xref: /openbmc/linux/mm/compaction.c (revision f442ab50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261 
262 	if (!start_nr || online_section_nr(start_nr))
263 		return 0;
264 
265 	while (start_nr-- > 0) {
266 		if (online_section_nr(start_nr))
267 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 	}
269 
270 	return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 	return 0;
276 }
277 
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 	if (!PageCompound(page))
292 		return false;
293 
294 	page = compound_head(page);
295 
296 	if (compound_order(page) >= pageblock_order)
297 		return true;
298 
299 	return false;
300 }
301 
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 							bool check_target)
305 {
306 	struct page *page = pfn_to_online_page(pfn);
307 	struct page *block_page;
308 	struct page *end_page;
309 	unsigned long block_pfn;
310 
311 	if (!page)
312 		return false;
313 	if (zone != page_zone(page))
314 		return false;
315 	if (pageblock_skip_persistent(page))
316 		return false;
317 
318 	/*
319 	 * If skip is already cleared do no further checking once the
320 	 * restart points have been set.
321 	 */
322 	if (check_source && check_target && !get_pageblock_skip(page))
323 		return true;
324 
325 	/*
326 	 * If clearing skip for the target scanner, do not select a
327 	 * non-movable pageblock as the starting point.
328 	 */
329 	if (!check_source && check_target &&
330 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 		return false;
332 
333 	/* Ensure the start of the pageblock or zone is online and valid */
334 	block_pfn = pageblock_start_pfn(pfn);
335 	block_pfn = max(block_pfn, zone->zone_start_pfn);
336 	block_page = pfn_to_online_page(block_pfn);
337 	if (block_page) {
338 		page = block_page;
339 		pfn = block_pfn;
340 	}
341 
342 	/* Ensure the end of the pageblock or zone is online and valid */
343 	block_pfn = pageblock_end_pfn(pfn) - 1;
344 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 	end_page = pfn_to_online_page(block_pfn);
346 	if (!end_page)
347 		return false;
348 
349 	/*
350 	 * Only clear the hint if a sample indicates there is either a
351 	 * free page or an LRU page in the block. One or other condition
352 	 * is necessary for the block to be a migration source/target.
353 	 */
354 	do {
355 		if (check_source && PageLRU(page)) {
356 			clear_pageblock_skip(page);
357 			return true;
358 		}
359 
360 		if (check_target && PageBuddy(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 	} while (page <= end_page);
367 
368 	return false;
369 }
370 
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 	unsigned long migrate_pfn = zone->zone_start_pfn;
379 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 	unsigned long reset_migrate = free_pfn;
381 	unsigned long reset_free = migrate_pfn;
382 	bool source_set = false;
383 	bool free_set = false;
384 
385 	if (!zone->compact_blockskip_flush)
386 		return;
387 
388 	zone->compact_blockskip_flush = false;
389 
390 	/*
391 	 * Walk the zone and update pageblock skip information. Source looks
392 	 * for PageLRU while target looks for PageBuddy. When the scanner
393 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
394 	 * is suitable as both source and target.
395 	 */
396 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397 					free_pfn -= pageblock_nr_pages) {
398 		cond_resched();
399 
400 		/* Update the migrate PFN */
401 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402 		    migrate_pfn < reset_migrate) {
403 			source_set = true;
404 			reset_migrate = migrate_pfn;
405 			zone->compact_init_migrate_pfn = reset_migrate;
406 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
407 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
408 		}
409 
410 		/* Update the free PFN */
411 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412 		    free_pfn > reset_free) {
413 			free_set = true;
414 			reset_free = free_pfn;
415 			zone->compact_init_free_pfn = reset_free;
416 			zone->compact_cached_free_pfn = reset_free;
417 		}
418 	}
419 
420 	/* Leave no distance if no suitable block was reset */
421 	if (reset_migrate >= reset_free) {
422 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424 		zone->compact_cached_free_pfn = free_pfn;
425 	}
426 }
427 
428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430 	int zoneid;
431 
432 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433 		struct zone *zone = &pgdat->node_zones[zoneid];
434 		if (!populated_zone(zone))
435 			continue;
436 
437 		/* Only flush if a full compaction finished recently */
438 		if (zone->compact_blockskip_flush)
439 			__reset_isolation_suitable(zone);
440 	}
441 }
442 
443 /*
444  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445  * locks are not required for read/writers. Returns true if it was already set.
446  */
447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449 	bool skip;
450 
451 	/* Do not update if skip hint is being ignored */
452 	if (cc->ignore_skip_hint)
453 		return false;
454 
455 	skip = get_pageblock_skip(page);
456 	if (!skip && !cc->no_set_skip_hint)
457 		set_pageblock_skip(page);
458 
459 	return skip;
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 	struct zone *zone = cc->zone;
465 
466 	pfn = pageblock_end_pfn(pfn);
467 
468 	/* Set for isolation rather than compaction */
469 	if (cc->no_set_skip_hint)
470 		return;
471 
472 	if (pfn > zone->compact_cached_migrate_pfn[0])
473 		zone->compact_cached_migrate_pfn[0] = pfn;
474 	if (cc->mode != MIGRATE_ASYNC &&
475 	    pfn > zone->compact_cached_migrate_pfn[1])
476 		zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478 
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484 			struct page *page, unsigned long pfn)
485 {
486 	struct zone *zone = cc->zone;
487 
488 	if (cc->no_set_skip_hint)
489 		return;
490 
491 	set_pageblock_skip(page);
492 
493 	/* Update where async and sync compaction should restart */
494 	if (pfn < zone->compact_cached_free_pfn)
495 		zone->compact_cached_free_pfn = pfn;
496 }
497 #else
498 static inline bool isolation_suitable(struct compact_control *cc,
499 					struct page *page)
500 {
501 	return true;
502 }
503 
504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506 	return false;
507 }
508 
509 static inline void update_pageblock_skip(struct compact_control *cc,
510 			struct page *page, unsigned long pfn)
511 {
512 }
513 
514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517 
518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520 	return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523 
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. For async compaction, trylock and record if the
527  * lock is contended. The lock will still be acquired but compaction will
528  * abort when the current block is finished regardless of success rate.
529  * Sync compaction acquires the lock.
530  *
531  * Always returns true which makes it easier to track lock state in callers.
532  */
533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534 						struct compact_control *cc)
535 	__acquires(lock)
536 {
537 	/* Track if the lock is contended in async mode */
538 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539 		if (spin_trylock_irqsave(lock, *flags))
540 			return true;
541 
542 		cc->contended = true;
543 	}
544 
545 	spin_lock_irqsave(lock, *flags);
546 	return true;
547 }
548 
549 /*
550  * Compaction requires the taking of some coarse locks that are potentially
551  * very heavily contended. The lock should be periodically unlocked to avoid
552  * having disabled IRQs for a long time, even when there is nobody waiting on
553  * the lock. It might also be that allowing the IRQs will result in
554  * need_resched() becoming true. If scheduling is needed, compaction schedules.
555  * Either compaction type will also abort if a fatal signal is pending.
556  * In either case if the lock was locked, it is dropped and not regained.
557  *
558  * Returns true if compaction should abort due to fatal signal pending.
559  * Returns false when compaction can continue.
560  */
561 static bool compact_unlock_should_abort(spinlock_t *lock,
562 		unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564 	if (*locked) {
565 		spin_unlock_irqrestore(lock, flags);
566 		*locked = false;
567 	}
568 
569 	if (fatal_signal_pending(current)) {
570 		cc->contended = true;
571 		return true;
572 	}
573 
574 	cond_resched();
575 
576 	return false;
577 }
578 
579 /*
580  * Isolate free pages onto a private freelist. If @strict is true, will abort
581  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582  * (even though it may still end up isolating some pages).
583  */
584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585 				unsigned long *start_pfn,
586 				unsigned long end_pfn,
587 				struct list_head *freelist,
588 				unsigned int stride,
589 				bool strict)
590 {
591 	int nr_scanned = 0, total_isolated = 0;
592 	struct page *cursor;
593 	unsigned long flags = 0;
594 	bool locked = false;
595 	unsigned long blockpfn = *start_pfn;
596 	unsigned int order;
597 
598 	/* Strict mode is for isolation, speed is secondary */
599 	if (strict)
600 		stride = 1;
601 
602 	cursor = pfn_to_page(blockpfn);
603 
604 	/* Isolate free pages. */
605 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
606 		int isolated;
607 		struct page *page = cursor;
608 
609 		/*
610 		 * Periodically drop the lock (if held) regardless of its
611 		 * contention, to give chance to IRQs. Abort if fatal signal
612 		 * pending.
613 		 */
614 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
615 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
616 								&locked, cc))
617 			break;
618 
619 		nr_scanned++;
620 
621 		/*
622 		 * For compound pages such as THP and hugetlbfs, we can save
623 		 * potentially a lot of iterations if we skip them at once.
624 		 * The check is racy, but we can consider only valid values
625 		 * and the only danger is skipping too much.
626 		 */
627 		if (PageCompound(page)) {
628 			const unsigned int order = compound_order(page);
629 
630 			if (likely(order <= MAX_ORDER)) {
631 				blockpfn += (1UL << order) - 1;
632 				cursor += (1UL << order) - 1;
633 				nr_scanned += (1UL << order) - 1;
634 			}
635 			goto isolate_fail;
636 		}
637 
638 		if (!PageBuddy(page))
639 			goto isolate_fail;
640 
641 		/* If we already hold the lock, we can skip some rechecking. */
642 		if (!locked) {
643 			locked = compact_lock_irqsave(&cc->zone->lock,
644 								&flags, cc);
645 
646 			/* Recheck this is a buddy page under lock */
647 			if (!PageBuddy(page))
648 				goto isolate_fail;
649 		}
650 
651 		/* Found a free page, will break it into order-0 pages */
652 		order = buddy_order(page);
653 		isolated = __isolate_free_page(page, order);
654 		if (!isolated)
655 			break;
656 		set_page_private(page, order);
657 
658 		nr_scanned += isolated - 1;
659 		total_isolated += isolated;
660 		cc->nr_freepages += isolated;
661 		list_add_tail(&page->lru, freelist);
662 
663 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
664 			blockpfn += isolated;
665 			break;
666 		}
667 		/* Advance to the end of split page */
668 		blockpfn += isolated - 1;
669 		cursor += isolated - 1;
670 		continue;
671 
672 isolate_fail:
673 		if (strict)
674 			break;
675 		else
676 			continue;
677 
678 	}
679 
680 	if (locked)
681 		spin_unlock_irqrestore(&cc->zone->lock, flags);
682 
683 	/*
684 	 * There is a tiny chance that we have read bogus compound_order(),
685 	 * so be careful to not go outside of the pageblock.
686 	 */
687 	if (unlikely(blockpfn > end_pfn))
688 		blockpfn = end_pfn;
689 
690 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
691 					nr_scanned, total_isolated);
692 
693 	/* Record how far we have got within the block */
694 	*start_pfn = blockpfn;
695 
696 	/*
697 	 * If strict isolation is requested by CMA then check that all the
698 	 * pages requested were isolated. If there were any failures, 0 is
699 	 * returned and CMA will fail.
700 	 */
701 	if (strict && blockpfn < end_pfn)
702 		total_isolated = 0;
703 
704 	cc->total_free_scanned += nr_scanned;
705 	if (total_isolated)
706 		count_compact_events(COMPACTISOLATED, total_isolated);
707 	return total_isolated;
708 }
709 
710 /**
711  * isolate_freepages_range() - isolate free pages.
712  * @cc:        Compaction control structure.
713  * @start_pfn: The first PFN to start isolating.
714  * @end_pfn:   The one-past-last PFN.
715  *
716  * Non-free pages, invalid PFNs, or zone boundaries within the
717  * [start_pfn, end_pfn) range are considered errors, cause function to
718  * undo its actions and return zero.
719  *
720  * Otherwise, function returns one-past-the-last PFN of isolated page
721  * (which may be greater then end_pfn if end fell in a middle of
722  * a free page).
723  */
724 unsigned long
725 isolate_freepages_range(struct compact_control *cc,
726 			unsigned long start_pfn, unsigned long end_pfn)
727 {
728 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
729 	LIST_HEAD(freelist);
730 
731 	pfn = start_pfn;
732 	block_start_pfn = pageblock_start_pfn(pfn);
733 	if (block_start_pfn < cc->zone->zone_start_pfn)
734 		block_start_pfn = cc->zone->zone_start_pfn;
735 	block_end_pfn = pageblock_end_pfn(pfn);
736 
737 	for (; pfn < end_pfn; pfn += isolated,
738 				block_start_pfn = block_end_pfn,
739 				block_end_pfn += pageblock_nr_pages) {
740 		/* Protect pfn from changing by isolate_freepages_block */
741 		unsigned long isolate_start_pfn = pfn;
742 
743 		block_end_pfn = min(block_end_pfn, end_pfn);
744 
745 		/*
746 		 * pfn could pass the block_end_pfn if isolated freepage
747 		 * is more than pageblock order. In this case, we adjust
748 		 * scanning range to right one.
749 		 */
750 		if (pfn >= block_end_pfn) {
751 			block_start_pfn = pageblock_start_pfn(pfn);
752 			block_end_pfn = pageblock_end_pfn(pfn);
753 			block_end_pfn = min(block_end_pfn, end_pfn);
754 		}
755 
756 		if (!pageblock_pfn_to_page(block_start_pfn,
757 					block_end_pfn, cc->zone))
758 			break;
759 
760 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
761 					block_end_pfn, &freelist, 0, true);
762 
763 		/*
764 		 * In strict mode, isolate_freepages_block() returns 0 if
765 		 * there are any holes in the block (ie. invalid PFNs or
766 		 * non-free pages).
767 		 */
768 		if (!isolated)
769 			break;
770 
771 		/*
772 		 * If we managed to isolate pages, it is always (1 << n) *
773 		 * pageblock_nr_pages for some non-negative n.  (Max order
774 		 * page may span two pageblocks).
775 		 */
776 	}
777 
778 	/* __isolate_free_page() does not map the pages */
779 	split_map_pages(&freelist);
780 
781 	if (pfn < end_pfn) {
782 		/* Loop terminated early, cleanup. */
783 		release_freepages(&freelist);
784 		return 0;
785 	}
786 
787 	/* We don't use freelists for anything. */
788 	return pfn;
789 }
790 
791 /* Similar to reclaim, but different enough that they don't share logic */
792 static bool too_many_isolated(struct compact_control *cc)
793 {
794 	pg_data_t *pgdat = cc->zone->zone_pgdat;
795 	bool too_many;
796 
797 	unsigned long active, inactive, isolated;
798 
799 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
800 			node_page_state(pgdat, NR_INACTIVE_ANON);
801 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
802 			node_page_state(pgdat, NR_ACTIVE_ANON);
803 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
804 			node_page_state(pgdat, NR_ISOLATED_ANON);
805 
806 	/*
807 	 * Allow GFP_NOFS to isolate past the limit set for regular
808 	 * compaction runs. This prevents an ABBA deadlock when other
809 	 * compactors have already isolated to the limit, but are
810 	 * blocked on filesystem locks held by the GFP_NOFS thread.
811 	 */
812 	if (cc->gfp_mask & __GFP_FS) {
813 		inactive >>= 3;
814 		active >>= 3;
815 	}
816 
817 	too_many = isolated > (inactive + active) / 2;
818 	if (!too_many)
819 		wake_throttle_isolated(pgdat);
820 
821 	return too_many;
822 }
823 
824 /**
825  * isolate_migratepages_block() - isolate all migrate-able pages within
826  *				  a single pageblock
827  * @cc:		Compaction control structure.
828  * @low_pfn:	The first PFN to isolate
829  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
830  * @mode:	Isolation mode to be used.
831  *
832  * Isolate all pages that can be migrated from the range specified by
833  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
834  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
835  * -ENOMEM in case we could not allocate a page, or 0.
836  * cc->migrate_pfn will contain the next pfn to scan.
837  *
838  * The pages are isolated on cc->migratepages list (not required to be empty),
839  * and cc->nr_migratepages is updated accordingly.
840  */
841 static int
842 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
843 			unsigned long end_pfn, isolate_mode_t mode)
844 {
845 	pg_data_t *pgdat = cc->zone->zone_pgdat;
846 	unsigned long nr_scanned = 0, nr_isolated = 0;
847 	struct lruvec *lruvec;
848 	unsigned long flags = 0;
849 	struct lruvec *locked = NULL;
850 	struct folio *folio = NULL;
851 	struct page *page = NULL, *valid_page = NULL;
852 	struct address_space *mapping;
853 	unsigned long start_pfn = low_pfn;
854 	bool skip_on_failure = false;
855 	unsigned long next_skip_pfn = 0;
856 	bool skip_updated = false;
857 	int ret = 0;
858 
859 	cc->migrate_pfn = low_pfn;
860 
861 	/*
862 	 * Ensure that there are not too many pages isolated from the LRU
863 	 * list by either parallel reclaimers or compaction. If there are,
864 	 * delay for some time until fewer pages are isolated
865 	 */
866 	while (unlikely(too_many_isolated(cc))) {
867 		/* stop isolation if there are still pages not migrated */
868 		if (cc->nr_migratepages)
869 			return -EAGAIN;
870 
871 		/* async migration should just abort */
872 		if (cc->mode == MIGRATE_ASYNC)
873 			return -EAGAIN;
874 
875 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
876 
877 		if (fatal_signal_pending(current))
878 			return -EINTR;
879 	}
880 
881 	cond_resched();
882 
883 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
884 		skip_on_failure = true;
885 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
886 	}
887 
888 	/* Time to isolate some pages for migration */
889 	for (; low_pfn < end_pfn; low_pfn++) {
890 
891 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
892 			/*
893 			 * We have isolated all migration candidates in the
894 			 * previous order-aligned block, and did not skip it due
895 			 * to failure. We should migrate the pages now and
896 			 * hopefully succeed compaction.
897 			 */
898 			if (nr_isolated)
899 				break;
900 
901 			/*
902 			 * We failed to isolate in the previous order-aligned
903 			 * block. Set the new boundary to the end of the
904 			 * current block. Note we can't simply increase
905 			 * next_skip_pfn by 1 << order, as low_pfn might have
906 			 * been incremented by a higher number due to skipping
907 			 * a compound or a high-order buddy page in the
908 			 * previous loop iteration.
909 			 */
910 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
911 		}
912 
913 		/*
914 		 * Periodically drop the lock (if held) regardless of its
915 		 * contention, to give chance to IRQs. Abort completely if
916 		 * a fatal signal is pending.
917 		 */
918 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
919 			if (locked) {
920 				unlock_page_lruvec_irqrestore(locked, flags);
921 				locked = NULL;
922 			}
923 
924 			if (fatal_signal_pending(current)) {
925 				cc->contended = true;
926 				ret = -EINTR;
927 
928 				goto fatal_pending;
929 			}
930 
931 			cond_resched();
932 		}
933 
934 		nr_scanned++;
935 
936 		page = pfn_to_page(low_pfn);
937 
938 		/*
939 		 * Check if the pageblock has already been marked skipped.
940 		 * Only the aligned PFN is checked as the caller isolates
941 		 * COMPACT_CLUSTER_MAX at a time so the second call must
942 		 * not falsely conclude that the block should be skipped.
943 		 */
944 		if (!valid_page && pageblock_aligned(low_pfn)) {
945 			if (!isolation_suitable(cc, page)) {
946 				low_pfn = end_pfn;
947 				folio = NULL;
948 				goto isolate_abort;
949 			}
950 			valid_page = page;
951 		}
952 
953 		if (PageHuge(page) && cc->alloc_contig) {
954 			if (locked) {
955 				unlock_page_lruvec_irqrestore(locked, flags);
956 				locked = NULL;
957 			}
958 
959 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
960 
961 			/*
962 			 * Fail isolation in case isolate_or_dissolve_huge_page()
963 			 * reports an error. In case of -ENOMEM, abort right away.
964 			 */
965 			if (ret < 0) {
966 				 /* Do not report -EBUSY down the chain */
967 				if (ret == -EBUSY)
968 					ret = 0;
969 				low_pfn += compound_nr(page) - 1;
970 				nr_scanned += compound_nr(page) - 1;
971 				goto isolate_fail;
972 			}
973 
974 			if (PageHuge(page)) {
975 				/*
976 				 * Hugepage was successfully isolated and placed
977 				 * on the cc->migratepages list.
978 				 */
979 				folio = page_folio(page);
980 				low_pfn += folio_nr_pages(folio) - 1;
981 				goto isolate_success_no_list;
982 			}
983 
984 			/*
985 			 * Ok, the hugepage was dissolved. Now these pages are
986 			 * Buddy and cannot be re-allocated because they are
987 			 * isolated. Fall-through as the check below handles
988 			 * Buddy pages.
989 			 */
990 		}
991 
992 		/*
993 		 * Skip if free. We read page order here without zone lock
994 		 * which is generally unsafe, but the race window is small and
995 		 * the worst thing that can happen is that we skip some
996 		 * potential isolation targets.
997 		 */
998 		if (PageBuddy(page)) {
999 			unsigned long freepage_order = buddy_order_unsafe(page);
1000 
1001 			/*
1002 			 * Without lock, we cannot be sure that what we got is
1003 			 * a valid page order. Consider only values in the
1004 			 * valid order range to prevent low_pfn overflow.
1005 			 */
1006 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1007 				low_pfn += (1UL << freepage_order) - 1;
1008 				nr_scanned += (1UL << freepage_order) - 1;
1009 			}
1010 			continue;
1011 		}
1012 
1013 		/*
1014 		 * Regardless of being on LRU, compound pages such as THP and
1015 		 * hugetlbfs are not to be compacted unless we are attempting
1016 		 * an allocation much larger than the huge page size (eg CMA).
1017 		 * We can potentially save a lot of iterations if we skip them
1018 		 * at once. The check is racy, but we can consider only valid
1019 		 * values and the only danger is skipping too much.
1020 		 */
1021 		if (PageCompound(page) && !cc->alloc_contig) {
1022 			const unsigned int order = compound_order(page);
1023 
1024 			if (likely(order <= MAX_ORDER)) {
1025 				low_pfn += (1UL << order) - 1;
1026 				nr_scanned += (1UL << order) - 1;
1027 			}
1028 			goto isolate_fail;
1029 		}
1030 
1031 		/*
1032 		 * Check may be lockless but that's ok as we recheck later.
1033 		 * It's possible to migrate LRU and non-lru movable pages.
1034 		 * Skip any other type of page
1035 		 */
1036 		if (!PageLRU(page)) {
1037 			/*
1038 			 * __PageMovable can return false positive so we need
1039 			 * to verify it under page_lock.
1040 			 */
1041 			if (unlikely(__PageMovable(page)) &&
1042 					!PageIsolated(page)) {
1043 				if (locked) {
1044 					unlock_page_lruvec_irqrestore(locked, flags);
1045 					locked = NULL;
1046 				}
1047 
1048 				if (isolate_movable_page(page, mode)) {
1049 					folio = page_folio(page);
1050 					goto isolate_success;
1051 				}
1052 			}
1053 
1054 			goto isolate_fail;
1055 		}
1056 
1057 		/*
1058 		 * Be careful not to clear PageLRU until after we're
1059 		 * sure the page is not being freed elsewhere -- the
1060 		 * page release code relies on it.
1061 		 */
1062 		folio = folio_get_nontail_page(page);
1063 		if (unlikely(!folio))
1064 			goto isolate_fail;
1065 
1066 		/*
1067 		 * Migration will fail if an anonymous page is pinned in memory,
1068 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1069 		 * admittedly racy check.
1070 		 */
1071 		mapping = folio_mapping(folio);
1072 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1073 			goto isolate_fail_put;
1074 
1075 		/*
1076 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1077 		 * because those do not depend on fs locks.
1078 		 */
1079 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1080 			goto isolate_fail_put;
1081 
1082 		/* Only take pages on LRU: a check now makes later tests safe */
1083 		if (!folio_test_lru(folio))
1084 			goto isolate_fail_put;
1085 
1086 		/* Compaction might skip unevictable pages but CMA takes them */
1087 		if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1088 			goto isolate_fail_put;
1089 
1090 		/*
1091 		 * To minimise LRU disruption, the caller can indicate with
1092 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1093 		 * it will be able to migrate without blocking - clean pages
1094 		 * for the most part.  PageWriteback would require blocking.
1095 		 */
1096 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1097 			goto isolate_fail_put;
1098 
1099 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1100 			bool migrate_dirty;
1101 
1102 			/*
1103 			 * Only pages without mappings or that have a
1104 			 * ->migrate_folio callback are possible to migrate
1105 			 * without blocking. However, we can be racing with
1106 			 * truncation so it's necessary to lock the page
1107 			 * to stabilise the mapping as truncation holds
1108 			 * the page lock until after the page is removed
1109 			 * from the page cache.
1110 			 */
1111 			if (!folio_trylock(folio))
1112 				goto isolate_fail_put;
1113 
1114 			mapping = folio_mapping(folio);
1115 			migrate_dirty = !mapping ||
1116 					mapping->a_ops->migrate_folio;
1117 			folio_unlock(folio);
1118 			if (!migrate_dirty)
1119 				goto isolate_fail_put;
1120 		}
1121 
1122 		/* Try isolate the folio */
1123 		if (!folio_test_clear_lru(folio))
1124 			goto isolate_fail_put;
1125 
1126 		lruvec = folio_lruvec(folio);
1127 
1128 		/* If we already hold the lock, we can skip some rechecking */
1129 		if (lruvec != locked) {
1130 			if (locked)
1131 				unlock_page_lruvec_irqrestore(locked, flags);
1132 
1133 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1134 			locked = lruvec;
1135 
1136 			lruvec_memcg_debug(lruvec, folio);
1137 
1138 			/*
1139 			 * Try get exclusive access under lock. If marked for
1140 			 * skip, the scan is aborted unless the current context
1141 			 * is a rescan to reach the end of the pageblock.
1142 			 */
1143 			if (!skip_updated && valid_page) {
1144 				skip_updated = true;
1145 				if (test_and_set_skip(cc, valid_page) &&
1146 				    !cc->finish_pageblock) {
1147 					goto isolate_abort;
1148 				}
1149 			}
1150 
1151 			/*
1152 			 * folio become large since the non-locked check,
1153 			 * and it's on LRU.
1154 			 */
1155 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1156 				low_pfn += folio_nr_pages(folio) - 1;
1157 				nr_scanned += folio_nr_pages(folio) - 1;
1158 				folio_set_lru(folio);
1159 				goto isolate_fail_put;
1160 			}
1161 		}
1162 
1163 		/* The folio is taken off the LRU */
1164 		if (folio_test_large(folio))
1165 			low_pfn += folio_nr_pages(folio) - 1;
1166 
1167 		/* Successfully isolated */
1168 		lruvec_del_folio(lruvec, folio);
1169 		node_stat_mod_folio(folio,
1170 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1171 				folio_nr_pages(folio));
1172 
1173 isolate_success:
1174 		list_add(&folio->lru, &cc->migratepages);
1175 isolate_success_no_list:
1176 		cc->nr_migratepages += folio_nr_pages(folio);
1177 		nr_isolated += folio_nr_pages(folio);
1178 		nr_scanned += folio_nr_pages(folio) - 1;
1179 
1180 		/*
1181 		 * Avoid isolating too much unless this block is being
1182 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1183 		 * or a lock is contended. For contention, isolate quickly to
1184 		 * potentially remove one source of contention.
1185 		 */
1186 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1187 		    !cc->finish_pageblock && !cc->contended) {
1188 			++low_pfn;
1189 			break;
1190 		}
1191 
1192 		continue;
1193 
1194 isolate_fail_put:
1195 		/* Avoid potential deadlock in freeing page under lru_lock */
1196 		if (locked) {
1197 			unlock_page_lruvec_irqrestore(locked, flags);
1198 			locked = NULL;
1199 		}
1200 		folio_put(folio);
1201 
1202 isolate_fail:
1203 		if (!skip_on_failure && ret != -ENOMEM)
1204 			continue;
1205 
1206 		/*
1207 		 * We have isolated some pages, but then failed. Release them
1208 		 * instead of migrating, as we cannot form the cc->order buddy
1209 		 * page anyway.
1210 		 */
1211 		if (nr_isolated) {
1212 			if (locked) {
1213 				unlock_page_lruvec_irqrestore(locked, flags);
1214 				locked = NULL;
1215 			}
1216 			putback_movable_pages(&cc->migratepages);
1217 			cc->nr_migratepages = 0;
1218 			nr_isolated = 0;
1219 		}
1220 
1221 		if (low_pfn < next_skip_pfn) {
1222 			low_pfn = next_skip_pfn - 1;
1223 			/*
1224 			 * The check near the loop beginning would have updated
1225 			 * next_skip_pfn too, but this is a bit simpler.
1226 			 */
1227 			next_skip_pfn += 1UL << cc->order;
1228 		}
1229 
1230 		if (ret == -ENOMEM)
1231 			break;
1232 	}
1233 
1234 	/*
1235 	 * The PageBuddy() check could have potentially brought us outside
1236 	 * the range to be scanned.
1237 	 */
1238 	if (unlikely(low_pfn > end_pfn))
1239 		low_pfn = end_pfn;
1240 
1241 	folio = NULL;
1242 
1243 isolate_abort:
1244 	if (locked)
1245 		unlock_page_lruvec_irqrestore(locked, flags);
1246 	if (folio) {
1247 		folio_set_lru(folio);
1248 		folio_put(folio);
1249 	}
1250 
1251 	/*
1252 	 * Update the cached scanner pfn once the pageblock has been scanned.
1253 	 * Pages will either be migrated in which case there is no point
1254 	 * scanning in the near future or migration failed in which case the
1255 	 * failure reason may persist. The block is marked for skipping if
1256 	 * there were no pages isolated in the block or if the block is
1257 	 * rescanned twice in a row.
1258 	 */
1259 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1260 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1261 			set_pageblock_skip(valid_page);
1262 		update_cached_migrate(cc, low_pfn);
1263 	}
1264 
1265 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1266 						nr_scanned, nr_isolated);
1267 
1268 fatal_pending:
1269 	cc->total_migrate_scanned += nr_scanned;
1270 	if (nr_isolated)
1271 		count_compact_events(COMPACTISOLATED, nr_isolated);
1272 
1273 	cc->migrate_pfn = low_pfn;
1274 
1275 	return ret;
1276 }
1277 
1278 /**
1279  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1280  * @cc:        Compaction control structure.
1281  * @start_pfn: The first PFN to start isolating.
1282  * @end_pfn:   The one-past-last PFN.
1283  *
1284  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1285  * in case we could not allocate a page, or 0.
1286  */
1287 int
1288 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1289 							unsigned long end_pfn)
1290 {
1291 	unsigned long pfn, block_start_pfn, block_end_pfn;
1292 	int ret = 0;
1293 
1294 	/* Scan block by block. First and last block may be incomplete */
1295 	pfn = start_pfn;
1296 	block_start_pfn = pageblock_start_pfn(pfn);
1297 	if (block_start_pfn < cc->zone->zone_start_pfn)
1298 		block_start_pfn = cc->zone->zone_start_pfn;
1299 	block_end_pfn = pageblock_end_pfn(pfn);
1300 
1301 	for (; pfn < end_pfn; pfn = block_end_pfn,
1302 				block_start_pfn = block_end_pfn,
1303 				block_end_pfn += pageblock_nr_pages) {
1304 
1305 		block_end_pfn = min(block_end_pfn, end_pfn);
1306 
1307 		if (!pageblock_pfn_to_page(block_start_pfn,
1308 					block_end_pfn, cc->zone))
1309 			continue;
1310 
1311 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1312 						 ISOLATE_UNEVICTABLE);
1313 
1314 		if (ret)
1315 			break;
1316 
1317 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1318 			break;
1319 	}
1320 
1321 	return ret;
1322 }
1323 
1324 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1325 #ifdef CONFIG_COMPACTION
1326 
1327 static bool suitable_migration_source(struct compact_control *cc,
1328 							struct page *page)
1329 {
1330 	int block_mt;
1331 
1332 	if (pageblock_skip_persistent(page))
1333 		return false;
1334 
1335 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1336 		return true;
1337 
1338 	block_mt = get_pageblock_migratetype(page);
1339 
1340 	if (cc->migratetype == MIGRATE_MOVABLE)
1341 		return is_migrate_movable(block_mt);
1342 	else
1343 		return block_mt == cc->migratetype;
1344 }
1345 
1346 /* Returns true if the page is within a block suitable for migration to */
1347 static bool suitable_migration_target(struct compact_control *cc,
1348 							struct page *page)
1349 {
1350 	/* If the page is a large free page, then disallow migration */
1351 	if (PageBuddy(page)) {
1352 		/*
1353 		 * We are checking page_order without zone->lock taken. But
1354 		 * the only small danger is that we skip a potentially suitable
1355 		 * pageblock, so it's not worth to check order for valid range.
1356 		 */
1357 		if (buddy_order_unsafe(page) >= pageblock_order)
1358 			return false;
1359 	}
1360 
1361 	if (cc->ignore_block_suitable)
1362 		return true;
1363 
1364 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1365 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1366 		return true;
1367 
1368 	/* Otherwise skip the block */
1369 	return false;
1370 }
1371 
1372 static inline unsigned int
1373 freelist_scan_limit(struct compact_control *cc)
1374 {
1375 	unsigned short shift = BITS_PER_LONG - 1;
1376 
1377 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1378 }
1379 
1380 /*
1381  * Test whether the free scanner has reached the same or lower pageblock than
1382  * the migration scanner, and compaction should thus terminate.
1383  */
1384 static inline bool compact_scanners_met(struct compact_control *cc)
1385 {
1386 	return (cc->free_pfn >> pageblock_order)
1387 		<= (cc->migrate_pfn >> pageblock_order);
1388 }
1389 
1390 /*
1391  * Used when scanning for a suitable migration target which scans freelists
1392  * in reverse. Reorders the list such as the unscanned pages are scanned
1393  * first on the next iteration of the free scanner
1394  */
1395 static void
1396 move_freelist_head(struct list_head *freelist, struct page *freepage)
1397 {
1398 	LIST_HEAD(sublist);
1399 
1400 	if (!list_is_last(freelist, &freepage->lru)) {
1401 		list_cut_before(&sublist, freelist, &freepage->lru);
1402 		list_splice_tail(&sublist, freelist);
1403 	}
1404 }
1405 
1406 /*
1407  * Similar to move_freelist_head except used by the migration scanner
1408  * when scanning forward. It's possible for these list operations to
1409  * move against each other if they search the free list exactly in
1410  * lockstep.
1411  */
1412 static void
1413 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1414 {
1415 	LIST_HEAD(sublist);
1416 
1417 	if (!list_is_first(freelist, &freepage->lru)) {
1418 		list_cut_position(&sublist, freelist, &freepage->lru);
1419 		list_splice_tail(&sublist, freelist);
1420 	}
1421 }
1422 
1423 static void
1424 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1425 {
1426 	unsigned long start_pfn, end_pfn;
1427 	struct page *page;
1428 
1429 	/* Do not search around if there are enough pages already */
1430 	if (cc->nr_freepages >= cc->nr_migratepages)
1431 		return;
1432 
1433 	/* Minimise scanning during async compaction */
1434 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1435 		return;
1436 
1437 	/* Pageblock boundaries */
1438 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1439 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1440 
1441 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1442 	if (!page)
1443 		return;
1444 
1445 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1446 
1447 	/* Skip this pageblock in the future as it's full or nearly full */
1448 	if (start_pfn == end_pfn)
1449 		set_pageblock_skip(page);
1450 
1451 	return;
1452 }
1453 
1454 /* Search orders in round-robin fashion */
1455 static int next_search_order(struct compact_control *cc, int order)
1456 {
1457 	order--;
1458 	if (order < 0)
1459 		order = cc->order - 1;
1460 
1461 	/* Search wrapped around? */
1462 	if (order == cc->search_order) {
1463 		cc->search_order--;
1464 		if (cc->search_order < 0)
1465 			cc->search_order = cc->order - 1;
1466 		return -1;
1467 	}
1468 
1469 	return order;
1470 }
1471 
1472 static void fast_isolate_freepages(struct compact_control *cc)
1473 {
1474 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1475 	unsigned int nr_scanned = 0, total_isolated = 0;
1476 	unsigned long low_pfn, min_pfn, highest = 0;
1477 	unsigned long nr_isolated = 0;
1478 	unsigned long distance;
1479 	struct page *page = NULL;
1480 	bool scan_start = false;
1481 	int order;
1482 
1483 	/* Full compaction passes in a negative order */
1484 	if (cc->order <= 0)
1485 		return;
1486 
1487 	/*
1488 	 * If starting the scan, use a deeper search and use the highest
1489 	 * PFN found if a suitable one is not found.
1490 	 */
1491 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1492 		limit = pageblock_nr_pages >> 1;
1493 		scan_start = true;
1494 	}
1495 
1496 	/*
1497 	 * Preferred point is in the top quarter of the scan space but take
1498 	 * a pfn from the top half if the search is problematic.
1499 	 */
1500 	distance = (cc->free_pfn - cc->migrate_pfn);
1501 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1502 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1503 
1504 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1505 		low_pfn = min_pfn;
1506 
1507 	/*
1508 	 * Search starts from the last successful isolation order or the next
1509 	 * order to search after a previous failure
1510 	 */
1511 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1512 
1513 	for (order = cc->search_order;
1514 	     !page && order >= 0;
1515 	     order = next_search_order(cc, order)) {
1516 		struct free_area *area = &cc->zone->free_area[order];
1517 		struct list_head *freelist;
1518 		struct page *freepage;
1519 		unsigned long flags;
1520 		unsigned int order_scanned = 0;
1521 		unsigned long high_pfn = 0;
1522 
1523 		if (!area->nr_free)
1524 			continue;
1525 
1526 		spin_lock_irqsave(&cc->zone->lock, flags);
1527 		freelist = &area->free_list[MIGRATE_MOVABLE];
1528 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1529 			unsigned long pfn;
1530 
1531 			order_scanned++;
1532 			nr_scanned++;
1533 			pfn = page_to_pfn(freepage);
1534 
1535 			if (pfn >= highest)
1536 				highest = max(pageblock_start_pfn(pfn),
1537 					      cc->zone->zone_start_pfn);
1538 
1539 			if (pfn >= low_pfn) {
1540 				cc->fast_search_fail = 0;
1541 				cc->search_order = order;
1542 				page = freepage;
1543 				break;
1544 			}
1545 
1546 			if (pfn >= min_pfn && pfn > high_pfn) {
1547 				high_pfn = pfn;
1548 
1549 				/* Shorten the scan if a candidate is found */
1550 				limit >>= 1;
1551 			}
1552 
1553 			if (order_scanned >= limit)
1554 				break;
1555 		}
1556 
1557 		/* Use a minimum pfn if a preferred one was not found */
1558 		if (!page && high_pfn) {
1559 			page = pfn_to_page(high_pfn);
1560 
1561 			/* Update freepage for the list reorder below */
1562 			freepage = page;
1563 		}
1564 
1565 		/* Reorder to so a future search skips recent pages */
1566 		move_freelist_head(freelist, freepage);
1567 
1568 		/* Isolate the page if available */
1569 		if (page) {
1570 			if (__isolate_free_page(page, order)) {
1571 				set_page_private(page, order);
1572 				nr_isolated = 1 << order;
1573 				nr_scanned += nr_isolated - 1;
1574 				total_isolated += nr_isolated;
1575 				cc->nr_freepages += nr_isolated;
1576 				list_add_tail(&page->lru, &cc->freepages);
1577 				count_compact_events(COMPACTISOLATED, nr_isolated);
1578 			} else {
1579 				/* If isolation fails, abort the search */
1580 				order = cc->search_order + 1;
1581 				page = NULL;
1582 			}
1583 		}
1584 
1585 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1586 
1587 		/* Skip fast search if enough freepages isolated */
1588 		if (cc->nr_freepages >= cc->nr_migratepages)
1589 			break;
1590 
1591 		/*
1592 		 * Smaller scan on next order so the total scan is related
1593 		 * to freelist_scan_limit.
1594 		 */
1595 		if (order_scanned >= limit)
1596 			limit = max(1U, limit >> 1);
1597 	}
1598 
1599 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1600 						   nr_scanned, total_isolated);
1601 
1602 	if (!page) {
1603 		cc->fast_search_fail++;
1604 		if (scan_start) {
1605 			/*
1606 			 * Use the highest PFN found above min. If one was
1607 			 * not found, be pessimistic for direct compaction
1608 			 * and use the min mark.
1609 			 */
1610 			if (highest >= min_pfn) {
1611 				page = pfn_to_page(highest);
1612 				cc->free_pfn = highest;
1613 			} else {
1614 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1615 					page = pageblock_pfn_to_page(min_pfn,
1616 						min(pageblock_end_pfn(min_pfn),
1617 						    zone_end_pfn(cc->zone)),
1618 						cc->zone);
1619 					cc->free_pfn = min_pfn;
1620 				}
1621 			}
1622 		}
1623 	}
1624 
1625 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1626 		highest -= pageblock_nr_pages;
1627 		cc->zone->compact_cached_free_pfn = highest;
1628 	}
1629 
1630 	cc->total_free_scanned += nr_scanned;
1631 	if (!page)
1632 		return;
1633 
1634 	low_pfn = page_to_pfn(page);
1635 	fast_isolate_around(cc, low_pfn);
1636 }
1637 
1638 /*
1639  * Based on information in the current compact_control, find blocks
1640  * suitable for isolating free pages from and then isolate them.
1641  */
1642 static void isolate_freepages(struct compact_control *cc)
1643 {
1644 	struct zone *zone = cc->zone;
1645 	struct page *page;
1646 	unsigned long block_start_pfn;	/* start of current pageblock */
1647 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1648 	unsigned long block_end_pfn;	/* end of current pageblock */
1649 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1650 	struct list_head *freelist = &cc->freepages;
1651 	unsigned int stride;
1652 
1653 	/* Try a small search of the free lists for a candidate */
1654 	fast_isolate_freepages(cc);
1655 	if (cc->nr_freepages)
1656 		goto splitmap;
1657 
1658 	/*
1659 	 * Initialise the free scanner. The starting point is where we last
1660 	 * successfully isolated from, zone-cached value, or the end of the
1661 	 * zone when isolating for the first time. For looping we also need
1662 	 * this pfn aligned down to the pageblock boundary, because we do
1663 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1664 	 * For ending point, take care when isolating in last pageblock of a
1665 	 * zone which ends in the middle of a pageblock.
1666 	 * The low boundary is the end of the pageblock the migration scanner
1667 	 * is using.
1668 	 */
1669 	isolate_start_pfn = cc->free_pfn;
1670 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1671 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1672 						zone_end_pfn(zone));
1673 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1674 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1675 
1676 	/*
1677 	 * Isolate free pages until enough are available to migrate the
1678 	 * pages on cc->migratepages. We stop searching if the migrate
1679 	 * and free page scanners meet or enough free pages are isolated.
1680 	 */
1681 	for (; block_start_pfn >= low_pfn;
1682 				block_end_pfn = block_start_pfn,
1683 				block_start_pfn -= pageblock_nr_pages,
1684 				isolate_start_pfn = block_start_pfn) {
1685 		unsigned long nr_isolated;
1686 
1687 		/*
1688 		 * This can iterate a massively long zone without finding any
1689 		 * suitable migration targets, so periodically check resched.
1690 		 */
1691 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1692 			cond_resched();
1693 
1694 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1695 									zone);
1696 		if (!page) {
1697 			unsigned long next_pfn;
1698 
1699 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1700 			if (next_pfn)
1701 				block_start_pfn = max(next_pfn, low_pfn);
1702 
1703 			continue;
1704 		}
1705 
1706 		/* Check the block is suitable for migration */
1707 		if (!suitable_migration_target(cc, page))
1708 			continue;
1709 
1710 		/* If isolation recently failed, do not retry */
1711 		if (!isolation_suitable(cc, page))
1712 			continue;
1713 
1714 		/* Found a block suitable for isolating free pages from. */
1715 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1716 					block_end_pfn, freelist, stride, false);
1717 
1718 		/* Update the skip hint if the full pageblock was scanned */
1719 		if (isolate_start_pfn == block_end_pfn)
1720 			update_pageblock_skip(cc, page, block_start_pfn);
1721 
1722 		/* Are enough freepages isolated? */
1723 		if (cc->nr_freepages >= cc->nr_migratepages) {
1724 			if (isolate_start_pfn >= block_end_pfn) {
1725 				/*
1726 				 * Restart at previous pageblock if more
1727 				 * freepages can be isolated next time.
1728 				 */
1729 				isolate_start_pfn =
1730 					block_start_pfn - pageblock_nr_pages;
1731 			}
1732 			break;
1733 		} else if (isolate_start_pfn < block_end_pfn) {
1734 			/*
1735 			 * If isolation failed early, do not continue
1736 			 * needlessly.
1737 			 */
1738 			break;
1739 		}
1740 
1741 		/* Adjust stride depending on isolation */
1742 		if (nr_isolated) {
1743 			stride = 1;
1744 			continue;
1745 		}
1746 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1747 	}
1748 
1749 	/*
1750 	 * Record where the free scanner will restart next time. Either we
1751 	 * broke from the loop and set isolate_start_pfn based on the last
1752 	 * call to isolate_freepages_block(), or we met the migration scanner
1753 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1754 	 */
1755 	cc->free_pfn = isolate_start_pfn;
1756 
1757 splitmap:
1758 	/* __isolate_free_page() does not map the pages */
1759 	split_map_pages(freelist);
1760 }
1761 
1762 /*
1763  * This is a migrate-callback that "allocates" freepages by taking pages
1764  * from the isolated freelists in the block we are migrating to.
1765  */
1766 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1767 {
1768 	struct compact_control *cc = (struct compact_control *)data;
1769 	struct folio *dst;
1770 
1771 	if (list_empty(&cc->freepages)) {
1772 		isolate_freepages(cc);
1773 
1774 		if (list_empty(&cc->freepages))
1775 			return NULL;
1776 	}
1777 
1778 	dst = list_entry(cc->freepages.next, struct folio, lru);
1779 	list_del(&dst->lru);
1780 	cc->nr_freepages--;
1781 
1782 	return dst;
1783 }
1784 
1785 /*
1786  * This is a migrate-callback that "frees" freepages back to the isolated
1787  * freelist.  All pages on the freelist are from the same zone, so there is no
1788  * special handling needed for NUMA.
1789  */
1790 static void compaction_free(struct folio *dst, unsigned long data)
1791 {
1792 	struct compact_control *cc = (struct compact_control *)data;
1793 
1794 	list_add(&dst->lru, &cc->freepages);
1795 	cc->nr_freepages++;
1796 }
1797 
1798 /* possible outcome of isolate_migratepages */
1799 typedef enum {
1800 	ISOLATE_ABORT,		/* Abort compaction now */
1801 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1802 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1803 } isolate_migrate_t;
1804 
1805 /*
1806  * Allow userspace to control policy on scanning the unevictable LRU for
1807  * compactable pages.
1808  */
1809 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1810 /*
1811  * Tunable for proactive compaction. It determines how
1812  * aggressively the kernel should compact memory in the
1813  * background. It takes values in the range [0, 100].
1814  */
1815 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1816 static int sysctl_extfrag_threshold = 500;
1817 static int __read_mostly sysctl_compact_memory;
1818 
1819 static inline void
1820 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1821 {
1822 	if (cc->fast_start_pfn == ULONG_MAX)
1823 		return;
1824 
1825 	if (!cc->fast_start_pfn)
1826 		cc->fast_start_pfn = pfn;
1827 
1828 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1829 }
1830 
1831 static inline unsigned long
1832 reinit_migrate_pfn(struct compact_control *cc)
1833 {
1834 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1835 		return cc->migrate_pfn;
1836 
1837 	cc->migrate_pfn = cc->fast_start_pfn;
1838 	cc->fast_start_pfn = ULONG_MAX;
1839 
1840 	return cc->migrate_pfn;
1841 }
1842 
1843 /*
1844  * Briefly search the free lists for a migration source that already has
1845  * some free pages to reduce the number of pages that need migration
1846  * before a pageblock is free.
1847  */
1848 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1849 {
1850 	unsigned int limit = freelist_scan_limit(cc);
1851 	unsigned int nr_scanned = 0;
1852 	unsigned long distance;
1853 	unsigned long pfn = cc->migrate_pfn;
1854 	unsigned long high_pfn;
1855 	int order;
1856 	bool found_block = false;
1857 
1858 	/* Skip hints are relied on to avoid repeats on the fast search */
1859 	if (cc->ignore_skip_hint)
1860 		return pfn;
1861 
1862 	/*
1863 	 * If the pageblock should be finished then do not select a different
1864 	 * pageblock.
1865 	 */
1866 	if (cc->finish_pageblock)
1867 		return pfn;
1868 
1869 	/*
1870 	 * If the migrate_pfn is not at the start of a zone or the start
1871 	 * of a pageblock then assume this is a continuation of a previous
1872 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1873 	 */
1874 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1875 		return pfn;
1876 
1877 	/*
1878 	 * For smaller orders, just linearly scan as the number of pages
1879 	 * to migrate should be relatively small and does not necessarily
1880 	 * justify freeing up a large block for a small allocation.
1881 	 */
1882 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1883 		return pfn;
1884 
1885 	/*
1886 	 * Only allow kcompactd and direct requests for movable pages to
1887 	 * quickly clear out a MOVABLE pageblock for allocation. This
1888 	 * reduces the risk that a large movable pageblock is freed for
1889 	 * an unmovable/reclaimable small allocation.
1890 	 */
1891 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1892 		return pfn;
1893 
1894 	/*
1895 	 * When starting the migration scanner, pick any pageblock within the
1896 	 * first half of the search space. Otherwise try and pick a pageblock
1897 	 * within the first eighth to reduce the chances that a migration
1898 	 * target later becomes a source.
1899 	 */
1900 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1901 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1902 		distance >>= 2;
1903 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1904 
1905 	for (order = cc->order - 1;
1906 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1907 	     order--) {
1908 		struct free_area *area = &cc->zone->free_area[order];
1909 		struct list_head *freelist;
1910 		unsigned long flags;
1911 		struct page *freepage;
1912 
1913 		if (!area->nr_free)
1914 			continue;
1915 
1916 		spin_lock_irqsave(&cc->zone->lock, flags);
1917 		freelist = &area->free_list[MIGRATE_MOVABLE];
1918 		list_for_each_entry(freepage, freelist, buddy_list) {
1919 			unsigned long free_pfn;
1920 
1921 			if (nr_scanned++ >= limit) {
1922 				move_freelist_tail(freelist, freepage);
1923 				break;
1924 			}
1925 
1926 			free_pfn = page_to_pfn(freepage);
1927 			if (free_pfn < high_pfn) {
1928 				/*
1929 				 * Avoid if skipped recently. Ideally it would
1930 				 * move to the tail but even safe iteration of
1931 				 * the list assumes an entry is deleted, not
1932 				 * reordered.
1933 				 */
1934 				if (get_pageblock_skip(freepage))
1935 					continue;
1936 
1937 				/* Reorder to so a future search skips recent pages */
1938 				move_freelist_tail(freelist, freepage);
1939 
1940 				update_fast_start_pfn(cc, free_pfn);
1941 				pfn = pageblock_start_pfn(free_pfn);
1942 				if (pfn < cc->zone->zone_start_pfn)
1943 					pfn = cc->zone->zone_start_pfn;
1944 				cc->fast_search_fail = 0;
1945 				found_block = true;
1946 				break;
1947 			}
1948 		}
1949 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1950 	}
1951 
1952 	cc->total_migrate_scanned += nr_scanned;
1953 
1954 	/*
1955 	 * If fast scanning failed then use a cached entry for a page block
1956 	 * that had free pages as the basis for starting a linear scan.
1957 	 */
1958 	if (!found_block) {
1959 		cc->fast_search_fail++;
1960 		pfn = reinit_migrate_pfn(cc);
1961 	}
1962 	return pfn;
1963 }
1964 
1965 /*
1966  * Isolate all pages that can be migrated from the first suitable block,
1967  * starting at the block pointed to by the migrate scanner pfn within
1968  * compact_control.
1969  */
1970 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1971 {
1972 	unsigned long block_start_pfn;
1973 	unsigned long block_end_pfn;
1974 	unsigned long low_pfn;
1975 	struct page *page;
1976 	const isolate_mode_t isolate_mode =
1977 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1978 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1979 	bool fast_find_block;
1980 
1981 	/*
1982 	 * Start at where we last stopped, or beginning of the zone as
1983 	 * initialized by compact_zone(). The first failure will use
1984 	 * the lowest PFN as the starting point for linear scanning.
1985 	 */
1986 	low_pfn = fast_find_migrateblock(cc);
1987 	block_start_pfn = pageblock_start_pfn(low_pfn);
1988 	if (block_start_pfn < cc->zone->zone_start_pfn)
1989 		block_start_pfn = cc->zone->zone_start_pfn;
1990 
1991 	/*
1992 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1993 	 * the isolation_suitable check below, check whether the fast
1994 	 * search was successful.
1995 	 */
1996 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1997 
1998 	/* Only scan within a pageblock boundary */
1999 	block_end_pfn = pageblock_end_pfn(low_pfn);
2000 
2001 	/*
2002 	 * Iterate over whole pageblocks until we find the first suitable.
2003 	 * Do not cross the free scanner.
2004 	 */
2005 	for (; block_end_pfn <= cc->free_pfn;
2006 			fast_find_block = false,
2007 			cc->migrate_pfn = low_pfn = block_end_pfn,
2008 			block_start_pfn = block_end_pfn,
2009 			block_end_pfn += pageblock_nr_pages) {
2010 
2011 		/*
2012 		 * This can potentially iterate a massively long zone with
2013 		 * many pageblocks unsuitable, so periodically check if we
2014 		 * need to schedule.
2015 		 */
2016 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2017 			cond_resched();
2018 
2019 		page = pageblock_pfn_to_page(block_start_pfn,
2020 						block_end_pfn, cc->zone);
2021 		if (!page) {
2022 			unsigned long next_pfn;
2023 
2024 			next_pfn = skip_offline_sections(block_start_pfn);
2025 			if (next_pfn)
2026 				block_end_pfn = min(next_pfn, cc->free_pfn);
2027 			continue;
2028 		}
2029 
2030 		/*
2031 		 * If isolation recently failed, do not retry. Only check the
2032 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2033 		 * to be visited multiple times. Assume skip was checked
2034 		 * before making it "skip" so other compaction instances do
2035 		 * not scan the same block.
2036 		 */
2037 		if (pageblock_aligned(low_pfn) &&
2038 		    !fast_find_block && !isolation_suitable(cc, page))
2039 			continue;
2040 
2041 		/*
2042 		 * For async direct compaction, only scan the pageblocks of the
2043 		 * same migratetype without huge pages. Async direct compaction
2044 		 * is optimistic to see if the minimum amount of work satisfies
2045 		 * the allocation. The cached PFN is updated as it's possible
2046 		 * that all remaining blocks between source and target are
2047 		 * unsuitable and the compaction scanners fail to meet.
2048 		 */
2049 		if (!suitable_migration_source(cc, page)) {
2050 			update_cached_migrate(cc, block_end_pfn);
2051 			continue;
2052 		}
2053 
2054 		/* Perform the isolation */
2055 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2056 						isolate_mode))
2057 			return ISOLATE_ABORT;
2058 
2059 		/*
2060 		 * Either we isolated something and proceed with migration. Or
2061 		 * we failed and compact_zone should decide if we should
2062 		 * continue or not.
2063 		 */
2064 		break;
2065 	}
2066 
2067 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2068 }
2069 
2070 /*
2071  * order == -1 is expected when compacting via
2072  * /proc/sys/vm/compact_memory
2073  */
2074 static inline bool is_via_compact_memory(int order)
2075 {
2076 	return order == -1;
2077 }
2078 
2079 /*
2080  * Determine whether kswapd is (or recently was!) running on this node.
2081  *
2082  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2083  * zero it.
2084  */
2085 static bool kswapd_is_running(pg_data_t *pgdat)
2086 {
2087 	bool running;
2088 
2089 	pgdat_kswapd_lock(pgdat);
2090 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2091 	pgdat_kswapd_unlock(pgdat);
2092 
2093 	return running;
2094 }
2095 
2096 /*
2097  * A zone's fragmentation score is the external fragmentation wrt to the
2098  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2099  */
2100 static unsigned int fragmentation_score_zone(struct zone *zone)
2101 {
2102 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2103 }
2104 
2105 /*
2106  * A weighted zone's fragmentation score is the external fragmentation
2107  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2108  * returns a value in the range [0, 100].
2109  *
2110  * The scaling factor ensures that proactive compaction focuses on larger
2111  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2112  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2113  * and thus never exceeds the high threshold for proactive compaction.
2114  */
2115 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2116 {
2117 	unsigned long score;
2118 
2119 	score = zone->present_pages * fragmentation_score_zone(zone);
2120 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2121 }
2122 
2123 /*
2124  * The per-node proactive (background) compaction process is started by its
2125  * corresponding kcompactd thread when the node's fragmentation score
2126  * exceeds the high threshold. The compaction process remains active till
2127  * the node's score falls below the low threshold, or one of the back-off
2128  * conditions is met.
2129  */
2130 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2131 {
2132 	unsigned int score = 0;
2133 	int zoneid;
2134 
2135 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2136 		struct zone *zone;
2137 
2138 		zone = &pgdat->node_zones[zoneid];
2139 		if (!populated_zone(zone))
2140 			continue;
2141 		score += fragmentation_score_zone_weighted(zone);
2142 	}
2143 
2144 	return score;
2145 }
2146 
2147 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2148 {
2149 	unsigned int wmark_low;
2150 
2151 	/*
2152 	 * Cap the low watermark to avoid excessive compaction
2153 	 * activity in case a user sets the proactiveness tunable
2154 	 * close to 100 (maximum).
2155 	 */
2156 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2157 	return low ? wmark_low : min(wmark_low + 10, 100U);
2158 }
2159 
2160 static bool should_proactive_compact_node(pg_data_t *pgdat)
2161 {
2162 	int wmark_high;
2163 
2164 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2165 		return false;
2166 
2167 	wmark_high = fragmentation_score_wmark(pgdat, false);
2168 	return fragmentation_score_node(pgdat) > wmark_high;
2169 }
2170 
2171 static enum compact_result __compact_finished(struct compact_control *cc)
2172 {
2173 	unsigned int order;
2174 	const int migratetype = cc->migratetype;
2175 	int ret;
2176 
2177 	/* Compaction run completes if the migrate and free scanner meet */
2178 	if (compact_scanners_met(cc)) {
2179 		/* Let the next compaction start anew. */
2180 		reset_cached_positions(cc->zone);
2181 
2182 		/*
2183 		 * Mark that the PG_migrate_skip information should be cleared
2184 		 * by kswapd when it goes to sleep. kcompactd does not set the
2185 		 * flag itself as the decision to be clear should be directly
2186 		 * based on an allocation request.
2187 		 */
2188 		if (cc->direct_compaction)
2189 			cc->zone->compact_blockskip_flush = true;
2190 
2191 		if (cc->whole_zone)
2192 			return COMPACT_COMPLETE;
2193 		else
2194 			return COMPACT_PARTIAL_SKIPPED;
2195 	}
2196 
2197 	if (cc->proactive_compaction) {
2198 		int score, wmark_low;
2199 		pg_data_t *pgdat;
2200 
2201 		pgdat = cc->zone->zone_pgdat;
2202 		if (kswapd_is_running(pgdat))
2203 			return COMPACT_PARTIAL_SKIPPED;
2204 
2205 		score = fragmentation_score_zone(cc->zone);
2206 		wmark_low = fragmentation_score_wmark(pgdat, true);
2207 
2208 		if (score > wmark_low)
2209 			ret = COMPACT_CONTINUE;
2210 		else
2211 			ret = COMPACT_SUCCESS;
2212 
2213 		goto out;
2214 	}
2215 
2216 	if (is_via_compact_memory(cc->order))
2217 		return COMPACT_CONTINUE;
2218 
2219 	/*
2220 	 * Always finish scanning a pageblock to reduce the possibility of
2221 	 * fallbacks in the future. This is particularly important when
2222 	 * migration source is unmovable/reclaimable but it's not worth
2223 	 * special casing.
2224 	 */
2225 	if (!pageblock_aligned(cc->migrate_pfn))
2226 		return COMPACT_CONTINUE;
2227 
2228 	/* Direct compactor: Is a suitable page free? */
2229 	ret = COMPACT_NO_SUITABLE_PAGE;
2230 	for (order = cc->order; order <= MAX_ORDER; order++) {
2231 		struct free_area *area = &cc->zone->free_area[order];
2232 		bool can_steal;
2233 
2234 		/* Job done if page is free of the right migratetype */
2235 		if (!free_area_empty(area, migratetype))
2236 			return COMPACT_SUCCESS;
2237 
2238 #ifdef CONFIG_CMA
2239 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2240 		if (migratetype == MIGRATE_MOVABLE &&
2241 			!free_area_empty(area, MIGRATE_CMA))
2242 			return COMPACT_SUCCESS;
2243 #endif
2244 		/*
2245 		 * Job done if allocation would steal freepages from
2246 		 * other migratetype buddy lists.
2247 		 */
2248 		if (find_suitable_fallback(area, order, migratetype,
2249 						true, &can_steal) != -1)
2250 			/*
2251 			 * Movable pages are OK in any pageblock. If we are
2252 			 * stealing for a non-movable allocation, make sure
2253 			 * we finish compacting the current pageblock first
2254 			 * (which is assured by the above migrate_pfn align
2255 			 * check) so it is as free as possible and we won't
2256 			 * have to steal another one soon.
2257 			 */
2258 			return COMPACT_SUCCESS;
2259 	}
2260 
2261 out:
2262 	if (cc->contended || fatal_signal_pending(current))
2263 		ret = COMPACT_CONTENDED;
2264 
2265 	return ret;
2266 }
2267 
2268 static enum compact_result compact_finished(struct compact_control *cc)
2269 {
2270 	int ret;
2271 
2272 	ret = __compact_finished(cc);
2273 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2274 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2275 		ret = COMPACT_CONTINUE;
2276 
2277 	return ret;
2278 }
2279 
2280 static bool __compaction_suitable(struct zone *zone, int order,
2281 				  int highest_zoneidx,
2282 				  unsigned long wmark_target)
2283 {
2284 	unsigned long watermark;
2285 	/*
2286 	 * Watermarks for order-0 must be met for compaction to be able to
2287 	 * isolate free pages for migration targets. This means that the
2288 	 * watermark and alloc_flags have to match, or be more pessimistic than
2289 	 * the check in __isolate_free_page(). We don't use the direct
2290 	 * compactor's alloc_flags, as they are not relevant for freepage
2291 	 * isolation. We however do use the direct compactor's highest_zoneidx
2292 	 * to skip over zones where lowmem reserves would prevent allocation
2293 	 * even if compaction succeeds.
2294 	 * For costly orders, we require low watermark instead of min for
2295 	 * compaction to proceed to increase its chances.
2296 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2297 	 * suitable migration targets
2298 	 */
2299 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2300 				low_wmark_pages(zone) : min_wmark_pages(zone);
2301 	watermark += compact_gap(order);
2302 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2303 				   ALLOC_CMA, wmark_target);
2304 }
2305 
2306 /*
2307  * compaction_suitable: Is this suitable to run compaction on this zone now?
2308  */
2309 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2310 {
2311 	enum compact_result compact_result;
2312 	bool suitable;
2313 
2314 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2315 					 zone_page_state(zone, NR_FREE_PAGES));
2316 	/*
2317 	 * fragmentation index determines if allocation failures are due to
2318 	 * low memory or external fragmentation
2319 	 *
2320 	 * index of -1000 would imply allocations might succeed depending on
2321 	 * watermarks, but we already failed the high-order watermark check
2322 	 * index towards 0 implies failure is due to lack of memory
2323 	 * index towards 1000 implies failure is due to fragmentation
2324 	 *
2325 	 * Only compact if a failure would be due to fragmentation. Also
2326 	 * ignore fragindex for non-costly orders where the alternative to
2327 	 * a successful reclaim/compaction is OOM. Fragindex and the
2328 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2329 	 * excessive compaction for costly orders, but it should not be at the
2330 	 * expense of system stability.
2331 	 */
2332 	if (suitable) {
2333 		compact_result = COMPACT_CONTINUE;
2334 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2335 			int fragindex = fragmentation_index(zone, order);
2336 
2337 			if (fragindex >= 0 &&
2338 			    fragindex <= sysctl_extfrag_threshold) {
2339 				suitable = false;
2340 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2341 			}
2342 		}
2343 	} else {
2344 		compact_result = COMPACT_SKIPPED;
2345 	}
2346 
2347 	trace_mm_compaction_suitable(zone, order, compact_result);
2348 
2349 	return suitable;
2350 }
2351 
2352 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2353 		int alloc_flags)
2354 {
2355 	struct zone *zone;
2356 	struct zoneref *z;
2357 
2358 	/*
2359 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2360 	 * retrying the reclaim.
2361 	 */
2362 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2363 				ac->highest_zoneidx, ac->nodemask) {
2364 		unsigned long available;
2365 
2366 		/*
2367 		 * Do not consider all the reclaimable memory because we do not
2368 		 * want to trash just for a single high order allocation which
2369 		 * is even not guaranteed to appear even if __compaction_suitable
2370 		 * is happy about the watermark check.
2371 		 */
2372 		available = zone_reclaimable_pages(zone) / order;
2373 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2374 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2375 					  available))
2376 			return true;
2377 	}
2378 
2379 	return false;
2380 }
2381 
2382 static enum compact_result
2383 compact_zone(struct compact_control *cc, struct capture_control *capc)
2384 {
2385 	enum compact_result ret;
2386 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2387 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2388 	unsigned long last_migrated_pfn;
2389 	const bool sync = cc->mode != MIGRATE_ASYNC;
2390 	bool update_cached;
2391 	unsigned int nr_succeeded = 0;
2392 
2393 	/*
2394 	 * These counters track activities during zone compaction.  Initialize
2395 	 * them before compacting a new zone.
2396 	 */
2397 	cc->total_migrate_scanned = 0;
2398 	cc->total_free_scanned = 0;
2399 	cc->nr_migratepages = 0;
2400 	cc->nr_freepages = 0;
2401 	INIT_LIST_HEAD(&cc->freepages);
2402 	INIT_LIST_HEAD(&cc->migratepages);
2403 
2404 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2405 
2406 	if (!is_via_compact_memory(cc->order)) {
2407 		unsigned long watermark;
2408 
2409 		/* Allocation can already succeed, nothing to do */
2410 		watermark = wmark_pages(cc->zone,
2411 					cc->alloc_flags & ALLOC_WMARK_MASK);
2412 		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2413 				      cc->highest_zoneidx, cc->alloc_flags))
2414 			return COMPACT_SUCCESS;
2415 
2416 		/* Compaction is likely to fail */
2417 		if (!compaction_suitable(cc->zone, cc->order,
2418 					 cc->highest_zoneidx))
2419 			return COMPACT_SKIPPED;
2420 	}
2421 
2422 	/*
2423 	 * Clear pageblock skip if there were failures recently and compaction
2424 	 * is about to be retried after being deferred.
2425 	 */
2426 	if (compaction_restarting(cc->zone, cc->order))
2427 		__reset_isolation_suitable(cc->zone);
2428 
2429 	/*
2430 	 * Setup to move all movable pages to the end of the zone. Used cached
2431 	 * information on where the scanners should start (unless we explicitly
2432 	 * want to compact the whole zone), but check that it is initialised
2433 	 * by ensuring the values are within zone boundaries.
2434 	 */
2435 	cc->fast_start_pfn = 0;
2436 	if (cc->whole_zone) {
2437 		cc->migrate_pfn = start_pfn;
2438 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2439 	} else {
2440 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2441 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2442 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2443 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2444 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2445 		}
2446 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2447 			cc->migrate_pfn = start_pfn;
2448 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2449 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2450 		}
2451 
2452 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2453 			cc->whole_zone = true;
2454 	}
2455 
2456 	last_migrated_pfn = 0;
2457 
2458 	/*
2459 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2460 	 * the basis that some migrations will fail in ASYNC mode. However,
2461 	 * if the cached PFNs match and pageblocks are skipped due to having
2462 	 * no isolation candidates, then the sync state does not matter.
2463 	 * Until a pageblock with isolation candidates is found, keep the
2464 	 * cached PFNs in sync to avoid revisiting the same blocks.
2465 	 */
2466 	update_cached = !sync &&
2467 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2468 
2469 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2470 
2471 	/* lru_add_drain_all could be expensive with involving other CPUs */
2472 	lru_add_drain();
2473 
2474 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2475 		int err;
2476 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2477 
2478 		/*
2479 		 * Avoid multiple rescans of the same pageblock which can
2480 		 * happen if a page cannot be isolated (dirty/writeback in
2481 		 * async mode) or if the migrated pages are being allocated
2482 		 * before the pageblock is cleared.  The first rescan will
2483 		 * capture the entire pageblock for migration. If it fails,
2484 		 * it'll be marked skip and scanning will proceed as normal.
2485 		 */
2486 		cc->finish_pageblock = false;
2487 		if (pageblock_start_pfn(last_migrated_pfn) ==
2488 		    pageblock_start_pfn(iteration_start_pfn)) {
2489 			cc->finish_pageblock = true;
2490 		}
2491 
2492 rescan:
2493 		switch (isolate_migratepages(cc)) {
2494 		case ISOLATE_ABORT:
2495 			ret = COMPACT_CONTENDED;
2496 			putback_movable_pages(&cc->migratepages);
2497 			cc->nr_migratepages = 0;
2498 			goto out;
2499 		case ISOLATE_NONE:
2500 			if (update_cached) {
2501 				cc->zone->compact_cached_migrate_pfn[1] =
2502 					cc->zone->compact_cached_migrate_pfn[0];
2503 			}
2504 
2505 			/*
2506 			 * We haven't isolated and migrated anything, but
2507 			 * there might still be unflushed migrations from
2508 			 * previous cc->order aligned block.
2509 			 */
2510 			goto check_drain;
2511 		case ISOLATE_SUCCESS:
2512 			update_cached = false;
2513 			last_migrated_pfn = iteration_start_pfn;
2514 		}
2515 
2516 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2517 				compaction_free, (unsigned long)cc, cc->mode,
2518 				MR_COMPACTION, &nr_succeeded);
2519 
2520 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2521 
2522 		/* All pages were either migrated or will be released */
2523 		cc->nr_migratepages = 0;
2524 		if (err) {
2525 			putback_movable_pages(&cc->migratepages);
2526 			/*
2527 			 * migrate_pages() may return -ENOMEM when scanners meet
2528 			 * and we want compact_finished() to detect it
2529 			 */
2530 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2531 				ret = COMPACT_CONTENDED;
2532 				goto out;
2533 			}
2534 			/*
2535 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2536 			 * within the current order-aligned block and
2537 			 * fast_find_migrateblock may be used then scan the
2538 			 * remainder of the pageblock. This will mark the
2539 			 * pageblock "skip" to avoid rescanning in the near
2540 			 * future. This will isolate more pages than necessary
2541 			 * for the request but avoid loops due to
2542 			 * fast_find_migrateblock revisiting blocks that were
2543 			 * recently partially scanned.
2544 			 */
2545 			if (!pageblock_aligned(cc->migrate_pfn) &&
2546 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2547 			    (cc->mode < MIGRATE_SYNC)) {
2548 				cc->finish_pageblock = true;
2549 
2550 				/*
2551 				 * Draining pcplists does not help THP if
2552 				 * any page failed to migrate. Even after
2553 				 * drain, the pageblock will not be free.
2554 				 */
2555 				if (cc->order == COMPACTION_HPAGE_ORDER)
2556 					last_migrated_pfn = 0;
2557 
2558 				goto rescan;
2559 			}
2560 		}
2561 
2562 		/* Stop if a page has been captured */
2563 		if (capc && capc->page) {
2564 			ret = COMPACT_SUCCESS;
2565 			break;
2566 		}
2567 
2568 check_drain:
2569 		/*
2570 		 * Has the migration scanner moved away from the previous
2571 		 * cc->order aligned block where we migrated from? If yes,
2572 		 * flush the pages that were freed, so that they can merge and
2573 		 * compact_finished() can detect immediately if allocation
2574 		 * would succeed.
2575 		 */
2576 		if (cc->order > 0 && last_migrated_pfn) {
2577 			unsigned long current_block_start =
2578 				block_start_pfn(cc->migrate_pfn, cc->order);
2579 
2580 			if (last_migrated_pfn < current_block_start) {
2581 				lru_add_drain_cpu_zone(cc->zone);
2582 				/* No more flushing until we migrate again */
2583 				last_migrated_pfn = 0;
2584 			}
2585 		}
2586 	}
2587 
2588 out:
2589 	/*
2590 	 * Release free pages and update where the free scanner should restart,
2591 	 * so we don't leave any returned pages behind in the next attempt.
2592 	 */
2593 	if (cc->nr_freepages > 0) {
2594 		unsigned long free_pfn = release_freepages(&cc->freepages);
2595 
2596 		cc->nr_freepages = 0;
2597 		VM_BUG_ON(free_pfn == 0);
2598 		/* The cached pfn is always the first in a pageblock */
2599 		free_pfn = pageblock_start_pfn(free_pfn);
2600 		/*
2601 		 * Only go back, not forward. The cached pfn might have been
2602 		 * already reset to zone end in compact_finished()
2603 		 */
2604 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2605 			cc->zone->compact_cached_free_pfn = free_pfn;
2606 	}
2607 
2608 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2609 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2610 
2611 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2612 
2613 	VM_BUG_ON(!list_empty(&cc->freepages));
2614 	VM_BUG_ON(!list_empty(&cc->migratepages));
2615 
2616 	return ret;
2617 }
2618 
2619 static enum compact_result compact_zone_order(struct zone *zone, int order,
2620 		gfp_t gfp_mask, enum compact_priority prio,
2621 		unsigned int alloc_flags, int highest_zoneidx,
2622 		struct page **capture)
2623 {
2624 	enum compact_result ret;
2625 	struct compact_control cc = {
2626 		.order = order,
2627 		.search_order = order,
2628 		.gfp_mask = gfp_mask,
2629 		.zone = zone,
2630 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2631 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2632 		.alloc_flags = alloc_flags,
2633 		.highest_zoneidx = highest_zoneidx,
2634 		.direct_compaction = true,
2635 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2636 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2637 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2638 	};
2639 	struct capture_control capc = {
2640 		.cc = &cc,
2641 		.page = NULL,
2642 	};
2643 
2644 	/*
2645 	 * Make sure the structs are really initialized before we expose the
2646 	 * capture control, in case we are interrupted and the interrupt handler
2647 	 * frees a page.
2648 	 */
2649 	barrier();
2650 	WRITE_ONCE(current->capture_control, &capc);
2651 
2652 	ret = compact_zone(&cc, &capc);
2653 
2654 	/*
2655 	 * Make sure we hide capture control first before we read the captured
2656 	 * page pointer, otherwise an interrupt could free and capture a page
2657 	 * and we would leak it.
2658 	 */
2659 	WRITE_ONCE(current->capture_control, NULL);
2660 	*capture = READ_ONCE(capc.page);
2661 	/*
2662 	 * Technically, it is also possible that compaction is skipped but
2663 	 * the page is still captured out of luck(IRQ came and freed the page).
2664 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2665 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2666 	 */
2667 	if (*capture)
2668 		ret = COMPACT_SUCCESS;
2669 
2670 	return ret;
2671 }
2672 
2673 /**
2674  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2675  * @gfp_mask: The GFP mask of the current allocation
2676  * @order: The order of the current allocation
2677  * @alloc_flags: The allocation flags of the current allocation
2678  * @ac: The context of current allocation
2679  * @prio: Determines how hard direct compaction should try to succeed
2680  * @capture: Pointer to free page created by compaction will be stored here
2681  *
2682  * This is the main entry point for direct page compaction.
2683  */
2684 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2685 		unsigned int alloc_flags, const struct alloc_context *ac,
2686 		enum compact_priority prio, struct page **capture)
2687 {
2688 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2689 	struct zoneref *z;
2690 	struct zone *zone;
2691 	enum compact_result rc = COMPACT_SKIPPED;
2692 
2693 	/*
2694 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2695 	 * tricky context because the migration might require IO
2696 	 */
2697 	if (!may_perform_io)
2698 		return COMPACT_SKIPPED;
2699 
2700 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2701 
2702 	/* Compact each zone in the list */
2703 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2704 					ac->highest_zoneidx, ac->nodemask) {
2705 		enum compact_result status;
2706 
2707 		if (prio > MIN_COMPACT_PRIORITY
2708 					&& compaction_deferred(zone, order)) {
2709 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2710 			continue;
2711 		}
2712 
2713 		status = compact_zone_order(zone, order, gfp_mask, prio,
2714 				alloc_flags, ac->highest_zoneidx, capture);
2715 		rc = max(status, rc);
2716 
2717 		/* The allocation should succeed, stop compacting */
2718 		if (status == COMPACT_SUCCESS) {
2719 			/*
2720 			 * We think the allocation will succeed in this zone,
2721 			 * but it is not certain, hence the false. The caller
2722 			 * will repeat this with true if allocation indeed
2723 			 * succeeds in this zone.
2724 			 */
2725 			compaction_defer_reset(zone, order, false);
2726 
2727 			break;
2728 		}
2729 
2730 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2731 					status == COMPACT_PARTIAL_SKIPPED))
2732 			/*
2733 			 * We think that allocation won't succeed in this zone
2734 			 * so we defer compaction there. If it ends up
2735 			 * succeeding after all, it will be reset.
2736 			 */
2737 			defer_compaction(zone, order);
2738 
2739 		/*
2740 		 * We might have stopped compacting due to need_resched() in
2741 		 * async compaction, or due to a fatal signal detected. In that
2742 		 * case do not try further zones
2743 		 */
2744 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2745 					|| fatal_signal_pending(current))
2746 			break;
2747 	}
2748 
2749 	return rc;
2750 }
2751 
2752 /*
2753  * Compact all zones within a node till each zone's fragmentation score
2754  * reaches within proactive compaction thresholds (as determined by the
2755  * proactiveness tunable).
2756  *
2757  * It is possible that the function returns before reaching score targets
2758  * due to various back-off conditions, such as, contention on per-node or
2759  * per-zone locks.
2760  */
2761 static void proactive_compact_node(pg_data_t *pgdat)
2762 {
2763 	int zoneid;
2764 	struct zone *zone;
2765 	struct compact_control cc = {
2766 		.order = -1,
2767 		.mode = MIGRATE_SYNC_LIGHT,
2768 		.ignore_skip_hint = true,
2769 		.whole_zone = true,
2770 		.gfp_mask = GFP_KERNEL,
2771 		.proactive_compaction = true,
2772 	};
2773 
2774 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2775 		zone = &pgdat->node_zones[zoneid];
2776 		if (!populated_zone(zone))
2777 			continue;
2778 
2779 		cc.zone = zone;
2780 
2781 		compact_zone(&cc, NULL);
2782 
2783 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2784 				     cc.total_migrate_scanned);
2785 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2786 				     cc.total_free_scanned);
2787 	}
2788 }
2789 
2790 /* Compact all zones within a node */
2791 static void compact_node(int nid)
2792 {
2793 	pg_data_t *pgdat = NODE_DATA(nid);
2794 	int zoneid;
2795 	struct zone *zone;
2796 	struct compact_control cc = {
2797 		.order = -1,
2798 		.mode = MIGRATE_SYNC,
2799 		.ignore_skip_hint = true,
2800 		.whole_zone = true,
2801 		.gfp_mask = GFP_KERNEL,
2802 	};
2803 
2804 
2805 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2806 
2807 		zone = &pgdat->node_zones[zoneid];
2808 		if (!populated_zone(zone))
2809 			continue;
2810 
2811 		cc.zone = zone;
2812 
2813 		compact_zone(&cc, NULL);
2814 	}
2815 }
2816 
2817 /* Compact all nodes in the system */
2818 static void compact_nodes(void)
2819 {
2820 	int nid;
2821 
2822 	/* Flush pending updates to the LRU lists */
2823 	lru_add_drain_all();
2824 
2825 	for_each_online_node(nid)
2826 		compact_node(nid);
2827 }
2828 
2829 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2830 		void *buffer, size_t *length, loff_t *ppos)
2831 {
2832 	int rc, nid;
2833 
2834 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2835 	if (rc)
2836 		return rc;
2837 
2838 	if (write && sysctl_compaction_proactiveness) {
2839 		for_each_online_node(nid) {
2840 			pg_data_t *pgdat = NODE_DATA(nid);
2841 
2842 			if (pgdat->proactive_compact_trigger)
2843 				continue;
2844 
2845 			pgdat->proactive_compact_trigger = true;
2846 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2847 							     pgdat->nr_zones - 1);
2848 			wake_up_interruptible(&pgdat->kcompactd_wait);
2849 		}
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /*
2856  * This is the entry point for compacting all nodes via
2857  * /proc/sys/vm/compact_memory
2858  */
2859 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2860 			void *buffer, size_t *length, loff_t *ppos)
2861 {
2862 	int ret;
2863 
2864 	ret = proc_dointvec(table, write, buffer, length, ppos);
2865 	if (ret)
2866 		return ret;
2867 
2868 	if (sysctl_compact_memory != 1)
2869 		return -EINVAL;
2870 
2871 	if (write)
2872 		compact_nodes();
2873 
2874 	return 0;
2875 }
2876 
2877 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2878 static ssize_t compact_store(struct device *dev,
2879 			     struct device_attribute *attr,
2880 			     const char *buf, size_t count)
2881 {
2882 	int nid = dev->id;
2883 
2884 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2885 		/* Flush pending updates to the LRU lists */
2886 		lru_add_drain_all();
2887 
2888 		compact_node(nid);
2889 	}
2890 
2891 	return count;
2892 }
2893 static DEVICE_ATTR_WO(compact);
2894 
2895 int compaction_register_node(struct node *node)
2896 {
2897 	return device_create_file(&node->dev, &dev_attr_compact);
2898 }
2899 
2900 void compaction_unregister_node(struct node *node)
2901 {
2902 	return device_remove_file(&node->dev, &dev_attr_compact);
2903 }
2904 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2905 
2906 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2907 {
2908 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2909 		pgdat->proactive_compact_trigger;
2910 }
2911 
2912 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2913 {
2914 	int zoneid;
2915 	struct zone *zone;
2916 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2917 
2918 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2919 		zone = &pgdat->node_zones[zoneid];
2920 
2921 		if (!populated_zone(zone))
2922 			continue;
2923 
2924 		/* Allocation can already succeed, check other zones */
2925 		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2926 				      min_wmark_pages(zone),
2927 				      highest_zoneidx, 0))
2928 			continue;
2929 
2930 		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2931 					highest_zoneidx))
2932 			return true;
2933 	}
2934 
2935 	return false;
2936 }
2937 
2938 static void kcompactd_do_work(pg_data_t *pgdat)
2939 {
2940 	/*
2941 	 * With no special task, compact all zones so that a page of requested
2942 	 * order is allocatable.
2943 	 */
2944 	int zoneid;
2945 	struct zone *zone;
2946 	struct compact_control cc = {
2947 		.order = pgdat->kcompactd_max_order,
2948 		.search_order = pgdat->kcompactd_max_order,
2949 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2950 		.mode = MIGRATE_SYNC_LIGHT,
2951 		.ignore_skip_hint = false,
2952 		.gfp_mask = GFP_KERNEL,
2953 	};
2954 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2955 							cc.highest_zoneidx);
2956 	count_compact_event(KCOMPACTD_WAKE);
2957 
2958 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2959 		int status;
2960 
2961 		zone = &pgdat->node_zones[zoneid];
2962 		if (!populated_zone(zone))
2963 			continue;
2964 
2965 		if (compaction_deferred(zone, cc.order))
2966 			continue;
2967 
2968 		/* Allocation can already succeed, nothing to do */
2969 		if (zone_watermark_ok(zone, cc.order,
2970 				      min_wmark_pages(zone), zoneid, 0))
2971 			continue;
2972 
2973 		if (!compaction_suitable(zone, cc.order, zoneid))
2974 			continue;
2975 
2976 		if (kthread_should_stop())
2977 			return;
2978 
2979 		cc.zone = zone;
2980 		status = compact_zone(&cc, NULL);
2981 
2982 		if (status == COMPACT_SUCCESS) {
2983 			compaction_defer_reset(zone, cc.order, false);
2984 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2985 			/*
2986 			 * Buddy pages may become stranded on pcps that could
2987 			 * otherwise coalesce on the zone's free area for
2988 			 * order >= cc.order.  This is ratelimited by the
2989 			 * upcoming deferral.
2990 			 */
2991 			drain_all_pages(zone);
2992 
2993 			/*
2994 			 * We use sync migration mode here, so we defer like
2995 			 * sync direct compaction does.
2996 			 */
2997 			defer_compaction(zone, cc.order);
2998 		}
2999 
3000 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3001 				     cc.total_migrate_scanned);
3002 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3003 				     cc.total_free_scanned);
3004 	}
3005 
3006 	/*
3007 	 * Regardless of success, we are done until woken up next. But remember
3008 	 * the requested order/highest_zoneidx in case it was higher/tighter
3009 	 * than our current ones
3010 	 */
3011 	if (pgdat->kcompactd_max_order <= cc.order)
3012 		pgdat->kcompactd_max_order = 0;
3013 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3014 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3015 }
3016 
3017 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3018 {
3019 	if (!order)
3020 		return;
3021 
3022 	if (pgdat->kcompactd_max_order < order)
3023 		pgdat->kcompactd_max_order = order;
3024 
3025 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3026 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3027 
3028 	/*
3029 	 * Pairs with implicit barrier in wait_event_freezable()
3030 	 * such that wakeups are not missed.
3031 	 */
3032 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3033 		return;
3034 
3035 	if (!kcompactd_node_suitable(pgdat))
3036 		return;
3037 
3038 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3039 							highest_zoneidx);
3040 	wake_up_interruptible(&pgdat->kcompactd_wait);
3041 }
3042 
3043 /*
3044  * The background compaction daemon, started as a kernel thread
3045  * from the init process.
3046  */
3047 static int kcompactd(void *p)
3048 {
3049 	pg_data_t *pgdat = (pg_data_t *)p;
3050 	struct task_struct *tsk = current;
3051 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3052 	long timeout = default_timeout;
3053 
3054 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3055 
3056 	if (!cpumask_empty(cpumask))
3057 		set_cpus_allowed_ptr(tsk, cpumask);
3058 
3059 	set_freezable();
3060 
3061 	pgdat->kcompactd_max_order = 0;
3062 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3063 
3064 	while (!kthread_should_stop()) {
3065 		unsigned long pflags;
3066 
3067 		/*
3068 		 * Avoid the unnecessary wakeup for proactive compaction
3069 		 * when it is disabled.
3070 		 */
3071 		if (!sysctl_compaction_proactiveness)
3072 			timeout = MAX_SCHEDULE_TIMEOUT;
3073 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3074 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3075 			kcompactd_work_requested(pgdat), timeout) &&
3076 			!pgdat->proactive_compact_trigger) {
3077 
3078 			psi_memstall_enter(&pflags);
3079 			kcompactd_do_work(pgdat);
3080 			psi_memstall_leave(&pflags);
3081 			/*
3082 			 * Reset the timeout value. The defer timeout from
3083 			 * proactive compaction is lost here but that is fine
3084 			 * as the condition of the zone changing substantionally
3085 			 * then carrying on with the previous defer interval is
3086 			 * not useful.
3087 			 */
3088 			timeout = default_timeout;
3089 			continue;
3090 		}
3091 
3092 		/*
3093 		 * Start the proactive work with default timeout. Based
3094 		 * on the fragmentation score, this timeout is updated.
3095 		 */
3096 		timeout = default_timeout;
3097 		if (should_proactive_compact_node(pgdat)) {
3098 			unsigned int prev_score, score;
3099 
3100 			prev_score = fragmentation_score_node(pgdat);
3101 			proactive_compact_node(pgdat);
3102 			score = fragmentation_score_node(pgdat);
3103 			/*
3104 			 * Defer proactive compaction if the fragmentation
3105 			 * score did not go down i.e. no progress made.
3106 			 */
3107 			if (unlikely(score >= prev_score))
3108 				timeout =
3109 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3110 		}
3111 		if (unlikely(pgdat->proactive_compact_trigger))
3112 			pgdat->proactive_compact_trigger = false;
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /*
3119  * This kcompactd start function will be called by init and node-hot-add.
3120  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3121  */
3122 void __meminit kcompactd_run(int nid)
3123 {
3124 	pg_data_t *pgdat = NODE_DATA(nid);
3125 
3126 	if (pgdat->kcompactd)
3127 		return;
3128 
3129 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3130 	if (IS_ERR(pgdat->kcompactd)) {
3131 		pr_err("Failed to start kcompactd on node %d\n", nid);
3132 		pgdat->kcompactd = NULL;
3133 	}
3134 }
3135 
3136 /*
3137  * Called by memory hotplug when all memory in a node is offlined. Caller must
3138  * be holding mem_hotplug_begin/done().
3139  */
3140 void __meminit kcompactd_stop(int nid)
3141 {
3142 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3143 
3144 	if (kcompactd) {
3145 		kthread_stop(kcompactd);
3146 		NODE_DATA(nid)->kcompactd = NULL;
3147 	}
3148 }
3149 
3150 /*
3151  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3152  * not required for correctness. So if the last cpu in a node goes
3153  * away, we get changed to run anywhere: as the first one comes back,
3154  * restore their cpu bindings.
3155  */
3156 static int kcompactd_cpu_online(unsigned int cpu)
3157 {
3158 	int nid;
3159 
3160 	for_each_node_state(nid, N_MEMORY) {
3161 		pg_data_t *pgdat = NODE_DATA(nid);
3162 		const struct cpumask *mask;
3163 
3164 		mask = cpumask_of_node(pgdat->node_id);
3165 
3166 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3167 			/* One of our CPUs online: restore mask */
3168 			if (pgdat->kcompactd)
3169 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3170 	}
3171 	return 0;
3172 }
3173 
3174 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3175 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3176 {
3177 	int ret, old;
3178 
3179 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3180 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3181 
3182 	old = *(int *)table->data;
3183 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3184 	if (ret)
3185 		return ret;
3186 	if (old != *(int *)table->data)
3187 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3188 			     table->procname, current->comm,
3189 			     task_pid_nr(current));
3190 	return ret;
3191 }
3192 
3193 static struct ctl_table vm_compaction[] = {
3194 	{
3195 		.procname	= "compact_memory",
3196 		.data		= &sysctl_compact_memory,
3197 		.maxlen		= sizeof(int),
3198 		.mode		= 0200,
3199 		.proc_handler	= sysctl_compaction_handler,
3200 	},
3201 	{
3202 		.procname	= "compaction_proactiveness",
3203 		.data		= &sysctl_compaction_proactiveness,
3204 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3205 		.mode		= 0644,
3206 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3207 		.extra1		= SYSCTL_ZERO,
3208 		.extra2		= SYSCTL_ONE_HUNDRED,
3209 	},
3210 	{
3211 		.procname	= "extfrag_threshold",
3212 		.data		= &sysctl_extfrag_threshold,
3213 		.maxlen		= sizeof(int),
3214 		.mode		= 0644,
3215 		.proc_handler	= proc_dointvec_minmax,
3216 		.extra1		= SYSCTL_ZERO,
3217 		.extra2		= SYSCTL_ONE_THOUSAND,
3218 	},
3219 	{
3220 		.procname	= "compact_unevictable_allowed",
3221 		.data		= &sysctl_compact_unevictable_allowed,
3222 		.maxlen		= sizeof(int),
3223 		.mode		= 0644,
3224 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3225 		.extra1		= SYSCTL_ZERO,
3226 		.extra2		= SYSCTL_ONE,
3227 	},
3228 	{ }
3229 };
3230 
3231 static int __init kcompactd_init(void)
3232 {
3233 	int nid;
3234 	int ret;
3235 
3236 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3237 					"mm/compaction:online",
3238 					kcompactd_cpu_online, NULL);
3239 	if (ret < 0) {
3240 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3241 		return ret;
3242 	}
3243 
3244 	for_each_node_state(nid, N_MEMORY)
3245 		kcompactd_run(nid);
3246 	register_sysctl_init("vm", vm_compaction);
3247 	return 0;
3248 }
3249 subsys_initcall(kcompactd_init)
3250 
3251 #endif /* CONFIG_COMPACTION */
3252