1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include "internal.h" 26 27 #ifdef CONFIG_COMPACTION 28 static inline void count_compact_event(enum vm_event_item item) 29 { 30 count_vm_event(item); 31 } 32 33 static inline void count_compact_events(enum vm_event_item item, long delta) 34 { 35 count_vm_events(item, delta); 36 } 37 #else 38 #define count_compact_event(item) do { } while (0) 39 #define count_compact_events(item, delta) do { } while (0) 40 #endif 41 42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/compaction.h> 46 47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 51 52 static unsigned long release_freepages(struct list_head *freelist) 53 { 54 struct page *page, *next; 55 unsigned long high_pfn = 0; 56 57 list_for_each_entry_safe(page, next, freelist, lru) { 58 unsigned long pfn = page_to_pfn(page); 59 list_del(&page->lru); 60 __free_page(page); 61 if (pfn > high_pfn) 62 high_pfn = pfn; 63 } 64 65 return high_pfn; 66 } 67 68 static void map_pages(struct list_head *list) 69 { 70 unsigned int i, order, nr_pages; 71 struct page *page, *next; 72 LIST_HEAD(tmp_list); 73 74 list_for_each_entry_safe(page, next, list, lru) { 75 list_del(&page->lru); 76 77 order = page_private(page); 78 nr_pages = 1 << order; 79 80 post_alloc_hook(page, order, __GFP_MOVABLE); 81 if (order) 82 split_page(page, order); 83 84 for (i = 0; i < nr_pages; i++) { 85 list_add(&page->lru, &tmp_list); 86 page++; 87 } 88 } 89 90 list_splice(&tmp_list, list); 91 } 92 93 #ifdef CONFIG_COMPACTION 94 95 int PageMovable(struct page *page) 96 { 97 struct address_space *mapping; 98 99 VM_BUG_ON_PAGE(!PageLocked(page), page); 100 if (!__PageMovable(page)) 101 return 0; 102 103 mapping = page_mapping(page); 104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 105 return 1; 106 107 return 0; 108 } 109 EXPORT_SYMBOL(PageMovable); 110 111 void __SetPageMovable(struct page *page, struct address_space *mapping) 112 { 113 VM_BUG_ON_PAGE(!PageLocked(page), page); 114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 116 } 117 EXPORT_SYMBOL(__SetPageMovable); 118 119 void __ClearPageMovable(struct page *page) 120 { 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 VM_BUG_ON_PAGE(!PageMovable(page), page); 123 /* 124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 125 * flag so that VM can catch up released page by driver after isolation. 126 * With it, VM migration doesn't try to put it back. 127 */ 128 page->mapping = (void *)((unsigned long)page->mapping & 129 PAGE_MAPPING_MOVABLE); 130 } 131 EXPORT_SYMBOL(__ClearPageMovable); 132 133 /* Do not skip compaction more than 64 times */ 134 #define COMPACT_MAX_DEFER_SHIFT 6 135 136 /* 137 * Compaction is deferred when compaction fails to result in a page 138 * allocation success. 1 << compact_defer_limit compactions are skipped up 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 140 */ 141 void defer_compaction(struct zone *zone, int order) 142 { 143 zone->compact_considered = 0; 144 zone->compact_defer_shift++; 145 146 if (order < zone->compact_order_failed) 147 zone->compact_order_failed = order; 148 149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 151 152 trace_mm_compaction_defer_compaction(zone, order); 153 } 154 155 /* Returns true if compaction should be skipped this time */ 156 bool compaction_deferred(struct zone *zone, int order) 157 { 158 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 159 160 if (order < zone->compact_order_failed) 161 return false; 162 163 /* Avoid possible overflow */ 164 if (++zone->compact_considered > defer_limit) 165 zone->compact_considered = defer_limit; 166 167 if (zone->compact_considered >= defer_limit) 168 return false; 169 170 trace_mm_compaction_deferred(zone, order); 171 172 return true; 173 } 174 175 /* 176 * Update defer tracking counters after successful compaction of given order, 177 * which means an allocation either succeeded (alloc_success == true) or is 178 * expected to succeed. 179 */ 180 void compaction_defer_reset(struct zone *zone, int order, 181 bool alloc_success) 182 { 183 if (alloc_success) { 184 zone->compact_considered = 0; 185 zone->compact_defer_shift = 0; 186 } 187 if (order >= zone->compact_order_failed) 188 zone->compact_order_failed = order + 1; 189 190 trace_mm_compaction_defer_reset(zone, order); 191 } 192 193 /* Returns true if restarting compaction after many failures */ 194 bool compaction_restarting(struct zone *zone, int order) 195 { 196 if (order < zone->compact_order_failed) 197 return false; 198 199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 200 zone->compact_considered >= 1UL << zone->compact_defer_shift; 201 } 202 203 /* Returns true if the pageblock should be scanned for pages to isolate. */ 204 static inline bool isolation_suitable(struct compact_control *cc, 205 struct page *page) 206 { 207 if (cc->ignore_skip_hint) 208 return true; 209 210 return !get_pageblock_skip(page); 211 } 212 213 static void reset_cached_positions(struct zone *zone) 214 { 215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 217 zone->compact_cached_free_pfn = 218 pageblock_start_pfn(zone_end_pfn(zone) - 1); 219 } 220 221 /* 222 * Compound pages of >= pageblock_order should consistenly be skipped until 223 * released. It is always pointless to compact pages of such order (if they are 224 * migratable), and the pageblocks they occupy cannot contain any free pages. 225 */ 226 static bool pageblock_skip_persistent(struct page *page) 227 { 228 if (!PageCompound(page)) 229 return false; 230 231 page = compound_head(page); 232 233 if (compound_order(page) >= pageblock_order) 234 return true; 235 236 return false; 237 } 238 239 /* 240 * This function is called to clear all cached information on pageblocks that 241 * should be skipped for page isolation when the migrate and free page scanner 242 * meet. 243 */ 244 static void __reset_isolation_suitable(struct zone *zone) 245 { 246 unsigned long start_pfn = zone->zone_start_pfn; 247 unsigned long end_pfn = zone_end_pfn(zone); 248 unsigned long pfn; 249 250 zone->compact_blockskip_flush = false; 251 252 /* Walk the zone and mark every pageblock as suitable for isolation */ 253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 254 struct page *page; 255 256 cond_resched(); 257 258 page = pfn_to_online_page(pfn); 259 if (!page) 260 continue; 261 if (zone != page_zone(page)) 262 continue; 263 if (pageblock_skip_persistent(page)) 264 continue; 265 266 clear_pageblock_skip(page); 267 } 268 269 reset_cached_positions(zone); 270 } 271 272 void reset_isolation_suitable(pg_data_t *pgdat) 273 { 274 int zoneid; 275 276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 277 struct zone *zone = &pgdat->node_zones[zoneid]; 278 if (!populated_zone(zone)) 279 continue; 280 281 /* Only flush if a full compaction finished recently */ 282 if (zone->compact_blockskip_flush) 283 __reset_isolation_suitable(zone); 284 } 285 } 286 287 /* 288 * If no pages were isolated then mark this pageblock to be skipped in the 289 * future. The information is later cleared by __reset_isolation_suitable(). 290 */ 291 static void update_pageblock_skip(struct compact_control *cc, 292 struct page *page, unsigned long nr_isolated, 293 bool migrate_scanner) 294 { 295 struct zone *zone = cc->zone; 296 unsigned long pfn; 297 298 if (cc->no_set_skip_hint) 299 return; 300 301 if (!page) 302 return; 303 304 if (nr_isolated) 305 return; 306 307 set_pageblock_skip(page); 308 309 pfn = page_to_pfn(page); 310 311 /* Update where async and sync compaction should restart */ 312 if (migrate_scanner) { 313 if (pfn > zone->compact_cached_migrate_pfn[0]) 314 zone->compact_cached_migrate_pfn[0] = pfn; 315 if (cc->mode != MIGRATE_ASYNC && 316 pfn > zone->compact_cached_migrate_pfn[1]) 317 zone->compact_cached_migrate_pfn[1] = pfn; 318 } else { 319 if (pfn < zone->compact_cached_free_pfn) 320 zone->compact_cached_free_pfn = pfn; 321 } 322 } 323 #else 324 static inline bool isolation_suitable(struct compact_control *cc, 325 struct page *page) 326 { 327 return true; 328 } 329 330 static inline bool pageblock_skip_persistent(struct page *page) 331 { 332 return false; 333 } 334 335 static inline void update_pageblock_skip(struct compact_control *cc, 336 struct page *page, unsigned long nr_isolated, 337 bool migrate_scanner) 338 { 339 } 340 #endif /* CONFIG_COMPACTION */ 341 342 /* 343 * Compaction requires the taking of some coarse locks that are potentially 344 * very heavily contended. For async compaction, back out if the lock cannot 345 * be taken immediately. For sync compaction, spin on the lock if needed. 346 * 347 * Returns true if the lock is held 348 * Returns false if the lock is not held and compaction should abort 349 */ 350 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 351 struct compact_control *cc) 352 { 353 if (cc->mode == MIGRATE_ASYNC) { 354 if (!spin_trylock_irqsave(lock, *flags)) { 355 cc->contended = true; 356 return false; 357 } 358 } else { 359 spin_lock_irqsave(lock, *flags); 360 } 361 362 return true; 363 } 364 365 /* 366 * Compaction requires the taking of some coarse locks that are potentially 367 * very heavily contended. The lock should be periodically unlocked to avoid 368 * having disabled IRQs for a long time, even when there is nobody waiting on 369 * the lock. It might also be that allowing the IRQs will result in 370 * need_resched() becoming true. If scheduling is needed, async compaction 371 * aborts. Sync compaction schedules. 372 * Either compaction type will also abort if a fatal signal is pending. 373 * In either case if the lock was locked, it is dropped and not regained. 374 * 375 * Returns true if compaction should abort due to fatal signal pending, or 376 * async compaction due to need_resched() 377 * Returns false when compaction can continue (sync compaction might have 378 * scheduled) 379 */ 380 static bool compact_unlock_should_abort(spinlock_t *lock, 381 unsigned long flags, bool *locked, struct compact_control *cc) 382 { 383 if (*locked) { 384 spin_unlock_irqrestore(lock, flags); 385 *locked = false; 386 } 387 388 if (fatal_signal_pending(current)) { 389 cc->contended = true; 390 return true; 391 } 392 393 if (need_resched()) { 394 if (cc->mode == MIGRATE_ASYNC) { 395 cc->contended = true; 396 return true; 397 } 398 cond_resched(); 399 } 400 401 return false; 402 } 403 404 /* 405 * Aside from avoiding lock contention, compaction also periodically checks 406 * need_resched() and either schedules in sync compaction or aborts async 407 * compaction. This is similar to what compact_unlock_should_abort() does, but 408 * is used where no lock is concerned. 409 * 410 * Returns false when no scheduling was needed, or sync compaction scheduled. 411 * Returns true when async compaction should abort. 412 */ 413 static inline bool compact_should_abort(struct compact_control *cc) 414 { 415 /* async compaction aborts if contended */ 416 if (need_resched()) { 417 if (cc->mode == MIGRATE_ASYNC) { 418 cc->contended = true; 419 return true; 420 } 421 422 cond_resched(); 423 } 424 425 return false; 426 } 427 428 /* 429 * Isolate free pages onto a private freelist. If @strict is true, will abort 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 431 * (even though it may still end up isolating some pages). 432 */ 433 static unsigned long isolate_freepages_block(struct compact_control *cc, 434 unsigned long *start_pfn, 435 unsigned long end_pfn, 436 struct list_head *freelist, 437 bool strict) 438 { 439 int nr_scanned = 0, total_isolated = 0; 440 struct page *cursor, *valid_page = NULL; 441 unsigned long flags = 0; 442 bool locked = false; 443 unsigned long blockpfn = *start_pfn; 444 unsigned int order; 445 446 cursor = pfn_to_page(blockpfn); 447 448 /* Isolate free pages. */ 449 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 450 int isolated; 451 struct page *page = cursor; 452 453 /* 454 * Periodically drop the lock (if held) regardless of its 455 * contention, to give chance to IRQs. Abort if fatal signal 456 * pending or async compaction detects need_resched() 457 */ 458 if (!(blockpfn % SWAP_CLUSTER_MAX) 459 && compact_unlock_should_abort(&cc->zone->lock, flags, 460 &locked, cc)) 461 break; 462 463 nr_scanned++; 464 if (!pfn_valid_within(blockpfn)) 465 goto isolate_fail; 466 467 if (!valid_page) 468 valid_page = page; 469 470 /* 471 * For compound pages such as THP and hugetlbfs, we can save 472 * potentially a lot of iterations if we skip them at once. 473 * The check is racy, but we can consider only valid values 474 * and the only danger is skipping too much. 475 */ 476 if (PageCompound(page)) { 477 const unsigned int order = compound_order(page); 478 479 if (likely(order < MAX_ORDER)) { 480 blockpfn += (1UL << order) - 1; 481 cursor += (1UL << order) - 1; 482 } 483 goto isolate_fail; 484 } 485 486 if (!PageBuddy(page)) 487 goto isolate_fail; 488 489 /* 490 * If we already hold the lock, we can skip some rechecking. 491 * Note that if we hold the lock now, checked_pageblock was 492 * already set in some previous iteration (or strict is true), 493 * so it is correct to skip the suitable migration target 494 * recheck as well. 495 */ 496 if (!locked) { 497 /* 498 * The zone lock must be held to isolate freepages. 499 * Unfortunately this is a very coarse lock and can be 500 * heavily contended if there are parallel allocations 501 * or parallel compactions. For async compaction do not 502 * spin on the lock and we acquire the lock as late as 503 * possible. 504 */ 505 locked = compact_trylock_irqsave(&cc->zone->lock, 506 &flags, cc); 507 if (!locked) 508 break; 509 510 /* Recheck this is a buddy page under lock */ 511 if (!PageBuddy(page)) 512 goto isolate_fail; 513 } 514 515 /* Found a free page, will break it into order-0 pages */ 516 order = page_order(page); 517 isolated = __isolate_free_page(page, order); 518 if (!isolated) 519 break; 520 set_page_private(page, order); 521 522 total_isolated += isolated; 523 cc->nr_freepages += isolated; 524 list_add_tail(&page->lru, freelist); 525 526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 527 blockpfn += isolated; 528 break; 529 } 530 /* Advance to the end of split page */ 531 blockpfn += isolated - 1; 532 cursor += isolated - 1; 533 continue; 534 535 isolate_fail: 536 if (strict) 537 break; 538 else 539 continue; 540 541 } 542 543 if (locked) 544 spin_unlock_irqrestore(&cc->zone->lock, flags); 545 546 /* 547 * There is a tiny chance that we have read bogus compound_order(), 548 * so be careful to not go outside of the pageblock. 549 */ 550 if (unlikely(blockpfn > end_pfn)) 551 blockpfn = end_pfn; 552 553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 554 nr_scanned, total_isolated); 555 556 /* Record how far we have got within the block */ 557 *start_pfn = blockpfn; 558 559 /* 560 * If strict isolation is requested by CMA then check that all the 561 * pages requested were isolated. If there were any failures, 0 is 562 * returned and CMA will fail. 563 */ 564 if (strict && blockpfn < end_pfn) 565 total_isolated = 0; 566 567 /* Update the pageblock-skip if the whole pageblock was scanned */ 568 if (blockpfn == end_pfn) 569 update_pageblock_skip(cc, valid_page, total_isolated, false); 570 571 cc->total_free_scanned += nr_scanned; 572 if (total_isolated) 573 count_compact_events(COMPACTISOLATED, total_isolated); 574 return total_isolated; 575 } 576 577 /** 578 * isolate_freepages_range() - isolate free pages. 579 * @cc: Compaction control structure. 580 * @start_pfn: The first PFN to start isolating. 581 * @end_pfn: The one-past-last PFN. 582 * 583 * Non-free pages, invalid PFNs, or zone boundaries within the 584 * [start_pfn, end_pfn) range are considered errors, cause function to 585 * undo its actions and return zero. 586 * 587 * Otherwise, function returns one-past-the-last PFN of isolated page 588 * (which may be greater then end_pfn if end fell in a middle of 589 * a free page). 590 */ 591 unsigned long 592 isolate_freepages_range(struct compact_control *cc, 593 unsigned long start_pfn, unsigned long end_pfn) 594 { 595 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 596 LIST_HEAD(freelist); 597 598 pfn = start_pfn; 599 block_start_pfn = pageblock_start_pfn(pfn); 600 if (block_start_pfn < cc->zone->zone_start_pfn) 601 block_start_pfn = cc->zone->zone_start_pfn; 602 block_end_pfn = pageblock_end_pfn(pfn); 603 604 for (; pfn < end_pfn; pfn += isolated, 605 block_start_pfn = block_end_pfn, 606 block_end_pfn += pageblock_nr_pages) { 607 /* Protect pfn from changing by isolate_freepages_block */ 608 unsigned long isolate_start_pfn = pfn; 609 610 block_end_pfn = min(block_end_pfn, end_pfn); 611 612 /* 613 * pfn could pass the block_end_pfn if isolated freepage 614 * is more than pageblock order. In this case, we adjust 615 * scanning range to right one. 616 */ 617 if (pfn >= block_end_pfn) { 618 block_start_pfn = pageblock_start_pfn(pfn); 619 block_end_pfn = pageblock_end_pfn(pfn); 620 block_end_pfn = min(block_end_pfn, end_pfn); 621 } 622 623 if (!pageblock_pfn_to_page(block_start_pfn, 624 block_end_pfn, cc->zone)) 625 break; 626 627 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 628 block_end_pfn, &freelist, true); 629 630 /* 631 * In strict mode, isolate_freepages_block() returns 0 if 632 * there are any holes in the block (ie. invalid PFNs or 633 * non-free pages). 634 */ 635 if (!isolated) 636 break; 637 638 /* 639 * If we managed to isolate pages, it is always (1 << n) * 640 * pageblock_nr_pages for some non-negative n. (Max order 641 * page may span two pageblocks). 642 */ 643 } 644 645 /* __isolate_free_page() does not map the pages */ 646 map_pages(&freelist); 647 648 if (pfn < end_pfn) { 649 /* Loop terminated early, cleanup. */ 650 release_freepages(&freelist); 651 return 0; 652 } 653 654 /* We don't use freelists for anything. */ 655 return pfn; 656 } 657 658 /* Similar to reclaim, but different enough that they don't share logic */ 659 static bool too_many_isolated(struct zone *zone) 660 { 661 unsigned long active, inactive, isolated; 662 663 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 664 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 665 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 666 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 667 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 668 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 669 670 return isolated > (inactive + active) / 2; 671 } 672 673 /** 674 * isolate_migratepages_block() - isolate all migrate-able pages within 675 * a single pageblock 676 * @cc: Compaction control structure. 677 * @low_pfn: The first PFN to isolate 678 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 679 * @isolate_mode: Isolation mode to be used. 680 * 681 * Isolate all pages that can be migrated from the range specified by 682 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 683 * Returns zero if there is a fatal signal pending, otherwise PFN of the 684 * first page that was not scanned (which may be both less, equal to or more 685 * than end_pfn). 686 * 687 * The pages are isolated on cc->migratepages list (not required to be empty), 688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 689 * is neither read nor updated. 690 */ 691 static unsigned long 692 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 693 unsigned long end_pfn, isolate_mode_t isolate_mode) 694 { 695 struct zone *zone = cc->zone; 696 unsigned long nr_scanned = 0, nr_isolated = 0; 697 struct lruvec *lruvec; 698 unsigned long flags = 0; 699 bool locked = false; 700 struct page *page = NULL, *valid_page = NULL; 701 unsigned long start_pfn = low_pfn; 702 bool skip_on_failure = false; 703 unsigned long next_skip_pfn = 0; 704 705 /* 706 * Ensure that there are not too many pages isolated from the LRU 707 * list by either parallel reclaimers or compaction. If there are, 708 * delay for some time until fewer pages are isolated 709 */ 710 while (unlikely(too_many_isolated(zone))) { 711 /* async migration should just abort */ 712 if (cc->mode == MIGRATE_ASYNC) 713 return 0; 714 715 congestion_wait(BLK_RW_ASYNC, HZ/10); 716 717 if (fatal_signal_pending(current)) 718 return 0; 719 } 720 721 if (compact_should_abort(cc)) 722 return 0; 723 724 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 725 skip_on_failure = true; 726 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 727 } 728 729 /* Time to isolate some pages for migration */ 730 for (; low_pfn < end_pfn; low_pfn++) { 731 732 if (skip_on_failure && low_pfn >= next_skip_pfn) { 733 /* 734 * We have isolated all migration candidates in the 735 * previous order-aligned block, and did not skip it due 736 * to failure. We should migrate the pages now and 737 * hopefully succeed compaction. 738 */ 739 if (nr_isolated) 740 break; 741 742 /* 743 * We failed to isolate in the previous order-aligned 744 * block. Set the new boundary to the end of the 745 * current block. Note we can't simply increase 746 * next_skip_pfn by 1 << order, as low_pfn might have 747 * been incremented by a higher number due to skipping 748 * a compound or a high-order buddy page in the 749 * previous loop iteration. 750 */ 751 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 752 } 753 754 /* 755 * Periodically drop the lock (if held) regardless of its 756 * contention, to give chance to IRQs. Abort async compaction 757 * if contended. 758 */ 759 if (!(low_pfn % SWAP_CLUSTER_MAX) 760 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 761 &locked, cc)) 762 break; 763 764 if (!pfn_valid_within(low_pfn)) 765 goto isolate_fail; 766 nr_scanned++; 767 768 page = pfn_to_page(low_pfn); 769 770 if (!valid_page) 771 valid_page = page; 772 773 /* 774 * Skip if free. We read page order here without zone lock 775 * which is generally unsafe, but the race window is small and 776 * the worst thing that can happen is that we skip some 777 * potential isolation targets. 778 */ 779 if (PageBuddy(page)) { 780 unsigned long freepage_order = page_order_unsafe(page); 781 782 /* 783 * Without lock, we cannot be sure that what we got is 784 * a valid page order. Consider only values in the 785 * valid order range to prevent low_pfn overflow. 786 */ 787 if (freepage_order > 0 && freepage_order < MAX_ORDER) 788 low_pfn += (1UL << freepage_order) - 1; 789 continue; 790 } 791 792 /* 793 * Regardless of being on LRU, compound pages such as THP and 794 * hugetlbfs are not to be compacted. We can potentially save 795 * a lot of iterations if we skip them at once. The check is 796 * racy, but we can consider only valid values and the only 797 * danger is skipping too much. 798 */ 799 if (PageCompound(page)) { 800 const unsigned int order = compound_order(page); 801 802 if (likely(order < MAX_ORDER)) 803 low_pfn += (1UL << order) - 1; 804 goto isolate_fail; 805 } 806 807 /* 808 * Check may be lockless but that's ok as we recheck later. 809 * It's possible to migrate LRU and non-lru movable pages. 810 * Skip any other type of page 811 */ 812 if (!PageLRU(page)) { 813 /* 814 * __PageMovable can return false positive so we need 815 * to verify it under page_lock. 816 */ 817 if (unlikely(__PageMovable(page)) && 818 !PageIsolated(page)) { 819 if (locked) { 820 spin_unlock_irqrestore(zone_lru_lock(zone), 821 flags); 822 locked = false; 823 } 824 825 if (!isolate_movable_page(page, isolate_mode)) 826 goto isolate_success; 827 } 828 829 goto isolate_fail; 830 } 831 832 /* 833 * Migration will fail if an anonymous page is pinned in memory, 834 * so avoid taking lru_lock and isolating it unnecessarily in an 835 * admittedly racy check. 836 */ 837 if (!page_mapping(page) && 838 page_count(page) > page_mapcount(page)) 839 goto isolate_fail; 840 841 /* 842 * Only allow to migrate anonymous pages in GFP_NOFS context 843 * because those do not depend on fs locks. 844 */ 845 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 846 goto isolate_fail; 847 848 /* If we already hold the lock, we can skip some rechecking */ 849 if (!locked) { 850 locked = compact_trylock_irqsave(zone_lru_lock(zone), 851 &flags, cc); 852 if (!locked) 853 break; 854 855 /* Recheck PageLRU and PageCompound under lock */ 856 if (!PageLRU(page)) 857 goto isolate_fail; 858 859 /* 860 * Page become compound since the non-locked check, 861 * and it's on LRU. It can only be a THP so the order 862 * is safe to read and it's 0 for tail pages. 863 */ 864 if (unlikely(PageCompound(page))) { 865 low_pfn += (1UL << compound_order(page)) - 1; 866 goto isolate_fail; 867 } 868 } 869 870 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 871 872 /* Try isolate the page */ 873 if (__isolate_lru_page(page, isolate_mode) != 0) 874 goto isolate_fail; 875 876 VM_BUG_ON_PAGE(PageCompound(page), page); 877 878 /* Successfully isolated */ 879 del_page_from_lru_list(page, lruvec, page_lru(page)); 880 inc_node_page_state(page, 881 NR_ISOLATED_ANON + page_is_file_cache(page)); 882 883 isolate_success: 884 list_add(&page->lru, &cc->migratepages); 885 cc->nr_migratepages++; 886 nr_isolated++; 887 888 /* 889 * Record where we could have freed pages by migration and not 890 * yet flushed them to buddy allocator. 891 * - this is the lowest page that was isolated and likely be 892 * then freed by migration. 893 */ 894 if (!cc->last_migrated_pfn) 895 cc->last_migrated_pfn = low_pfn; 896 897 /* Avoid isolating too much */ 898 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 899 ++low_pfn; 900 break; 901 } 902 903 continue; 904 isolate_fail: 905 if (!skip_on_failure) 906 continue; 907 908 /* 909 * We have isolated some pages, but then failed. Release them 910 * instead of migrating, as we cannot form the cc->order buddy 911 * page anyway. 912 */ 913 if (nr_isolated) { 914 if (locked) { 915 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 916 locked = false; 917 } 918 putback_movable_pages(&cc->migratepages); 919 cc->nr_migratepages = 0; 920 cc->last_migrated_pfn = 0; 921 nr_isolated = 0; 922 } 923 924 if (low_pfn < next_skip_pfn) { 925 low_pfn = next_skip_pfn - 1; 926 /* 927 * The check near the loop beginning would have updated 928 * next_skip_pfn too, but this is a bit simpler. 929 */ 930 next_skip_pfn += 1UL << cc->order; 931 } 932 } 933 934 /* 935 * The PageBuddy() check could have potentially brought us outside 936 * the range to be scanned. 937 */ 938 if (unlikely(low_pfn > end_pfn)) 939 low_pfn = end_pfn; 940 941 if (locked) 942 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 943 944 /* 945 * Update the pageblock-skip information and cached scanner pfn, 946 * if the whole pageblock was scanned without isolating any page. 947 */ 948 if (low_pfn == end_pfn) 949 update_pageblock_skip(cc, valid_page, nr_isolated, true); 950 951 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 952 nr_scanned, nr_isolated); 953 954 cc->total_migrate_scanned += nr_scanned; 955 if (nr_isolated) 956 count_compact_events(COMPACTISOLATED, nr_isolated); 957 958 return low_pfn; 959 } 960 961 /** 962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 963 * @cc: Compaction control structure. 964 * @start_pfn: The first PFN to start isolating. 965 * @end_pfn: The one-past-last PFN. 966 * 967 * Returns zero if isolation fails fatally due to e.g. pending signal. 968 * Otherwise, function returns one-past-the-last PFN of isolated page 969 * (which may be greater than end_pfn if end fell in a middle of a THP page). 970 */ 971 unsigned long 972 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 973 unsigned long end_pfn) 974 { 975 unsigned long pfn, block_start_pfn, block_end_pfn; 976 977 /* Scan block by block. First and last block may be incomplete */ 978 pfn = start_pfn; 979 block_start_pfn = pageblock_start_pfn(pfn); 980 if (block_start_pfn < cc->zone->zone_start_pfn) 981 block_start_pfn = cc->zone->zone_start_pfn; 982 block_end_pfn = pageblock_end_pfn(pfn); 983 984 for (; pfn < end_pfn; pfn = block_end_pfn, 985 block_start_pfn = block_end_pfn, 986 block_end_pfn += pageblock_nr_pages) { 987 988 block_end_pfn = min(block_end_pfn, end_pfn); 989 990 if (!pageblock_pfn_to_page(block_start_pfn, 991 block_end_pfn, cc->zone)) 992 continue; 993 994 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 995 ISOLATE_UNEVICTABLE); 996 997 if (!pfn) 998 break; 999 1000 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1001 break; 1002 } 1003 1004 return pfn; 1005 } 1006 1007 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1008 #ifdef CONFIG_COMPACTION 1009 1010 static bool suitable_migration_source(struct compact_control *cc, 1011 struct page *page) 1012 { 1013 int block_mt; 1014 1015 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1016 return true; 1017 1018 block_mt = get_pageblock_migratetype(page); 1019 1020 if (cc->migratetype == MIGRATE_MOVABLE) 1021 return is_migrate_movable(block_mt); 1022 else 1023 return block_mt == cc->migratetype; 1024 } 1025 1026 /* Returns true if the page is within a block suitable for migration to */ 1027 static bool suitable_migration_target(struct compact_control *cc, 1028 struct page *page) 1029 { 1030 /* If the page is a large free page, then disallow migration */ 1031 if (PageBuddy(page)) { 1032 /* 1033 * We are checking page_order without zone->lock taken. But 1034 * the only small danger is that we skip a potentially suitable 1035 * pageblock, so it's not worth to check order for valid range. 1036 */ 1037 if (page_order_unsafe(page) >= pageblock_order) 1038 return false; 1039 } 1040 1041 if (cc->ignore_block_suitable) 1042 return true; 1043 1044 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1045 if (is_migrate_movable(get_pageblock_migratetype(page))) 1046 return true; 1047 1048 /* Otherwise skip the block */ 1049 return false; 1050 } 1051 1052 /* 1053 * Test whether the free scanner has reached the same or lower pageblock than 1054 * the migration scanner, and compaction should thus terminate. 1055 */ 1056 static inline bool compact_scanners_met(struct compact_control *cc) 1057 { 1058 return (cc->free_pfn >> pageblock_order) 1059 <= (cc->migrate_pfn >> pageblock_order); 1060 } 1061 1062 /* 1063 * Based on information in the current compact_control, find blocks 1064 * suitable for isolating free pages from and then isolate them. 1065 */ 1066 static void isolate_freepages(struct compact_control *cc) 1067 { 1068 struct zone *zone = cc->zone; 1069 struct page *page; 1070 unsigned long block_start_pfn; /* start of current pageblock */ 1071 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1072 unsigned long block_end_pfn; /* end of current pageblock */ 1073 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1074 struct list_head *freelist = &cc->freepages; 1075 1076 /* 1077 * Initialise the free scanner. The starting point is where we last 1078 * successfully isolated from, zone-cached value, or the end of the 1079 * zone when isolating for the first time. For looping we also need 1080 * this pfn aligned down to the pageblock boundary, because we do 1081 * block_start_pfn -= pageblock_nr_pages in the for loop. 1082 * For ending point, take care when isolating in last pageblock of a 1083 * a zone which ends in the middle of a pageblock. 1084 * The low boundary is the end of the pageblock the migration scanner 1085 * is using. 1086 */ 1087 isolate_start_pfn = cc->free_pfn; 1088 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1089 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1090 zone_end_pfn(zone)); 1091 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1092 1093 /* 1094 * Isolate free pages until enough are available to migrate the 1095 * pages on cc->migratepages. We stop searching if the migrate 1096 * and free page scanners meet or enough free pages are isolated. 1097 */ 1098 for (; block_start_pfn >= low_pfn; 1099 block_end_pfn = block_start_pfn, 1100 block_start_pfn -= pageblock_nr_pages, 1101 isolate_start_pfn = block_start_pfn) { 1102 /* 1103 * This can iterate a massively long zone without finding any 1104 * suitable migration targets, so periodically check if we need 1105 * to schedule, or even abort async compaction. 1106 */ 1107 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1108 && compact_should_abort(cc)) 1109 break; 1110 1111 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1112 zone); 1113 if (!page) 1114 continue; 1115 1116 /* Check the block is suitable for migration */ 1117 if (!suitable_migration_target(cc, page)) 1118 continue; 1119 1120 /* If isolation recently failed, do not retry */ 1121 if (!isolation_suitable(cc, page)) 1122 continue; 1123 1124 /* Found a block suitable for isolating free pages from. */ 1125 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1126 freelist, false); 1127 1128 /* 1129 * If we isolated enough freepages, or aborted due to lock 1130 * contention, terminate. 1131 */ 1132 if ((cc->nr_freepages >= cc->nr_migratepages) 1133 || cc->contended) { 1134 if (isolate_start_pfn >= block_end_pfn) { 1135 /* 1136 * Restart at previous pageblock if more 1137 * freepages can be isolated next time. 1138 */ 1139 isolate_start_pfn = 1140 block_start_pfn - pageblock_nr_pages; 1141 } 1142 break; 1143 } else if (isolate_start_pfn < block_end_pfn) { 1144 /* 1145 * If isolation failed early, do not continue 1146 * needlessly. 1147 */ 1148 break; 1149 } 1150 } 1151 1152 /* __isolate_free_page() does not map the pages */ 1153 map_pages(freelist); 1154 1155 /* 1156 * Record where the free scanner will restart next time. Either we 1157 * broke from the loop and set isolate_start_pfn based on the last 1158 * call to isolate_freepages_block(), or we met the migration scanner 1159 * and the loop terminated due to isolate_start_pfn < low_pfn 1160 */ 1161 cc->free_pfn = isolate_start_pfn; 1162 } 1163 1164 /* 1165 * This is a migrate-callback that "allocates" freepages by taking pages 1166 * from the isolated freelists in the block we are migrating to. 1167 */ 1168 static struct page *compaction_alloc(struct page *migratepage, 1169 unsigned long data) 1170 { 1171 struct compact_control *cc = (struct compact_control *)data; 1172 struct page *freepage; 1173 1174 /* 1175 * Isolate free pages if necessary, and if we are not aborting due to 1176 * contention. 1177 */ 1178 if (list_empty(&cc->freepages)) { 1179 if (!cc->contended) 1180 isolate_freepages(cc); 1181 1182 if (list_empty(&cc->freepages)) 1183 return NULL; 1184 } 1185 1186 freepage = list_entry(cc->freepages.next, struct page, lru); 1187 list_del(&freepage->lru); 1188 cc->nr_freepages--; 1189 1190 return freepage; 1191 } 1192 1193 /* 1194 * This is a migrate-callback that "frees" freepages back to the isolated 1195 * freelist. All pages on the freelist are from the same zone, so there is no 1196 * special handling needed for NUMA. 1197 */ 1198 static void compaction_free(struct page *page, unsigned long data) 1199 { 1200 struct compact_control *cc = (struct compact_control *)data; 1201 1202 list_add(&page->lru, &cc->freepages); 1203 cc->nr_freepages++; 1204 } 1205 1206 /* possible outcome of isolate_migratepages */ 1207 typedef enum { 1208 ISOLATE_ABORT, /* Abort compaction now */ 1209 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1210 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1211 } isolate_migrate_t; 1212 1213 /* 1214 * Allow userspace to control policy on scanning the unevictable LRU for 1215 * compactable pages. 1216 */ 1217 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1218 1219 /* 1220 * Isolate all pages that can be migrated from the first suitable block, 1221 * starting at the block pointed to by the migrate scanner pfn within 1222 * compact_control. 1223 */ 1224 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1225 struct compact_control *cc) 1226 { 1227 unsigned long block_start_pfn; 1228 unsigned long block_end_pfn; 1229 unsigned long low_pfn; 1230 struct page *page; 1231 const isolate_mode_t isolate_mode = 1232 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1233 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1234 1235 /* 1236 * Start at where we last stopped, or beginning of the zone as 1237 * initialized by compact_zone() 1238 */ 1239 low_pfn = cc->migrate_pfn; 1240 block_start_pfn = pageblock_start_pfn(low_pfn); 1241 if (block_start_pfn < zone->zone_start_pfn) 1242 block_start_pfn = zone->zone_start_pfn; 1243 1244 /* Only scan within a pageblock boundary */ 1245 block_end_pfn = pageblock_end_pfn(low_pfn); 1246 1247 /* 1248 * Iterate over whole pageblocks until we find the first suitable. 1249 * Do not cross the free scanner. 1250 */ 1251 for (; block_end_pfn <= cc->free_pfn; 1252 low_pfn = block_end_pfn, 1253 block_start_pfn = block_end_pfn, 1254 block_end_pfn += pageblock_nr_pages) { 1255 1256 /* 1257 * This can potentially iterate a massively long zone with 1258 * many pageblocks unsuitable, so periodically check if we 1259 * need to schedule, or even abort async compaction. 1260 */ 1261 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1262 && compact_should_abort(cc)) 1263 break; 1264 1265 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1266 zone); 1267 if (!page) 1268 continue; 1269 1270 /* If isolation recently failed, do not retry */ 1271 if (!isolation_suitable(cc, page)) 1272 continue; 1273 1274 /* 1275 * For async compaction, also only scan in MOVABLE blocks. 1276 * Async compaction is optimistic to see if the minimum amount 1277 * of work satisfies the allocation. 1278 */ 1279 if (!suitable_migration_source(cc, page)) 1280 continue; 1281 1282 /* Perform the isolation */ 1283 low_pfn = isolate_migratepages_block(cc, low_pfn, 1284 block_end_pfn, isolate_mode); 1285 1286 if (!low_pfn || cc->contended) 1287 return ISOLATE_ABORT; 1288 1289 /* 1290 * Either we isolated something and proceed with migration. Or 1291 * we failed and compact_zone should decide if we should 1292 * continue or not. 1293 */ 1294 break; 1295 } 1296 1297 /* Record where migration scanner will be restarted. */ 1298 cc->migrate_pfn = low_pfn; 1299 1300 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1301 } 1302 1303 /* 1304 * order == -1 is expected when compacting via 1305 * /proc/sys/vm/compact_memory 1306 */ 1307 static inline bool is_via_compact_memory(int order) 1308 { 1309 return order == -1; 1310 } 1311 1312 static enum compact_result __compact_finished(struct zone *zone, 1313 struct compact_control *cc) 1314 { 1315 unsigned int order; 1316 const int migratetype = cc->migratetype; 1317 1318 if (cc->contended || fatal_signal_pending(current)) 1319 return COMPACT_CONTENDED; 1320 1321 /* Compaction run completes if the migrate and free scanner meet */ 1322 if (compact_scanners_met(cc)) { 1323 /* Let the next compaction start anew. */ 1324 reset_cached_positions(zone); 1325 1326 /* 1327 * Mark that the PG_migrate_skip information should be cleared 1328 * by kswapd when it goes to sleep. kcompactd does not set the 1329 * flag itself as the decision to be clear should be directly 1330 * based on an allocation request. 1331 */ 1332 if (cc->direct_compaction) 1333 zone->compact_blockskip_flush = true; 1334 1335 if (cc->whole_zone) 1336 return COMPACT_COMPLETE; 1337 else 1338 return COMPACT_PARTIAL_SKIPPED; 1339 } 1340 1341 if (is_via_compact_memory(cc->order)) 1342 return COMPACT_CONTINUE; 1343 1344 if (cc->finishing_block) { 1345 /* 1346 * We have finished the pageblock, but better check again that 1347 * we really succeeded. 1348 */ 1349 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1350 cc->finishing_block = false; 1351 else 1352 return COMPACT_CONTINUE; 1353 } 1354 1355 /* Direct compactor: Is a suitable page free? */ 1356 for (order = cc->order; order < MAX_ORDER; order++) { 1357 struct free_area *area = &zone->free_area[order]; 1358 bool can_steal; 1359 1360 /* Job done if page is free of the right migratetype */ 1361 if (!list_empty(&area->free_list[migratetype])) 1362 return COMPACT_SUCCESS; 1363 1364 #ifdef CONFIG_CMA 1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1366 if (migratetype == MIGRATE_MOVABLE && 1367 !list_empty(&area->free_list[MIGRATE_CMA])) 1368 return COMPACT_SUCCESS; 1369 #endif 1370 /* 1371 * Job done if allocation would steal freepages from 1372 * other migratetype buddy lists. 1373 */ 1374 if (find_suitable_fallback(area, order, migratetype, 1375 true, &can_steal) != -1) { 1376 1377 /* movable pages are OK in any pageblock */ 1378 if (migratetype == MIGRATE_MOVABLE) 1379 return COMPACT_SUCCESS; 1380 1381 /* 1382 * We are stealing for a non-movable allocation. Make 1383 * sure we finish compacting the current pageblock 1384 * first so it is as free as possible and we won't 1385 * have to steal another one soon. This only applies 1386 * to sync compaction, as async compaction operates 1387 * on pageblocks of the same migratetype. 1388 */ 1389 if (cc->mode == MIGRATE_ASYNC || 1390 IS_ALIGNED(cc->migrate_pfn, 1391 pageblock_nr_pages)) { 1392 return COMPACT_SUCCESS; 1393 } 1394 1395 cc->finishing_block = true; 1396 return COMPACT_CONTINUE; 1397 } 1398 } 1399 1400 return COMPACT_NO_SUITABLE_PAGE; 1401 } 1402 1403 static enum compact_result compact_finished(struct zone *zone, 1404 struct compact_control *cc) 1405 { 1406 int ret; 1407 1408 ret = __compact_finished(zone, cc); 1409 trace_mm_compaction_finished(zone, cc->order, ret); 1410 if (ret == COMPACT_NO_SUITABLE_PAGE) 1411 ret = COMPACT_CONTINUE; 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * compaction_suitable: Is this suitable to run compaction on this zone now? 1418 * Returns 1419 * COMPACT_SKIPPED - If there are too few free pages for compaction 1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1421 * COMPACT_CONTINUE - If compaction should run now 1422 */ 1423 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1424 unsigned int alloc_flags, 1425 int classzone_idx, 1426 unsigned long wmark_target) 1427 { 1428 unsigned long watermark; 1429 1430 if (is_via_compact_memory(order)) 1431 return COMPACT_CONTINUE; 1432 1433 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1434 /* 1435 * If watermarks for high-order allocation are already met, there 1436 * should be no need for compaction at all. 1437 */ 1438 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1439 alloc_flags)) 1440 return COMPACT_SUCCESS; 1441 1442 /* 1443 * Watermarks for order-0 must be met for compaction to be able to 1444 * isolate free pages for migration targets. This means that the 1445 * watermark and alloc_flags have to match, or be more pessimistic than 1446 * the check in __isolate_free_page(). We don't use the direct 1447 * compactor's alloc_flags, as they are not relevant for freepage 1448 * isolation. We however do use the direct compactor's classzone_idx to 1449 * skip over zones where lowmem reserves would prevent allocation even 1450 * if compaction succeeds. 1451 * For costly orders, we require low watermark instead of min for 1452 * compaction to proceed to increase its chances. 1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1454 * suitable migration targets 1455 */ 1456 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1457 low_wmark_pages(zone) : min_wmark_pages(zone); 1458 watermark += compact_gap(order); 1459 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1460 ALLOC_CMA, wmark_target)) 1461 return COMPACT_SKIPPED; 1462 1463 return COMPACT_CONTINUE; 1464 } 1465 1466 enum compact_result compaction_suitable(struct zone *zone, int order, 1467 unsigned int alloc_flags, 1468 int classzone_idx) 1469 { 1470 enum compact_result ret; 1471 int fragindex; 1472 1473 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1474 zone_page_state(zone, NR_FREE_PAGES)); 1475 /* 1476 * fragmentation index determines if allocation failures are due to 1477 * low memory or external fragmentation 1478 * 1479 * index of -1000 would imply allocations might succeed depending on 1480 * watermarks, but we already failed the high-order watermark check 1481 * index towards 0 implies failure is due to lack of memory 1482 * index towards 1000 implies failure is due to fragmentation 1483 * 1484 * Only compact if a failure would be due to fragmentation. Also 1485 * ignore fragindex for non-costly orders where the alternative to 1486 * a successful reclaim/compaction is OOM. Fragindex and the 1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 1488 * excessive compaction for costly orders, but it should not be at the 1489 * expense of system stability. 1490 */ 1491 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 1492 fragindex = fragmentation_index(zone, order); 1493 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1494 ret = COMPACT_NOT_SUITABLE_ZONE; 1495 } 1496 1497 trace_mm_compaction_suitable(zone, order, ret); 1498 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1499 ret = COMPACT_SKIPPED; 1500 1501 return ret; 1502 } 1503 1504 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1505 int alloc_flags) 1506 { 1507 struct zone *zone; 1508 struct zoneref *z; 1509 1510 /* 1511 * Make sure at least one zone would pass __compaction_suitable if we continue 1512 * retrying the reclaim. 1513 */ 1514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1515 ac->nodemask) { 1516 unsigned long available; 1517 enum compact_result compact_result; 1518 1519 /* 1520 * Do not consider all the reclaimable memory because we do not 1521 * want to trash just for a single high order allocation which 1522 * is even not guaranteed to appear even if __compaction_suitable 1523 * is happy about the watermark check. 1524 */ 1525 available = zone_reclaimable_pages(zone) / order; 1526 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1527 compact_result = __compaction_suitable(zone, order, alloc_flags, 1528 ac_classzone_idx(ac), available); 1529 if (compact_result != COMPACT_SKIPPED) 1530 return true; 1531 } 1532 1533 return false; 1534 } 1535 1536 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1537 { 1538 enum compact_result ret; 1539 unsigned long start_pfn = zone->zone_start_pfn; 1540 unsigned long end_pfn = zone_end_pfn(zone); 1541 const bool sync = cc->mode != MIGRATE_ASYNC; 1542 1543 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1544 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1545 cc->classzone_idx); 1546 /* Compaction is likely to fail */ 1547 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1548 return ret; 1549 1550 /* huh, compaction_suitable is returning something unexpected */ 1551 VM_BUG_ON(ret != COMPACT_CONTINUE); 1552 1553 /* 1554 * Clear pageblock skip if there were failures recently and compaction 1555 * is about to be retried after being deferred. 1556 */ 1557 if (compaction_restarting(zone, cc->order)) 1558 __reset_isolation_suitable(zone); 1559 1560 /* 1561 * Setup to move all movable pages to the end of the zone. Used cached 1562 * information on where the scanners should start (unless we explicitly 1563 * want to compact the whole zone), but check that it is initialised 1564 * by ensuring the values are within zone boundaries. 1565 */ 1566 if (cc->whole_zone) { 1567 cc->migrate_pfn = start_pfn; 1568 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1569 } else { 1570 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1571 cc->free_pfn = zone->compact_cached_free_pfn; 1572 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1573 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1574 zone->compact_cached_free_pfn = cc->free_pfn; 1575 } 1576 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1577 cc->migrate_pfn = start_pfn; 1578 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1579 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1580 } 1581 1582 if (cc->migrate_pfn == start_pfn) 1583 cc->whole_zone = true; 1584 } 1585 1586 cc->last_migrated_pfn = 0; 1587 1588 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1589 cc->free_pfn, end_pfn, sync); 1590 1591 migrate_prep_local(); 1592 1593 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1594 int err; 1595 1596 switch (isolate_migratepages(zone, cc)) { 1597 case ISOLATE_ABORT: 1598 ret = COMPACT_CONTENDED; 1599 putback_movable_pages(&cc->migratepages); 1600 cc->nr_migratepages = 0; 1601 goto out; 1602 case ISOLATE_NONE: 1603 /* 1604 * We haven't isolated and migrated anything, but 1605 * there might still be unflushed migrations from 1606 * previous cc->order aligned block. 1607 */ 1608 goto check_drain; 1609 case ISOLATE_SUCCESS: 1610 ; 1611 } 1612 1613 err = migrate_pages(&cc->migratepages, compaction_alloc, 1614 compaction_free, (unsigned long)cc, cc->mode, 1615 MR_COMPACTION); 1616 1617 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1618 &cc->migratepages); 1619 1620 /* All pages were either migrated or will be released */ 1621 cc->nr_migratepages = 0; 1622 if (err) { 1623 putback_movable_pages(&cc->migratepages); 1624 /* 1625 * migrate_pages() may return -ENOMEM when scanners meet 1626 * and we want compact_finished() to detect it 1627 */ 1628 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1629 ret = COMPACT_CONTENDED; 1630 goto out; 1631 } 1632 /* 1633 * We failed to migrate at least one page in the current 1634 * order-aligned block, so skip the rest of it. 1635 */ 1636 if (cc->direct_compaction && 1637 (cc->mode == MIGRATE_ASYNC)) { 1638 cc->migrate_pfn = block_end_pfn( 1639 cc->migrate_pfn - 1, cc->order); 1640 /* Draining pcplists is useless in this case */ 1641 cc->last_migrated_pfn = 0; 1642 1643 } 1644 } 1645 1646 check_drain: 1647 /* 1648 * Has the migration scanner moved away from the previous 1649 * cc->order aligned block where we migrated from? If yes, 1650 * flush the pages that were freed, so that they can merge and 1651 * compact_finished() can detect immediately if allocation 1652 * would succeed. 1653 */ 1654 if (cc->order > 0 && cc->last_migrated_pfn) { 1655 int cpu; 1656 unsigned long current_block_start = 1657 block_start_pfn(cc->migrate_pfn, cc->order); 1658 1659 if (cc->last_migrated_pfn < current_block_start) { 1660 cpu = get_cpu(); 1661 lru_add_drain_cpu(cpu); 1662 drain_local_pages(zone); 1663 put_cpu(); 1664 /* No more flushing until we migrate again */ 1665 cc->last_migrated_pfn = 0; 1666 } 1667 } 1668 1669 } 1670 1671 out: 1672 /* 1673 * Release free pages and update where the free scanner should restart, 1674 * so we don't leave any returned pages behind in the next attempt. 1675 */ 1676 if (cc->nr_freepages > 0) { 1677 unsigned long free_pfn = release_freepages(&cc->freepages); 1678 1679 cc->nr_freepages = 0; 1680 VM_BUG_ON(free_pfn == 0); 1681 /* The cached pfn is always the first in a pageblock */ 1682 free_pfn = pageblock_start_pfn(free_pfn); 1683 /* 1684 * Only go back, not forward. The cached pfn might have been 1685 * already reset to zone end in compact_finished() 1686 */ 1687 if (free_pfn > zone->compact_cached_free_pfn) 1688 zone->compact_cached_free_pfn = free_pfn; 1689 } 1690 1691 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 1692 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 1693 1694 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1695 cc->free_pfn, end_pfn, sync, ret); 1696 1697 return ret; 1698 } 1699 1700 static enum compact_result compact_zone_order(struct zone *zone, int order, 1701 gfp_t gfp_mask, enum compact_priority prio, 1702 unsigned int alloc_flags, int classzone_idx) 1703 { 1704 enum compact_result ret; 1705 struct compact_control cc = { 1706 .nr_freepages = 0, 1707 .nr_migratepages = 0, 1708 .total_migrate_scanned = 0, 1709 .total_free_scanned = 0, 1710 .order = order, 1711 .gfp_mask = gfp_mask, 1712 .zone = zone, 1713 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1714 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1715 .alloc_flags = alloc_flags, 1716 .classzone_idx = classzone_idx, 1717 .direct_compaction = true, 1718 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1719 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1720 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1721 }; 1722 INIT_LIST_HEAD(&cc.freepages); 1723 INIT_LIST_HEAD(&cc.migratepages); 1724 1725 ret = compact_zone(zone, &cc); 1726 1727 VM_BUG_ON(!list_empty(&cc.freepages)); 1728 VM_BUG_ON(!list_empty(&cc.migratepages)); 1729 1730 return ret; 1731 } 1732 1733 int sysctl_extfrag_threshold = 500; 1734 1735 /** 1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1737 * @gfp_mask: The GFP mask of the current allocation 1738 * @order: The order of the current allocation 1739 * @alloc_flags: The allocation flags of the current allocation 1740 * @ac: The context of current allocation 1741 * @prio: Determines how hard direct compaction should try to succeed 1742 * 1743 * This is the main entry point for direct page compaction. 1744 */ 1745 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1746 unsigned int alloc_flags, const struct alloc_context *ac, 1747 enum compact_priority prio) 1748 { 1749 int may_perform_io = gfp_mask & __GFP_IO; 1750 struct zoneref *z; 1751 struct zone *zone; 1752 enum compact_result rc = COMPACT_SKIPPED; 1753 1754 /* 1755 * Check if the GFP flags allow compaction - GFP_NOIO is really 1756 * tricky context because the migration might require IO 1757 */ 1758 if (!may_perform_io) 1759 return COMPACT_SKIPPED; 1760 1761 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1762 1763 /* Compact each zone in the list */ 1764 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1765 ac->nodemask) { 1766 enum compact_result status; 1767 1768 if (prio > MIN_COMPACT_PRIORITY 1769 && compaction_deferred(zone, order)) { 1770 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1771 continue; 1772 } 1773 1774 status = compact_zone_order(zone, order, gfp_mask, prio, 1775 alloc_flags, ac_classzone_idx(ac)); 1776 rc = max(status, rc); 1777 1778 /* The allocation should succeed, stop compacting */ 1779 if (status == COMPACT_SUCCESS) { 1780 /* 1781 * We think the allocation will succeed in this zone, 1782 * but it is not certain, hence the false. The caller 1783 * will repeat this with true if allocation indeed 1784 * succeeds in this zone. 1785 */ 1786 compaction_defer_reset(zone, order, false); 1787 1788 break; 1789 } 1790 1791 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1792 status == COMPACT_PARTIAL_SKIPPED)) 1793 /* 1794 * We think that allocation won't succeed in this zone 1795 * so we defer compaction there. If it ends up 1796 * succeeding after all, it will be reset. 1797 */ 1798 defer_compaction(zone, order); 1799 1800 /* 1801 * We might have stopped compacting due to need_resched() in 1802 * async compaction, or due to a fatal signal detected. In that 1803 * case do not try further zones 1804 */ 1805 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1806 || fatal_signal_pending(current)) 1807 break; 1808 } 1809 1810 return rc; 1811 } 1812 1813 1814 /* Compact all zones within a node */ 1815 static void compact_node(int nid) 1816 { 1817 pg_data_t *pgdat = NODE_DATA(nid); 1818 int zoneid; 1819 struct zone *zone; 1820 struct compact_control cc = { 1821 .order = -1, 1822 .total_migrate_scanned = 0, 1823 .total_free_scanned = 0, 1824 .mode = MIGRATE_SYNC, 1825 .ignore_skip_hint = true, 1826 .whole_zone = true, 1827 .gfp_mask = GFP_KERNEL, 1828 }; 1829 1830 1831 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1832 1833 zone = &pgdat->node_zones[zoneid]; 1834 if (!populated_zone(zone)) 1835 continue; 1836 1837 cc.nr_freepages = 0; 1838 cc.nr_migratepages = 0; 1839 cc.zone = zone; 1840 INIT_LIST_HEAD(&cc.freepages); 1841 INIT_LIST_HEAD(&cc.migratepages); 1842 1843 compact_zone(zone, &cc); 1844 1845 VM_BUG_ON(!list_empty(&cc.freepages)); 1846 VM_BUG_ON(!list_empty(&cc.migratepages)); 1847 } 1848 } 1849 1850 /* Compact all nodes in the system */ 1851 static void compact_nodes(void) 1852 { 1853 int nid; 1854 1855 /* Flush pending updates to the LRU lists */ 1856 lru_add_drain_all(); 1857 1858 for_each_online_node(nid) 1859 compact_node(nid); 1860 } 1861 1862 /* The written value is actually unused, all memory is compacted */ 1863 int sysctl_compact_memory; 1864 1865 /* 1866 * This is the entry point for compacting all nodes via 1867 * /proc/sys/vm/compact_memory 1868 */ 1869 int sysctl_compaction_handler(struct ctl_table *table, int write, 1870 void __user *buffer, size_t *length, loff_t *ppos) 1871 { 1872 if (write) 1873 compact_nodes(); 1874 1875 return 0; 1876 } 1877 1878 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1879 void __user *buffer, size_t *length, loff_t *ppos) 1880 { 1881 proc_dointvec_minmax(table, write, buffer, length, ppos); 1882 1883 return 0; 1884 } 1885 1886 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1887 static ssize_t sysfs_compact_node(struct device *dev, 1888 struct device_attribute *attr, 1889 const char *buf, size_t count) 1890 { 1891 int nid = dev->id; 1892 1893 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1894 /* Flush pending updates to the LRU lists */ 1895 lru_add_drain_all(); 1896 1897 compact_node(nid); 1898 } 1899 1900 return count; 1901 } 1902 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 1903 1904 int compaction_register_node(struct node *node) 1905 { 1906 return device_create_file(&node->dev, &dev_attr_compact); 1907 } 1908 1909 void compaction_unregister_node(struct node *node) 1910 { 1911 return device_remove_file(&node->dev, &dev_attr_compact); 1912 } 1913 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1914 1915 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1916 { 1917 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1918 } 1919 1920 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1921 { 1922 int zoneid; 1923 struct zone *zone; 1924 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1925 1926 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1927 zone = &pgdat->node_zones[zoneid]; 1928 1929 if (!populated_zone(zone)) 1930 continue; 1931 1932 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1933 classzone_idx) == COMPACT_CONTINUE) 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 static void kcompactd_do_work(pg_data_t *pgdat) 1941 { 1942 /* 1943 * With no special task, compact all zones so that a page of requested 1944 * order is allocatable. 1945 */ 1946 int zoneid; 1947 struct zone *zone; 1948 struct compact_control cc = { 1949 .order = pgdat->kcompactd_max_order, 1950 .total_migrate_scanned = 0, 1951 .total_free_scanned = 0, 1952 .classzone_idx = pgdat->kcompactd_classzone_idx, 1953 .mode = MIGRATE_SYNC_LIGHT, 1954 .ignore_skip_hint = false, 1955 .gfp_mask = GFP_KERNEL, 1956 }; 1957 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1958 cc.classzone_idx); 1959 count_compact_event(KCOMPACTD_WAKE); 1960 1961 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1962 int status; 1963 1964 zone = &pgdat->node_zones[zoneid]; 1965 if (!populated_zone(zone)) 1966 continue; 1967 1968 if (compaction_deferred(zone, cc.order)) 1969 continue; 1970 1971 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1972 COMPACT_CONTINUE) 1973 continue; 1974 1975 cc.nr_freepages = 0; 1976 cc.nr_migratepages = 0; 1977 cc.total_migrate_scanned = 0; 1978 cc.total_free_scanned = 0; 1979 cc.zone = zone; 1980 INIT_LIST_HEAD(&cc.freepages); 1981 INIT_LIST_HEAD(&cc.migratepages); 1982 1983 if (kthread_should_stop()) 1984 return; 1985 status = compact_zone(zone, &cc); 1986 1987 if (status == COMPACT_SUCCESS) { 1988 compaction_defer_reset(zone, cc.order, false); 1989 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1990 /* 1991 * Buddy pages may become stranded on pcps that could 1992 * otherwise coalesce on the zone's free area for 1993 * order >= cc.order. This is ratelimited by the 1994 * upcoming deferral. 1995 */ 1996 drain_all_pages(zone); 1997 1998 /* 1999 * We use sync migration mode here, so we defer like 2000 * sync direct compaction does. 2001 */ 2002 defer_compaction(zone, cc.order); 2003 } 2004 2005 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2006 cc.total_migrate_scanned); 2007 count_compact_events(KCOMPACTD_FREE_SCANNED, 2008 cc.total_free_scanned); 2009 2010 VM_BUG_ON(!list_empty(&cc.freepages)); 2011 VM_BUG_ON(!list_empty(&cc.migratepages)); 2012 } 2013 2014 /* 2015 * Regardless of success, we are done until woken up next. But remember 2016 * the requested order/classzone_idx in case it was higher/tighter than 2017 * our current ones 2018 */ 2019 if (pgdat->kcompactd_max_order <= cc.order) 2020 pgdat->kcompactd_max_order = 0; 2021 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2022 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2023 } 2024 2025 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2026 { 2027 if (!order) 2028 return; 2029 2030 if (pgdat->kcompactd_max_order < order) 2031 pgdat->kcompactd_max_order = order; 2032 2033 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2034 pgdat->kcompactd_classzone_idx = classzone_idx; 2035 2036 /* 2037 * Pairs with implicit barrier in wait_event_freezable() 2038 * such that wakeups are not missed. 2039 */ 2040 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2041 return; 2042 2043 if (!kcompactd_node_suitable(pgdat)) 2044 return; 2045 2046 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2047 classzone_idx); 2048 wake_up_interruptible(&pgdat->kcompactd_wait); 2049 } 2050 2051 /* 2052 * The background compaction daemon, started as a kernel thread 2053 * from the init process. 2054 */ 2055 static int kcompactd(void *p) 2056 { 2057 pg_data_t *pgdat = (pg_data_t*)p; 2058 struct task_struct *tsk = current; 2059 2060 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2061 2062 if (!cpumask_empty(cpumask)) 2063 set_cpus_allowed_ptr(tsk, cpumask); 2064 2065 set_freezable(); 2066 2067 pgdat->kcompactd_max_order = 0; 2068 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2069 2070 while (!kthread_should_stop()) { 2071 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2072 wait_event_freezable(pgdat->kcompactd_wait, 2073 kcompactd_work_requested(pgdat)); 2074 2075 kcompactd_do_work(pgdat); 2076 } 2077 2078 return 0; 2079 } 2080 2081 /* 2082 * This kcompactd start function will be called by init and node-hot-add. 2083 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2084 */ 2085 int kcompactd_run(int nid) 2086 { 2087 pg_data_t *pgdat = NODE_DATA(nid); 2088 int ret = 0; 2089 2090 if (pgdat->kcompactd) 2091 return 0; 2092 2093 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2094 if (IS_ERR(pgdat->kcompactd)) { 2095 pr_err("Failed to start kcompactd on node %d\n", nid); 2096 ret = PTR_ERR(pgdat->kcompactd); 2097 pgdat->kcompactd = NULL; 2098 } 2099 return ret; 2100 } 2101 2102 /* 2103 * Called by memory hotplug when all memory in a node is offlined. Caller must 2104 * hold mem_hotplug_begin/end(). 2105 */ 2106 void kcompactd_stop(int nid) 2107 { 2108 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2109 2110 if (kcompactd) { 2111 kthread_stop(kcompactd); 2112 NODE_DATA(nid)->kcompactd = NULL; 2113 } 2114 } 2115 2116 /* 2117 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2118 * not required for correctness. So if the last cpu in a node goes 2119 * away, we get changed to run anywhere: as the first one comes back, 2120 * restore their cpu bindings. 2121 */ 2122 static int kcompactd_cpu_online(unsigned int cpu) 2123 { 2124 int nid; 2125 2126 for_each_node_state(nid, N_MEMORY) { 2127 pg_data_t *pgdat = NODE_DATA(nid); 2128 const struct cpumask *mask; 2129 2130 mask = cpumask_of_node(pgdat->node_id); 2131 2132 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2133 /* One of our CPUs online: restore mask */ 2134 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2135 } 2136 return 0; 2137 } 2138 2139 static int __init kcompactd_init(void) 2140 { 2141 int nid; 2142 int ret; 2143 2144 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2145 "mm/compaction:online", 2146 kcompactd_cpu_online, NULL); 2147 if (ret < 0) { 2148 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2149 return ret; 2150 } 2151 2152 for_each_node_state(nid, N_MEMORY) 2153 kcompactd_run(nid); 2154 return 0; 2155 } 2156 subsys_initcall(kcompactd_init) 2157 2158 #endif /* CONFIG_COMPACTION */ 2159