582 		 * and the only danger is skipping too much.
583 		 */
584 		if (PageCompound(page)) {
585 			const unsigned int order = compound_order(page);
586 
587 			if (likely(order < MAX_ORDER)) {
588 				blockpfn += (1UL << order) - 1;
589 				cursor += (1UL << order) - 1;
590 			}
591 			goto isolate_fail;
592 		}
593 
594 		if (!PageBuddy(page))
595 			goto isolate_fail;
596 
597 		/* If we already hold the lock, we can skip some rechecking. */
598 		if (!locked) {
599 			locked = compact_lock_irqsave(&cc->zone->lock,
600 								&flags, cc);
601 
602 			/* Recheck this is a buddy page under lock */
603 			if (!PageBuddy(page))
604 				goto isolate_fail;
605 		}
606 
607 		/* Found a free page, will break it into order-0 pages */
608 		order = buddy_order(page);
609 		isolated = __isolate_free_page(page, order);
610 		if (!isolated)
611 			break;
612 		set_page_private(page, order);
613 
614 		nr_scanned += isolated - 1;
615 		total_isolated += isolated;
616 		cc->nr_freepages += isolated;
617 		list_add_tail(&page->lru, freelist);
618 
619 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 			blockpfn += isolated;
621 			break;
622 		}
623 		/* Advance to the end of split page */
624 		blockpfn += isolated - 1;
625 		cursor += isolated - 1;
626 		continue;
627 
628 isolate_fail:
629 		if (strict)
630 			break;
631 		else
632 			continue;
633 
634 	}
635 
636 	if (locked)
637 		spin_unlock_irqrestore(&cc->zone->lock, flags);
638 
639 	/*
640 	 * There is a tiny chance that we have read bogus compound_order(),
641 	 * so be careful to not go outside of the pageblock.
642 	 */
643 	if (unlikely(blockpfn > end_pfn))
644 		blockpfn = end_pfn;
645 
646 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 					nr_scanned, total_isolated);
648 
649 	/* Record how far we have got within the block */
650 	*start_pfn = blockpfn;
651 
652 	/*
653 	 * If strict isolation is requested by CMA then check that all the
654 	 * pages requested were isolated. If there were any failures, 0 is
655 	 * returned and CMA will fail.
656 	 */
657 	if (strict && blockpfn < end_pfn)
658 		total_isolated = 0;
659 
660 	cc->total_free_scanned += nr_scanned;
661 	if (total_isolated)
662 		count_compact_events(COMPACTISOLATED, total_isolated);
663 	return total_isolated;
664 }
665 
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 			unsigned long start_pfn, unsigned long end_pfn)
683 {
684 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 	LIST_HEAD(freelist);
686 
687 	pfn = start_pfn;
688 	block_start_pfn = pageblock_start_pfn(pfn);
689 	if (block_start_pfn < cc->zone->zone_start_pfn)
690 		block_start_pfn = cc->zone->zone_start_pfn;
691 	block_end_pfn = pageblock_end_pfn(pfn);
692 
693 	for (; pfn < end_pfn; pfn += isolated,
694 				block_start_pfn = block_end_pfn,
695 				block_end_pfn += pageblock_nr_pages) {
696 		/* Protect pfn from changing by isolate_freepages_block */
697 		unsigned long isolate_start_pfn = pfn;
698 
699 		block_end_pfn = min(block_end_pfn, end_pfn);
700 
701 		/*
702 		 * pfn could pass the block_end_pfn if isolated freepage
703 		 * is more than pageblock order. In this case, we adjust
704 		 * scanning range to right one.
705 		 */
706 		if (pfn >= block_end_pfn) {
707 			block_start_pfn = pageblock_start_pfn(pfn);
708 			block_end_pfn = pageblock_end_pfn(pfn);
709 			block_end_pfn = min(block_end_pfn, end_pfn);
710 		}
711 
712 		if (!pageblock_pfn_to_page(block_start_pfn,
713 					block_end_pfn, cc->zone))
714 			break;
715 
716 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 					block_end_pfn, &freelist, 0, true);
718 
719 		/*
720 		 * In strict mode, isolate_freepages_block() returns 0 if
721 		 * there are any holes in the block (ie. invalid PFNs or
722 		 * non-free pages).
723 		 */
724 		if (!isolated)
725 			break;
726 
727 		/*
728 		 * If we managed to isolate pages, it is always (1 << n) *
729 		 * pageblock_nr_pages for some non-negative n.  (Max order
730 		 * page may span two pageblocks).
731 		 */
732 	}
733 
734 	/* __isolate_free_page() does not map the pages */
735 	split_map_pages(&freelist);
736 
737 	if (pfn < end_pfn) {
738 		/* Loop terminated early, cleanup. */
739 		release_freepages(&freelist);
740 		return 0;
741 	}
742 
743 	/* We don't use freelists for anything. */
744 	return pfn;
745 }
746 
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 	bool too_many;
751 
752 	unsigned long active, inactive, isolated;
753 
754 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 			node_page_state(pgdat, NR_INACTIVE_ANON);
756 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 			node_page_state(pgdat, NR_ACTIVE_ANON);
758 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 			node_page_state(pgdat, NR_ISOLATED_ANON);
760 
761 	too_many = isolated > (inactive + active) / 2;
762 	if (!too_many)
763 		wake_throttle_isolated(pgdat);
764 
765 	return too_many;
766 }
767 
768 /**
769  * isolate_migratepages_block() - isolate all migrate-able pages within
770  *				  a single pageblock
771  * @cc:		Compaction control structure.
772  * @low_pfn:	The first PFN to isolate
773  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
774  * @mode:	Isolation mode to be used.
775  *
776  * Isolate all pages that can be migrated from the range specified by
777  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779  * -ENOMEM in case we could not allocate a page, or 0.
780  * cc->migrate_pfn will contain the next pfn to scan.
781  *
782  * The pages are isolated on cc->migratepages list (not required to be empty),
783  * and cc->nr_migratepages is updated accordingly.
784  */
785 static int
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787 			unsigned long end_pfn, isolate_mode_t mode)
788 {
789 	pg_data_t *pgdat = cc->zone->zone_pgdat;
790 	unsigned long nr_scanned = 0, nr_isolated = 0;
791 	struct lruvec *lruvec;
792 	unsigned long flags = 0;
793 	struct lruvec *locked = NULL;
794 	struct page *page = NULL, *valid_page = NULL;
795 	struct address_space *mapping;
796 	unsigned long start_pfn = low_pfn;
797 	bool skip_on_failure = false;
798 	unsigned long next_skip_pfn = 0;
799 	bool skip_updated = false;
800 	int ret = 0;
801 
802 	cc->migrate_pfn = low_pfn;
803 
804 	/*
805 	 * Ensure that there are not too many pages isolated from the LRU
806 	 * list by either parallel reclaimers or compaction. If there are,
807 	 * delay for some time until fewer pages are isolated
808 	 */
809 	while (unlikely(too_many_isolated(pgdat))) {
810 		/* stop isolation if there are still pages not migrated */
811 		if (cc->nr_migratepages)
812 			return -EAGAIN;
813 
814 		/* async migration should just abort */
815 		if (cc->mode == MIGRATE_ASYNC)
816 			return -EAGAIN;
817 
818 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819 
820 		if (fatal_signal_pending(current))
821 			return -EINTR;
822 	}
823 
824 	cond_resched();
825 
826 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 		skip_on_failure = true;
828 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829 	}
830 
831 	/* Time to isolate some pages for migration */
832 	for (; low_pfn < end_pfn; low_pfn++) {
833 
834 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 			/*
836 			 * We have isolated all migration candidates in the
837 			 * previous order-aligned block, and did not skip it due
838 			 * to failure. We should migrate the pages now and
839 			 * hopefully succeed compaction.
840 			 */
841 			if (nr_isolated)
842 				break;
843 
844 			/*
845 			 * We failed to isolate in the previous order-aligned
846 			 * block. Set the new boundary to the end of the
847 			 * current block. Note we can't simply increase
848 			 * next_skip_pfn by 1 << order, as low_pfn might have
849 			 * been incremented by a higher number due to skipping
850 			 * a compound or a high-order buddy page in the
851 			 * previous loop iteration.
852 			 */
853 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854 		}
855 
856 		/*
857 		 * Periodically drop the lock (if held) regardless of its
858 		 * contention, to give chance to IRQs. Abort completely if
859 		 * a fatal signal is pending.
860 		 */
861 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862 			if (locked) {
863 				unlock_page_lruvec_irqrestore(locked, flags);
864 				locked = NULL;
865 			}
866 
867 			if (fatal_signal_pending(current)) {
868 				cc->contended = true;
869 				ret = -EINTR;
870 
871 				goto fatal_pending;
872 			}
873 
874 			cond_resched();
875 		}
876 
877 		nr_scanned++;
878 
879 		page = pfn_to_page(low_pfn);
880 
881 		/*
882 		 * Check if the pageblock has already been marked skipped.
883 		 * Only the aligned PFN is checked as the caller isolates
884 		 * COMPACT_CLUSTER_MAX at a time so the second call must
885 		 * not falsely conclude that the block should be skipped.
886 		 */
887 		if (!valid_page && pageblock_aligned(low_pfn)) {
888 			if (!isolation_suitable(cc, page)) {
889 				low_pfn = end_pfn;
890 				page = NULL;
891 				goto isolate_abort;
892 			}
893 			valid_page = page;
894 		}
895 
896 		if (PageHuge(page) && cc->alloc_contig) {
897 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
898 
899 			/*
900 			 * Fail isolation in case isolate_or_dissolve_huge_page()
901 			 * reports an error. In case of -ENOMEM, abort right away.
902 			 */
903 			if (ret < 0) {
904 				 /* Do not report -EBUSY down the chain */
905 				if (ret == -EBUSY)
906 					ret = 0;
907 				low_pfn += compound_nr(page) - 1;
908 				goto isolate_fail;
909 			}
910 
911 			if (PageHuge(page)) {
912 				/*
913 				 * Hugepage was successfully isolated and placed
914 				 * on the cc->migratepages list.
915 				 */
916 				low_pfn += compound_nr(page) - 1;
917 				goto isolate_success_no_list;
918 			}
919 
920 			/*
921 			 * Ok, the hugepage was dissolved. Now these pages are
922 			 * Buddy and cannot be re-allocated because they are
923 			 * isolated. Fall-through as the check below handles
924 			 * Buddy pages.
925 			 */
926 		}
927 
928 		/*
929 		 * Skip if free. We read page order here without zone lock
930 		 * which is generally unsafe, but the race window is small and
931 		 * the worst thing that can happen is that we skip some
932 		 * potential isolation targets.
933 		 */
934 		if (PageBuddy(page)) {
935 			unsigned long freepage_order = buddy_order_unsafe(page);
936 
937 			/*
938 			 * Without lock, we cannot be sure that what we got is
939 			 * a valid page order. Consider only values in the
940 			 * valid order range to prevent low_pfn overflow.
941 			 */
942 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
943 				low_pfn += (1UL << freepage_order) - 1;
944 			continue;
945 		}
946 
947 		/*
948 		 * Regardless of being on LRU, compound pages such as THP and
949 		 * hugetlbfs are not to be compacted unless we are attempting
950 		 * an allocation much larger than the huge page size (eg CMA).
951 		 * We can potentially save a lot of iterations if we skip them
952 		 * at once. The check is racy, but we can consider only valid
953 		 * values and the only danger is skipping too much.
954 		 */
955 		if (PageCompound(page) && !cc->alloc_contig) {
956 			const unsigned int order = compound_order(page);
957 
958 			if (likely(order < MAX_ORDER))
959 				low_pfn += (1UL << order) - 1;
960 			goto isolate_fail;
961 		}
962 
963 		/*
964 		 * Check may be lockless but that's ok as we recheck later.
965 		 * It's possible to migrate LRU and non-lru movable pages.
966 		 * Skip any other type of page
967 		 */
968 		if (!PageLRU(page)) {
969 			/*
970 			 * __PageMovable can return false positive so we need
971 			 * to verify it under page_lock.
972 			 */
973 			if (unlikely(__PageMovable(page)) &&
974 					!PageIsolated(page)) {
975 				if (locked) {
976 					unlock_page_lruvec_irqrestore(locked, flags);
977 					locked = NULL;
978 				}
979 
980 				if (!isolate_movable_page(page, mode))
981 					goto isolate_success;
982 			}
983 
984 			goto isolate_fail;
985 		}
986 
987 		/*
988 		 * Be careful not to clear PageLRU until after we're
989 		 * sure the page is not being freed elsewhere -- the
990 		 * page release code relies on it.
991 		 */
992 		if (unlikely(!get_page_unless_zero(page)))
993 			goto isolate_fail;
994 
995 		/*
996 		 * Migration will fail if an anonymous page is pinned in memory,
997 		 * so avoid taking lru_lock and isolating it unnecessarily in an
998 		 * admittedly racy check.
999 		 */
1000 		mapping = page_mapping(page);
1001 		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1002 			goto isolate_fail_put;
1003 
1004 		/*
1005 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1006 		 * because those do not depend on fs locks.
1007 		 */
1008 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1009 			goto isolate_fail_put;
1010 
1011 		/* Only take pages on LRU: a check now makes later tests safe */
1012 		if (!PageLRU(page))
1013 			goto isolate_fail_put;
1014 
1015 		/* Compaction might skip unevictable pages but CMA takes them */
1016 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017 			goto isolate_fail_put;
1018 
1019 		/*
1020 		 * To minimise LRU disruption, the caller can indicate with
1021 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022 		 * it will be able to migrate without blocking - clean pages
1023 		 * for the most part.  PageWriteback would require blocking.
1024 		 */
1025 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1026 			goto isolate_fail_put;
1027 
1028 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1029 			bool migrate_dirty;
1030 
1031 			/*
1032 			 * Only pages without mappings or that have a
1033 			 * ->migrate_folio callback are possible to migrate
1034 			 * without blocking. However, we can be racing with
1035 			 * truncation so it's necessary to lock the page
1036 			 * to stabilise the mapping as truncation holds
1037 			 * the page lock until after the page is removed
1038 			 * from the page cache.
1039 			 */
1040 			if (!trylock_page(page))
1041 				goto isolate_fail_put;
1042 
1043 			mapping = page_mapping(page);
1044 			migrate_dirty = !mapping ||
1045 					mapping->a_ops->migrate_folio;
1046 			unlock_page(page);
1047 			if (!migrate_dirty)
1048 				goto isolate_fail_put;
1049 		}
1050 
1051 		/* Try isolate the page */
1052 		if (!TestClearPageLRU(page))
1053 			goto isolate_fail_put;
1054 
1055 		lruvec = folio_lruvec(page_folio(page));
1056 
1057 		/* If we already hold the lock, we can skip some rechecking */
1058 		if (lruvec != locked) {
1059 			if (locked)
1060 				unlock_page_lruvec_irqrestore(locked, flags);
1061 
1062 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063 			locked = lruvec;
1064 
1065 			lruvec_memcg_debug(lruvec, page_folio(page));
1066 
1067 			/* Try get exclusive access under lock */
1068 			if (!skip_updated) {
1069 				skip_updated = true;
1070 				if (test_and_set_skip(cc, page, low_pfn))
1071 					goto isolate_abort;
1072 			}
1073 
1074 			/*
1075 			 * Page become compound since the non-locked check,
1076 			 * and it's on LRU. It can only be a THP so the order
1077 			 * is safe to read and it's 0 for tail pages.
1078 			 */
1079 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080 				low_pfn += compound_nr(page) - 1;
1081 				SetPageLRU(page);
1082 				goto isolate_fail_put;
1083 			}
1084 		}
1085 
1086 		/* The whole page is taken off the LRU; skip the tail pages. */
1087 		if (PageCompound(page))
1088 			low_pfn += compound_nr(page) - 1;
1089 
1090 		/* Successfully isolated */
1091 		del_page_from_lru_list(page, lruvec);
1092 		mod_node_page_state(page_pgdat(page),
1093 				NR_ISOLATED_ANON + page_is_file_lru(page),
1094 				thp_nr_pages(page));
1095 
1096 isolate_success:
1097 		list_add(&page->lru, &cc->migratepages);
1098 isolate_success_no_list:
1099 		cc->nr_migratepages += compound_nr(page);
1100 		nr_isolated += compound_nr(page);
1101 		nr_scanned += compound_nr(page) - 1;
1102 
1103 		/*
1104 		 * Avoid isolating too much unless this block is being
1105 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106 		 * or a lock is contended. For contention, isolate quickly to
1107 		 * potentially remove one source of contention.
1108 		 */
1109 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110 		    !cc->rescan && !cc->contended) {
1111 			++low_pfn;
1112 			break;
1113 		}
1114 
1115 		continue;
1116 
1117 isolate_fail_put:
1118 		/* Avoid potential deadlock in freeing page under lru_lock */
1119 		if (locked) {
1120 			unlock_page_lruvec_irqrestore(locked, flags);
1121 			locked = NULL;
1122 		}
1123 		put_page(page);
1124 
1125 isolate_fail:
1126 		if (!skip_on_failure && ret != -ENOMEM)
1127 			continue;
1128 
1129 		/*
1130 		 * We have isolated some pages, but then failed. Release them
1131 		 * instead of migrating, as we cannot form the cc->order buddy
1132 		 * page anyway.
1133 		 */
1134 		if (nr_isolated) {
1135 			if (locked) {
1136 				unlock_page_lruvec_irqrestore(locked, flags);
1137 				locked = NULL;
1138 			}
1139 			putback_movable_pages(&cc->migratepages);
1140 			cc->nr_migratepages = 0;
1141 			nr_isolated = 0;
1142 		}
1143 
1144 		if (low_pfn < next_skip_pfn) {
1145 			low_pfn = next_skip_pfn - 1;
1146 			/*
1147 			 * The check near the loop beginning would have updated
1148 			 * next_skip_pfn too, but this is a bit simpler.
1149 			 */
1150 			next_skip_pfn += 1UL << cc->order;
1151 		}
1152 
1153 		if (ret == -ENOMEM)
1154 			break;
1155 	}
1156 
1157 	/*
1158 	 * The PageBuddy() check could have potentially brought us outside
1159 	 * the range to be scanned.
1160 	 */
1161 	if (unlikely(low_pfn > end_pfn))
1162 		low_pfn = end_pfn;
1163 
1164 	page = NULL;
1165 
1166 isolate_abort:
1167 	if (locked)
1168 		unlock_page_lruvec_irqrestore(locked, flags);
1169 	if (page) {
1170 		SetPageLRU(page);
1171 		put_page(page);
1172 	}
1173 
1174 	/*
1175 	 * Updated the cached scanner pfn once the pageblock has been scanned
1176 	 * Pages will either be migrated in which case there is no point
1177 	 * scanning in the near future or migration failed in which case the
1178 	 * failure reason may persist. The block is marked for skipping if
1179 	 * there were no pages isolated in the block or if the block is
1180 	 * rescanned twice in a row.
1181 	 */
1182 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183 		if (valid_page && !skip_updated)
1184 			set_pageblock_skip(valid_page);
1185 		update_cached_migrate(cc, low_pfn);
1186 	}
1187 
1188 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189 						nr_scanned, nr_isolated);
1190 
1191 fatal_pending:
1192 	cc->total_migrate_scanned += nr_scanned;
1193 	if (nr_isolated)
1194 		count_compact_events(COMPACTISOLATED, nr_isolated);
1195 
1196 	cc->migrate_pfn = low_pfn;
1197 
1198 	return ret;
1199 }
1200 
1201 /**
1202  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203  * @cc:        Compaction control structure.
1204  * @start_pfn: The first PFN to start isolating.
1205  * @end_pfn:   The one-past-last PFN.
1206  *
1207  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208  * in case we could not allocate a page, or 0.
1209  */
1210 int
1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212 							unsigned long end_pfn)
1213 {
1214 	unsigned long pfn, block_start_pfn, block_end_pfn;
1215 	int ret = 0;
1216 
1217 	/* Scan block by block. First and last block may be incomplete */
1218 	pfn = start_pfn;
1219 	block_start_pfn = pageblock_start_pfn(pfn);
1220 	if (block_start_pfn < cc->zone->zone_start_pfn)
1221 		block_start_pfn = cc->zone->zone_start_pfn;
1222 	block_end_pfn = pageblock_end_pfn(pfn);
1223 
1224 	for (; pfn < end_pfn; pfn = block_end_pfn,
1225 				block_start_pfn = block_end_pfn,
1226 				block_end_pfn += pageblock_nr_pages) {
1227 
1228 		block_end_pfn = min(block_end_pfn, end_pfn);
1229 
1230 		if (!pageblock_pfn_to_page(block_start_pfn,
1231 					block_end_pfn, cc->zone))
1232 			continue;
1233 
1234 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235 						 ISOLATE_UNEVICTABLE);
1236 
1237 		if (ret)
1238 			break;
1239 
1240 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1241 			break;
1242 	}
1243 
1244 	return ret;
1245 }
1246 
1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248 #ifdef CONFIG_COMPACTION
1249 
1250 static bool suitable_migration_source(struct compact_control *cc,
1251 							struct page *page)
1252 {
1253 	int block_mt;
1254 
1255 	if (pageblock_skip_persistent(page))
1256 		return false;
1257 
1258 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1259 		return true;
1260 
1261 	block_mt = get_pageblock_migratetype(page);
1262 
1263 	if (cc->migratetype == MIGRATE_MOVABLE)
1264 		return is_migrate_movable(block_mt);
1265 	else
1266 		return block_mt == cc->migratetype;
1267 }
1268 
1269 /* Returns true if the page is within a block suitable for migration to */
1270 static bool suitable_migration_target(struct compact_control *cc,
1271 							struct page *page)
1272 {
1273 	/* If the page is a large free page, then disallow migration */
1274 	if (PageBuddy(page)) {
1275 		/*
1276 		 * We are checking page_order without zone->lock taken. But
1277 		 * the only small danger is that we skip a potentially suitable
1278 		 * pageblock, so it's not worth to check order for valid range.
1279 		 */
1280 		if (buddy_order_unsafe(page) >= pageblock_order)
1281 			return false;
1282 	}
1283 
1284 	if (cc->ignore_block_suitable)
1285 		return true;
1286 
1287 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1289 		return true;
1290 
1291 	/* Otherwise skip the block */
1292 	return false;
1293 }
1294 
1295 static inline unsigned int
1296 freelist_scan_limit(struct compact_control *cc)
1297 {
1298 	unsigned short shift = BITS_PER_LONG - 1;
1299 
1300 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1301 }
1302 
1303 /*
1304  * Test whether the free scanner has reached the same or lower pageblock than
1305  * the migration scanner, and compaction should thus terminate.
1306  */
1307 static inline bool compact_scanners_met(struct compact_control *cc)
1308 {
1309 	return (cc->free_pfn >> pageblock_order)
1310 		<= (cc->migrate_pfn >> pageblock_order);
1311 }
1312 
1313 /*
1314  * Used when scanning for a suitable migration target which scans freelists
1315  * in reverse. Reorders the list such as the unscanned pages are scanned
1316  * first on the next iteration of the free scanner
1317  */
1318 static void
1319 move_freelist_head(struct list_head *freelist, struct page *freepage)
1320 {
1321 	LIST_HEAD(sublist);
1322 
1323 	if (!list_is_last(freelist, &freepage->lru)) {
1324 		list_cut_before(&sublist, freelist, &freepage->lru);
1325 		list_splice_tail(&sublist, freelist);
1326 	}
1327 }
1328 
1329 /*
1330  * Similar to move_freelist_head except used by the migration scanner
1331  * when scanning forward. It's possible for these list operations to
1332  * move against each other if they search the free list exactly in
1333  * lockstep.
1334  */
1335 static void
1336 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337 {
1338 	LIST_HEAD(sublist);
1339 
1340 	if (!list_is_first(freelist, &freepage->lru)) {
1341 		list_cut_position(&sublist, freelist, &freepage->lru);
1342 		list_splice_tail(&sublist, freelist);
1343 	}
1344 }
1345 
1346 static void
1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1348 {
1349 	unsigned long start_pfn, end_pfn;
1350 	struct page *page;
1351 
1352 	/* Do not search around if there are enough pages already */
1353 	if (cc->nr_freepages >= cc->nr_migratepages)
1354 		return;
1355 
1356 	/* Minimise scanning during async compaction */
1357 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358 		return;
1359 
1360 	/* Pageblock boundaries */
1361 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363 
1364 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365 	if (!page)
1366 		return;
1367 
1368 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1369 
1370 	/* Skip this pageblock in the future as it's full or nearly full */
1371 	if (cc->nr_freepages < cc->nr_migratepages)
1372 		set_pageblock_skip(page);
1373 
1374 	return;
1375 }
1376 
1377 /* Search orders in round-robin fashion */
1378 static int next_search_order(struct compact_control *cc, int order)
1379 {
1380 	order--;
1381 	if (order < 0)
1382 		order = cc->order - 1;
1383 
1384 	/* Search wrapped around? */
1385 	if (order == cc->search_order) {
1386 		cc->search_order--;
1387 		if (cc->search_order < 0)
1388 			cc->search_order = cc->order - 1;
1389 		return -1;
1390 	}
1391 
1392 	return order;
1393 }
1394 
1395 static unsigned long
1396 fast_isolate_freepages(struct compact_control *cc)
1397 {
1398 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1399 	unsigned int nr_scanned = 0;
1400 	unsigned long low_pfn, min_pfn, highest = 0;
1401 	unsigned long nr_isolated = 0;
1402 	unsigned long distance;
1403 	struct page *page = NULL;
1404 	bool scan_start = false;
1405 	int order;
1406 
1407 	/* Full compaction passes in a negative order */
1408 	if (cc->order <= 0)
1409 		return cc->free_pfn;
1410 
1411 	/*
1412 	 * If starting the scan, use a deeper search and use the highest
1413 	 * PFN found if a suitable one is not found.
1414 	 */
1415 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1416 		limit = pageblock_nr_pages >> 1;
1417 		scan_start = true;
1418 	}
1419 
1420 	/*
1421 	 * Preferred point is in the top quarter of the scan space but take
1422 	 * a pfn from the top half if the search is problematic.
1423 	 */
1424 	distance = (cc->free_pfn - cc->migrate_pfn);
1425 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1426 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1427 
1428 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1429 		low_pfn = min_pfn;
1430 
1431 	/*
1432 	 * Search starts from the last successful isolation order or the next
1433 	 * order to search after a previous failure
1434 	 */
1435 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1436 
1437 	for (order = cc->search_order;
1438 	     !page && order >= 0;
1439 	     order = next_search_order(cc, order)) {
1440 		struct free_area *area = &cc->zone->free_area[order];
1441 		struct list_head *freelist;
1442 		struct page *freepage;
1443 		unsigned long flags;
1444 		unsigned int order_scanned = 0;
1445 		unsigned long high_pfn = 0;
1446 
1447 		if (!area->nr_free)
1448 			continue;
1449 
1450 		spin_lock_irqsave(&cc->zone->lock, flags);
1451 		freelist = &area->free_list[MIGRATE_MOVABLE];
1452 		list_for_each_entry_reverse(freepage, freelist, lru) {
1453 			unsigned long pfn;
1454 
1455 			order_scanned++;
1456 			nr_scanned++;
1457 			pfn = page_to_pfn(freepage);
1458 
1459 			if (pfn >= highest)
1460 				highest = max(pageblock_start_pfn(pfn),
1461 					      cc->zone->zone_start_pfn);
1462 
1463 			if (pfn >= low_pfn) {
1464 				cc->fast_search_fail = 0;
1465 				cc->search_order = order;
1466 				page = freepage;
1467 				break;
1468 			}
1469 
1470 			if (pfn >= min_pfn && pfn > high_pfn) {
1471 				high_pfn = pfn;
1472 
1473 				/* Shorten the scan if a candidate is found */
1474 				limit >>= 1;
1475 			}
1476 
1477 			if (order_scanned >= limit)
1478 				break;
1479 		}
1480 
1481 		/* Use a minimum pfn if a preferred one was not found */
1482 		if (!page && high_pfn) {
1483 			page = pfn_to_page(high_pfn);
1484 
1485 			/* Update freepage for the list reorder below */
1486 			freepage = page;
1487 		}
1488 
1489 		/* Reorder to so a future search skips recent pages */
1490 		move_freelist_head(freelist, freepage);
1491 
1492 		/* Isolate the page if available */
1493 		if (page) {
1494 			if (__isolate_free_page(page, order)) {
1495 				set_page_private(page, order);
1496 				nr_isolated = 1 << order;
1497 				nr_scanned += nr_isolated - 1;
1498 				cc->nr_freepages += nr_isolated;
1499 				list_add_tail(&page->lru, &cc->freepages);
1500 				count_compact_events(COMPACTISOLATED, nr_isolated);
1501 			} else {
1502 				/* If isolation fails, abort the search */
1503 				order = cc->search_order + 1;
1504 				page = NULL;
1505 			}
1506 		}
1507 
1508 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1509 
1510 		/*
1511 		 * Smaller scan on next order so the total scan is related
1512 		 * to freelist_scan_limit.
1513 		 */
1514 		if (order_scanned >= limit)
1515 			limit = max(1U, limit >> 1);
1516 	}
1517 
1518 	if (!page) {
1519 		cc->fast_search_fail++;
1520 		if (scan_start) {
1521 			/*
1522 			 * Use the highest PFN found above min. If one was
1523 			 * not found, be pessimistic for direct compaction
1524 			 * and use the min mark.
1525 			 */
1526 			if (highest >= min_pfn) {
1527 				page = pfn_to_page(highest);
1528 				cc->free_pfn = highest;
1529 			} else {
1530 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1531 					page = pageblock_pfn_to_page(min_pfn,
1532 						min(pageblock_end_pfn(min_pfn),
1533 						    zone_end_pfn(cc->zone)),
1534 						cc->zone);
1535 					cc->free_pfn = min_pfn;
1536 				}
1537 			}
1538 		}
1539 	}
1540 
1541 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1542 		highest -= pageblock_nr_pages;
1543 		cc->zone->compact_cached_free_pfn = highest;
1544 	}
1545 
1546 	cc->total_free_scanned += nr_scanned;
1547 	if (!page)
1548 		return cc->free_pfn;
1549 
1550 	low_pfn = page_to_pfn(page);
1551 	fast_isolate_around(cc, low_pfn);
1552 	return low_pfn;
1553 }
1554 
1555 /*
1556  * Based on information in the current compact_control, find blocks
1557  * suitable for isolating free pages from and then isolate them.
1558  */
1559 static void isolate_freepages(struct compact_control *cc)
1560 {
1561 	struct zone *zone = cc->zone;
1562 	struct page *page;
1563 	unsigned long block_start_pfn;	/* start of current pageblock */
1564 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1565 	unsigned long block_end_pfn;	/* end of current pageblock */
1566 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1567 	struct list_head *freelist = &cc->freepages;
1568 	unsigned int stride;
1569 
1570 	/* Try a small search of the free lists for a candidate */
1571 	fast_isolate_freepages(cc);
1572 	if (cc->nr_freepages)
1573 		goto splitmap;
1574 
1575 	/*
1576 	 * Initialise the free scanner. The starting point is where we last
1577 	 * successfully isolated from, zone-cached value, or the end of the
1578 	 * zone when isolating for the first time. For looping we also need
1579 	 * this pfn aligned down to the pageblock boundary, because we do
1580 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1581 	 * For ending point, take care when isolating in last pageblock of a
1582 	 * zone which ends in the middle of a pageblock.
1583 	 * The low boundary is the end of the pageblock the migration scanner
1584 	 * is using.
1585 	 */
1586 	isolate_start_pfn = cc->free_pfn;
1587 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1588 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1589 						zone_end_pfn(zone));
1590 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1591 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1592 
1593 	/*
1594 	 * Isolate free pages until enough are available to migrate the
1595 	 * pages on cc->migratepages. We stop searching if the migrate
1596 	 * and free page scanners meet or enough free pages are isolated.
1597 	 */
1598 	for (; block_start_pfn >= low_pfn;
1599 				block_end_pfn = block_start_pfn,
1600 				block_start_pfn -= pageblock_nr_pages,
1601 				isolate_start_pfn = block_start_pfn) {
1602 		unsigned long nr_isolated;
1603 
1604 		/*
1605 		 * This can iterate a massively long zone without finding any
1606 		 * suitable migration targets, so periodically check resched.
1607 		 */
1608 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1609 			cond_resched();
1610 
1611 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1612 									zone);
1613 		if (!page)
1614 			continue;
1615 
1616 		/* Check the block is suitable for migration */
1617 		if (!suitable_migration_target(cc, page))
1618 			continue;
1619 
1620 		/* If isolation recently failed, do not retry */
1621 		if (!isolation_suitable(cc, page))
1622 			continue;
1623 
1624 		/* Found a block suitable for isolating free pages from. */
1625 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1626 					block_end_pfn, freelist, stride, false);
1627 
1628 		/* Update the skip hint if the full pageblock was scanned */
1629 		if (isolate_start_pfn == block_end_pfn)
1630 			update_pageblock_skip(cc, page, block_start_pfn);
1631 
1632 		/* Are enough freepages isolated? */
1633 		if (cc->nr_freepages >= cc->nr_migratepages) {
1634 			if (isolate_start_pfn >= block_end_pfn) {
1635 				/*
1636 				 * Restart at previous pageblock if more
1637 				 * freepages can be isolated next time.
1638 				 */
1639 				isolate_start_pfn =
1640 					block_start_pfn - pageblock_nr_pages;
1641 			}
1642 			break;
1643 		} else if (isolate_start_pfn < block_end_pfn) {
1644 			/*
1645 			 * If isolation failed early, do not continue
1646 			 * needlessly.
1647 			 */
1648 			break;
1649 		}
1650 
1651 		/* Adjust stride depending on isolation */
1652 		if (nr_isolated) {
1653 			stride = 1;
1654 			continue;
1655 		}
1656 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1657 	}
1658 
1659 	/*
1660 	 * Record where the free scanner will restart next time. Either we
1661 	 * broke from the loop and set isolate_start_pfn based on the last
1662 	 * call to isolate_freepages_block(), or we met the migration scanner
1663 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1664 	 */
1665 	cc->free_pfn = isolate_start_pfn;
1666 
1667 splitmap:
1668 	/* __isolate_free_page() does not map the pages */
1669 	split_map_pages(freelist);
1670 }
1671 
1672 /*
1673  * This is a migrate-callback that "allocates" freepages by taking pages
1674  * from the isolated freelists in the block we are migrating to.
1675  */
1676 static struct page *compaction_alloc(struct page *migratepage,
1677 					unsigned long data)
1678 {
1679 	struct compact_control *cc = (struct compact_control *)data;
1680 	struct page *freepage;
1681 
1682 	if (list_empty(&cc->freepages)) {
1683 		isolate_freepages(cc);
1684 
1685 		if (list_empty(&cc->freepages))
1686 			return NULL;
1687 	}
1688 
1689 	freepage = list_entry(cc->freepages.next, struct page, lru);
1690 	list_del(&freepage->lru);
1691 	cc->nr_freepages--;
1692 
1693 	return freepage;
1694 }
1695 
1696 /*
1697  * This is a migrate-callback that "frees" freepages back to the isolated
1698  * freelist.  All pages on the freelist are from the same zone, so there is no
1699  * special handling needed for NUMA.
1700  */
1701 static void compaction_free(struct page *page, unsigned long data)
1702 {
1703 	struct compact_control *cc = (struct compact_control *)data;
1704 
1705 	list_add(&page->lru, &cc->freepages);
1706 	cc->nr_freepages++;
1707 }
1708 
1709 /* possible outcome of isolate_migratepages */
1710 typedef enum {
1711 	ISOLATE_ABORT,		/* Abort compaction now */
1712 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1713 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1714 } isolate_migrate_t;
1715 
1716 /*
1717  * Allow userspace to control policy on scanning the unevictable LRU for
1718  * compactable pages.
1719  */
1720 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1721 
1722 static inline void
1723 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1724 {
1725 	if (cc->fast_start_pfn == ULONG_MAX)
1726 		return;
1727 
1728 	if (!cc->fast_start_pfn)
1729 		cc->fast_start_pfn = pfn;
1730 
1731 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1732 }
1733 
1734 static inline unsigned long
1735 reinit_migrate_pfn(struct compact_control *cc)
1736 {
1737 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1738 		return cc->migrate_pfn;
1739 
1740 	cc->migrate_pfn = cc->fast_start_pfn;
1741 	cc->fast_start_pfn = ULONG_MAX;
1742 
1743 	return cc->migrate_pfn;
1744 }
1745 
1746 /*
1747  * Briefly search the free lists for a migration source that already has
1748  * some free pages to reduce the number of pages that need migration
1749  * before a pageblock is free.
1750  */
1751 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1752 {
1753 	unsigned int limit = freelist_scan_limit(cc);
1754 	unsigned int nr_scanned = 0;
1755 	unsigned long distance;
1756 	unsigned long pfn = cc->migrate_pfn;
1757 	unsigned long high_pfn;
1758 	int order;
1759 	bool found_block = false;
1760 
1761 	/* Skip hints are relied on to avoid repeats on the fast search */
1762 	if (cc->ignore_skip_hint)
1763 		return pfn;
1764 
1765 	/*
1766 	 * If the migrate_pfn is not at the start of a zone or the start
1767 	 * of a pageblock then assume this is a continuation of a previous
1768 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1769 	 */
1770 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1771 		return pfn;
1772 
1773 	/*
1774 	 * For smaller orders, just linearly scan as the number of pages
1775 	 * to migrate should be relatively small and does not necessarily
1776 	 * justify freeing up a large block for a small allocation.
1777 	 */
1778 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1779 		return pfn;
1780 
1781 	/*
1782 	 * Only allow kcompactd and direct requests for movable pages to
1783 	 * quickly clear out a MOVABLE pageblock for allocation. This
1784 	 * reduces the risk that a large movable pageblock is freed for
1785 	 * an unmovable/reclaimable small allocation.
1786 	 */
1787 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1788 		return pfn;
1789 
1790 	/*
1791 	 * When starting the migration scanner, pick any pageblock within the
1792 	 * first half of the search space. Otherwise try and pick a pageblock
1793 	 * within the first eighth to reduce the chances that a migration
1794 	 * target later becomes a source.
1795 	 */
1796 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1797 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1798 		distance >>= 2;
1799 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1800 
1801 	for (order = cc->order - 1;
1802 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1803 	     order--) {
1804 		struct free_area *area = &cc->zone->free_area[order];
1805 		struct list_head *freelist;
1806 		unsigned long flags;
1807 		struct page *freepage;
1808 
1809 		if (!area->nr_free)
1810 			continue;
1811 
1812 		spin_lock_irqsave(&cc->zone->lock, flags);
1813 		freelist = &area->free_list[MIGRATE_MOVABLE];
1814 		list_for_each_entry(freepage, freelist, lru) {
1815 			unsigned long free_pfn;
1816 
1817 			if (nr_scanned++ >= limit) {
1818 				move_freelist_tail(freelist, freepage);
1819 				break;
1820 			}
1821 
1822 			free_pfn = page_to_pfn(freepage);
1823 			if (free_pfn < high_pfn) {
1824 				/*
1825 				 * Avoid if skipped recently. Ideally it would
1826 				 * move to the tail but even safe iteration of
1827 				 * the list assumes an entry is deleted, not
1828 				 * reordered.
1829 				 */
1830 				if (get_pageblock_skip(freepage))
1831 					continue;
1832 
1833 				/* Reorder to so a future search skips recent pages */
1834 				move_freelist_tail(freelist, freepage);
1835 
1836 				update_fast_start_pfn(cc, free_pfn);
1837 				pfn = pageblock_start_pfn(free_pfn);
1838 				if (pfn < cc->zone->zone_start_pfn)
1839 					pfn = cc->zone->zone_start_pfn;
1840 				cc->fast_search_fail = 0;
1841 				found_block = true;
1842 				set_pageblock_skip(freepage);
1843 				break;
1844 			}
1845 		}
1846 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1847 	}
1848 
1849 	cc->total_migrate_scanned += nr_scanned;
1850 
1851 	/*
1852 	 * If fast scanning failed then use a cached entry for a page block
1853 	 * that had free pages as the basis for starting a linear scan.
1854 	 */
1855 	if (!found_block) {
1856 		cc->fast_search_fail++;
1857 		pfn = reinit_migrate_pfn(cc);
1858 	}
1859 	return pfn;
1860 }
1861 
1862 /*
1863  * Isolate all pages that can be migrated from the first suitable block,
1864  * starting at the block pointed to by the migrate scanner pfn within
1865  * compact_control.
1866  */
1867 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1868 {
1869 	unsigned long block_start_pfn;
1870 	unsigned long block_end_pfn;
1871 	unsigned long low_pfn;
1872 	struct page *page;
1873 	const isolate_mode_t isolate_mode =
1874 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1875 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1876 	bool fast_find_block;
1877 
1878 	/*
1879 	 * Start at where we last stopped, or beginning of the zone as
1880 	 * initialized by compact_zone(). The first failure will use
1881 	 * the lowest PFN as the starting point for linear scanning.
1882 	 */
1883 	low_pfn = fast_find_migrateblock(cc);
1884 	block_start_pfn = pageblock_start_pfn(low_pfn);
1885 	if (block_start_pfn < cc->zone->zone_start_pfn)
1886 		block_start_pfn = cc->zone->zone_start_pfn;
1887 
1888 	/*
1889 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1890 	 * the isolation_suitable check below, check whether the fast
1891 	 * search was successful.
1892 	 */
1893 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1894 
1895 	/* Only scan within a pageblock boundary */
1896 	block_end_pfn = pageblock_end_pfn(low_pfn);
1897 
1898 	/*
1899 	 * Iterate over whole pageblocks until we find the first suitable.
1900 	 * Do not cross the free scanner.
1901 	 */
1902 	for (; block_end_pfn <= cc->free_pfn;
1903 			fast_find_block = false,
1904 			cc->migrate_pfn = low_pfn = block_end_pfn,
1905 			block_start_pfn = block_end_pfn,
1906 			block_end_pfn += pageblock_nr_pages) {
1907 
1908 		/*
1909 		 * This can potentially iterate a massively long zone with
1910 		 * many pageblocks unsuitable, so periodically check if we
1911 		 * need to schedule.
1912 		 */
1913 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1914 			cond_resched();
1915 
1916 		page = pageblock_pfn_to_page(block_start_pfn,
1917 						block_end_pfn, cc->zone);
1918 		if (!page)
1919 			continue;
1920 
1921 		/*
1922 		 * If isolation recently failed, do not retry. Only check the
1923 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1924 		 * to be visited multiple times. Assume skip was checked
1925 		 * before making it "skip" so other compaction instances do
1926 		 * not scan the same block.
1927 		 */
1928 		if (pageblock_aligned(low_pfn) &&
1929 		    !fast_find_block && !isolation_suitable(cc, page))
1930 			continue;
1931 
1932 		/*
1933 		 * For async direct compaction, only scan the pageblocks of the
1934 		 * same migratetype without huge pages. Async direct compaction
1935 		 * is optimistic to see if the minimum amount of work satisfies
1936 		 * the allocation. The cached PFN is updated as it's possible
1937 		 * that all remaining blocks between source and target are
1938 		 * unsuitable and the compaction scanners fail to meet.
1939 		 */
1940 		if (!suitable_migration_source(cc, page)) {
1941 			update_cached_migrate(cc, block_end_pfn);
1942 			continue;
1943 		}
1944 
1945 		/* Perform the isolation */
1946 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1947 						isolate_mode))
1948 			return ISOLATE_ABORT;
1949 
1950 		/*
1951 		 * Either we isolated something and proceed with migration. Or
1952 		 * we failed and compact_zone should decide if we should
1953 		 * continue or not.
1954 		 */
1955 		break;
1956 	}
1957 
1958 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1959 }
1960 
1961 /*
1962  * order == -1 is expected when compacting via
1963  * /proc/sys/vm/compact_memory
1964  */
1965 static inline bool is_via_compact_memory(int order)
1966 {
1967 	return order == -1;
1968 }
1969 
1970 /*
1971  * Determine whether kswapd is (or recently was!) running on this node.
1972  *
1973  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1974  * zero it.
1975  */
1976 static bool kswapd_is_running(pg_data_t *pgdat)
1977 {
1978 	bool running;
1979 
1980 	pgdat_kswapd_lock(pgdat);
1981 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1982 	pgdat_kswapd_unlock(pgdat);
1983 
1984 	return running;
1985 }
1986 
1987 /*
1988  * A zone's fragmentation score is the external fragmentation wrt to the
1989  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1990  */
1991 static unsigned int fragmentation_score_zone(struct zone *zone)
1992 {
1993 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1994 }
1995 
1996 /*
1997  * A weighted zone's fragmentation score is the external fragmentation
1998  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1999  * returns a value in the range [0, 100].
2000  *
2001  * The scaling factor ensures that proactive compaction focuses on larger
2002  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2003  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2004  * and thus never exceeds the high threshold for proactive compaction.
2005  */
2006 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2007 {
2008 	unsigned long score;
2009 
2010 	score = zone->present_pages * fragmentation_score_zone(zone);
2011 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2012 }
2013 
2014 /*
2015  * The per-node proactive (background) compaction process is started by its
2016  * corresponding kcompactd thread when the node's fragmentation score
2017  * exceeds the high threshold. The compaction process remains active till
2018  * the node's score falls below the low threshold, or one of the back-off
2019  * conditions is met.
2020  */
2021 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2022 {
2023 	unsigned int score = 0;
2024 	int zoneid;
2025 
2026 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2027 		struct zone *zone;
2028 
2029 		zone = &pgdat->node_zones[zoneid];
2030 		score += fragmentation_score_zone_weighted(zone);
2031 	}
2032 
2033 	return score;
2034 }
2035 
2036 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2037 {
2038 	unsigned int wmark_low;
2039 
2040 	/*
2041 	 * Cap the low watermark to avoid excessive compaction
2042 	 * activity in case a user sets the proactiveness tunable
2043 	 * close to 100 (maximum).
2044 	 */
2045 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2046 	return low ? wmark_low : min(wmark_low + 10, 100U);
2047 }
2048 
2049 static bool should_proactive_compact_node(pg_data_t *pgdat)
2050 {
2051 	int wmark_high;
2052 
2053 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2054 		return false;
2055 
2056 	wmark_high = fragmentation_score_wmark(pgdat, false);
2057 	return fragmentation_score_node(pgdat) > wmark_high;
2058 }
2059 
2060 static enum compact_result __compact_finished(struct compact_control *cc)
2061 {
2062 	unsigned int order;
2063 	const int migratetype = cc->migratetype;
2064 	int ret;
2065 
2066 	/* Compaction run completes if the migrate and free scanner meet */
2067 	if (compact_scanners_met(cc)) {
2068 		/* Let the next compaction start anew. */
2069 		reset_cached_positions(cc->zone);
2070 
2071 		/*
2072 		 * Mark that the PG_migrate_skip information should be cleared
2073 		 * by kswapd when it goes to sleep. kcompactd does not set the
2074 		 * flag itself as the decision to be clear should be directly
2075 		 * based on an allocation request.
2076 		 */
2077 		if (cc->direct_compaction)
2078 			cc->zone->compact_blockskip_flush = true;
2079 
2080 		if (cc->whole_zone)
2081 			return COMPACT_COMPLETE;
2082 		else
2083 			return COMPACT_PARTIAL_SKIPPED;
2084 	}
2085 
2086 	if (cc->proactive_compaction) {
2087 		int score, wmark_low;
2088 		pg_data_t *pgdat;
2089 
2090 		pgdat = cc->zone->zone_pgdat;
2091 		if (kswapd_is_running(pgdat))
2092 			return COMPACT_PARTIAL_SKIPPED;
2093 
2094 		score = fragmentation_score_zone(cc->zone);
2095 		wmark_low = fragmentation_score_wmark(pgdat, true);
2096 
2097 		if (score > wmark_low)
2098 			ret = COMPACT_CONTINUE;
2099 		else
2100 			ret = COMPACT_SUCCESS;
2101 
2102 		goto out;
2103 	}
2104 
2105 	if (is_via_compact_memory(cc->order))
2106 		return COMPACT_CONTINUE;
2107 
2108 	/*
2109 	 * Always finish scanning a pageblock to reduce the possibility of
2110 	 * fallbacks in the future. This is particularly important when
2111 	 * migration source is unmovable/reclaimable but it's not worth
2112 	 * special casing.
2113 	 */
2114 	if (!pageblock_aligned(cc->migrate_pfn))
2115 		return COMPACT_CONTINUE;
2116 
2117 	/* Direct compactor: Is a suitable page free? */
2118 	ret = COMPACT_NO_SUITABLE_PAGE;
2119 	for (order = cc->order; order < MAX_ORDER; order++) {
2120 		struct free_area *area = &cc->zone->free_area[order];
2121 		bool can_steal;
2122 
2123 		/* Job done if page is free of the right migratetype */
2124 		if (!free_area_empty(area, migratetype))
2125 			return COMPACT_SUCCESS;
2126 
2127 #ifdef CONFIG_CMA
2128 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2129 		if (migratetype == MIGRATE_MOVABLE &&
2130 			!free_area_empty(area, MIGRATE_CMA))
2131 			return COMPACT_SUCCESS;
2132 #endif
2133 		/*
2134 		 * Job done if allocation would steal freepages from
2135 		 * other migratetype buddy lists.
2136 		 */
2137 		if (find_suitable_fallback(area, order, migratetype,
2138 						true, &can_steal) != -1)
2139 			/*
2140 			 * Movable pages are OK in any pageblock. If we are
2141 			 * stealing for a non-movable allocation, make sure
2142 			 * we finish compacting the current pageblock first
2143 			 * (which is assured by the above migrate_pfn align
2144 			 * check) so it is as free as possible and we won't
2145 			 * have to steal another one soon.
2146 			 */
2147 			return COMPACT_SUCCESS;
2148 	}
2149 
2150 out:
2151 	if (cc->contended || fatal_signal_pending(current))
2152 		ret = COMPACT_CONTENDED;
2153 
2154 	return ret;
2155 }
2156 
2157 static enum compact_result compact_finished(struct compact_control *cc)
2158 {
2159 	int ret;
2160 
2161 	ret = __compact_finished(cc);
2162 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2163 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2164 		ret = COMPACT_CONTINUE;
2165 
2166 	return ret;
2167 }
2168 
2169 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2170 					unsigned int alloc_flags,
2171 					int highest_zoneidx,
2172 					unsigned long wmark_target)
2173 {
2174 	unsigned long watermark;
2175 
2176 	if (is_via_compact_memory(order))
2177 		return COMPACT_CONTINUE;
2178 
2179 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2180 	/*
2181 	 * If watermarks for high-order allocation are already met, there
2182 	 * should be no need for compaction at all.
2183 	 */
2184 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2185 								alloc_flags))
2186 		return COMPACT_SUCCESS;
2187 
2188 	/*
2189 	 * Watermarks for order-0 must be met for compaction to be able to
2190 	 * isolate free pages for migration targets. This means that the
2191 	 * watermark and alloc_flags have to match, or be more pessimistic than
2192 	 * the check in __isolate_free_page(). We don't use the direct
2193 	 * compactor's alloc_flags, as they are not relevant for freepage
2194 	 * isolation. We however do use the direct compactor's highest_zoneidx
2195 	 * to skip over zones where lowmem reserves would prevent allocation
2196 	 * even if compaction succeeds.
2197 	 * For costly orders, we require low watermark instead of min for
2198 	 * compaction to proceed to increase its chances.
2199 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2200 	 * suitable migration targets
2201 	 */
2202 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2203 				low_wmark_pages(zone) : min_wmark_pages(zone);
2204 	watermark += compact_gap(order);
2205 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2206 						ALLOC_CMA, wmark_target))
2207 		return COMPACT_SKIPPED;
2208 
2209 	return COMPACT_CONTINUE;
2210 }
2211 
2212 /*
2213  * compaction_suitable: Is this suitable to run compaction on this zone now?
2214  * Returns
2215  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2216  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2217  *   COMPACT_CONTINUE - If compaction should run now
2218  */
2219 enum compact_result compaction_suitable(struct zone *zone, int order,
2220 					unsigned int alloc_flags,
2221 					int highest_zoneidx)
2222 {
2223 	enum compact_result ret;
2224 	int fragindex;
2225 
2226 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2227 				    zone_page_state(zone, NR_FREE_PAGES));
2228 	/*
2229 	 * fragmentation index determines if allocation failures are due to
2230 	 * low memory or external fragmentation
2231 	 *
2232 	 * index of -1000 would imply allocations might succeed depending on
2233 	 * watermarks, but we already failed the high-order watermark check
2234 	 * index towards 0 implies failure is due to lack of memory
2235 	 * index towards 1000 implies failure is due to fragmentation
2236 	 *
2237 	 * Only compact if a failure would be due to fragmentation. Also
2238 	 * ignore fragindex for non-costly orders where the alternative to
2239 	 * a successful reclaim/compaction is OOM. Fragindex and the
2240 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2241 	 * excessive compaction for costly orders, but it should not be at the
2242 	 * expense of system stability.
2243 	 */
2244 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2245 		fragindex = fragmentation_index(zone, order);
2246 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2247 			ret = COMPACT_NOT_SUITABLE_ZONE;
2248 	}
2249 
2250 	trace_mm_compaction_suitable(zone, order, ret);
2251 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2252 		ret = COMPACT_SKIPPED;
2253 
2254 	return ret;
2255 }
2256 
2257 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2258 		int alloc_flags)
2259 {
2260 	struct zone *zone;
2261 	struct zoneref *z;
2262 
2263 	/*
2264 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2265 	 * retrying the reclaim.
2266 	 */
2267 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2268 				ac->highest_zoneidx, ac->nodemask) {
2269 		unsigned long available;
2270 		enum compact_result compact_result;
2271 
2272 		/*
2273 		 * Do not consider all the reclaimable memory because we do not
2274 		 * want to trash just for a single high order allocation which
2275 		 * is even not guaranteed to appear even if __compaction_suitable
2276 		 * is happy about the watermark check.
2277 		 */
2278 		available = zone_reclaimable_pages(zone) / order;
2279 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2280 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2281 				ac->highest_zoneidx, available);
2282 		if (compact_result == COMPACT_CONTINUE)
2283 			return true;
2284 	}
2285 
2286 	return false;
2287 }
2288 
2289 static enum compact_result
2290 compact_zone(struct compact_control *cc, struct capture_control *capc)
2291 {
2292 	enum compact_result ret;
2293 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2294 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2295 	unsigned long last_migrated_pfn;
2296 	const bool sync = cc->mode != MIGRATE_ASYNC;
2297 	bool update_cached;
2298 	unsigned int nr_succeeded = 0;
2299 
2300 	/*
2301 	 * These counters track activities during zone compaction.  Initialize
2302 	 * them before compacting a new zone.
2303 	 */
2304 	cc->total_migrate_scanned = 0;
2305 	cc->total_free_scanned = 0;
2306 	cc->nr_migratepages = 0;
2307 	cc->nr_freepages = 0;
2308 	INIT_LIST_HEAD(&cc->freepages);
2309 	INIT_LIST_HEAD(&cc->migratepages);
2310 
2311 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2312 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2313 							cc->highest_zoneidx);
2314 	/* Compaction is likely to fail */
2315 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2316 		return ret;
2317 
2318 	/* huh, compaction_suitable is returning something unexpected */
2319 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2320 
2321 	/*
2322 	 * Clear pageblock skip if there were failures recently and compaction
2323 	 * is about to be retried after being deferred.
2324 	 */
2325 	if (compaction_restarting(cc->zone, cc->order))
2326 		__reset_isolation_suitable(cc->zone);
2327 
2328 	/*
2329 	 * Setup to move all movable pages to the end of the zone. Used cached
2330 	 * information on where the scanners should start (unless we explicitly
2331 	 * want to compact the whole zone), but check that it is initialised
2332 	 * by ensuring the values are within zone boundaries.
2333 	 */
2334 	cc->fast_start_pfn = 0;
2335 	if (cc->whole_zone) {
2336 		cc->migrate_pfn = start_pfn;
2337 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2338 	} else {
2339 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2340 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2341 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2342 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2344 		}
2345 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2346 			cc->migrate_pfn = start_pfn;
2347 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2348 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2349 		}
2350 
2351 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2352 			cc->whole_zone = true;
2353 	}
2354 
2355 	last_migrated_pfn = 0;
2356 
2357 	/*
2358 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2359 	 * the basis that some migrations will fail in ASYNC mode. However,
2360 	 * if the cached PFNs match and pageblocks are skipped due to having
2361 	 * no isolation candidates, then the sync state does not matter.
2362 	 * Until a pageblock with isolation candidates is found, keep the
2363 	 * cached PFNs in sync to avoid revisiting the same blocks.
2364 	 */
2365 	update_cached = !sync &&
2366 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2367 
2368 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2369 
2370 	/* lru_add_drain_all could be expensive with involving other CPUs */
2371 	lru_add_drain();
2372 
2373 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2374 		int err;
2375 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2376 
2377 		/*
2378 		 * Avoid multiple rescans which can happen if a page cannot be
2379 		 * isolated (dirty/writeback in async mode) or if the migrated
2380 		 * pages are being allocated before the pageblock is cleared.
2381 		 * The first rescan will capture the entire pageblock for
2382 		 * migration. If it fails, it'll be marked skip and scanning
2383 		 * will proceed as normal.
2384 		 */
2385 		cc->rescan = false;
2386 		if (pageblock_start_pfn(last_migrated_pfn) ==
2387 		    pageblock_start_pfn(iteration_start_pfn)) {
2388 			cc->rescan = true;
2389 		}
2390 
2391 		switch (isolate_migratepages(cc)) {
2392 		case ISOLATE_ABORT:
2393 			ret = COMPACT_CONTENDED;
2394 			putback_movable_pages(&cc->migratepages);
2395 			cc->nr_migratepages = 0;
2396 			goto out;
2397 		case ISOLATE_NONE:
2398 			if (update_cached) {
2399 				cc->zone->compact_cached_migrate_pfn[1] =
2400 					cc->zone->compact_cached_migrate_pfn[0];
2401 			}
2402 
2403 			/*
2404 			 * We haven't isolated and migrated anything, but
2405 			 * there might still be unflushed migrations from
2406 			 * previous cc->order aligned block.
2407 			 */
2408 			goto check_drain;
2409 		case ISOLATE_SUCCESS:
2410 			update_cached = false;
2411 			last_migrated_pfn = iteration_start_pfn;
2412 		}
2413 
2414 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2415 				compaction_free, (unsigned long)cc, cc->mode,
2416 				MR_COMPACTION, &nr_succeeded);
2417 
2418 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2419 
2420 		/* All pages were either migrated or will be released */
2421 		cc->nr_migratepages = 0;
2422 		if (err) {
2423 			putback_movable_pages(&cc->migratepages);
2424 			/*
2425 			 * migrate_pages() may return -ENOMEM when scanners meet
2426 			 * and we want compact_finished() to detect it
2427 			 */
2428 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2429 				ret = COMPACT_CONTENDED;
2430 				goto out;
2431 			}
2432 			/*
2433 			 * We failed to migrate at least one page in the current
2434 			 * order-aligned block, so skip the rest of it.
2435 			 */
2436 			if (cc->direct_compaction &&
2437 						(cc->mode == MIGRATE_ASYNC)) {
2438 				cc->migrate_pfn = block_end_pfn(
2439 						cc->migrate_pfn - 1, cc->order);
2440 				/* Draining pcplists is useless in this case */
2441 				last_migrated_pfn = 0;
2442 			}
2443 		}
2444 
2445 check_drain:
2446 		/*
2447 		 * Has the migration scanner moved away from the previous
2448 		 * cc->order aligned block where we migrated from? If yes,
2449 		 * flush the pages that were freed, so that they can merge and
2450 		 * compact_finished() can detect immediately if allocation
2451 		 * would succeed.
2452 		 */
2453 		if (cc->order > 0 && last_migrated_pfn) {
2454 			unsigned long current_block_start =
2455 				block_start_pfn(cc->migrate_pfn, cc->order);
2456 
2457 			if (last_migrated_pfn < current_block_start) {
2458 				lru_add_drain_cpu_zone(cc->zone);
2459 				/* No more flushing until we migrate again */
2460 				last_migrated_pfn = 0;
2461 			}
2462 		}
2463 
2464 		/* Stop if a page has been captured */
2465 		if (capc && capc->page) {
2466 			ret = COMPACT_SUCCESS;
2467 			break;
2468 		}
2469 	}
2470 
2471 out:
2472 	/*
2473 	 * Release free pages and update where the free scanner should restart,
2474 	 * so we don't leave any returned pages behind in the next attempt.
2475 	 */
2476 	if (cc->nr_freepages > 0) {
2477 		unsigned long free_pfn = release_freepages(&cc->freepages);
2478 
2479 		cc->nr_freepages = 0;
2480 		VM_BUG_ON(free_pfn == 0);
2481 		/* The cached pfn is always the first in a pageblock */
2482 		free_pfn = pageblock_start_pfn(free_pfn);
2483 		/*
2484 		 * Only go back, not forward. The cached pfn might have been
2485 		 * already reset to zone end in compact_finished()
2486 		 */
2487 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2488 			cc->zone->compact_cached_free_pfn = free_pfn;
2489 	}
2490 
2491 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2492 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2493 
2494 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2495 
2496 	return ret;
2497 }
2498 
2499 static enum compact_result compact_zone_order(struct zone *zone, int order,
2500 		gfp_t gfp_mask, enum compact_priority prio,
2501 		unsigned int alloc_flags, int highest_zoneidx,
2502 		struct page **capture)
2503 {
2504 	enum compact_result ret;
2505 	struct compact_control cc = {
2506 		.order = order,
2507 		.search_order = order,
2508 		.gfp_mask = gfp_mask,
2509 		.zone = zone,
2510 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2511 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2512 		.alloc_flags = alloc_flags,
2513 		.highest_zoneidx = highest_zoneidx,
2514 		.direct_compaction = true,
2515 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2516 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2517 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2518 	};
2519 	struct capture_control capc = {
2520 		.cc = &cc,
2521 		.page = NULL,
2522 	};
2523 
2524 	/*
2525 	 * Make sure the structs are really initialized before we expose the
2526 	 * capture control, in case we are interrupted and the interrupt handler
2527 	 * frees a page.
2528 	 */
2529 	barrier();
2530 	WRITE_ONCE(current->capture_control, &capc);
2531 
2532 	ret = compact_zone(&cc, &capc);
2533 
2534 	VM_BUG_ON(!list_empty(&cc.freepages));
2535 	VM_BUG_ON(!list_empty(&cc.migratepages));
2536 
2537 	/*
2538 	 * Make sure we hide capture control first before we read the captured
2539 	 * page pointer, otherwise an interrupt could free and capture a page
2540 	 * and we would leak it.
2541 	 */
2542 	WRITE_ONCE(current->capture_control, NULL);
2543 	*capture = READ_ONCE(capc.page);
2544 	/*
2545 	 * Technically, it is also possible that compaction is skipped but
2546 	 * the page is still captured out of luck(IRQ came and freed the page).
2547 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2548 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2549 	 */
2550 	if (*capture)
2551 		ret = COMPACT_SUCCESS;
2552 
2553 	return ret;
2554 }
2555 
2556 int sysctl_extfrag_threshold = 500;
2557 
2558 /**
2559  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2560  * @gfp_mask: The GFP mask of the current allocation
2561  * @order: The order of the current allocation
2562  * @alloc_flags: The allocation flags of the current allocation
2563  * @ac: The context of current allocation
2564  * @prio: Determines how hard direct compaction should try to succeed
2565  * @capture: Pointer to free page created by compaction will be stored here
2566  *
2567  * This is the main entry point for direct page compaction.
2568  */
2569 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2570 		unsigned int alloc_flags, const struct alloc_context *ac,
2571 		enum compact_priority prio, struct page **capture)
2572 {
2573 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2574 	struct zoneref *z;
2575 	struct zone *zone;
2576 	enum compact_result rc = COMPACT_SKIPPED;
2577 
2578 	/*
2579 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2580 	 * tricky context because the migration might require IO
2581 	 */
2582 	if (!may_perform_io)
2583 		return COMPACT_SKIPPED;
2584 
2585 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2586 
2587 	/* Compact each zone in the list */
2588 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2589 					ac->highest_zoneidx, ac->nodemask) {
2590 		enum compact_result status;
2591 
2592 		if (prio > MIN_COMPACT_PRIORITY
2593 					&& compaction_deferred(zone, order)) {
2594 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2595 			continue;
2596 		}
2597 
2598 		status = compact_zone_order(zone, order, gfp_mask, prio,
2599 				alloc_flags, ac->highest_zoneidx, capture);
2600 		rc = max(status, rc);
2601 
2602 		/* The allocation should succeed, stop compacting */
2603 		if (status == COMPACT_SUCCESS) {
2604 			/*
2605 			 * We think the allocation will succeed in this zone,
2606 			 * but it is not certain, hence the false. The caller
2607 			 * will repeat this with true if allocation indeed
2608 			 * succeeds in this zone.
2609 			 */
2610 			compaction_defer_reset(zone, order, false);
2611 
2612 			break;
2613 		}
2614 
2615 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2616 					status == COMPACT_PARTIAL_SKIPPED))
2617 			/*
2618 			 * We think that allocation won't succeed in this zone
2619 			 * so we defer compaction there. If it ends up
2620 			 * succeeding after all, it will be reset.
2621 			 */
2622 			defer_compaction(zone, order);
2623 
2624 		/*
2625 		 * We might have stopped compacting due to need_resched() in
2626 		 * async compaction, or due to a fatal signal detected. In that
2627 		 * case do not try further zones
2628 		 */
2629 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2630 					|| fatal_signal_pending(current))
2631 			break;
2632 	}
2633 
2634 	return rc;
2635 }
2636 
2637 /*
2638  * Compact all zones within a node till each zone's fragmentation score
2639  * reaches within proactive compaction thresholds (as determined by the
2640  * proactiveness tunable).
2641  *
2642  * It is possible that the function returns before reaching score targets
2643  * due to various back-off conditions, such as, contention on per-node or
2644  * per-zone locks.
2645  */
2646 static void proactive_compact_node(pg_data_t *pgdat)
2647 {
2648 	int zoneid;
2649 	struct zone *zone;
2650 	struct compact_control cc = {
2651 		.order = -1,
2652 		.mode = MIGRATE_SYNC_LIGHT,
2653 		.ignore_skip_hint = true,
2654 		.whole_zone = true,
2655 		.gfp_mask = GFP_KERNEL,
2656 		.proactive_compaction = true,
2657 	};
2658 
2659 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2660 		zone = &pgdat->node_zones[zoneid];
2661 		if (!populated_zone(zone))
2662 			continue;
2663 
2664 		cc.zone = zone;
2665 
2666 		compact_zone(&cc, NULL);
2667 
2668 		VM_BUG_ON(!list_empty(&cc.freepages));
2669 		VM_BUG_ON(!list_empty(&cc.migratepages));
2670 	}
2671 }
2672 
2673 /* Compact all zones within a node */
2674 static void compact_node(int nid)
2675 {
2676 	pg_data_t *pgdat = NODE_DATA(nid);
2677 	int zoneid;
2678 	struct zone *zone;
2679 	struct compact_control cc = {
2680 		.order = -1,
2681 		.mode = MIGRATE_SYNC,
2682 		.ignore_skip_hint = true,
2683 		.whole_zone = true,
2684 		.gfp_mask = GFP_KERNEL,
2685 	};
2686 
2687 
2688 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2689 
2690 		zone = &pgdat->node_zones[zoneid];
2691 		if (!populated_zone(zone))
2692 			continue;
2693 
2694 		cc.zone = zone;
2695 
2696 		compact_zone(&cc, NULL);
2697 
2698 		VM_BUG_ON(!list_empty(&cc.freepages));
2699 		VM_BUG_ON(!list_empty(&cc.migratepages));
2700 	}
2701 }
2702 
2703 /* Compact all nodes in the system */
2704 static void compact_nodes(void)
2705 {
2706 	int nid;
2707 
2708 	/* Flush pending updates to the LRU lists */
2709 	lru_add_drain_all();
2710 
2711 	for_each_online_node(nid)
2712 		compact_node(nid);
2713 }
2714 
2715 /*
2716  * Tunable for proactive compaction. It determines how
2717  * aggressively the kernel should compact memory in the
2718  * background. It takes values in the range [0, 100].
2719  */
2720 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2721 
2722 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2723 		void *buffer, size_t *length, loff_t *ppos)
2724 {
2725 	int rc, nid;
2726 
2727 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2728 	if (rc)
2729 		return rc;
2730 
2731 	if (write && sysctl_compaction_proactiveness) {
2732 		for_each_online_node(nid) {
2733 			pg_data_t *pgdat = NODE_DATA(nid);
2734 
2735 			if (pgdat->proactive_compact_trigger)
2736 				continue;
2737 
2738 			pgdat->proactive_compact_trigger = true;
2739 			wake_up_interruptible(&pgdat->kcompactd_wait);
2740 		}
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /*
2747  * This is the entry point for compacting all nodes via
2748  * /proc/sys/vm/compact_memory
2749  */
2750 int sysctl_compaction_handler(struct ctl_table *table, int write,
2751 			void *buffer, size_t *length, loff_t *ppos)
2752 {
2753 	if (write)
2754 		compact_nodes();
2755 
2756 	return 0;
2757 }
2758 
2759 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2760 static ssize_t compact_store(struct device *dev,
2761 			     struct device_attribute *attr,
2762 			     const char *buf, size_t count)
2763 {
2764 	int nid = dev->id;
2765 
2766 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2767 		/* Flush pending updates to the LRU lists */
2768 		lru_add_drain_all();
2769 
2770 		compact_node(nid);
2771 	}
2772 
2773 	return count;
2774 }
2775 static DEVICE_ATTR_WO(compact);
2776 
2777 int compaction_register_node(struct node *node)
2778 {
2779 	return device_create_file(&node->dev, &dev_attr_compact);
2780 }
2781 
2782 void compaction_unregister_node(struct node *node)
2783 {
2784 	return device_remove_file(&node->dev, &dev_attr_compact);
2785 }
2786 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2787 
2788 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2789 {
2790 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2791 		pgdat->proactive_compact_trigger;
2792 }
2793 
2794 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2795 {
2796 	int zoneid;
2797 	struct zone *zone;
2798 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2799 
2800 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2801 		zone = &pgdat->node_zones[zoneid];
2802 
2803 		if (!populated_zone(zone))
2804 			continue;
2805 
2806 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2807 					highest_zoneidx) == COMPACT_CONTINUE)
2808 			return true;
2809 	}
2810 
2811 	return false;
2812 }
2813 
2814 static void kcompactd_do_work(pg_data_t *pgdat)
2815 {
2816 	/*
2817 	 * With no special task, compact all zones so that a page of requested
2818 	 * order is allocatable.
2819 	 */
2820 	int zoneid;
2821 	struct zone *zone;
2822 	struct compact_control cc = {
2823 		.order = pgdat->kcompactd_max_order,
2824 		.search_order = pgdat->kcompactd_max_order,
2825 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2826 		.mode = MIGRATE_SYNC_LIGHT,
2827 		.ignore_skip_hint = false,
2828 		.gfp_mask = GFP_KERNEL,
2829 	};
2830 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2831 							cc.highest_zoneidx);
2832 	count_compact_event(KCOMPACTD_WAKE);
2833 
2834 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2835 		int status;
2836 
2837 		zone = &pgdat->node_zones[zoneid];
2838 		if (!populated_zone(zone))
2839 			continue;
2840 
2841 		if (compaction_deferred(zone, cc.order))
2842 			continue;
2843 
2844 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2845 							COMPACT_CONTINUE)
2846 			continue;
2847 
2848 		if (kthread_should_stop())
2849 			return;
2850 
2851 		cc.zone = zone;
2852 		status = compact_zone(&cc, NULL);
2853 
2854 		if (status == COMPACT_SUCCESS) {
2855 			compaction_defer_reset(zone, cc.order, false);
2856 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2857 			/*
2858 			 * Buddy pages may become stranded on pcps that could
2859 			 * otherwise coalesce on the zone's free area for
2860 			 * order >= cc.order.  This is ratelimited by the
2861 			 * upcoming deferral.
2862 			 */
2863 			drain_all_pages(zone);
2864 
2865 			/*
2866 			 * We use sync migration mode here, so we defer like
2867 			 * sync direct compaction does.
2868 			 */
2869 			defer_compaction(zone, cc.order);
2870 		}
2871 
2872 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2873 				     cc.total_migrate_scanned);
2874 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2875 				     cc.total_free_scanned);
2876 
2877 		VM_BUG_ON(!list_empty(&cc.freepages));
2878 		VM_BUG_ON(!list_empty(&cc.migratepages));
2879 	}
2880 
2881 	/*
2882 	 * Regardless of success, we are done until woken up next. But remember
2883 	 * the requested order/highest_zoneidx in case it was higher/tighter
2884 	 * than our current ones
2885 	 */
2886 	if (pgdat->kcompactd_max_order <= cc.order)
2887 		pgdat->kcompactd_max_order = 0;
2888 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2889 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2890 }
2891 
2892 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2893 {
2894 	if (!order)
2895 		return;
2896 
2897 	if (pgdat->kcompactd_max_order < order)
2898 		pgdat->kcompactd_max_order = order;
2899 
2900 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2901 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2902 
2903 	/*
2904 	 * Pairs with implicit barrier in wait_event_freezable()
2905 	 * such that wakeups are not missed.
2906 	 */
2907 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2908 		return;
2909 
2910 	if (!kcompactd_node_suitable(pgdat))
2911 		return;
2912 
2913 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2914 							highest_zoneidx);
2915 	wake_up_interruptible(&pgdat->kcompactd_wait);
2916 }
2917 
2918 /*
2919  * The background compaction daemon, started as a kernel thread
2920  * from the init process.
2921  */
2922 static int kcompactd(void *p)
2923 {
2924 	pg_data_t *pgdat = (pg_data_t *)p;
2925 	struct task_struct *tsk = current;
2926 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2927 	long timeout = default_timeout;
2928 
2929 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2930 
2931 	if (!cpumask_empty(cpumask))
2932 		set_cpus_allowed_ptr(tsk, cpumask);
2933 
2934 	set_freezable();
2935 
2936 	pgdat->kcompactd_max_order = 0;
2937 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2938 
2939 	while (!kthread_should_stop()) {
2940 		unsigned long pflags;
2941 
2942 		/*
2943 		 * Avoid the unnecessary wakeup for proactive compaction
2944 		 * when it is disabled.
2945 		 */
2946 		if (!sysctl_compaction_proactiveness)
2947 			timeout = MAX_SCHEDULE_TIMEOUT;
2948 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2949 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2950 			kcompactd_work_requested(pgdat), timeout) &&
2951 			!pgdat->proactive_compact_trigger) {
2952 
2953 			psi_memstall_enter(&pflags);
2954 			kcompactd_do_work(pgdat);
2955 			psi_memstall_leave(&pflags);
2956 			/*
2957 			 * Reset the timeout value. The defer timeout from
2958 			 * proactive compaction is lost here but that is fine
2959 			 * as the condition of the zone changing substantionally
2960 			 * then carrying on with the previous defer interval is
2961 			 * not useful.
2962 			 */
2963 			timeout = default_timeout;
2964 			continue;
2965 		}
2966 
2967 		/*
2968 		 * Start the proactive work with default timeout. Based
2969 		 * on the fragmentation score, this timeout is updated.
2970 		 */
2971 		timeout = default_timeout;
2972 		if (should_proactive_compact_node(pgdat)) {
2973 			unsigned int prev_score, score;
2974 
2975 			prev_score = fragmentation_score_node(pgdat);
2976 			proactive_compact_node(pgdat);
2977 			score = fragmentation_score_node(pgdat);
2978 			/*
2979 			 * Defer proactive compaction if the fragmentation
2980 			 * score did not go down i.e. no progress made.
2981 			 */
2982 			if (unlikely(score >= prev_score))
2983 				timeout =
2984 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
2985 		}
2986 		if (unlikely(pgdat->proactive_compact_trigger))
2987 			pgdat->proactive_compact_trigger = false;
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 /*
2994  * This kcompactd start function will be called by init and node-hot-add.
2995  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2996  */
2997 void kcompactd_run(int nid)
2998 {
2999 	pg_data_t *pgdat = NODE_DATA(nid);
3000 
3001 	if (pgdat->kcompactd)
3002 		return;
3003 
3004 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3005 	if (IS_ERR(pgdat->kcompactd)) {
3006 		pr_err("Failed to start kcompactd on node %d\n", nid);
3007 		pgdat->kcompactd = NULL;
3008 	}
3009 }
3010 
3011 /*
3012  * Called by memory hotplug when all memory in a node is offlined. Caller must
3013  * be holding mem_hotplug_begin/done().
3014  */
3015 void kcompactd_stop(int nid)
3016 {
3017 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3018 
3019 	if (kcompactd) {
3020 		kthread_stop(kcompactd);
3021 		NODE_DATA(nid)->kcompactd = NULL;
3022 	}
3023 }
3024 
3025 /*
3026  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3027  * not required for correctness. So if the last cpu in a node goes
3028  * away, we get changed to run anywhere: as the first one comes back,
3029  * restore their cpu bindings.
3030  */
3031 static int kcompactd_cpu_online(unsigned int cpu)
3032 {
3033 	int nid;
3034 
3035 	for_each_node_state(nid, N_MEMORY) {
3036 		pg_data_t *pgdat = NODE_DATA(nid);
3037 		const struct cpumask *mask;
3038 
3039 		mask = cpumask_of_node(pgdat->node_id);
3040 
3041 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3042 			/* One of our CPUs online: restore mask */
3043 			if (pgdat->kcompactd)
3044 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3045 	}
3046 	return 0;
3047 }
3048 
3049 static int __init kcompactd_init(void)
3050 {
3051 	int nid;
3052 	int ret;
3053 
3054 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3055 					"mm/compaction:online",
3056 					kcompactd_cpu_online, NULL);
3057 	if (ret < 0) {
3058 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3059 		return ret;
3060 	}
3061 
3062 	for_each_node_state(nid, N_MEMORY)
3063 		kcompactd_run(nid);
3064 	return 0;
3065 }
3066 subsys_initcall(kcompactd_init)
3067 
3068 #endif /* CONFIG_COMPACTION */
3069