1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 #ifdef CONFIG_SPARSEMEM 233 /* 234 * If the PFN falls into an offline section, return the start PFN of the 235 * next online section. If the PFN falls into an online section or if 236 * there is no next online section, return 0. 237 */ 238 static unsigned long skip_offline_sections(unsigned long start_pfn) 239 { 240 unsigned long start_nr = pfn_to_section_nr(start_pfn); 241 242 if (online_section_nr(start_nr)) 243 return 0; 244 245 while (++start_nr <= __highest_present_section_nr) { 246 if (online_section_nr(start_nr)) 247 return section_nr_to_pfn(start_nr); 248 } 249 250 return 0; 251 } 252 253 /* 254 * If the PFN falls into an offline section, return the end PFN of the 255 * next online section in reverse. If the PFN falls into an online section 256 * or if there is no next online section in reverse, return 0. 257 */ 258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 259 { 260 unsigned long start_nr = pfn_to_section_nr(start_pfn); 261 262 if (!start_nr || online_section_nr(start_nr)) 263 return 0; 264 265 while (start_nr-- > 0) { 266 if (online_section_nr(start_nr)) 267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION; 268 } 269 270 return 0; 271 } 272 #else 273 static unsigned long skip_offline_sections(unsigned long start_pfn) 274 { 275 return 0; 276 } 277 278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn) 279 { 280 return 0; 281 } 282 #endif 283 284 /* 285 * Compound pages of >= pageblock_order should consistently be skipped until 286 * released. It is always pointless to compact pages of such order (if they are 287 * migratable), and the pageblocks they occupy cannot contain any free pages. 288 */ 289 static bool pageblock_skip_persistent(struct page *page) 290 { 291 if (!PageCompound(page)) 292 return false; 293 294 page = compound_head(page); 295 296 if (compound_order(page) >= pageblock_order) 297 return true; 298 299 return false; 300 } 301 302 static bool 303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 304 bool check_target) 305 { 306 struct page *page = pfn_to_online_page(pfn); 307 struct page *block_page; 308 struct page *end_page; 309 unsigned long block_pfn; 310 311 if (!page) 312 return false; 313 if (zone != page_zone(page)) 314 return false; 315 if (pageblock_skip_persistent(page)) 316 return false; 317 318 /* 319 * If skip is already cleared do no further checking once the 320 * restart points have been set. 321 */ 322 if (check_source && check_target && !get_pageblock_skip(page)) 323 return true; 324 325 /* 326 * If clearing skip for the target scanner, do not select a 327 * non-movable pageblock as the starting point. 328 */ 329 if (!check_source && check_target && 330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 331 return false; 332 333 /* Ensure the start of the pageblock or zone is online and valid */ 334 block_pfn = pageblock_start_pfn(pfn); 335 block_pfn = max(block_pfn, zone->zone_start_pfn); 336 block_page = pfn_to_online_page(block_pfn); 337 if (block_page) { 338 page = block_page; 339 pfn = block_pfn; 340 } 341 342 /* Ensure the end of the pageblock or zone is online and valid */ 343 block_pfn = pageblock_end_pfn(pfn) - 1; 344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 345 end_page = pfn_to_online_page(block_pfn); 346 if (!end_page) 347 return false; 348 349 /* 350 * Only clear the hint if a sample indicates there is either a 351 * free page or an LRU page in the block. One or other condition 352 * is necessary for the block to be a migration source/target. 353 */ 354 do { 355 if (check_source && PageLRU(page)) { 356 clear_pageblock_skip(page); 357 return true; 358 } 359 360 if (check_target && PageBuddy(page)) { 361 clear_pageblock_skip(page); 362 return true; 363 } 364 365 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 366 } while (page <= end_page); 367 368 return false; 369 } 370 371 /* 372 * This function is called to clear all cached information on pageblocks that 373 * should be skipped for page isolation when the migrate and free page scanner 374 * meet. 375 */ 376 static void __reset_isolation_suitable(struct zone *zone) 377 { 378 unsigned long migrate_pfn = zone->zone_start_pfn; 379 unsigned long free_pfn = zone_end_pfn(zone) - 1; 380 unsigned long reset_migrate = free_pfn; 381 unsigned long reset_free = migrate_pfn; 382 bool source_set = false; 383 bool free_set = false; 384 385 if (!zone->compact_blockskip_flush) 386 return; 387 388 zone->compact_blockskip_flush = false; 389 390 /* 391 * Walk the zone and update pageblock skip information. Source looks 392 * for PageLRU while target looks for PageBuddy. When the scanner 393 * is found, both PageBuddy and PageLRU are checked as the pageblock 394 * is suitable as both source and target. 395 */ 396 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 397 free_pfn -= pageblock_nr_pages) { 398 cond_resched(); 399 400 /* Update the migrate PFN */ 401 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 402 migrate_pfn < reset_migrate) { 403 source_set = true; 404 reset_migrate = migrate_pfn; 405 zone->compact_init_migrate_pfn = reset_migrate; 406 zone->compact_cached_migrate_pfn[0] = reset_migrate; 407 zone->compact_cached_migrate_pfn[1] = reset_migrate; 408 } 409 410 /* Update the free PFN */ 411 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 412 free_pfn > reset_free) { 413 free_set = true; 414 reset_free = free_pfn; 415 zone->compact_init_free_pfn = reset_free; 416 zone->compact_cached_free_pfn = reset_free; 417 } 418 } 419 420 /* Leave no distance if no suitable block was reset */ 421 if (reset_migrate >= reset_free) { 422 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 423 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 424 zone->compact_cached_free_pfn = free_pfn; 425 } 426 } 427 428 void reset_isolation_suitable(pg_data_t *pgdat) 429 { 430 int zoneid; 431 432 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 433 struct zone *zone = &pgdat->node_zones[zoneid]; 434 if (!populated_zone(zone)) 435 continue; 436 437 /* Only flush if a full compaction finished recently */ 438 if (zone->compact_blockskip_flush) 439 __reset_isolation_suitable(zone); 440 } 441 } 442 443 /* 444 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 445 * locks are not required for read/writers. Returns true if it was already set. 446 */ 447 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 448 { 449 bool skip; 450 451 /* Do not update if skip hint is being ignored */ 452 if (cc->ignore_skip_hint) 453 return false; 454 455 skip = get_pageblock_skip(page); 456 if (!skip && !cc->no_set_skip_hint) 457 set_pageblock_skip(page); 458 459 return skip; 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 struct zone *zone = cc->zone; 465 466 pfn = pageblock_end_pfn(pfn); 467 468 /* Set for isolation rather than compaction */ 469 if (cc->no_set_skip_hint) 470 return; 471 472 if (pfn > zone->compact_cached_migrate_pfn[0]) 473 zone->compact_cached_migrate_pfn[0] = pfn; 474 if (cc->mode != MIGRATE_ASYNC && 475 pfn > zone->compact_cached_migrate_pfn[1]) 476 zone->compact_cached_migrate_pfn[1] = pfn; 477 } 478 479 /* 480 * If no pages were isolated then mark this pageblock to be skipped in the 481 * future. The information is later cleared by __reset_isolation_suitable(). 482 */ 483 static void update_pageblock_skip(struct compact_control *cc, 484 struct page *page, unsigned long pfn) 485 { 486 struct zone *zone = cc->zone; 487 488 if (cc->no_set_skip_hint) 489 return; 490 491 set_pageblock_skip(page); 492 493 /* Update where async and sync compaction should restart */ 494 if (pfn < zone->compact_cached_free_pfn) 495 zone->compact_cached_free_pfn = pfn; 496 } 497 #else 498 static inline bool isolation_suitable(struct compact_control *cc, 499 struct page *page) 500 { 501 return true; 502 } 503 504 static inline bool pageblock_skip_persistent(struct page *page) 505 { 506 return false; 507 } 508 509 static inline void update_pageblock_skip(struct compact_control *cc, 510 struct page *page, unsigned long pfn) 511 { 512 } 513 514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 515 { 516 } 517 518 static bool test_and_set_skip(struct compact_control *cc, struct page *page) 519 { 520 return false; 521 } 522 #endif /* CONFIG_COMPACTION */ 523 524 /* 525 * Compaction requires the taking of some coarse locks that are potentially 526 * very heavily contended. For async compaction, trylock and record if the 527 * lock is contended. The lock will still be acquired but compaction will 528 * abort when the current block is finished regardless of success rate. 529 * Sync compaction acquires the lock. 530 * 531 * Always returns true which makes it easier to track lock state in callers. 532 */ 533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 534 struct compact_control *cc) 535 __acquires(lock) 536 { 537 /* Track if the lock is contended in async mode */ 538 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 539 if (spin_trylock_irqsave(lock, *flags)) 540 return true; 541 542 cc->contended = true; 543 } 544 545 spin_lock_irqsave(lock, *flags); 546 return true; 547 } 548 549 /* 550 * Compaction requires the taking of some coarse locks that are potentially 551 * very heavily contended. The lock should be periodically unlocked to avoid 552 * having disabled IRQs for a long time, even when there is nobody waiting on 553 * the lock. It might also be that allowing the IRQs will result in 554 * need_resched() becoming true. If scheduling is needed, compaction schedules. 555 * Either compaction type will also abort if a fatal signal is pending. 556 * In either case if the lock was locked, it is dropped and not regained. 557 * 558 * Returns true if compaction should abort due to fatal signal pending. 559 * Returns false when compaction can continue. 560 */ 561 static bool compact_unlock_should_abort(spinlock_t *lock, 562 unsigned long flags, bool *locked, struct compact_control *cc) 563 { 564 if (*locked) { 565 spin_unlock_irqrestore(lock, flags); 566 *locked = false; 567 } 568 569 if (fatal_signal_pending(current)) { 570 cc->contended = true; 571 return true; 572 } 573 574 cond_resched(); 575 576 return false; 577 } 578 579 /* 580 * Isolate free pages onto a private freelist. If @strict is true, will abort 581 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 582 * (even though it may still end up isolating some pages). 583 */ 584 static unsigned long isolate_freepages_block(struct compact_control *cc, 585 unsigned long *start_pfn, 586 unsigned long end_pfn, 587 struct list_head *freelist, 588 unsigned int stride, 589 bool strict) 590 { 591 int nr_scanned = 0, total_isolated = 0; 592 struct page *cursor; 593 unsigned long flags = 0; 594 bool locked = false; 595 unsigned long blockpfn = *start_pfn; 596 unsigned int order; 597 598 /* Strict mode is for isolation, speed is secondary */ 599 if (strict) 600 stride = 1; 601 602 cursor = pfn_to_page(blockpfn); 603 604 /* Isolate free pages. */ 605 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 606 int isolated; 607 struct page *page = cursor; 608 609 /* 610 * Periodically drop the lock (if held) regardless of its 611 * contention, to give chance to IRQs. Abort if fatal signal 612 * pending. 613 */ 614 if (!(blockpfn % COMPACT_CLUSTER_MAX) 615 && compact_unlock_should_abort(&cc->zone->lock, flags, 616 &locked, cc)) 617 break; 618 619 nr_scanned++; 620 621 /* 622 * For compound pages such as THP and hugetlbfs, we can save 623 * potentially a lot of iterations if we skip them at once. 624 * The check is racy, but we can consider only valid values 625 * and the only danger is skipping too much. 626 */ 627 if (PageCompound(page)) { 628 const unsigned int order = compound_order(page); 629 630 if (likely(order <= MAX_ORDER)) { 631 blockpfn += (1UL << order) - 1; 632 cursor += (1UL << order) - 1; 633 nr_scanned += (1UL << order) - 1; 634 } 635 goto isolate_fail; 636 } 637 638 if (!PageBuddy(page)) 639 goto isolate_fail; 640 641 /* If we already hold the lock, we can skip some rechecking. */ 642 if (!locked) { 643 locked = compact_lock_irqsave(&cc->zone->lock, 644 &flags, cc); 645 646 /* Recheck this is a buddy page under lock */ 647 if (!PageBuddy(page)) 648 goto isolate_fail; 649 } 650 651 /* Found a free page, will break it into order-0 pages */ 652 order = buddy_order(page); 653 isolated = __isolate_free_page(page, order); 654 if (!isolated) 655 break; 656 set_page_private(page, order); 657 658 nr_scanned += isolated - 1; 659 total_isolated += isolated; 660 cc->nr_freepages += isolated; 661 list_add_tail(&page->lru, freelist); 662 663 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 664 blockpfn += isolated; 665 break; 666 } 667 /* Advance to the end of split page */ 668 blockpfn += isolated - 1; 669 cursor += isolated - 1; 670 continue; 671 672 isolate_fail: 673 if (strict) 674 break; 675 else 676 continue; 677 678 } 679 680 if (locked) 681 spin_unlock_irqrestore(&cc->zone->lock, flags); 682 683 /* 684 * There is a tiny chance that we have read bogus compound_order(), 685 * so be careful to not go outside of the pageblock. 686 */ 687 if (unlikely(blockpfn > end_pfn)) 688 blockpfn = end_pfn; 689 690 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 691 nr_scanned, total_isolated); 692 693 /* Record how far we have got within the block */ 694 *start_pfn = blockpfn; 695 696 /* 697 * If strict isolation is requested by CMA then check that all the 698 * pages requested were isolated. If there were any failures, 0 is 699 * returned and CMA will fail. 700 */ 701 if (strict && blockpfn < end_pfn) 702 total_isolated = 0; 703 704 cc->total_free_scanned += nr_scanned; 705 if (total_isolated) 706 count_compact_events(COMPACTISOLATED, total_isolated); 707 return total_isolated; 708 } 709 710 /** 711 * isolate_freepages_range() - isolate free pages. 712 * @cc: Compaction control structure. 713 * @start_pfn: The first PFN to start isolating. 714 * @end_pfn: The one-past-last PFN. 715 * 716 * Non-free pages, invalid PFNs, or zone boundaries within the 717 * [start_pfn, end_pfn) range are considered errors, cause function to 718 * undo its actions and return zero. 719 * 720 * Otherwise, function returns one-past-the-last PFN of isolated page 721 * (which may be greater then end_pfn if end fell in a middle of 722 * a free page). 723 */ 724 unsigned long 725 isolate_freepages_range(struct compact_control *cc, 726 unsigned long start_pfn, unsigned long end_pfn) 727 { 728 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 729 LIST_HEAD(freelist); 730 731 pfn = start_pfn; 732 block_start_pfn = pageblock_start_pfn(pfn); 733 if (block_start_pfn < cc->zone->zone_start_pfn) 734 block_start_pfn = cc->zone->zone_start_pfn; 735 block_end_pfn = pageblock_end_pfn(pfn); 736 737 for (; pfn < end_pfn; pfn += isolated, 738 block_start_pfn = block_end_pfn, 739 block_end_pfn += pageblock_nr_pages) { 740 /* Protect pfn from changing by isolate_freepages_block */ 741 unsigned long isolate_start_pfn = pfn; 742 743 block_end_pfn = min(block_end_pfn, end_pfn); 744 745 /* 746 * pfn could pass the block_end_pfn if isolated freepage 747 * is more than pageblock order. In this case, we adjust 748 * scanning range to right one. 749 */ 750 if (pfn >= block_end_pfn) { 751 block_start_pfn = pageblock_start_pfn(pfn); 752 block_end_pfn = pageblock_end_pfn(pfn); 753 block_end_pfn = min(block_end_pfn, end_pfn); 754 } 755 756 if (!pageblock_pfn_to_page(block_start_pfn, 757 block_end_pfn, cc->zone)) 758 break; 759 760 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 761 block_end_pfn, &freelist, 0, true); 762 763 /* 764 * In strict mode, isolate_freepages_block() returns 0 if 765 * there are any holes in the block (ie. invalid PFNs or 766 * non-free pages). 767 */ 768 if (!isolated) 769 break; 770 771 /* 772 * If we managed to isolate pages, it is always (1 << n) * 773 * pageblock_nr_pages for some non-negative n. (Max order 774 * page may span two pageblocks). 775 */ 776 } 777 778 /* __isolate_free_page() does not map the pages */ 779 split_map_pages(&freelist); 780 781 if (pfn < end_pfn) { 782 /* Loop terminated early, cleanup. */ 783 release_freepages(&freelist); 784 return 0; 785 } 786 787 /* We don't use freelists for anything. */ 788 return pfn; 789 } 790 791 /* Similar to reclaim, but different enough that they don't share logic */ 792 static bool too_many_isolated(struct compact_control *cc) 793 { 794 pg_data_t *pgdat = cc->zone->zone_pgdat; 795 bool too_many; 796 797 unsigned long active, inactive, isolated; 798 799 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 800 node_page_state(pgdat, NR_INACTIVE_ANON); 801 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 802 node_page_state(pgdat, NR_ACTIVE_ANON); 803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 804 node_page_state(pgdat, NR_ISOLATED_ANON); 805 806 /* 807 * Allow GFP_NOFS to isolate past the limit set for regular 808 * compaction runs. This prevents an ABBA deadlock when other 809 * compactors have already isolated to the limit, but are 810 * blocked on filesystem locks held by the GFP_NOFS thread. 811 */ 812 if (cc->gfp_mask & __GFP_FS) { 813 inactive >>= 3; 814 active >>= 3; 815 } 816 817 too_many = isolated > (inactive + active) / 2; 818 if (!too_many) 819 wake_throttle_isolated(pgdat); 820 821 return too_many; 822 } 823 824 /** 825 * isolate_migratepages_block() - isolate all migrate-able pages within 826 * a single pageblock 827 * @cc: Compaction control structure. 828 * @low_pfn: The first PFN to isolate 829 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 830 * @mode: Isolation mode to be used. 831 * 832 * Isolate all pages that can be migrated from the range specified by 833 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 834 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 835 * -ENOMEM in case we could not allocate a page, or 0. 836 * cc->migrate_pfn will contain the next pfn to scan. 837 * 838 * The pages are isolated on cc->migratepages list (not required to be empty), 839 * and cc->nr_migratepages is updated accordingly. 840 */ 841 static int 842 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 843 unsigned long end_pfn, isolate_mode_t mode) 844 { 845 pg_data_t *pgdat = cc->zone->zone_pgdat; 846 unsigned long nr_scanned = 0, nr_isolated = 0; 847 struct lruvec *lruvec; 848 unsigned long flags = 0; 849 struct lruvec *locked = NULL; 850 struct folio *folio = NULL; 851 struct page *page = NULL, *valid_page = NULL; 852 struct address_space *mapping; 853 unsigned long start_pfn = low_pfn; 854 bool skip_on_failure = false; 855 unsigned long next_skip_pfn = 0; 856 bool skip_updated = false; 857 int ret = 0; 858 859 cc->migrate_pfn = low_pfn; 860 861 /* 862 * Ensure that there are not too many pages isolated from the LRU 863 * list by either parallel reclaimers or compaction. If there are, 864 * delay for some time until fewer pages are isolated 865 */ 866 while (unlikely(too_many_isolated(cc))) { 867 /* stop isolation if there are still pages not migrated */ 868 if (cc->nr_migratepages) 869 return -EAGAIN; 870 871 /* async migration should just abort */ 872 if (cc->mode == MIGRATE_ASYNC) 873 return -EAGAIN; 874 875 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 876 877 if (fatal_signal_pending(current)) 878 return -EINTR; 879 } 880 881 cond_resched(); 882 883 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 884 skip_on_failure = true; 885 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 886 } 887 888 /* Time to isolate some pages for migration */ 889 for (; low_pfn < end_pfn; low_pfn++) { 890 891 if (skip_on_failure && low_pfn >= next_skip_pfn) { 892 /* 893 * We have isolated all migration candidates in the 894 * previous order-aligned block, and did not skip it due 895 * to failure. We should migrate the pages now and 896 * hopefully succeed compaction. 897 */ 898 if (nr_isolated) 899 break; 900 901 /* 902 * We failed to isolate in the previous order-aligned 903 * block. Set the new boundary to the end of the 904 * current block. Note we can't simply increase 905 * next_skip_pfn by 1 << order, as low_pfn might have 906 * been incremented by a higher number due to skipping 907 * a compound or a high-order buddy page in the 908 * previous loop iteration. 909 */ 910 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 911 } 912 913 /* 914 * Periodically drop the lock (if held) regardless of its 915 * contention, to give chance to IRQs. Abort completely if 916 * a fatal signal is pending. 917 */ 918 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 919 if (locked) { 920 unlock_page_lruvec_irqrestore(locked, flags); 921 locked = NULL; 922 } 923 924 if (fatal_signal_pending(current)) { 925 cc->contended = true; 926 ret = -EINTR; 927 928 goto fatal_pending; 929 } 930 931 cond_resched(); 932 } 933 934 nr_scanned++; 935 936 page = pfn_to_page(low_pfn); 937 938 /* 939 * Check if the pageblock has already been marked skipped. 940 * Only the aligned PFN is checked as the caller isolates 941 * COMPACT_CLUSTER_MAX at a time so the second call must 942 * not falsely conclude that the block should be skipped. 943 */ 944 if (!valid_page && pageblock_aligned(low_pfn)) { 945 if (!isolation_suitable(cc, page)) { 946 low_pfn = end_pfn; 947 folio = NULL; 948 goto isolate_abort; 949 } 950 valid_page = page; 951 } 952 953 if (PageHuge(page) && cc->alloc_contig) { 954 if (locked) { 955 unlock_page_lruvec_irqrestore(locked, flags); 956 locked = NULL; 957 } 958 959 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 960 961 /* 962 * Fail isolation in case isolate_or_dissolve_huge_page() 963 * reports an error. In case of -ENOMEM, abort right away. 964 */ 965 if (ret < 0) { 966 /* Do not report -EBUSY down the chain */ 967 if (ret == -EBUSY) 968 ret = 0; 969 low_pfn += compound_nr(page) - 1; 970 nr_scanned += compound_nr(page) - 1; 971 goto isolate_fail; 972 } 973 974 if (PageHuge(page)) { 975 /* 976 * Hugepage was successfully isolated and placed 977 * on the cc->migratepages list. 978 */ 979 folio = page_folio(page); 980 low_pfn += folio_nr_pages(folio) - 1; 981 goto isolate_success_no_list; 982 } 983 984 /* 985 * Ok, the hugepage was dissolved. Now these pages are 986 * Buddy and cannot be re-allocated because they are 987 * isolated. Fall-through as the check below handles 988 * Buddy pages. 989 */ 990 } 991 992 /* 993 * Skip if free. We read page order here without zone lock 994 * which is generally unsafe, but the race window is small and 995 * the worst thing that can happen is that we skip some 996 * potential isolation targets. 997 */ 998 if (PageBuddy(page)) { 999 unsigned long freepage_order = buddy_order_unsafe(page); 1000 1001 /* 1002 * Without lock, we cannot be sure that what we got is 1003 * a valid page order. Consider only values in the 1004 * valid order range to prevent low_pfn overflow. 1005 */ 1006 if (freepage_order > 0 && freepage_order <= MAX_ORDER) { 1007 low_pfn += (1UL << freepage_order) - 1; 1008 nr_scanned += (1UL << freepage_order) - 1; 1009 } 1010 continue; 1011 } 1012 1013 /* 1014 * Regardless of being on LRU, compound pages such as THP and 1015 * hugetlbfs are not to be compacted unless we are attempting 1016 * an allocation much larger than the huge page size (eg CMA). 1017 * We can potentially save a lot of iterations if we skip them 1018 * at once. The check is racy, but we can consider only valid 1019 * values and the only danger is skipping too much. 1020 */ 1021 if (PageCompound(page) && !cc->alloc_contig) { 1022 const unsigned int order = compound_order(page); 1023 1024 if (likely(order <= MAX_ORDER)) { 1025 low_pfn += (1UL << order) - 1; 1026 nr_scanned += (1UL << order) - 1; 1027 } 1028 goto isolate_fail; 1029 } 1030 1031 /* 1032 * Check may be lockless but that's ok as we recheck later. 1033 * It's possible to migrate LRU and non-lru movable pages. 1034 * Skip any other type of page 1035 */ 1036 if (!PageLRU(page)) { 1037 /* 1038 * __PageMovable can return false positive so we need 1039 * to verify it under page_lock. 1040 */ 1041 if (unlikely(__PageMovable(page)) && 1042 !PageIsolated(page)) { 1043 if (locked) { 1044 unlock_page_lruvec_irqrestore(locked, flags); 1045 locked = NULL; 1046 } 1047 1048 if (isolate_movable_page(page, mode)) { 1049 folio = page_folio(page); 1050 goto isolate_success; 1051 } 1052 } 1053 1054 goto isolate_fail; 1055 } 1056 1057 /* 1058 * Be careful not to clear PageLRU until after we're 1059 * sure the page is not being freed elsewhere -- the 1060 * page release code relies on it. 1061 */ 1062 folio = folio_get_nontail_page(page); 1063 if (unlikely(!folio)) 1064 goto isolate_fail; 1065 1066 /* 1067 * Migration will fail if an anonymous page is pinned in memory, 1068 * so avoid taking lru_lock and isolating it unnecessarily in an 1069 * admittedly racy check. 1070 */ 1071 mapping = folio_mapping(folio); 1072 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio)) 1073 goto isolate_fail_put; 1074 1075 /* 1076 * Only allow to migrate anonymous pages in GFP_NOFS context 1077 * because those do not depend on fs locks. 1078 */ 1079 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1080 goto isolate_fail_put; 1081 1082 /* Only take pages on LRU: a check now makes later tests safe */ 1083 if (!folio_test_lru(folio)) 1084 goto isolate_fail_put; 1085 1086 /* Compaction might skip unevictable pages but CMA takes them */ 1087 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio)) 1088 goto isolate_fail_put; 1089 1090 /* 1091 * To minimise LRU disruption, the caller can indicate with 1092 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1093 * it will be able to migrate without blocking - clean pages 1094 * for the most part. PageWriteback would require blocking. 1095 */ 1096 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio)) 1097 goto isolate_fail_put; 1098 1099 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) { 1100 bool migrate_dirty; 1101 1102 /* 1103 * Only pages without mappings or that have a 1104 * ->migrate_folio callback are possible to migrate 1105 * without blocking. However, we can be racing with 1106 * truncation so it's necessary to lock the page 1107 * to stabilise the mapping as truncation holds 1108 * the page lock until after the page is removed 1109 * from the page cache. 1110 */ 1111 if (!folio_trylock(folio)) 1112 goto isolate_fail_put; 1113 1114 mapping = folio_mapping(folio); 1115 migrate_dirty = !mapping || 1116 mapping->a_ops->migrate_folio; 1117 folio_unlock(folio); 1118 if (!migrate_dirty) 1119 goto isolate_fail_put; 1120 } 1121 1122 /* Try isolate the folio */ 1123 if (!folio_test_clear_lru(folio)) 1124 goto isolate_fail_put; 1125 1126 lruvec = folio_lruvec(folio); 1127 1128 /* If we already hold the lock, we can skip some rechecking */ 1129 if (lruvec != locked) { 1130 if (locked) 1131 unlock_page_lruvec_irqrestore(locked, flags); 1132 1133 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1134 locked = lruvec; 1135 1136 lruvec_memcg_debug(lruvec, folio); 1137 1138 /* 1139 * Try get exclusive access under lock. If marked for 1140 * skip, the scan is aborted unless the current context 1141 * is a rescan to reach the end of the pageblock. 1142 */ 1143 if (!skip_updated && valid_page) { 1144 skip_updated = true; 1145 if (test_and_set_skip(cc, valid_page) && 1146 !cc->finish_pageblock) { 1147 goto isolate_abort; 1148 } 1149 } 1150 1151 /* 1152 * folio become large since the non-locked check, 1153 * and it's on LRU. 1154 */ 1155 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) { 1156 low_pfn += folio_nr_pages(folio) - 1; 1157 nr_scanned += folio_nr_pages(folio) - 1; 1158 folio_set_lru(folio); 1159 goto isolate_fail_put; 1160 } 1161 } 1162 1163 /* The folio is taken off the LRU */ 1164 if (folio_test_large(folio)) 1165 low_pfn += folio_nr_pages(folio) - 1; 1166 1167 /* Successfully isolated */ 1168 lruvec_del_folio(lruvec, folio); 1169 node_stat_mod_folio(folio, 1170 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1171 folio_nr_pages(folio)); 1172 1173 isolate_success: 1174 list_add(&folio->lru, &cc->migratepages); 1175 isolate_success_no_list: 1176 cc->nr_migratepages += folio_nr_pages(folio); 1177 nr_isolated += folio_nr_pages(folio); 1178 nr_scanned += folio_nr_pages(folio) - 1; 1179 1180 /* 1181 * Avoid isolating too much unless this block is being 1182 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1183 * or a lock is contended. For contention, isolate quickly to 1184 * potentially remove one source of contention. 1185 */ 1186 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1187 !cc->finish_pageblock && !cc->contended) { 1188 ++low_pfn; 1189 break; 1190 } 1191 1192 continue; 1193 1194 isolate_fail_put: 1195 /* Avoid potential deadlock in freeing page under lru_lock */ 1196 if (locked) { 1197 unlock_page_lruvec_irqrestore(locked, flags); 1198 locked = NULL; 1199 } 1200 folio_put(folio); 1201 1202 isolate_fail: 1203 if (!skip_on_failure && ret != -ENOMEM) 1204 continue; 1205 1206 /* 1207 * We have isolated some pages, but then failed. Release them 1208 * instead of migrating, as we cannot form the cc->order buddy 1209 * page anyway. 1210 */ 1211 if (nr_isolated) { 1212 if (locked) { 1213 unlock_page_lruvec_irqrestore(locked, flags); 1214 locked = NULL; 1215 } 1216 putback_movable_pages(&cc->migratepages); 1217 cc->nr_migratepages = 0; 1218 nr_isolated = 0; 1219 } 1220 1221 if (low_pfn < next_skip_pfn) { 1222 low_pfn = next_skip_pfn - 1; 1223 /* 1224 * The check near the loop beginning would have updated 1225 * next_skip_pfn too, but this is a bit simpler. 1226 */ 1227 next_skip_pfn += 1UL << cc->order; 1228 } 1229 1230 if (ret == -ENOMEM) 1231 break; 1232 } 1233 1234 /* 1235 * The PageBuddy() check could have potentially brought us outside 1236 * the range to be scanned. 1237 */ 1238 if (unlikely(low_pfn > end_pfn)) 1239 low_pfn = end_pfn; 1240 1241 folio = NULL; 1242 1243 isolate_abort: 1244 if (locked) 1245 unlock_page_lruvec_irqrestore(locked, flags); 1246 if (folio) { 1247 folio_set_lru(folio); 1248 folio_put(folio); 1249 } 1250 1251 /* 1252 * Update the cached scanner pfn once the pageblock has been scanned. 1253 * Pages will either be migrated in which case there is no point 1254 * scanning in the near future or migration failed in which case the 1255 * failure reason may persist. The block is marked for skipping if 1256 * there were no pages isolated in the block or if the block is 1257 * rescanned twice in a row. 1258 */ 1259 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1260 if (!cc->no_set_skip_hint && valid_page && !skip_updated) 1261 set_pageblock_skip(valid_page); 1262 update_cached_migrate(cc, low_pfn); 1263 } 1264 1265 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1266 nr_scanned, nr_isolated); 1267 1268 fatal_pending: 1269 cc->total_migrate_scanned += nr_scanned; 1270 if (nr_isolated) 1271 count_compact_events(COMPACTISOLATED, nr_isolated); 1272 1273 cc->migrate_pfn = low_pfn; 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1280 * @cc: Compaction control structure. 1281 * @start_pfn: The first PFN to start isolating. 1282 * @end_pfn: The one-past-last PFN. 1283 * 1284 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1285 * in case we could not allocate a page, or 0. 1286 */ 1287 int 1288 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1289 unsigned long end_pfn) 1290 { 1291 unsigned long pfn, block_start_pfn, block_end_pfn; 1292 int ret = 0; 1293 1294 /* Scan block by block. First and last block may be incomplete */ 1295 pfn = start_pfn; 1296 block_start_pfn = pageblock_start_pfn(pfn); 1297 if (block_start_pfn < cc->zone->zone_start_pfn) 1298 block_start_pfn = cc->zone->zone_start_pfn; 1299 block_end_pfn = pageblock_end_pfn(pfn); 1300 1301 for (; pfn < end_pfn; pfn = block_end_pfn, 1302 block_start_pfn = block_end_pfn, 1303 block_end_pfn += pageblock_nr_pages) { 1304 1305 block_end_pfn = min(block_end_pfn, end_pfn); 1306 1307 if (!pageblock_pfn_to_page(block_start_pfn, 1308 block_end_pfn, cc->zone)) 1309 continue; 1310 1311 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1312 ISOLATE_UNEVICTABLE); 1313 1314 if (ret) 1315 break; 1316 1317 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1318 break; 1319 } 1320 1321 return ret; 1322 } 1323 1324 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1325 #ifdef CONFIG_COMPACTION 1326 1327 static bool suitable_migration_source(struct compact_control *cc, 1328 struct page *page) 1329 { 1330 int block_mt; 1331 1332 if (pageblock_skip_persistent(page)) 1333 return false; 1334 1335 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1336 return true; 1337 1338 block_mt = get_pageblock_migratetype(page); 1339 1340 if (cc->migratetype == MIGRATE_MOVABLE) 1341 return is_migrate_movable(block_mt); 1342 else 1343 return block_mt == cc->migratetype; 1344 } 1345 1346 /* Returns true if the page is within a block suitable for migration to */ 1347 static bool suitable_migration_target(struct compact_control *cc, 1348 struct page *page) 1349 { 1350 /* If the page is a large free page, then disallow migration */ 1351 if (PageBuddy(page)) { 1352 /* 1353 * We are checking page_order without zone->lock taken. But 1354 * the only small danger is that we skip a potentially suitable 1355 * pageblock, so it's not worth to check order for valid range. 1356 */ 1357 if (buddy_order_unsafe(page) >= pageblock_order) 1358 return false; 1359 } 1360 1361 if (cc->ignore_block_suitable) 1362 return true; 1363 1364 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1365 if (is_migrate_movable(get_pageblock_migratetype(page))) 1366 return true; 1367 1368 /* Otherwise skip the block */ 1369 return false; 1370 } 1371 1372 static inline unsigned int 1373 freelist_scan_limit(struct compact_control *cc) 1374 { 1375 unsigned short shift = BITS_PER_LONG - 1; 1376 1377 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1378 } 1379 1380 /* 1381 * Test whether the free scanner has reached the same or lower pageblock than 1382 * the migration scanner, and compaction should thus terminate. 1383 */ 1384 static inline bool compact_scanners_met(struct compact_control *cc) 1385 { 1386 return (cc->free_pfn >> pageblock_order) 1387 <= (cc->migrate_pfn >> pageblock_order); 1388 } 1389 1390 /* 1391 * Used when scanning for a suitable migration target which scans freelists 1392 * in reverse. Reorders the list such as the unscanned pages are scanned 1393 * first on the next iteration of the free scanner 1394 */ 1395 static void 1396 move_freelist_head(struct list_head *freelist, struct page *freepage) 1397 { 1398 LIST_HEAD(sublist); 1399 1400 if (!list_is_last(freelist, &freepage->lru)) { 1401 list_cut_before(&sublist, freelist, &freepage->lru); 1402 list_splice_tail(&sublist, freelist); 1403 } 1404 } 1405 1406 /* 1407 * Similar to move_freelist_head except used by the migration scanner 1408 * when scanning forward. It's possible for these list operations to 1409 * move against each other if they search the free list exactly in 1410 * lockstep. 1411 */ 1412 static void 1413 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1414 { 1415 LIST_HEAD(sublist); 1416 1417 if (!list_is_first(freelist, &freepage->lru)) { 1418 list_cut_position(&sublist, freelist, &freepage->lru); 1419 list_splice_tail(&sublist, freelist); 1420 } 1421 } 1422 1423 static void 1424 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1425 { 1426 unsigned long start_pfn, end_pfn; 1427 struct page *page; 1428 1429 /* Do not search around if there are enough pages already */ 1430 if (cc->nr_freepages >= cc->nr_migratepages) 1431 return; 1432 1433 /* Minimise scanning during async compaction */ 1434 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1435 return; 1436 1437 /* Pageblock boundaries */ 1438 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1439 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1440 1441 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1442 if (!page) 1443 return; 1444 1445 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1446 1447 /* Skip this pageblock in the future as it's full or nearly full */ 1448 if (start_pfn == end_pfn) 1449 set_pageblock_skip(page); 1450 1451 return; 1452 } 1453 1454 /* Search orders in round-robin fashion */ 1455 static int next_search_order(struct compact_control *cc, int order) 1456 { 1457 order--; 1458 if (order < 0) 1459 order = cc->order - 1; 1460 1461 /* Search wrapped around? */ 1462 if (order == cc->search_order) { 1463 cc->search_order--; 1464 if (cc->search_order < 0) 1465 cc->search_order = cc->order - 1; 1466 return -1; 1467 } 1468 1469 return order; 1470 } 1471 1472 static void fast_isolate_freepages(struct compact_control *cc) 1473 { 1474 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1475 unsigned int nr_scanned = 0, total_isolated = 0; 1476 unsigned long low_pfn, min_pfn, highest = 0; 1477 unsigned long nr_isolated = 0; 1478 unsigned long distance; 1479 struct page *page = NULL; 1480 bool scan_start = false; 1481 int order; 1482 1483 /* Full compaction passes in a negative order */ 1484 if (cc->order <= 0) 1485 return; 1486 1487 /* 1488 * If starting the scan, use a deeper search and use the highest 1489 * PFN found if a suitable one is not found. 1490 */ 1491 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1492 limit = pageblock_nr_pages >> 1; 1493 scan_start = true; 1494 } 1495 1496 /* 1497 * Preferred point is in the top quarter of the scan space but take 1498 * a pfn from the top half if the search is problematic. 1499 */ 1500 distance = (cc->free_pfn - cc->migrate_pfn); 1501 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1502 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1503 1504 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1505 low_pfn = min_pfn; 1506 1507 /* 1508 * Search starts from the last successful isolation order or the next 1509 * order to search after a previous failure 1510 */ 1511 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1512 1513 for (order = cc->search_order; 1514 !page && order >= 0; 1515 order = next_search_order(cc, order)) { 1516 struct free_area *area = &cc->zone->free_area[order]; 1517 struct list_head *freelist; 1518 struct page *freepage; 1519 unsigned long flags; 1520 unsigned int order_scanned = 0; 1521 unsigned long high_pfn = 0; 1522 1523 if (!area->nr_free) 1524 continue; 1525 1526 spin_lock_irqsave(&cc->zone->lock, flags); 1527 freelist = &area->free_list[MIGRATE_MOVABLE]; 1528 list_for_each_entry_reverse(freepage, freelist, buddy_list) { 1529 unsigned long pfn; 1530 1531 order_scanned++; 1532 nr_scanned++; 1533 pfn = page_to_pfn(freepage); 1534 1535 if (pfn >= highest) 1536 highest = max(pageblock_start_pfn(pfn), 1537 cc->zone->zone_start_pfn); 1538 1539 if (pfn >= low_pfn) { 1540 cc->fast_search_fail = 0; 1541 cc->search_order = order; 1542 page = freepage; 1543 break; 1544 } 1545 1546 if (pfn >= min_pfn && pfn > high_pfn) { 1547 high_pfn = pfn; 1548 1549 /* Shorten the scan if a candidate is found */ 1550 limit >>= 1; 1551 } 1552 1553 if (order_scanned >= limit) 1554 break; 1555 } 1556 1557 /* Use a minimum pfn if a preferred one was not found */ 1558 if (!page && high_pfn) { 1559 page = pfn_to_page(high_pfn); 1560 1561 /* Update freepage for the list reorder below */ 1562 freepage = page; 1563 } 1564 1565 /* Reorder to so a future search skips recent pages */ 1566 move_freelist_head(freelist, freepage); 1567 1568 /* Isolate the page if available */ 1569 if (page) { 1570 if (__isolate_free_page(page, order)) { 1571 set_page_private(page, order); 1572 nr_isolated = 1 << order; 1573 nr_scanned += nr_isolated - 1; 1574 total_isolated += nr_isolated; 1575 cc->nr_freepages += nr_isolated; 1576 list_add_tail(&page->lru, &cc->freepages); 1577 count_compact_events(COMPACTISOLATED, nr_isolated); 1578 } else { 1579 /* If isolation fails, abort the search */ 1580 order = cc->search_order + 1; 1581 page = NULL; 1582 } 1583 } 1584 1585 spin_unlock_irqrestore(&cc->zone->lock, flags); 1586 1587 /* Skip fast search if enough freepages isolated */ 1588 if (cc->nr_freepages >= cc->nr_migratepages) 1589 break; 1590 1591 /* 1592 * Smaller scan on next order so the total scan is related 1593 * to freelist_scan_limit. 1594 */ 1595 if (order_scanned >= limit) 1596 limit = max(1U, limit >> 1); 1597 } 1598 1599 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn, 1600 nr_scanned, total_isolated); 1601 1602 if (!page) { 1603 cc->fast_search_fail++; 1604 if (scan_start) { 1605 /* 1606 * Use the highest PFN found above min. If one was 1607 * not found, be pessimistic for direct compaction 1608 * and use the min mark. 1609 */ 1610 if (highest >= min_pfn) { 1611 page = pfn_to_page(highest); 1612 cc->free_pfn = highest; 1613 } else { 1614 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1615 page = pageblock_pfn_to_page(min_pfn, 1616 min(pageblock_end_pfn(min_pfn), 1617 zone_end_pfn(cc->zone)), 1618 cc->zone); 1619 cc->free_pfn = min_pfn; 1620 } 1621 } 1622 } 1623 } 1624 1625 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1626 highest -= pageblock_nr_pages; 1627 cc->zone->compact_cached_free_pfn = highest; 1628 } 1629 1630 cc->total_free_scanned += nr_scanned; 1631 if (!page) 1632 return; 1633 1634 low_pfn = page_to_pfn(page); 1635 fast_isolate_around(cc, low_pfn); 1636 } 1637 1638 /* 1639 * Based on information in the current compact_control, find blocks 1640 * suitable for isolating free pages from and then isolate them. 1641 */ 1642 static void isolate_freepages(struct compact_control *cc) 1643 { 1644 struct zone *zone = cc->zone; 1645 struct page *page; 1646 unsigned long block_start_pfn; /* start of current pageblock */ 1647 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1648 unsigned long block_end_pfn; /* end of current pageblock */ 1649 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1650 struct list_head *freelist = &cc->freepages; 1651 unsigned int stride; 1652 1653 /* Try a small search of the free lists for a candidate */ 1654 fast_isolate_freepages(cc); 1655 if (cc->nr_freepages) 1656 goto splitmap; 1657 1658 /* 1659 * Initialise the free scanner. The starting point is where we last 1660 * successfully isolated from, zone-cached value, or the end of the 1661 * zone when isolating for the first time. For looping we also need 1662 * this pfn aligned down to the pageblock boundary, because we do 1663 * block_start_pfn -= pageblock_nr_pages in the for loop. 1664 * For ending point, take care when isolating in last pageblock of a 1665 * zone which ends in the middle of a pageblock. 1666 * The low boundary is the end of the pageblock the migration scanner 1667 * is using. 1668 */ 1669 isolate_start_pfn = cc->free_pfn; 1670 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1671 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1672 zone_end_pfn(zone)); 1673 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1674 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1675 1676 /* 1677 * Isolate free pages until enough are available to migrate the 1678 * pages on cc->migratepages. We stop searching if the migrate 1679 * and free page scanners meet or enough free pages are isolated. 1680 */ 1681 for (; block_start_pfn >= low_pfn; 1682 block_end_pfn = block_start_pfn, 1683 block_start_pfn -= pageblock_nr_pages, 1684 isolate_start_pfn = block_start_pfn) { 1685 unsigned long nr_isolated; 1686 1687 /* 1688 * This can iterate a massively long zone without finding any 1689 * suitable migration targets, so periodically check resched. 1690 */ 1691 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1692 cond_resched(); 1693 1694 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1695 zone); 1696 if (!page) { 1697 unsigned long next_pfn; 1698 1699 next_pfn = skip_offline_sections_reverse(block_start_pfn); 1700 if (next_pfn) 1701 block_start_pfn = max(next_pfn, low_pfn); 1702 1703 continue; 1704 } 1705 1706 /* Check the block is suitable for migration */ 1707 if (!suitable_migration_target(cc, page)) 1708 continue; 1709 1710 /* If isolation recently failed, do not retry */ 1711 if (!isolation_suitable(cc, page)) 1712 continue; 1713 1714 /* Found a block suitable for isolating free pages from. */ 1715 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1716 block_end_pfn, freelist, stride, false); 1717 1718 /* Update the skip hint if the full pageblock was scanned */ 1719 if (isolate_start_pfn == block_end_pfn) 1720 update_pageblock_skip(cc, page, block_start_pfn); 1721 1722 /* Are enough freepages isolated? */ 1723 if (cc->nr_freepages >= cc->nr_migratepages) { 1724 if (isolate_start_pfn >= block_end_pfn) { 1725 /* 1726 * Restart at previous pageblock if more 1727 * freepages can be isolated next time. 1728 */ 1729 isolate_start_pfn = 1730 block_start_pfn - pageblock_nr_pages; 1731 } 1732 break; 1733 } else if (isolate_start_pfn < block_end_pfn) { 1734 /* 1735 * If isolation failed early, do not continue 1736 * needlessly. 1737 */ 1738 break; 1739 } 1740 1741 /* Adjust stride depending on isolation */ 1742 if (nr_isolated) { 1743 stride = 1; 1744 continue; 1745 } 1746 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1747 } 1748 1749 /* 1750 * Record where the free scanner will restart next time. Either we 1751 * broke from the loop and set isolate_start_pfn based on the last 1752 * call to isolate_freepages_block(), or we met the migration scanner 1753 * and the loop terminated due to isolate_start_pfn < low_pfn 1754 */ 1755 cc->free_pfn = isolate_start_pfn; 1756 1757 splitmap: 1758 /* __isolate_free_page() does not map the pages */ 1759 split_map_pages(freelist); 1760 } 1761 1762 /* 1763 * This is a migrate-callback that "allocates" freepages by taking pages 1764 * from the isolated freelists in the block we are migrating to. 1765 */ 1766 static struct folio *compaction_alloc(struct folio *src, unsigned long data) 1767 { 1768 struct compact_control *cc = (struct compact_control *)data; 1769 struct folio *dst; 1770 1771 if (list_empty(&cc->freepages)) { 1772 isolate_freepages(cc); 1773 1774 if (list_empty(&cc->freepages)) 1775 return NULL; 1776 } 1777 1778 dst = list_entry(cc->freepages.next, struct folio, lru); 1779 list_del(&dst->lru); 1780 cc->nr_freepages--; 1781 1782 return dst; 1783 } 1784 1785 /* 1786 * This is a migrate-callback that "frees" freepages back to the isolated 1787 * freelist. All pages on the freelist are from the same zone, so there is no 1788 * special handling needed for NUMA. 1789 */ 1790 static void compaction_free(struct folio *dst, unsigned long data) 1791 { 1792 struct compact_control *cc = (struct compact_control *)data; 1793 1794 list_add(&dst->lru, &cc->freepages); 1795 cc->nr_freepages++; 1796 } 1797 1798 /* possible outcome of isolate_migratepages */ 1799 typedef enum { 1800 ISOLATE_ABORT, /* Abort compaction now */ 1801 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1802 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1803 } isolate_migrate_t; 1804 1805 /* 1806 * Allow userspace to control policy on scanning the unevictable LRU for 1807 * compactable pages. 1808 */ 1809 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1810 /* 1811 * Tunable for proactive compaction. It determines how 1812 * aggressively the kernel should compact memory in the 1813 * background. It takes values in the range [0, 100]. 1814 */ 1815 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1816 static int sysctl_extfrag_threshold = 500; 1817 static int __read_mostly sysctl_compact_memory; 1818 1819 static inline void 1820 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1821 { 1822 if (cc->fast_start_pfn == ULONG_MAX) 1823 return; 1824 1825 if (!cc->fast_start_pfn) 1826 cc->fast_start_pfn = pfn; 1827 1828 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1829 } 1830 1831 static inline unsigned long 1832 reinit_migrate_pfn(struct compact_control *cc) 1833 { 1834 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1835 return cc->migrate_pfn; 1836 1837 cc->migrate_pfn = cc->fast_start_pfn; 1838 cc->fast_start_pfn = ULONG_MAX; 1839 1840 return cc->migrate_pfn; 1841 } 1842 1843 /* 1844 * Briefly search the free lists for a migration source that already has 1845 * some free pages to reduce the number of pages that need migration 1846 * before a pageblock is free. 1847 */ 1848 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1849 { 1850 unsigned int limit = freelist_scan_limit(cc); 1851 unsigned int nr_scanned = 0; 1852 unsigned long distance; 1853 unsigned long pfn = cc->migrate_pfn; 1854 unsigned long high_pfn; 1855 int order; 1856 bool found_block = false; 1857 1858 /* Skip hints are relied on to avoid repeats on the fast search */ 1859 if (cc->ignore_skip_hint) 1860 return pfn; 1861 1862 /* 1863 * If the pageblock should be finished then do not select a different 1864 * pageblock. 1865 */ 1866 if (cc->finish_pageblock) 1867 return pfn; 1868 1869 /* 1870 * If the migrate_pfn is not at the start of a zone or the start 1871 * of a pageblock then assume this is a continuation of a previous 1872 * scan restarted due to COMPACT_CLUSTER_MAX. 1873 */ 1874 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1875 return pfn; 1876 1877 /* 1878 * For smaller orders, just linearly scan as the number of pages 1879 * to migrate should be relatively small and does not necessarily 1880 * justify freeing up a large block for a small allocation. 1881 */ 1882 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1883 return pfn; 1884 1885 /* 1886 * Only allow kcompactd and direct requests for movable pages to 1887 * quickly clear out a MOVABLE pageblock for allocation. This 1888 * reduces the risk that a large movable pageblock is freed for 1889 * an unmovable/reclaimable small allocation. 1890 */ 1891 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1892 return pfn; 1893 1894 /* 1895 * When starting the migration scanner, pick any pageblock within the 1896 * first half of the search space. Otherwise try and pick a pageblock 1897 * within the first eighth to reduce the chances that a migration 1898 * target later becomes a source. 1899 */ 1900 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1901 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1902 distance >>= 2; 1903 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1904 1905 for (order = cc->order - 1; 1906 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1907 order--) { 1908 struct free_area *area = &cc->zone->free_area[order]; 1909 struct list_head *freelist; 1910 unsigned long flags; 1911 struct page *freepage; 1912 1913 if (!area->nr_free) 1914 continue; 1915 1916 spin_lock_irqsave(&cc->zone->lock, flags); 1917 freelist = &area->free_list[MIGRATE_MOVABLE]; 1918 list_for_each_entry(freepage, freelist, buddy_list) { 1919 unsigned long free_pfn; 1920 1921 if (nr_scanned++ >= limit) { 1922 move_freelist_tail(freelist, freepage); 1923 break; 1924 } 1925 1926 free_pfn = page_to_pfn(freepage); 1927 if (free_pfn < high_pfn) { 1928 /* 1929 * Avoid if skipped recently. Ideally it would 1930 * move to the tail but even safe iteration of 1931 * the list assumes an entry is deleted, not 1932 * reordered. 1933 */ 1934 if (get_pageblock_skip(freepage)) 1935 continue; 1936 1937 /* Reorder to so a future search skips recent pages */ 1938 move_freelist_tail(freelist, freepage); 1939 1940 update_fast_start_pfn(cc, free_pfn); 1941 pfn = pageblock_start_pfn(free_pfn); 1942 if (pfn < cc->zone->zone_start_pfn) 1943 pfn = cc->zone->zone_start_pfn; 1944 cc->fast_search_fail = 0; 1945 found_block = true; 1946 break; 1947 } 1948 } 1949 spin_unlock_irqrestore(&cc->zone->lock, flags); 1950 } 1951 1952 cc->total_migrate_scanned += nr_scanned; 1953 1954 /* 1955 * If fast scanning failed then use a cached entry for a page block 1956 * that had free pages as the basis for starting a linear scan. 1957 */ 1958 if (!found_block) { 1959 cc->fast_search_fail++; 1960 pfn = reinit_migrate_pfn(cc); 1961 } 1962 return pfn; 1963 } 1964 1965 /* 1966 * Isolate all pages that can be migrated from the first suitable block, 1967 * starting at the block pointed to by the migrate scanner pfn within 1968 * compact_control. 1969 */ 1970 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1971 { 1972 unsigned long block_start_pfn; 1973 unsigned long block_end_pfn; 1974 unsigned long low_pfn; 1975 struct page *page; 1976 const isolate_mode_t isolate_mode = 1977 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1978 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1979 bool fast_find_block; 1980 1981 /* 1982 * Start at where we last stopped, or beginning of the zone as 1983 * initialized by compact_zone(). The first failure will use 1984 * the lowest PFN as the starting point for linear scanning. 1985 */ 1986 low_pfn = fast_find_migrateblock(cc); 1987 block_start_pfn = pageblock_start_pfn(low_pfn); 1988 if (block_start_pfn < cc->zone->zone_start_pfn) 1989 block_start_pfn = cc->zone->zone_start_pfn; 1990 1991 /* 1992 * fast_find_migrateblock marks a pageblock skipped so to avoid 1993 * the isolation_suitable check below, check whether the fast 1994 * search was successful. 1995 */ 1996 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1997 1998 /* Only scan within a pageblock boundary */ 1999 block_end_pfn = pageblock_end_pfn(low_pfn); 2000 2001 /* 2002 * Iterate over whole pageblocks until we find the first suitable. 2003 * Do not cross the free scanner. 2004 */ 2005 for (; block_end_pfn <= cc->free_pfn; 2006 fast_find_block = false, 2007 cc->migrate_pfn = low_pfn = block_end_pfn, 2008 block_start_pfn = block_end_pfn, 2009 block_end_pfn += pageblock_nr_pages) { 2010 2011 /* 2012 * This can potentially iterate a massively long zone with 2013 * many pageblocks unsuitable, so periodically check if we 2014 * need to schedule. 2015 */ 2016 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 2017 cond_resched(); 2018 2019 page = pageblock_pfn_to_page(block_start_pfn, 2020 block_end_pfn, cc->zone); 2021 if (!page) { 2022 unsigned long next_pfn; 2023 2024 next_pfn = skip_offline_sections(block_start_pfn); 2025 if (next_pfn) 2026 block_end_pfn = min(next_pfn, cc->free_pfn); 2027 continue; 2028 } 2029 2030 /* 2031 * If isolation recently failed, do not retry. Only check the 2032 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 2033 * to be visited multiple times. Assume skip was checked 2034 * before making it "skip" so other compaction instances do 2035 * not scan the same block. 2036 */ 2037 if (pageblock_aligned(low_pfn) && 2038 !fast_find_block && !isolation_suitable(cc, page)) 2039 continue; 2040 2041 /* 2042 * For async direct compaction, only scan the pageblocks of the 2043 * same migratetype without huge pages. Async direct compaction 2044 * is optimistic to see if the minimum amount of work satisfies 2045 * the allocation. The cached PFN is updated as it's possible 2046 * that all remaining blocks between source and target are 2047 * unsuitable and the compaction scanners fail to meet. 2048 */ 2049 if (!suitable_migration_source(cc, page)) { 2050 update_cached_migrate(cc, block_end_pfn); 2051 continue; 2052 } 2053 2054 /* Perform the isolation */ 2055 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 2056 isolate_mode)) 2057 return ISOLATE_ABORT; 2058 2059 /* 2060 * Either we isolated something and proceed with migration. Or 2061 * we failed and compact_zone should decide if we should 2062 * continue or not. 2063 */ 2064 break; 2065 } 2066 2067 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 2068 } 2069 2070 /* 2071 * order == -1 is expected when compacting via 2072 * /proc/sys/vm/compact_memory 2073 */ 2074 static inline bool is_via_compact_memory(int order) 2075 { 2076 return order == -1; 2077 } 2078 2079 /* 2080 * Determine whether kswapd is (or recently was!) running on this node. 2081 * 2082 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 2083 * zero it. 2084 */ 2085 static bool kswapd_is_running(pg_data_t *pgdat) 2086 { 2087 bool running; 2088 2089 pgdat_kswapd_lock(pgdat); 2090 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2091 pgdat_kswapd_unlock(pgdat); 2092 2093 return running; 2094 } 2095 2096 /* 2097 * A zone's fragmentation score is the external fragmentation wrt to the 2098 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2099 */ 2100 static unsigned int fragmentation_score_zone(struct zone *zone) 2101 { 2102 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2103 } 2104 2105 /* 2106 * A weighted zone's fragmentation score is the external fragmentation 2107 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2108 * returns a value in the range [0, 100]. 2109 * 2110 * The scaling factor ensures that proactive compaction focuses on larger 2111 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2112 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2113 * and thus never exceeds the high threshold for proactive compaction. 2114 */ 2115 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2116 { 2117 unsigned long score; 2118 2119 score = zone->present_pages * fragmentation_score_zone(zone); 2120 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2121 } 2122 2123 /* 2124 * The per-node proactive (background) compaction process is started by its 2125 * corresponding kcompactd thread when the node's fragmentation score 2126 * exceeds the high threshold. The compaction process remains active till 2127 * the node's score falls below the low threshold, or one of the back-off 2128 * conditions is met. 2129 */ 2130 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2131 { 2132 unsigned int score = 0; 2133 int zoneid; 2134 2135 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2136 struct zone *zone; 2137 2138 zone = &pgdat->node_zones[zoneid]; 2139 if (!populated_zone(zone)) 2140 continue; 2141 score += fragmentation_score_zone_weighted(zone); 2142 } 2143 2144 return score; 2145 } 2146 2147 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2148 { 2149 unsigned int wmark_low; 2150 2151 /* 2152 * Cap the low watermark to avoid excessive compaction 2153 * activity in case a user sets the proactiveness tunable 2154 * close to 100 (maximum). 2155 */ 2156 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2157 return low ? wmark_low : min(wmark_low + 10, 100U); 2158 } 2159 2160 static bool should_proactive_compact_node(pg_data_t *pgdat) 2161 { 2162 int wmark_high; 2163 2164 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2165 return false; 2166 2167 wmark_high = fragmentation_score_wmark(pgdat, false); 2168 return fragmentation_score_node(pgdat) > wmark_high; 2169 } 2170 2171 static enum compact_result __compact_finished(struct compact_control *cc) 2172 { 2173 unsigned int order; 2174 const int migratetype = cc->migratetype; 2175 int ret; 2176 2177 /* Compaction run completes if the migrate and free scanner meet */ 2178 if (compact_scanners_met(cc)) { 2179 /* Let the next compaction start anew. */ 2180 reset_cached_positions(cc->zone); 2181 2182 /* 2183 * Mark that the PG_migrate_skip information should be cleared 2184 * by kswapd when it goes to sleep. kcompactd does not set the 2185 * flag itself as the decision to be clear should be directly 2186 * based on an allocation request. 2187 */ 2188 if (cc->direct_compaction) 2189 cc->zone->compact_blockskip_flush = true; 2190 2191 if (cc->whole_zone) 2192 return COMPACT_COMPLETE; 2193 else 2194 return COMPACT_PARTIAL_SKIPPED; 2195 } 2196 2197 if (cc->proactive_compaction) { 2198 int score, wmark_low; 2199 pg_data_t *pgdat; 2200 2201 pgdat = cc->zone->zone_pgdat; 2202 if (kswapd_is_running(pgdat)) 2203 return COMPACT_PARTIAL_SKIPPED; 2204 2205 score = fragmentation_score_zone(cc->zone); 2206 wmark_low = fragmentation_score_wmark(pgdat, true); 2207 2208 if (score > wmark_low) 2209 ret = COMPACT_CONTINUE; 2210 else 2211 ret = COMPACT_SUCCESS; 2212 2213 goto out; 2214 } 2215 2216 if (is_via_compact_memory(cc->order)) 2217 return COMPACT_CONTINUE; 2218 2219 /* 2220 * Always finish scanning a pageblock to reduce the possibility of 2221 * fallbacks in the future. This is particularly important when 2222 * migration source is unmovable/reclaimable but it's not worth 2223 * special casing. 2224 */ 2225 if (!pageblock_aligned(cc->migrate_pfn)) 2226 return COMPACT_CONTINUE; 2227 2228 /* Direct compactor: Is a suitable page free? */ 2229 ret = COMPACT_NO_SUITABLE_PAGE; 2230 for (order = cc->order; order <= MAX_ORDER; order++) { 2231 struct free_area *area = &cc->zone->free_area[order]; 2232 bool can_steal; 2233 2234 /* Job done if page is free of the right migratetype */ 2235 if (!free_area_empty(area, migratetype)) 2236 return COMPACT_SUCCESS; 2237 2238 #ifdef CONFIG_CMA 2239 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2240 if (migratetype == MIGRATE_MOVABLE && 2241 !free_area_empty(area, MIGRATE_CMA)) 2242 return COMPACT_SUCCESS; 2243 #endif 2244 /* 2245 * Job done if allocation would steal freepages from 2246 * other migratetype buddy lists. 2247 */ 2248 if (find_suitable_fallback(area, order, migratetype, 2249 true, &can_steal) != -1) 2250 /* 2251 * Movable pages are OK in any pageblock. If we are 2252 * stealing for a non-movable allocation, make sure 2253 * we finish compacting the current pageblock first 2254 * (which is assured by the above migrate_pfn align 2255 * check) so it is as free as possible and we won't 2256 * have to steal another one soon. 2257 */ 2258 return COMPACT_SUCCESS; 2259 } 2260 2261 out: 2262 if (cc->contended || fatal_signal_pending(current)) 2263 ret = COMPACT_CONTENDED; 2264 2265 return ret; 2266 } 2267 2268 static enum compact_result compact_finished(struct compact_control *cc) 2269 { 2270 int ret; 2271 2272 ret = __compact_finished(cc); 2273 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2274 if (ret == COMPACT_NO_SUITABLE_PAGE) 2275 ret = COMPACT_CONTINUE; 2276 2277 return ret; 2278 } 2279 2280 static bool __compaction_suitable(struct zone *zone, int order, 2281 int highest_zoneidx, 2282 unsigned long wmark_target) 2283 { 2284 unsigned long watermark; 2285 /* 2286 * Watermarks for order-0 must be met for compaction to be able to 2287 * isolate free pages for migration targets. This means that the 2288 * watermark and alloc_flags have to match, or be more pessimistic than 2289 * the check in __isolate_free_page(). We don't use the direct 2290 * compactor's alloc_flags, as they are not relevant for freepage 2291 * isolation. We however do use the direct compactor's highest_zoneidx 2292 * to skip over zones where lowmem reserves would prevent allocation 2293 * even if compaction succeeds. 2294 * For costly orders, we require low watermark instead of min for 2295 * compaction to proceed to increase its chances. 2296 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2297 * suitable migration targets 2298 */ 2299 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2300 low_wmark_pages(zone) : min_wmark_pages(zone); 2301 watermark += compact_gap(order); 2302 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2303 ALLOC_CMA, wmark_target); 2304 } 2305 2306 /* 2307 * compaction_suitable: Is this suitable to run compaction on this zone now? 2308 */ 2309 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx) 2310 { 2311 enum compact_result compact_result; 2312 bool suitable; 2313 2314 suitable = __compaction_suitable(zone, order, highest_zoneidx, 2315 zone_page_state(zone, NR_FREE_PAGES)); 2316 /* 2317 * fragmentation index determines if allocation failures are due to 2318 * low memory or external fragmentation 2319 * 2320 * index of -1000 would imply allocations might succeed depending on 2321 * watermarks, but we already failed the high-order watermark check 2322 * index towards 0 implies failure is due to lack of memory 2323 * index towards 1000 implies failure is due to fragmentation 2324 * 2325 * Only compact if a failure would be due to fragmentation. Also 2326 * ignore fragindex for non-costly orders where the alternative to 2327 * a successful reclaim/compaction is OOM. Fragindex and the 2328 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2329 * excessive compaction for costly orders, but it should not be at the 2330 * expense of system stability. 2331 */ 2332 if (suitable) { 2333 compact_result = COMPACT_CONTINUE; 2334 if (order > PAGE_ALLOC_COSTLY_ORDER) { 2335 int fragindex = fragmentation_index(zone, order); 2336 2337 if (fragindex >= 0 && 2338 fragindex <= sysctl_extfrag_threshold) { 2339 suitable = false; 2340 compact_result = COMPACT_NOT_SUITABLE_ZONE; 2341 } 2342 } 2343 } else { 2344 compact_result = COMPACT_SKIPPED; 2345 } 2346 2347 trace_mm_compaction_suitable(zone, order, compact_result); 2348 2349 return suitable; 2350 } 2351 2352 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2353 int alloc_flags) 2354 { 2355 struct zone *zone; 2356 struct zoneref *z; 2357 2358 /* 2359 * Make sure at least one zone would pass __compaction_suitable if we continue 2360 * retrying the reclaim. 2361 */ 2362 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2363 ac->highest_zoneidx, ac->nodemask) { 2364 unsigned long available; 2365 2366 /* 2367 * Do not consider all the reclaimable memory because we do not 2368 * want to trash just for a single high order allocation which 2369 * is even not guaranteed to appear even if __compaction_suitable 2370 * is happy about the watermark check. 2371 */ 2372 available = zone_reclaimable_pages(zone) / order; 2373 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2374 if (__compaction_suitable(zone, order, ac->highest_zoneidx, 2375 available)) 2376 return true; 2377 } 2378 2379 return false; 2380 } 2381 2382 static enum compact_result 2383 compact_zone(struct compact_control *cc, struct capture_control *capc) 2384 { 2385 enum compact_result ret; 2386 unsigned long start_pfn = cc->zone->zone_start_pfn; 2387 unsigned long end_pfn = zone_end_pfn(cc->zone); 2388 unsigned long last_migrated_pfn; 2389 const bool sync = cc->mode != MIGRATE_ASYNC; 2390 bool update_cached; 2391 unsigned int nr_succeeded = 0; 2392 2393 /* 2394 * These counters track activities during zone compaction. Initialize 2395 * them before compacting a new zone. 2396 */ 2397 cc->total_migrate_scanned = 0; 2398 cc->total_free_scanned = 0; 2399 cc->nr_migratepages = 0; 2400 cc->nr_freepages = 0; 2401 INIT_LIST_HEAD(&cc->freepages); 2402 INIT_LIST_HEAD(&cc->migratepages); 2403 2404 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2405 2406 if (!is_via_compact_memory(cc->order)) { 2407 unsigned long watermark; 2408 2409 /* Allocation can already succeed, nothing to do */ 2410 watermark = wmark_pages(cc->zone, 2411 cc->alloc_flags & ALLOC_WMARK_MASK); 2412 if (zone_watermark_ok(cc->zone, cc->order, watermark, 2413 cc->highest_zoneidx, cc->alloc_flags)) 2414 return COMPACT_SUCCESS; 2415 2416 /* Compaction is likely to fail */ 2417 if (!compaction_suitable(cc->zone, cc->order, 2418 cc->highest_zoneidx)) 2419 return COMPACT_SKIPPED; 2420 } 2421 2422 /* 2423 * Clear pageblock skip if there were failures recently and compaction 2424 * is about to be retried after being deferred. 2425 */ 2426 if (compaction_restarting(cc->zone, cc->order)) 2427 __reset_isolation_suitable(cc->zone); 2428 2429 /* 2430 * Setup to move all movable pages to the end of the zone. Used cached 2431 * information on where the scanners should start (unless we explicitly 2432 * want to compact the whole zone), but check that it is initialised 2433 * by ensuring the values are within zone boundaries. 2434 */ 2435 cc->fast_start_pfn = 0; 2436 if (cc->whole_zone) { 2437 cc->migrate_pfn = start_pfn; 2438 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2439 } else { 2440 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2441 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2442 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2443 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2444 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2445 } 2446 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2447 cc->migrate_pfn = start_pfn; 2448 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2449 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2450 } 2451 2452 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2453 cc->whole_zone = true; 2454 } 2455 2456 last_migrated_pfn = 0; 2457 2458 /* 2459 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2460 * the basis that some migrations will fail in ASYNC mode. However, 2461 * if the cached PFNs match and pageblocks are skipped due to having 2462 * no isolation candidates, then the sync state does not matter. 2463 * Until a pageblock with isolation candidates is found, keep the 2464 * cached PFNs in sync to avoid revisiting the same blocks. 2465 */ 2466 update_cached = !sync && 2467 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2468 2469 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2470 2471 /* lru_add_drain_all could be expensive with involving other CPUs */ 2472 lru_add_drain(); 2473 2474 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2475 int err; 2476 unsigned long iteration_start_pfn = cc->migrate_pfn; 2477 2478 /* 2479 * Avoid multiple rescans of the same pageblock which can 2480 * happen if a page cannot be isolated (dirty/writeback in 2481 * async mode) or if the migrated pages are being allocated 2482 * before the pageblock is cleared. The first rescan will 2483 * capture the entire pageblock for migration. If it fails, 2484 * it'll be marked skip and scanning will proceed as normal. 2485 */ 2486 cc->finish_pageblock = false; 2487 if (pageblock_start_pfn(last_migrated_pfn) == 2488 pageblock_start_pfn(iteration_start_pfn)) { 2489 cc->finish_pageblock = true; 2490 } 2491 2492 rescan: 2493 switch (isolate_migratepages(cc)) { 2494 case ISOLATE_ABORT: 2495 ret = COMPACT_CONTENDED; 2496 putback_movable_pages(&cc->migratepages); 2497 cc->nr_migratepages = 0; 2498 goto out; 2499 case ISOLATE_NONE: 2500 if (update_cached) { 2501 cc->zone->compact_cached_migrate_pfn[1] = 2502 cc->zone->compact_cached_migrate_pfn[0]; 2503 } 2504 2505 /* 2506 * We haven't isolated and migrated anything, but 2507 * there might still be unflushed migrations from 2508 * previous cc->order aligned block. 2509 */ 2510 goto check_drain; 2511 case ISOLATE_SUCCESS: 2512 update_cached = false; 2513 last_migrated_pfn = iteration_start_pfn; 2514 } 2515 2516 err = migrate_pages(&cc->migratepages, compaction_alloc, 2517 compaction_free, (unsigned long)cc, cc->mode, 2518 MR_COMPACTION, &nr_succeeded); 2519 2520 trace_mm_compaction_migratepages(cc, nr_succeeded); 2521 2522 /* All pages were either migrated or will be released */ 2523 cc->nr_migratepages = 0; 2524 if (err) { 2525 putback_movable_pages(&cc->migratepages); 2526 /* 2527 * migrate_pages() may return -ENOMEM when scanners meet 2528 * and we want compact_finished() to detect it 2529 */ 2530 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2531 ret = COMPACT_CONTENDED; 2532 goto out; 2533 } 2534 /* 2535 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2536 * within the current order-aligned block and 2537 * fast_find_migrateblock may be used then scan the 2538 * remainder of the pageblock. This will mark the 2539 * pageblock "skip" to avoid rescanning in the near 2540 * future. This will isolate more pages than necessary 2541 * for the request but avoid loops due to 2542 * fast_find_migrateblock revisiting blocks that were 2543 * recently partially scanned. 2544 */ 2545 if (!pageblock_aligned(cc->migrate_pfn) && 2546 !cc->ignore_skip_hint && !cc->finish_pageblock && 2547 (cc->mode < MIGRATE_SYNC)) { 2548 cc->finish_pageblock = true; 2549 2550 /* 2551 * Draining pcplists does not help THP if 2552 * any page failed to migrate. Even after 2553 * drain, the pageblock will not be free. 2554 */ 2555 if (cc->order == COMPACTION_HPAGE_ORDER) 2556 last_migrated_pfn = 0; 2557 2558 goto rescan; 2559 } 2560 } 2561 2562 /* Stop if a page has been captured */ 2563 if (capc && capc->page) { 2564 ret = COMPACT_SUCCESS; 2565 break; 2566 } 2567 2568 check_drain: 2569 /* 2570 * Has the migration scanner moved away from the previous 2571 * cc->order aligned block where we migrated from? If yes, 2572 * flush the pages that were freed, so that they can merge and 2573 * compact_finished() can detect immediately if allocation 2574 * would succeed. 2575 */ 2576 if (cc->order > 0 && last_migrated_pfn) { 2577 unsigned long current_block_start = 2578 block_start_pfn(cc->migrate_pfn, cc->order); 2579 2580 if (last_migrated_pfn < current_block_start) { 2581 lru_add_drain_cpu_zone(cc->zone); 2582 /* No more flushing until we migrate again */ 2583 last_migrated_pfn = 0; 2584 } 2585 } 2586 } 2587 2588 out: 2589 /* 2590 * Release free pages and update where the free scanner should restart, 2591 * so we don't leave any returned pages behind in the next attempt. 2592 */ 2593 if (cc->nr_freepages > 0) { 2594 unsigned long free_pfn = release_freepages(&cc->freepages); 2595 2596 cc->nr_freepages = 0; 2597 VM_BUG_ON(free_pfn == 0); 2598 /* The cached pfn is always the first in a pageblock */ 2599 free_pfn = pageblock_start_pfn(free_pfn); 2600 /* 2601 * Only go back, not forward. The cached pfn might have been 2602 * already reset to zone end in compact_finished() 2603 */ 2604 if (free_pfn > cc->zone->compact_cached_free_pfn) 2605 cc->zone->compact_cached_free_pfn = free_pfn; 2606 } 2607 2608 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2609 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2610 2611 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2612 2613 VM_BUG_ON(!list_empty(&cc->freepages)); 2614 VM_BUG_ON(!list_empty(&cc->migratepages)); 2615 2616 return ret; 2617 } 2618 2619 static enum compact_result compact_zone_order(struct zone *zone, int order, 2620 gfp_t gfp_mask, enum compact_priority prio, 2621 unsigned int alloc_flags, int highest_zoneidx, 2622 struct page **capture) 2623 { 2624 enum compact_result ret; 2625 struct compact_control cc = { 2626 .order = order, 2627 .search_order = order, 2628 .gfp_mask = gfp_mask, 2629 .zone = zone, 2630 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2631 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2632 .alloc_flags = alloc_flags, 2633 .highest_zoneidx = highest_zoneidx, 2634 .direct_compaction = true, 2635 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2636 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2637 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2638 }; 2639 struct capture_control capc = { 2640 .cc = &cc, 2641 .page = NULL, 2642 }; 2643 2644 /* 2645 * Make sure the structs are really initialized before we expose the 2646 * capture control, in case we are interrupted and the interrupt handler 2647 * frees a page. 2648 */ 2649 barrier(); 2650 WRITE_ONCE(current->capture_control, &capc); 2651 2652 ret = compact_zone(&cc, &capc); 2653 2654 /* 2655 * Make sure we hide capture control first before we read the captured 2656 * page pointer, otherwise an interrupt could free and capture a page 2657 * and we would leak it. 2658 */ 2659 WRITE_ONCE(current->capture_control, NULL); 2660 *capture = READ_ONCE(capc.page); 2661 /* 2662 * Technically, it is also possible that compaction is skipped but 2663 * the page is still captured out of luck(IRQ came and freed the page). 2664 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2665 * the COMPACT[STALL|FAIL] when compaction is skipped. 2666 */ 2667 if (*capture) 2668 ret = COMPACT_SUCCESS; 2669 2670 return ret; 2671 } 2672 2673 /** 2674 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2675 * @gfp_mask: The GFP mask of the current allocation 2676 * @order: The order of the current allocation 2677 * @alloc_flags: The allocation flags of the current allocation 2678 * @ac: The context of current allocation 2679 * @prio: Determines how hard direct compaction should try to succeed 2680 * @capture: Pointer to free page created by compaction will be stored here 2681 * 2682 * This is the main entry point for direct page compaction. 2683 */ 2684 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2685 unsigned int alloc_flags, const struct alloc_context *ac, 2686 enum compact_priority prio, struct page **capture) 2687 { 2688 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2689 struct zoneref *z; 2690 struct zone *zone; 2691 enum compact_result rc = COMPACT_SKIPPED; 2692 2693 /* 2694 * Check if the GFP flags allow compaction - GFP_NOIO is really 2695 * tricky context because the migration might require IO 2696 */ 2697 if (!may_perform_io) 2698 return COMPACT_SKIPPED; 2699 2700 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2701 2702 /* Compact each zone in the list */ 2703 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2704 ac->highest_zoneidx, ac->nodemask) { 2705 enum compact_result status; 2706 2707 if (prio > MIN_COMPACT_PRIORITY 2708 && compaction_deferred(zone, order)) { 2709 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2710 continue; 2711 } 2712 2713 status = compact_zone_order(zone, order, gfp_mask, prio, 2714 alloc_flags, ac->highest_zoneidx, capture); 2715 rc = max(status, rc); 2716 2717 /* The allocation should succeed, stop compacting */ 2718 if (status == COMPACT_SUCCESS) { 2719 /* 2720 * We think the allocation will succeed in this zone, 2721 * but it is not certain, hence the false. The caller 2722 * will repeat this with true if allocation indeed 2723 * succeeds in this zone. 2724 */ 2725 compaction_defer_reset(zone, order, false); 2726 2727 break; 2728 } 2729 2730 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2731 status == COMPACT_PARTIAL_SKIPPED)) 2732 /* 2733 * We think that allocation won't succeed in this zone 2734 * so we defer compaction there. If it ends up 2735 * succeeding after all, it will be reset. 2736 */ 2737 defer_compaction(zone, order); 2738 2739 /* 2740 * We might have stopped compacting due to need_resched() in 2741 * async compaction, or due to a fatal signal detected. In that 2742 * case do not try further zones 2743 */ 2744 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2745 || fatal_signal_pending(current)) 2746 break; 2747 } 2748 2749 return rc; 2750 } 2751 2752 /* 2753 * Compact all zones within a node till each zone's fragmentation score 2754 * reaches within proactive compaction thresholds (as determined by the 2755 * proactiveness tunable). 2756 * 2757 * It is possible that the function returns before reaching score targets 2758 * due to various back-off conditions, such as, contention on per-node or 2759 * per-zone locks. 2760 */ 2761 static void proactive_compact_node(pg_data_t *pgdat) 2762 { 2763 int zoneid; 2764 struct zone *zone; 2765 struct compact_control cc = { 2766 .order = -1, 2767 .mode = MIGRATE_SYNC_LIGHT, 2768 .ignore_skip_hint = true, 2769 .whole_zone = true, 2770 .gfp_mask = GFP_KERNEL, 2771 .proactive_compaction = true, 2772 }; 2773 2774 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2775 zone = &pgdat->node_zones[zoneid]; 2776 if (!populated_zone(zone)) 2777 continue; 2778 2779 cc.zone = zone; 2780 2781 compact_zone(&cc, NULL); 2782 2783 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2784 cc.total_migrate_scanned); 2785 count_compact_events(KCOMPACTD_FREE_SCANNED, 2786 cc.total_free_scanned); 2787 } 2788 } 2789 2790 /* Compact all zones within a node */ 2791 static void compact_node(int nid) 2792 { 2793 pg_data_t *pgdat = NODE_DATA(nid); 2794 int zoneid; 2795 struct zone *zone; 2796 struct compact_control cc = { 2797 .order = -1, 2798 .mode = MIGRATE_SYNC, 2799 .ignore_skip_hint = true, 2800 .whole_zone = true, 2801 .gfp_mask = GFP_KERNEL, 2802 }; 2803 2804 2805 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2806 2807 zone = &pgdat->node_zones[zoneid]; 2808 if (!populated_zone(zone)) 2809 continue; 2810 2811 cc.zone = zone; 2812 2813 compact_zone(&cc, NULL); 2814 } 2815 } 2816 2817 /* Compact all nodes in the system */ 2818 static void compact_nodes(void) 2819 { 2820 int nid; 2821 2822 /* Flush pending updates to the LRU lists */ 2823 lru_add_drain_all(); 2824 2825 for_each_online_node(nid) 2826 compact_node(nid); 2827 } 2828 2829 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2830 void *buffer, size_t *length, loff_t *ppos) 2831 { 2832 int rc, nid; 2833 2834 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2835 if (rc) 2836 return rc; 2837 2838 if (write && sysctl_compaction_proactiveness) { 2839 for_each_online_node(nid) { 2840 pg_data_t *pgdat = NODE_DATA(nid); 2841 2842 if (pgdat->proactive_compact_trigger) 2843 continue; 2844 2845 pgdat->proactive_compact_trigger = true; 2846 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2847 pgdat->nr_zones - 1); 2848 wake_up_interruptible(&pgdat->kcompactd_wait); 2849 } 2850 } 2851 2852 return 0; 2853 } 2854 2855 /* 2856 * This is the entry point for compacting all nodes via 2857 * /proc/sys/vm/compact_memory 2858 */ 2859 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2860 void *buffer, size_t *length, loff_t *ppos) 2861 { 2862 int ret; 2863 2864 ret = proc_dointvec(table, write, buffer, length, ppos); 2865 if (ret) 2866 return ret; 2867 2868 if (sysctl_compact_memory != 1) 2869 return -EINVAL; 2870 2871 if (write) 2872 compact_nodes(); 2873 2874 return 0; 2875 } 2876 2877 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2878 static ssize_t compact_store(struct device *dev, 2879 struct device_attribute *attr, 2880 const char *buf, size_t count) 2881 { 2882 int nid = dev->id; 2883 2884 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2885 /* Flush pending updates to the LRU lists */ 2886 lru_add_drain_all(); 2887 2888 compact_node(nid); 2889 } 2890 2891 return count; 2892 } 2893 static DEVICE_ATTR_WO(compact); 2894 2895 int compaction_register_node(struct node *node) 2896 { 2897 return device_create_file(&node->dev, &dev_attr_compact); 2898 } 2899 2900 void compaction_unregister_node(struct node *node) 2901 { 2902 return device_remove_file(&node->dev, &dev_attr_compact); 2903 } 2904 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2905 2906 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2907 { 2908 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2909 pgdat->proactive_compact_trigger; 2910 } 2911 2912 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2913 { 2914 int zoneid; 2915 struct zone *zone; 2916 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2917 2918 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2919 zone = &pgdat->node_zones[zoneid]; 2920 2921 if (!populated_zone(zone)) 2922 continue; 2923 2924 /* Allocation can already succeed, check other zones */ 2925 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order, 2926 min_wmark_pages(zone), 2927 highest_zoneidx, 0)) 2928 continue; 2929 2930 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 2931 highest_zoneidx)) 2932 return true; 2933 } 2934 2935 return false; 2936 } 2937 2938 static void kcompactd_do_work(pg_data_t *pgdat) 2939 { 2940 /* 2941 * With no special task, compact all zones so that a page of requested 2942 * order is allocatable. 2943 */ 2944 int zoneid; 2945 struct zone *zone; 2946 struct compact_control cc = { 2947 .order = pgdat->kcompactd_max_order, 2948 .search_order = pgdat->kcompactd_max_order, 2949 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2950 .mode = MIGRATE_SYNC_LIGHT, 2951 .ignore_skip_hint = false, 2952 .gfp_mask = GFP_KERNEL, 2953 }; 2954 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2955 cc.highest_zoneidx); 2956 count_compact_event(KCOMPACTD_WAKE); 2957 2958 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2959 int status; 2960 2961 zone = &pgdat->node_zones[zoneid]; 2962 if (!populated_zone(zone)) 2963 continue; 2964 2965 if (compaction_deferred(zone, cc.order)) 2966 continue; 2967 2968 /* Allocation can already succeed, nothing to do */ 2969 if (zone_watermark_ok(zone, cc.order, 2970 min_wmark_pages(zone), zoneid, 0)) 2971 continue; 2972 2973 if (!compaction_suitable(zone, cc.order, zoneid)) 2974 continue; 2975 2976 if (kthread_should_stop()) 2977 return; 2978 2979 cc.zone = zone; 2980 status = compact_zone(&cc, NULL); 2981 2982 if (status == COMPACT_SUCCESS) { 2983 compaction_defer_reset(zone, cc.order, false); 2984 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2985 /* 2986 * Buddy pages may become stranded on pcps that could 2987 * otherwise coalesce on the zone's free area for 2988 * order >= cc.order. This is ratelimited by the 2989 * upcoming deferral. 2990 */ 2991 drain_all_pages(zone); 2992 2993 /* 2994 * We use sync migration mode here, so we defer like 2995 * sync direct compaction does. 2996 */ 2997 defer_compaction(zone, cc.order); 2998 } 2999 3000 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 3001 cc.total_migrate_scanned); 3002 count_compact_events(KCOMPACTD_FREE_SCANNED, 3003 cc.total_free_scanned); 3004 } 3005 3006 /* 3007 * Regardless of success, we are done until woken up next. But remember 3008 * the requested order/highest_zoneidx in case it was higher/tighter 3009 * than our current ones 3010 */ 3011 if (pgdat->kcompactd_max_order <= cc.order) 3012 pgdat->kcompactd_max_order = 0; 3013 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 3014 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3015 } 3016 3017 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 3018 { 3019 if (!order) 3020 return; 3021 3022 if (pgdat->kcompactd_max_order < order) 3023 pgdat->kcompactd_max_order = order; 3024 3025 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 3026 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 3027 3028 /* 3029 * Pairs with implicit barrier in wait_event_freezable() 3030 * such that wakeups are not missed. 3031 */ 3032 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 3033 return; 3034 3035 if (!kcompactd_node_suitable(pgdat)) 3036 return; 3037 3038 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 3039 highest_zoneidx); 3040 wake_up_interruptible(&pgdat->kcompactd_wait); 3041 } 3042 3043 /* 3044 * The background compaction daemon, started as a kernel thread 3045 * from the init process. 3046 */ 3047 static int kcompactd(void *p) 3048 { 3049 pg_data_t *pgdat = (pg_data_t *)p; 3050 struct task_struct *tsk = current; 3051 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 3052 long timeout = default_timeout; 3053 3054 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3055 3056 if (!cpumask_empty(cpumask)) 3057 set_cpus_allowed_ptr(tsk, cpumask); 3058 3059 set_freezable(); 3060 3061 pgdat->kcompactd_max_order = 0; 3062 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 3063 3064 while (!kthread_should_stop()) { 3065 unsigned long pflags; 3066 3067 /* 3068 * Avoid the unnecessary wakeup for proactive compaction 3069 * when it is disabled. 3070 */ 3071 if (!sysctl_compaction_proactiveness) 3072 timeout = MAX_SCHEDULE_TIMEOUT; 3073 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 3074 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 3075 kcompactd_work_requested(pgdat), timeout) && 3076 !pgdat->proactive_compact_trigger) { 3077 3078 psi_memstall_enter(&pflags); 3079 kcompactd_do_work(pgdat); 3080 psi_memstall_leave(&pflags); 3081 /* 3082 * Reset the timeout value. The defer timeout from 3083 * proactive compaction is lost here but that is fine 3084 * as the condition of the zone changing substantionally 3085 * then carrying on with the previous defer interval is 3086 * not useful. 3087 */ 3088 timeout = default_timeout; 3089 continue; 3090 } 3091 3092 /* 3093 * Start the proactive work with default timeout. Based 3094 * on the fragmentation score, this timeout is updated. 3095 */ 3096 timeout = default_timeout; 3097 if (should_proactive_compact_node(pgdat)) { 3098 unsigned int prev_score, score; 3099 3100 prev_score = fragmentation_score_node(pgdat); 3101 proactive_compact_node(pgdat); 3102 score = fragmentation_score_node(pgdat); 3103 /* 3104 * Defer proactive compaction if the fragmentation 3105 * score did not go down i.e. no progress made. 3106 */ 3107 if (unlikely(score >= prev_score)) 3108 timeout = 3109 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3110 } 3111 if (unlikely(pgdat->proactive_compact_trigger)) 3112 pgdat->proactive_compact_trigger = false; 3113 } 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * This kcompactd start function will be called by init and node-hot-add. 3120 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3121 */ 3122 void __meminit kcompactd_run(int nid) 3123 { 3124 pg_data_t *pgdat = NODE_DATA(nid); 3125 3126 if (pgdat->kcompactd) 3127 return; 3128 3129 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3130 if (IS_ERR(pgdat->kcompactd)) { 3131 pr_err("Failed to start kcompactd on node %d\n", nid); 3132 pgdat->kcompactd = NULL; 3133 } 3134 } 3135 3136 /* 3137 * Called by memory hotplug when all memory in a node is offlined. Caller must 3138 * be holding mem_hotplug_begin/done(). 3139 */ 3140 void __meminit kcompactd_stop(int nid) 3141 { 3142 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3143 3144 if (kcompactd) { 3145 kthread_stop(kcompactd); 3146 NODE_DATA(nid)->kcompactd = NULL; 3147 } 3148 } 3149 3150 /* 3151 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3152 * not required for correctness. So if the last cpu in a node goes 3153 * away, we get changed to run anywhere: as the first one comes back, 3154 * restore their cpu bindings. 3155 */ 3156 static int kcompactd_cpu_online(unsigned int cpu) 3157 { 3158 int nid; 3159 3160 for_each_node_state(nid, N_MEMORY) { 3161 pg_data_t *pgdat = NODE_DATA(nid); 3162 const struct cpumask *mask; 3163 3164 mask = cpumask_of_node(pgdat->node_id); 3165 3166 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3167 /* One of our CPUs online: restore mask */ 3168 if (pgdat->kcompactd) 3169 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3170 } 3171 return 0; 3172 } 3173 3174 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3175 int write, void *buffer, size_t *lenp, loff_t *ppos) 3176 { 3177 int ret, old; 3178 3179 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3180 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3181 3182 old = *(int *)table->data; 3183 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3184 if (ret) 3185 return ret; 3186 if (old != *(int *)table->data) 3187 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3188 table->procname, current->comm, 3189 task_pid_nr(current)); 3190 return ret; 3191 } 3192 3193 static struct ctl_table vm_compaction[] = { 3194 { 3195 .procname = "compact_memory", 3196 .data = &sysctl_compact_memory, 3197 .maxlen = sizeof(int), 3198 .mode = 0200, 3199 .proc_handler = sysctl_compaction_handler, 3200 }, 3201 { 3202 .procname = "compaction_proactiveness", 3203 .data = &sysctl_compaction_proactiveness, 3204 .maxlen = sizeof(sysctl_compaction_proactiveness), 3205 .mode = 0644, 3206 .proc_handler = compaction_proactiveness_sysctl_handler, 3207 .extra1 = SYSCTL_ZERO, 3208 .extra2 = SYSCTL_ONE_HUNDRED, 3209 }, 3210 { 3211 .procname = "extfrag_threshold", 3212 .data = &sysctl_extfrag_threshold, 3213 .maxlen = sizeof(int), 3214 .mode = 0644, 3215 .proc_handler = proc_dointvec_minmax, 3216 .extra1 = SYSCTL_ZERO, 3217 .extra2 = SYSCTL_ONE_THOUSAND, 3218 }, 3219 { 3220 .procname = "compact_unevictable_allowed", 3221 .data = &sysctl_compact_unevictable_allowed, 3222 .maxlen = sizeof(int), 3223 .mode = 0644, 3224 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3225 .extra1 = SYSCTL_ZERO, 3226 .extra2 = SYSCTL_ONE, 3227 }, 3228 { } 3229 }; 3230 3231 static int __init kcompactd_init(void) 3232 { 3233 int nid; 3234 int ret; 3235 3236 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3237 "mm/compaction:online", 3238 kcompactd_cpu_online, NULL); 3239 if (ret < 0) { 3240 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3241 return ret; 3242 } 3243 3244 for_each_node_state(nid, N_MEMORY) 3245 kcompactd_run(nid); 3246 register_sysctl_init("vm", vm_compaction); 3247 return 0; 3248 } 3249 subsys_initcall(kcompactd_init) 3250 3251 #endif /* CONFIG_COMPACTION */ 3252