xref: /openbmc/linux/mm/compaction.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered >= defer_limit) {
184 		zone->compact_considered = defer_limit;
185 		return false;
186 	}
187 
188 	trace_mm_compaction_deferred(zone, order);
189 
190 	return true;
191 }
192 
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199 		bool alloc_success)
200 {
201 	if (alloc_success) {
202 		zone->compact_considered = 0;
203 		zone->compact_defer_shift = 0;
204 	}
205 	if (order >= zone->compact_order_failed)
206 		zone->compact_order_failed = order + 1;
207 
208 	trace_mm_compaction_defer_reset(zone, order);
209 }
210 
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214 	if (order < zone->compact_order_failed)
215 		return false;
216 
217 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220 
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 					struct page *page)
224 {
225 	if (cc->ignore_skip_hint)
226 		return true;
227 
228 	return !get_pageblock_skip(page);
229 }
230 
231 static void reset_cached_positions(struct zone *zone)
232 {
233 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 	zone->compact_cached_free_pfn =
236 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238 
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 	if (!PageCompound(page))
247 		return false;
248 
249 	page = compound_head(page);
250 
251 	if (compound_order(page) >= pageblock_order)
252 		return true;
253 
254 	return false;
255 }
256 
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 							bool check_target)
260 {
261 	struct page *page = pfn_to_online_page(pfn);
262 	struct page *block_page;
263 	struct page *end_page;
264 	unsigned long block_pfn;
265 
266 	if (!page)
267 		return false;
268 	if (zone != page_zone(page))
269 		return false;
270 	if (pageblock_skip_persistent(page))
271 		return false;
272 
273 	/*
274 	 * If skip is already cleared do no further checking once the
275 	 * restart points have been set.
276 	 */
277 	if (check_source && check_target && !get_pageblock_skip(page))
278 		return true;
279 
280 	/*
281 	 * If clearing skip for the target scanner, do not select a
282 	 * non-movable pageblock as the starting point.
283 	 */
284 	if (!check_source && check_target &&
285 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 		return false;
287 
288 	/* Ensure the start of the pageblock or zone is online and valid */
289 	block_pfn = pageblock_start_pfn(pfn);
290 	block_pfn = max(block_pfn, zone->zone_start_pfn);
291 	block_page = pfn_to_online_page(block_pfn);
292 	if (block_page) {
293 		page = block_page;
294 		pfn = block_pfn;
295 	}
296 
297 	/* Ensure the end of the pageblock or zone is online and valid */
298 	block_pfn = pageblock_end_pfn(pfn) - 1;
299 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 	end_page = pfn_to_online_page(block_pfn);
301 	if (!end_page)
302 		return false;
303 
304 	/*
305 	 * Only clear the hint if a sample indicates there is either a
306 	 * free page or an LRU page in the block. One or other condition
307 	 * is necessary for the block to be a migration source/target.
308 	 */
309 	do {
310 		if (pfn_valid_within(pfn)) {
311 			if (check_source && PageLRU(page)) {
312 				clear_pageblock_skip(page);
313 				return true;
314 			}
315 
316 			if (check_target && PageBuddy(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 		}
321 
322 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 	} while (page <= end_page);
325 
326 	return false;
327 }
328 
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 	unsigned long migrate_pfn = zone->zone_start_pfn;
337 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 	unsigned long reset_migrate = free_pfn;
339 	unsigned long reset_free = migrate_pfn;
340 	bool source_set = false;
341 	bool free_set = false;
342 
343 	if (!zone->compact_blockskip_flush)
344 		return;
345 
346 	zone->compact_blockskip_flush = false;
347 
348 	/*
349 	 * Walk the zone and update pageblock skip information. Source looks
350 	 * for PageLRU while target looks for PageBuddy. When the scanner
351 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 	 * is suitable as both source and target.
353 	 */
354 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 					free_pfn -= pageblock_nr_pages) {
356 		cond_resched();
357 
358 		/* Update the migrate PFN */
359 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 		    migrate_pfn < reset_migrate) {
361 			source_set = true;
362 			reset_migrate = migrate_pfn;
363 			zone->compact_init_migrate_pfn = reset_migrate;
364 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 		}
367 
368 		/* Update the free PFN */
369 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 		    free_pfn > reset_free) {
371 			free_set = true;
372 			reset_free = free_pfn;
373 			zone->compact_init_free_pfn = reset_free;
374 			zone->compact_cached_free_pfn = reset_free;
375 		}
376 	}
377 
378 	/* Leave no distance if no suitable block was reset */
379 	if (reset_migrate >= reset_free) {
380 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 		zone->compact_cached_free_pfn = free_pfn;
383 	}
384 }
385 
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 	int zoneid;
389 
390 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 		struct zone *zone = &pgdat->node_zones[zoneid];
392 		if (!populated_zone(zone))
393 			continue;
394 
395 		/* Only flush if a full compaction finished recently */
396 		if (zone->compact_blockskip_flush)
397 			__reset_isolation_suitable(zone);
398 	}
399 }
400 
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 							unsigned long pfn)
407 {
408 	bool skip;
409 
410 	/* Do no update if skip hint is being ignored */
411 	if (cc->ignore_skip_hint)
412 		return false;
413 
414 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 		return false;
416 
417 	skip = get_pageblock_skip(page);
418 	if (!skip && !cc->no_set_skip_hint)
419 		set_pageblock_skip(page);
420 
421 	return skip;
422 }
423 
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 	struct zone *zone = cc->zone;
427 
428 	pfn = pageblock_end_pfn(pfn);
429 
430 	/* Set for isolation rather than compaction */
431 	if (cc->no_set_skip_hint)
432 		return;
433 
434 	if (pfn > zone->compact_cached_migrate_pfn[0])
435 		zone->compact_cached_migrate_pfn[0] = pfn;
436 	if (cc->mode != MIGRATE_ASYNC &&
437 	    pfn > zone->compact_cached_migrate_pfn[1])
438 		zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440 
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446 			struct page *page, unsigned long pfn)
447 {
448 	struct zone *zone = cc->zone;
449 
450 	if (cc->no_set_skip_hint)
451 		return;
452 
453 	if (!page)
454 		return;
455 
456 	set_pageblock_skip(page);
457 
458 	/* Update where async and sync compaction should restart */
459 	if (pfn < zone->compact_cached_free_pfn)
460 		zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 					struct page *page)
465 {
466 	return true;
467 }
468 
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 	return false;
472 }
473 
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 			struct page *page, unsigned long pfn)
476 {
477 }
478 
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482 
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 							unsigned long pfn)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489 
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 						struct compact_control *cc)
501 	__acquires(lock)
502 {
503 	/* Track if the lock is contended in async mode */
504 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 		if (spin_trylock_irqsave(lock, *flags))
506 			return true;
507 
508 		cc->contended = true;
509 	}
510 
511 	spin_lock_irqsave(lock, *flags);
512 	return true;
513 }
514 
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *		async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *		scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 		unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 	if (*locked) {
534 		spin_unlock_irqrestore(lock, flags);
535 		*locked = false;
536 	}
537 
538 	if (fatal_signal_pending(current)) {
539 		cc->contended = true;
540 		return true;
541 	}
542 
543 	cond_resched();
544 
545 	return false;
546 }
547 
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 				unsigned long *start_pfn,
555 				unsigned long end_pfn,
556 				struct list_head *freelist,
557 				unsigned int stride,
558 				bool strict)
559 {
560 	int nr_scanned = 0, total_isolated = 0;
561 	struct page *cursor;
562 	unsigned long flags = 0;
563 	bool locked = false;
564 	unsigned long blockpfn = *start_pfn;
565 	unsigned int order;
566 
567 	/* Strict mode is for isolation, speed is secondary */
568 	if (strict)
569 		stride = 1;
570 
571 	cursor = pfn_to_page(blockpfn);
572 
573 	/* Isolate free pages. */
574 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 		int isolated;
576 		struct page *page = cursor;
577 
578 		/*
579 		 * Periodically drop the lock (if held) regardless of its
580 		 * contention, to give chance to IRQs. Abort if fatal signal
581 		 * pending or async compaction detects need_resched()
582 		 */
583 		if (!(blockpfn % SWAP_CLUSTER_MAX)
584 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585 								&locked, cc))
586 			break;
587 
588 		nr_scanned++;
589 		if (!pfn_valid_within(blockpfn))
590 			goto isolate_fail;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if (likely(order < MAX_ORDER)) {
602 				blockpfn += (1UL << order) - 1;
603 				cursor += (1UL << order) - 1;
604 			}
605 			goto isolate_fail;
606 		}
607 
608 		if (!PageBuddy(page))
609 			goto isolate_fail;
610 
611 		/*
612 		 * If we already hold the lock, we can skip some rechecking.
613 		 * Note that if we hold the lock now, checked_pageblock was
614 		 * already set in some previous iteration (or strict is true),
615 		 * so it is correct to skip the suitable migration target
616 		 * recheck as well.
617 		 */
618 		if (!locked) {
619 			locked = compact_lock_irqsave(&cc->zone->lock,
620 								&flags, cc);
621 
622 			/* Recheck this is a buddy page under lock */
623 			if (!PageBuddy(page))
624 				goto isolate_fail;
625 		}
626 
627 		/* Found a free page, will break it into order-0 pages */
628 		order = buddy_order(page);
629 		isolated = __isolate_free_page(page, order);
630 		if (!isolated)
631 			break;
632 		set_page_private(page, order);
633 
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 	unsigned long active, inactive, isolated;
770 
771 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 			node_page_state(pgdat, NR_INACTIVE_ANON);
773 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 			node_page_state(pgdat, NR_ACTIVE_ANON);
775 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 			node_page_state(pgdat, NR_ISOLATED_ANON);
777 
778 	return isolated > (inactive + active) / 2;
779 }
780 
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *				  a single pageblock
784  * @cc:		Compaction control structure.
785  * @low_pfn:	The first PFN to isolate
786  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	bool locked = false;
808 	struct page *page = NULL, *valid_page = NULL;
809 	unsigned long start_pfn = low_pfn;
810 	bool skip_on_failure = false;
811 	unsigned long next_skip_pfn = 0;
812 	bool skip_updated = false;
813 
814 	/*
815 	 * Ensure that there are not too many pages isolated from the LRU
816 	 * list by either parallel reclaimers or compaction. If there are,
817 	 * delay for some time until fewer pages are isolated
818 	 */
819 	while (unlikely(too_many_isolated(pgdat))) {
820 		/* async migration should just abort */
821 		if (cc->mode == MIGRATE_ASYNC)
822 			return 0;
823 
824 		congestion_wait(BLK_RW_ASYNC, HZ/10);
825 
826 		if (fatal_signal_pending(current))
827 			return 0;
828 	}
829 
830 	cond_resched();
831 
832 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
833 		skip_on_failure = true;
834 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
835 	}
836 
837 	/* Time to isolate some pages for migration */
838 	for (; low_pfn < end_pfn; low_pfn++) {
839 
840 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
841 			/*
842 			 * We have isolated all migration candidates in the
843 			 * previous order-aligned block, and did not skip it due
844 			 * to failure. We should migrate the pages now and
845 			 * hopefully succeed compaction.
846 			 */
847 			if (nr_isolated)
848 				break;
849 
850 			/*
851 			 * We failed to isolate in the previous order-aligned
852 			 * block. Set the new boundary to the end of the
853 			 * current block. Note we can't simply increase
854 			 * next_skip_pfn by 1 << order, as low_pfn might have
855 			 * been incremented by a higher number due to skipping
856 			 * a compound or a high-order buddy page in the
857 			 * previous loop iteration.
858 			 */
859 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
860 		}
861 
862 		/*
863 		 * Periodically drop the lock (if held) regardless of its
864 		 * contention, to give chance to IRQs. Abort completely if
865 		 * a fatal signal is pending.
866 		 */
867 		if (!(low_pfn % SWAP_CLUSTER_MAX)
868 		    && compact_unlock_should_abort(&pgdat->lru_lock,
869 					    flags, &locked, cc)) {
870 			low_pfn = 0;
871 			goto fatal_pending;
872 		}
873 
874 		if (!pfn_valid_within(low_pfn))
875 			goto isolate_fail;
876 		nr_scanned++;
877 
878 		page = pfn_to_page(low_pfn);
879 
880 		/*
881 		 * Check if the pageblock has already been marked skipped.
882 		 * Only the aligned PFN is checked as the caller isolates
883 		 * COMPACT_CLUSTER_MAX at a time so the second call must
884 		 * not falsely conclude that the block should be skipped.
885 		 */
886 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
887 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
888 				low_pfn = end_pfn;
889 				goto isolate_abort;
890 			}
891 			valid_page = page;
892 		}
893 
894 		/*
895 		 * Skip if free. We read page order here without zone lock
896 		 * which is generally unsafe, but the race window is small and
897 		 * the worst thing that can happen is that we skip some
898 		 * potential isolation targets.
899 		 */
900 		if (PageBuddy(page)) {
901 			unsigned long freepage_order = buddy_order_unsafe(page);
902 
903 			/*
904 			 * Without lock, we cannot be sure that what we got is
905 			 * a valid page order. Consider only values in the
906 			 * valid order range to prevent low_pfn overflow.
907 			 */
908 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
909 				low_pfn += (1UL << freepage_order) - 1;
910 			continue;
911 		}
912 
913 		/*
914 		 * Regardless of being on LRU, compound pages such as THP and
915 		 * hugetlbfs are not to be compacted unless we are attempting
916 		 * an allocation much larger than the huge page size (eg CMA).
917 		 * We can potentially save a lot of iterations if we skip them
918 		 * at once. The check is racy, but we can consider only valid
919 		 * values and the only danger is skipping too much.
920 		 */
921 		if (PageCompound(page) && !cc->alloc_contig) {
922 			const unsigned int order = compound_order(page);
923 
924 			if (likely(order < MAX_ORDER))
925 				low_pfn += (1UL << order) - 1;
926 			goto isolate_fail;
927 		}
928 
929 		/*
930 		 * Check may be lockless but that's ok as we recheck later.
931 		 * It's possible to migrate LRU and non-lru movable pages.
932 		 * Skip any other type of page
933 		 */
934 		if (!PageLRU(page)) {
935 			/*
936 			 * __PageMovable can return false positive so we need
937 			 * to verify it under page_lock.
938 			 */
939 			if (unlikely(__PageMovable(page)) &&
940 					!PageIsolated(page)) {
941 				if (locked) {
942 					spin_unlock_irqrestore(&pgdat->lru_lock,
943 									flags);
944 					locked = false;
945 				}
946 
947 				if (!isolate_movable_page(page, isolate_mode))
948 					goto isolate_success;
949 			}
950 
951 			goto isolate_fail;
952 		}
953 
954 		/*
955 		 * Migration will fail if an anonymous page is pinned in memory,
956 		 * so avoid taking lru_lock and isolating it unnecessarily in an
957 		 * admittedly racy check.
958 		 */
959 		if (!page_mapping(page) &&
960 		    page_count(page) > page_mapcount(page))
961 			goto isolate_fail;
962 
963 		/*
964 		 * Only allow to migrate anonymous pages in GFP_NOFS context
965 		 * because those do not depend on fs locks.
966 		 */
967 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
968 			goto isolate_fail;
969 
970 		/* If we already hold the lock, we can skip some rechecking */
971 		if (!locked) {
972 			locked = compact_lock_irqsave(&pgdat->lru_lock,
973 								&flags, cc);
974 
975 			/* Try get exclusive access under lock */
976 			if (!skip_updated) {
977 				skip_updated = true;
978 				if (test_and_set_skip(cc, page, low_pfn))
979 					goto isolate_abort;
980 			}
981 
982 			/* Recheck PageLRU and PageCompound under lock */
983 			if (!PageLRU(page))
984 				goto isolate_fail;
985 
986 			/*
987 			 * Page become compound since the non-locked check,
988 			 * and it's on LRU. It can only be a THP so the order
989 			 * is safe to read and it's 0 for tail pages.
990 			 */
991 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
992 				low_pfn += compound_nr(page) - 1;
993 				goto isolate_fail;
994 			}
995 		}
996 
997 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
998 
999 		/* Try isolate the page */
1000 		if (__isolate_lru_page(page, isolate_mode) != 0)
1001 			goto isolate_fail;
1002 
1003 		/* The whole page is taken off the LRU; skip the tail pages. */
1004 		if (PageCompound(page))
1005 			low_pfn += compound_nr(page) - 1;
1006 
1007 		/* Successfully isolated */
1008 		del_page_from_lru_list(page, lruvec, page_lru(page));
1009 		mod_node_page_state(page_pgdat(page),
1010 				NR_ISOLATED_ANON + page_is_file_lru(page),
1011 				thp_nr_pages(page));
1012 
1013 isolate_success:
1014 		list_add(&page->lru, &cc->migratepages);
1015 		cc->nr_migratepages++;
1016 		nr_isolated++;
1017 
1018 		/*
1019 		 * Avoid isolating too much unless this block is being
1020 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1021 		 * or a lock is contended. For contention, isolate quickly to
1022 		 * potentially remove one source of contention.
1023 		 */
1024 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1025 		    !cc->rescan && !cc->contended) {
1026 			++low_pfn;
1027 			break;
1028 		}
1029 
1030 		continue;
1031 isolate_fail:
1032 		if (!skip_on_failure)
1033 			continue;
1034 
1035 		/*
1036 		 * We have isolated some pages, but then failed. Release them
1037 		 * instead of migrating, as we cannot form the cc->order buddy
1038 		 * page anyway.
1039 		 */
1040 		if (nr_isolated) {
1041 			if (locked) {
1042 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1043 				locked = false;
1044 			}
1045 			putback_movable_pages(&cc->migratepages);
1046 			cc->nr_migratepages = 0;
1047 			nr_isolated = 0;
1048 		}
1049 
1050 		if (low_pfn < next_skip_pfn) {
1051 			low_pfn = next_skip_pfn - 1;
1052 			/*
1053 			 * The check near the loop beginning would have updated
1054 			 * next_skip_pfn too, but this is a bit simpler.
1055 			 */
1056 			next_skip_pfn += 1UL << cc->order;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * The PageBuddy() check could have potentially brought us outside
1062 	 * the range to be scanned.
1063 	 */
1064 	if (unlikely(low_pfn > end_pfn))
1065 		low_pfn = end_pfn;
1066 
1067 isolate_abort:
1068 	if (locked)
1069 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1070 
1071 	/*
1072 	 * Updated the cached scanner pfn once the pageblock has been scanned
1073 	 * Pages will either be migrated in which case there is no point
1074 	 * scanning in the near future or migration failed in which case the
1075 	 * failure reason may persist. The block is marked for skipping if
1076 	 * there were no pages isolated in the block or if the block is
1077 	 * rescanned twice in a row.
1078 	 */
1079 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1080 		if (valid_page && !skip_updated)
1081 			set_pageblock_skip(valid_page);
1082 		update_cached_migrate(cc, low_pfn);
1083 	}
1084 
1085 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1086 						nr_scanned, nr_isolated);
1087 
1088 fatal_pending:
1089 	cc->total_migrate_scanned += nr_scanned;
1090 	if (nr_isolated)
1091 		count_compact_events(COMPACTISOLATED, nr_isolated);
1092 
1093 	return low_pfn;
1094 }
1095 
1096 /**
1097  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1098  * @cc:        Compaction control structure.
1099  * @start_pfn: The first PFN to start isolating.
1100  * @end_pfn:   The one-past-last PFN.
1101  *
1102  * Returns zero if isolation fails fatally due to e.g. pending signal.
1103  * Otherwise, function returns one-past-the-last PFN of isolated page
1104  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1105  */
1106 unsigned long
1107 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1108 							unsigned long end_pfn)
1109 {
1110 	unsigned long pfn, block_start_pfn, block_end_pfn;
1111 
1112 	/* Scan block by block. First and last block may be incomplete */
1113 	pfn = start_pfn;
1114 	block_start_pfn = pageblock_start_pfn(pfn);
1115 	if (block_start_pfn < cc->zone->zone_start_pfn)
1116 		block_start_pfn = cc->zone->zone_start_pfn;
1117 	block_end_pfn = pageblock_end_pfn(pfn);
1118 
1119 	for (; pfn < end_pfn; pfn = block_end_pfn,
1120 				block_start_pfn = block_end_pfn,
1121 				block_end_pfn += pageblock_nr_pages) {
1122 
1123 		block_end_pfn = min(block_end_pfn, end_pfn);
1124 
1125 		if (!pageblock_pfn_to_page(block_start_pfn,
1126 					block_end_pfn, cc->zone))
1127 			continue;
1128 
1129 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1130 							ISOLATE_UNEVICTABLE);
1131 
1132 		if (!pfn)
1133 			break;
1134 
1135 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1136 			break;
1137 	}
1138 
1139 	return pfn;
1140 }
1141 
1142 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1143 #ifdef CONFIG_COMPACTION
1144 
1145 static bool suitable_migration_source(struct compact_control *cc,
1146 							struct page *page)
1147 {
1148 	int block_mt;
1149 
1150 	if (pageblock_skip_persistent(page))
1151 		return false;
1152 
1153 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1154 		return true;
1155 
1156 	block_mt = get_pageblock_migratetype(page);
1157 
1158 	if (cc->migratetype == MIGRATE_MOVABLE)
1159 		return is_migrate_movable(block_mt);
1160 	else
1161 		return block_mt == cc->migratetype;
1162 }
1163 
1164 /* Returns true if the page is within a block suitable for migration to */
1165 static bool suitable_migration_target(struct compact_control *cc,
1166 							struct page *page)
1167 {
1168 	/* If the page is a large free page, then disallow migration */
1169 	if (PageBuddy(page)) {
1170 		/*
1171 		 * We are checking page_order without zone->lock taken. But
1172 		 * the only small danger is that we skip a potentially suitable
1173 		 * pageblock, so it's not worth to check order for valid range.
1174 		 */
1175 		if (buddy_order_unsafe(page) >= pageblock_order)
1176 			return false;
1177 	}
1178 
1179 	if (cc->ignore_block_suitable)
1180 		return true;
1181 
1182 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1183 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1184 		return true;
1185 
1186 	/* Otherwise skip the block */
1187 	return false;
1188 }
1189 
1190 static inline unsigned int
1191 freelist_scan_limit(struct compact_control *cc)
1192 {
1193 	unsigned short shift = BITS_PER_LONG - 1;
1194 
1195 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1196 }
1197 
1198 /*
1199  * Test whether the free scanner has reached the same or lower pageblock than
1200  * the migration scanner, and compaction should thus terminate.
1201  */
1202 static inline bool compact_scanners_met(struct compact_control *cc)
1203 {
1204 	return (cc->free_pfn >> pageblock_order)
1205 		<= (cc->migrate_pfn >> pageblock_order);
1206 }
1207 
1208 /*
1209  * Used when scanning for a suitable migration target which scans freelists
1210  * in reverse. Reorders the list such as the unscanned pages are scanned
1211  * first on the next iteration of the free scanner
1212  */
1213 static void
1214 move_freelist_head(struct list_head *freelist, struct page *freepage)
1215 {
1216 	LIST_HEAD(sublist);
1217 
1218 	if (!list_is_last(freelist, &freepage->lru)) {
1219 		list_cut_before(&sublist, freelist, &freepage->lru);
1220 		if (!list_empty(&sublist))
1221 			list_splice_tail(&sublist, freelist);
1222 	}
1223 }
1224 
1225 /*
1226  * Similar to move_freelist_head except used by the migration scanner
1227  * when scanning forward. It's possible for these list operations to
1228  * move against each other if they search the free list exactly in
1229  * lockstep.
1230  */
1231 static void
1232 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1233 {
1234 	LIST_HEAD(sublist);
1235 
1236 	if (!list_is_first(freelist, &freepage->lru)) {
1237 		list_cut_position(&sublist, freelist, &freepage->lru);
1238 		if (!list_empty(&sublist))
1239 			list_splice_tail(&sublist, freelist);
1240 	}
1241 }
1242 
1243 static void
1244 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1245 {
1246 	unsigned long start_pfn, end_pfn;
1247 	struct page *page = pfn_to_page(pfn);
1248 
1249 	/* Do not search around if there are enough pages already */
1250 	if (cc->nr_freepages >= cc->nr_migratepages)
1251 		return;
1252 
1253 	/* Minimise scanning during async compaction */
1254 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1255 		return;
1256 
1257 	/* Pageblock boundaries */
1258 	start_pfn = pageblock_start_pfn(pfn);
1259 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1260 
1261 	/* Scan before */
1262 	if (start_pfn != pfn) {
1263 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1264 		if (cc->nr_freepages >= cc->nr_migratepages)
1265 			return;
1266 	}
1267 
1268 	/* Scan after */
1269 	start_pfn = pfn + nr_isolated;
1270 	if (start_pfn < end_pfn)
1271 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1272 
1273 	/* Skip this pageblock in the future as it's full or nearly full */
1274 	if (cc->nr_freepages < cc->nr_migratepages)
1275 		set_pageblock_skip(page);
1276 }
1277 
1278 /* Search orders in round-robin fashion */
1279 static int next_search_order(struct compact_control *cc, int order)
1280 {
1281 	order--;
1282 	if (order < 0)
1283 		order = cc->order - 1;
1284 
1285 	/* Search wrapped around? */
1286 	if (order == cc->search_order) {
1287 		cc->search_order--;
1288 		if (cc->search_order < 0)
1289 			cc->search_order = cc->order - 1;
1290 		return -1;
1291 	}
1292 
1293 	return order;
1294 }
1295 
1296 static unsigned long
1297 fast_isolate_freepages(struct compact_control *cc)
1298 {
1299 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1300 	unsigned int nr_scanned = 0;
1301 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1302 	unsigned long nr_isolated = 0;
1303 	unsigned long distance;
1304 	struct page *page = NULL;
1305 	bool scan_start = false;
1306 	int order;
1307 
1308 	/* Full compaction passes in a negative order */
1309 	if (cc->order <= 0)
1310 		return cc->free_pfn;
1311 
1312 	/*
1313 	 * If starting the scan, use a deeper search and use the highest
1314 	 * PFN found if a suitable one is not found.
1315 	 */
1316 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1317 		limit = pageblock_nr_pages >> 1;
1318 		scan_start = true;
1319 	}
1320 
1321 	/*
1322 	 * Preferred point is in the top quarter of the scan space but take
1323 	 * a pfn from the top half if the search is problematic.
1324 	 */
1325 	distance = (cc->free_pfn - cc->migrate_pfn);
1326 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1327 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1328 
1329 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1330 		low_pfn = min_pfn;
1331 
1332 	/*
1333 	 * Search starts from the last successful isolation order or the next
1334 	 * order to search after a previous failure
1335 	 */
1336 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1337 
1338 	for (order = cc->search_order;
1339 	     !page && order >= 0;
1340 	     order = next_search_order(cc, order)) {
1341 		struct free_area *area = &cc->zone->free_area[order];
1342 		struct list_head *freelist;
1343 		struct page *freepage;
1344 		unsigned long flags;
1345 		unsigned int order_scanned = 0;
1346 
1347 		if (!area->nr_free)
1348 			continue;
1349 
1350 		spin_lock_irqsave(&cc->zone->lock, flags);
1351 		freelist = &area->free_list[MIGRATE_MOVABLE];
1352 		list_for_each_entry_reverse(freepage, freelist, lru) {
1353 			unsigned long pfn;
1354 
1355 			order_scanned++;
1356 			nr_scanned++;
1357 			pfn = page_to_pfn(freepage);
1358 
1359 			if (pfn >= highest)
1360 				highest = pageblock_start_pfn(pfn);
1361 
1362 			if (pfn >= low_pfn) {
1363 				cc->fast_search_fail = 0;
1364 				cc->search_order = order;
1365 				page = freepage;
1366 				break;
1367 			}
1368 
1369 			if (pfn >= min_pfn && pfn > high_pfn) {
1370 				high_pfn = pfn;
1371 
1372 				/* Shorten the scan if a candidate is found */
1373 				limit >>= 1;
1374 			}
1375 
1376 			if (order_scanned >= limit)
1377 				break;
1378 		}
1379 
1380 		/* Use a minimum pfn if a preferred one was not found */
1381 		if (!page && high_pfn) {
1382 			page = pfn_to_page(high_pfn);
1383 
1384 			/* Update freepage for the list reorder below */
1385 			freepage = page;
1386 		}
1387 
1388 		/* Reorder to so a future search skips recent pages */
1389 		move_freelist_head(freelist, freepage);
1390 
1391 		/* Isolate the page if available */
1392 		if (page) {
1393 			if (__isolate_free_page(page, order)) {
1394 				set_page_private(page, order);
1395 				nr_isolated = 1 << order;
1396 				cc->nr_freepages += nr_isolated;
1397 				list_add_tail(&page->lru, &cc->freepages);
1398 				count_compact_events(COMPACTISOLATED, nr_isolated);
1399 			} else {
1400 				/* If isolation fails, abort the search */
1401 				order = cc->search_order + 1;
1402 				page = NULL;
1403 			}
1404 		}
1405 
1406 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1407 
1408 		/*
1409 		 * Smaller scan on next order so the total scan ig related
1410 		 * to freelist_scan_limit.
1411 		 */
1412 		if (order_scanned >= limit)
1413 			limit = min(1U, limit >> 1);
1414 	}
1415 
1416 	if (!page) {
1417 		cc->fast_search_fail++;
1418 		if (scan_start) {
1419 			/*
1420 			 * Use the highest PFN found above min. If one was
1421 			 * not found, be pessimistic for direct compaction
1422 			 * and use the min mark.
1423 			 */
1424 			if (highest) {
1425 				page = pfn_to_page(highest);
1426 				cc->free_pfn = highest;
1427 			} else {
1428 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1429 					page = pageblock_pfn_to_page(min_pfn,
1430 						pageblock_end_pfn(min_pfn),
1431 						cc->zone);
1432 					cc->free_pfn = min_pfn;
1433 				}
1434 			}
1435 		}
1436 	}
1437 
1438 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1439 		highest -= pageblock_nr_pages;
1440 		cc->zone->compact_cached_free_pfn = highest;
1441 	}
1442 
1443 	cc->total_free_scanned += nr_scanned;
1444 	if (!page)
1445 		return cc->free_pfn;
1446 
1447 	low_pfn = page_to_pfn(page);
1448 	fast_isolate_around(cc, low_pfn, nr_isolated);
1449 	return low_pfn;
1450 }
1451 
1452 /*
1453  * Based on information in the current compact_control, find blocks
1454  * suitable for isolating free pages from and then isolate them.
1455  */
1456 static void isolate_freepages(struct compact_control *cc)
1457 {
1458 	struct zone *zone = cc->zone;
1459 	struct page *page;
1460 	unsigned long block_start_pfn;	/* start of current pageblock */
1461 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1462 	unsigned long block_end_pfn;	/* end of current pageblock */
1463 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1464 	struct list_head *freelist = &cc->freepages;
1465 	unsigned int stride;
1466 
1467 	/* Try a small search of the free lists for a candidate */
1468 	isolate_start_pfn = fast_isolate_freepages(cc);
1469 	if (cc->nr_freepages)
1470 		goto splitmap;
1471 
1472 	/*
1473 	 * Initialise the free scanner. The starting point is where we last
1474 	 * successfully isolated from, zone-cached value, or the end of the
1475 	 * zone when isolating for the first time. For looping we also need
1476 	 * this pfn aligned down to the pageblock boundary, because we do
1477 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1478 	 * For ending point, take care when isolating in last pageblock of a
1479 	 * zone which ends in the middle of a pageblock.
1480 	 * The low boundary is the end of the pageblock the migration scanner
1481 	 * is using.
1482 	 */
1483 	isolate_start_pfn = cc->free_pfn;
1484 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1485 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1486 						zone_end_pfn(zone));
1487 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1488 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1489 
1490 	/*
1491 	 * Isolate free pages until enough are available to migrate the
1492 	 * pages on cc->migratepages. We stop searching if the migrate
1493 	 * and free page scanners meet or enough free pages are isolated.
1494 	 */
1495 	for (; block_start_pfn >= low_pfn;
1496 				block_end_pfn = block_start_pfn,
1497 				block_start_pfn -= pageblock_nr_pages,
1498 				isolate_start_pfn = block_start_pfn) {
1499 		unsigned long nr_isolated;
1500 
1501 		/*
1502 		 * This can iterate a massively long zone without finding any
1503 		 * suitable migration targets, so periodically check resched.
1504 		 */
1505 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1506 			cond_resched();
1507 
1508 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1509 									zone);
1510 		if (!page)
1511 			continue;
1512 
1513 		/* Check the block is suitable for migration */
1514 		if (!suitable_migration_target(cc, page))
1515 			continue;
1516 
1517 		/* If isolation recently failed, do not retry */
1518 		if (!isolation_suitable(cc, page))
1519 			continue;
1520 
1521 		/* Found a block suitable for isolating free pages from. */
1522 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1523 					block_end_pfn, freelist, stride, false);
1524 
1525 		/* Update the skip hint if the full pageblock was scanned */
1526 		if (isolate_start_pfn == block_end_pfn)
1527 			update_pageblock_skip(cc, page, block_start_pfn);
1528 
1529 		/* Are enough freepages isolated? */
1530 		if (cc->nr_freepages >= cc->nr_migratepages) {
1531 			if (isolate_start_pfn >= block_end_pfn) {
1532 				/*
1533 				 * Restart at previous pageblock if more
1534 				 * freepages can be isolated next time.
1535 				 */
1536 				isolate_start_pfn =
1537 					block_start_pfn - pageblock_nr_pages;
1538 			}
1539 			break;
1540 		} else if (isolate_start_pfn < block_end_pfn) {
1541 			/*
1542 			 * If isolation failed early, do not continue
1543 			 * needlessly.
1544 			 */
1545 			break;
1546 		}
1547 
1548 		/* Adjust stride depending on isolation */
1549 		if (nr_isolated) {
1550 			stride = 1;
1551 			continue;
1552 		}
1553 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1554 	}
1555 
1556 	/*
1557 	 * Record where the free scanner will restart next time. Either we
1558 	 * broke from the loop and set isolate_start_pfn based on the last
1559 	 * call to isolate_freepages_block(), or we met the migration scanner
1560 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1561 	 */
1562 	cc->free_pfn = isolate_start_pfn;
1563 
1564 splitmap:
1565 	/* __isolate_free_page() does not map the pages */
1566 	split_map_pages(freelist);
1567 }
1568 
1569 /*
1570  * This is a migrate-callback that "allocates" freepages by taking pages
1571  * from the isolated freelists in the block we are migrating to.
1572  */
1573 static struct page *compaction_alloc(struct page *migratepage,
1574 					unsigned long data)
1575 {
1576 	struct compact_control *cc = (struct compact_control *)data;
1577 	struct page *freepage;
1578 
1579 	if (list_empty(&cc->freepages)) {
1580 		isolate_freepages(cc);
1581 
1582 		if (list_empty(&cc->freepages))
1583 			return NULL;
1584 	}
1585 
1586 	freepage = list_entry(cc->freepages.next, struct page, lru);
1587 	list_del(&freepage->lru);
1588 	cc->nr_freepages--;
1589 
1590 	return freepage;
1591 }
1592 
1593 /*
1594  * This is a migrate-callback that "frees" freepages back to the isolated
1595  * freelist.  All pages on the freelist are from the same zone, so there is no
1596  * special handling needed for NUMA.
1597  */
1598 static void compaction_free(struct page *page, unsigned long data)
1599 {
1600 	struct compact_control *cc = (struct compact_control *)data;
1601 
1602 	list_add(&page->lru, &cc->freepages);
1603 	cc->nr_freepages++;
1604 }
1605 
1606 /* possible outcome of isolate_migratepages */
1607 typedef enum {
1608 	ISOLATE_ABORT,		/* Abort compaction now */
1609 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1610 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1611 } isolate_migrate_t;
1612 
1613 /*
1614  * Allow userspace to control policy on scanning the unevictable LRU for
1615  * compactable pages.
1616  */
1617 #ifdef CONFIG_PREEMPT_RT
1618 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1619 #else
1620 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1621 #endif
1622 
1623 static inline void
1624 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1625 {
1626 	if (cc->fast_start_pfn == ULONG_MAX)
1627 		return;
1628 
1629 	if (!cc->fast_start_pfn)
1630 		cc->fast_start_pfn = pfn;
1631 
1632 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1633 }
1634 
1635 static inline unsigned long
1636 reinit_migrate_pfn(struct compact_control *cc)
1637 {
1638 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1639 		return cc->migrate_pfn;
1640 
1641 	cc->migrate_pfn = cc->fast_start_pfn;
1642 	cc->fast_start_pfn = ULONG_MAX;
1643 
1644 	return cc->migrate_pfn;
1645 }
1646 
1647 /*
1648  * Briefly search the free lists for a migration source that already has
1649  * some free pages to reduce the number of pages that need migration
1650  * before a pageblock is free.
1651  */
1652 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1653 {
1654 	unsigned int limit = freelist_scan_limit(cc);
1655 	unsigned int nr_scanned = 0;
1656 	unsigned long distance;
1657 	unsigned long pfn = cc->migrate_pfn;
1658 	unsigned long high_pfn;
1659 	int order;
1660 
1661 	/* Skip hints are relied on to avoid repeats on the fast search */
1662 	if (cc->ignore_skip_hint)
1663 		return pfn;
1664 
1665 	/*
1666 	 * If the migrate_pfn is not at the start of a zone or the start
1667 	 * of a pageblock then assume this is a continuation of a previous
1668 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1669 	 */
1670 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1671 		return pfn;
1672 
1673 	/*
1674 	 * For smaller orders, just linearly scan as the number of pages
1675 	 * to migrate should be relatively small and does not necessarily
1676 	 * justify freeing up a large block for a small allocation.
1677 	 */
1678 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1679 		return pfn;
1680 
1681 	/*
1682 	 * Only allow kcompactd and direct requests for movable pages to
1683 	 * quickly clear out a MOVABLE pageblock for allocation. This
1684 	 * reduces the risk that a large movable pageblock is freed for
1685 	 * an unmovable/reclaimable small allocation.
1686 	 */
1687 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1688 		return pfn;
1689 
1690 	/*
1691 	 * When starting the migration scanner, pick any pageblock within the
1692 	 * first half of the search space. Otherwise try and pick a pageblock
1693 	 * within the first eighth to reduce the chances that a migration
1694 	 * target later becomes a source.
1695 	 */
1696 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1697 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1698 		distance >>= 2;
1699 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1700 
1701 	for (order = cc->order - 1;
1702 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1703 	     order--) {
1704 		struct free_area *area = &cc->zone->free_area[order];
1705 		struct list_head *freelist;
1706 		unsigned long flags;
1707 		struct page *freepage;
1708 
1709 		if (!area->nr_free)
1710 			continue;
1711 
1712 		spin_lock_irqsave(&cc->zone->lock, flags);
1713 		freelist = &area->free_list[MIGRATE_MOVABLE];
1714 		list_for_each_entry(freepage, freelist, lru) {
1715 			unsigned long free_pfn;
1716 
1717 			nr_scanned++;
1718 			free_pfn = page_to_pfn(freepage);
1719 			if (free_pfn < high_pfn) {
1720 				/*
1721 				 * Avoid if skipped recently. Ideally it would
1722 				 * move to the tail but even safe iteration of
1723 				 * the list assumes an entry is deleted, not
1724 				 * reordered.
1725 				 */
1726 				if (get_pageblock_skip(freepage)) {
1727 					if (list_is_last(freelist, &freepage->lru))
1728 						break;
1729 
1730 					continue;
1731 				}
1732 
1733 				/* Reorder to so a future search skips recent pages */
1734 				move_freelist_tail(freelist, freepage);
1735 
1736 				update_fast_start_pfn(cc, free_pfn);
1737 				pfn = pageblock_start_pfn(free_pfn);
1738 				cc->fast_search_fail = 0;
1739 				set_pageblock_skip(freepage);
1740 				break;
1741 			}
1742 
1743 			if (nr_scanned >= limit) {
1744 				cc->fast_search_fail++;
1745 				move_freelist_tail(freelist, freepage);
1746 				break;
1747 			}
1748 		}
1749 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1750 	}
1751 
1752 	cc->total_migrate_scanned += nr_scanned;
1753 
1754 	/*
1755 	 * If fast scanning failed then use a cached entry for a page block
1756 	 * that had free pages as the basis for starting a linear scan.
1757 	 */
1758 	if (pfn == cc->migrate_pfn)
1759 		pfn = reinit_migrate_pfn(cc);
1760 
1761 	return pfn;
1762 }
1763 
1764 /*
1765  * Isolate all pages that can be migrated from the first suitable block,
1766  * starting at the block pointed to by the migrate scanner pfn within
1767  * compact_control.
1768  */
1769 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1770 {
1771 	unsigned long block_start_pfn;
1772 	unsigned long block_end_pfn;
1773 	unsigned long low_pfn;
1774 	struct page *page;
1775 	const isolate_mode_t isolate_mode =
1776 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1777 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1778 	bool fast_find_block;
1779 
1780 	/*
1781 	 * Start at where we last stopped, or beginning of the zone as
1782 	 * initialized by compact_zone(). The first failure will use
1783 	 * the lowest PFN as the starting point for linear scanning.
1784 	 */
1785 	low_pfn = fast_find_migrateblock(cc);
1786 	block_start_pfn = pageblock_start_pfn(low_pfn);
1787 	if (block_start_pfn < cc->zone->zone_start_pfn)
1788 		block_start_pfn = cc->zone->zone_start_pfn;
1789 
1790 	/*
1791 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1792 	 * the isolation_suitable check below, check whether the fast
1793 	 * search was successful.
1794 	 */
1795 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1796 
1797 	/* Only scan within a pageblock boundary */
1798 	block_end_pfn = pageblock_end_pfn(low_pfn);
1799 
1800 	/*
1801 	 * Iterate over whole pageblocks until we find the first suitable.
1802 	 * Do not cross the free scanner.
1803 	 */
1804 	for (; block_end_pfn <= cc->free_pfn;
1805 			fast_find_block = false,
1806 			low_pfn = block_end_pfn,
1807 			block_start_pfn = block_end_pfn,
1808 			block_end_pfn += pageblock_nr_pages) {
1809 
1810 		/*
1811 		 * This can potentially iterate a massively long zone with
1812 		 * many pageblocks unsuitable, so periodically check if we
1813 		 * need to schedule.
1814 		 */
1815 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1816 			cond_resched();
1817 
1818 		page = pageblock_pfn_to_page(block_start_pfn,
1819 						block_end_pfn, cc->zone);
1820 		if (!page)
1821 			continue;
1822 
1823 		/*
1824 		 * If isolation recently failed, do not retry. Only check the
1825 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1826 		 * to be visited multiple times. Assume skip was checked
1827 		 * before making it "skip" so other compaction instances do
1828 		 * not scan the same block.
1829 		 */
1830 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1831 		    !fast_find_block && !isolation_suitable(cc, page))
1832 			continue;
1833 
1834 		/*
1835 		 * For async compaction, also only scan in MOVABLE blocks
1836 		 * without huge pages. Async compaction is optimistic to see
1837 		 * if the minimum amount of work satisfies the allocation.
1838 		 * The cached PFN is updated as it's possible that all
1839 		 * remaining blocks between source and target are unsuitable
1840 		 * and the compaction scanners fail to meet.
1841 		 */
1842 		if (!suitable_migration_source(cc, page)) {
1843 			update_cached_migrate(cc, block_end_pfn);
1844 			continue;
1845 		}
1846 
1847 		/* Perform the isolation */
1848 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1849 						block_end_pfn, isolate_mode);
1850 
1851 		if (!low_pfn)
1852 			return ISOLATE_ABORT;
1853 
1854 		/*
1855 		 * Either we isolated something and proceed with migration. Or
1856 		 * we failed and compact_zone should decide if we should
1857 		 * continue or not.
1858 		 */
1859 		break;
1860 	}
1861 
1862 	/* Record where migration scanner will be restarted. */
1863 	cc->migrate_pfn = low_pfn;
1864 
1865 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1866 }
1867 
1868 /*
1869  * order == -1 is expected when compacting via
1870  * /proc/sys/vm/compact_memory
1871  */
1872 static inline bool is_via_compact_memory(int order)
1873 {
1874 	return order == -1;
1875 }
1876 
1877 static bool kswapd_is_running(pg_data_t *pgdat)
1878 {
1879 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1880 }
1881 
1882 /*
1883  * A zone's fragmentation score is the external fragmentation wrt to the
1884  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1885  * in the range [0, 100].
1886  *
1887  * The scaling factor ensures that proactive compaction focuses on larger
1888  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1889  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1890  * and thus never exceeds the high threshold for proactive compaction.
1891  */
1892 static unsigned int fragmentation_score_zone(struct zone *zone)
1893 {
1894 	unsigned long score;
1895 
1896 	score = zone->present_pages *
1897 			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1898 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1899 }
1900 
1901 /*
1902  * The per-node proactive (background) compaction process is started by its
1903  * corresponding kcompactd thread when the node's fragmentation score
1904  * exceeds the high threshold. The compaction process remains active till
1905  * the node's score falls below the low threshold, or one of the back-off
1906  * conditions is met.
1907  */
1908 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1909 {
1910 	unsigned int score = 0;
1911 	int zoneid;
1912 
1913 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1914 		struct zone *zone;
1915 
1916 		zone = &pgdat->node_zones[zoneid];
1917 		score += fragmentation_score_zone(zone);
1918 	}
1919 
1920 	return score;
1921 }
1922 
1923 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1924 {
1925 	unsigned int wmark_low;
1926 
1927 	/*
1928 	 * Cap the low watermak to avoid excessive compaction
1929 	 * activity in case a user sets the proactivess tunable
1930 	 * close to 100 (maximum).
1931 	 */
1932 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1933 	return low ? wmark_low : min(wmark_low + 10, 100U);
1934 }
1935 
1936 static bool should_proactive_compact_node(pg_data_t *pgdat)
1937 {
1938 	int wmark_high;
1939 
1940 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1941 		return false;
1942 
1943 	wmark_high = fragmentation_score_wmark(pgdat, false);
1944 	return fragmentation_score_node(pgdat) > wmark_high;
1945 }
1946 
1947 static enum compact_result __compact_finished(struct compact_control *cc)
1948 {
1949 	unsigned int order;
1950 	const int migratetype = cc->migratetype;
1951 	int ret;
1952 
1953 	/* Compaction run completes if the migrate and free scanner meet */
1954 	if (compact_scanners_met(cc)) {
1955 		/* Let the next compaction start anew. */
1956 		reset_cached_positions(cc->zone);
1957 
1958 		/*
1959 		 * Mark that the PG_migrate_skip information should be cleared
1960 		 * by kswapd when it goes to sleep. kcompactd does not set the
1961 		 * flag itself as the decision to be clear should be directly
1962 		 * based on an allocation request.
1963 		 */
1964 		if (cc->direct_compaction)
1965 			cc->zone->compact_blockskip_flush = true;
1966 
1967 		if (cc->whole_zone)
1968 			return COMPACT_COMPLETE;
1969 		else
1970 			return COMPACT_PARTIAL_SKIPPED;
1971 	}
1972 
1973 	if (cc->proactive_compaction) {
1974 		int score, wmark_low;
1975 		pg_data_t *pgdat;
1976 
1977 		pgdat = cc->zone->zone_pgdat;
1978 		if (kswapd_is_running(pgdat))
1979 			return COMPACT_PARTIAL_SKIPPED;
1980 
1981 		score = fragmentation_score_zone(cc->zone);
1982 		wmark_low = fragmentation_score_wmark(pgdat, true);
1983 
1984 		if (score > wmark_low)
1985 			ret = COMPACT_CONTINUE;
1986 		else
1987 			ret = COMPACT_SUCCESS;
1988 
1989 		goto out;
1990 	}
1991 
1992 	if (is_via_compact_memory(cc->order))
1993 		return COMPACT_CONTINUE;
1994 
1995 	/*
1996 	 * Always finish scanning a pageblock to reduce the possibility of
1997 	 * fallbacks in the future. This is particularly important when
1998 	 * migration source is unmovable/reclaimable but it's not worth
1999 	 * special casing.
2000 	 */
2001 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2002 		return COMPACT_CONTINUE;
2003 
2004 	/* Direct compactor: Is a suitable page free? */
2005 	ret = COMPACT_NO_SUITABLE_PAGE;
2006 	for (order = cc->order; order < MAX_ORDER; order++) {
2007 		struct free_area *area = &cc->zone->free_area[order];
2008 		bool can_steal;
2009 
2010 		/* Job done if page is free of the right migratetype */
2011 		if (!free_area_empty(area, migratetype))
2012 			return COMPACT_SUCCESS;
2013 
2014 #ifdef CONFIG_CMA
2015 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2016 		if (migratetype == MIGRATE_MOVABLE &&
2017 			!free_area_empty(area, MIGRATE_CMA))
2018 			return COMPACT_SUCCESS;
2019 #endif
2020 		/*
2021 		 * Job done if allocation would steal freepages from
2022 		 * other migratetype buddy lists.
2023 		 */
2024 		if (find_suitable_fallback(area, order, migratetype,
2025 						true, &can_steal) != -1) {
2026 
2027 			/* movable pages are OK in any pageblock */
2028 			if (migratetype == MIGRATE_MOVABLE)
2029 				return COMPACT_SUCCESS;
2030 
2031 			/*
2032 			 * We are stealing for a non-movable allocation. Make
2033 			 * sure we finish compacting the current pageblock
2034 			 * first so it is as free as possible and we won't
2035 			 * have to steal another one soon. This only applies
2036 			 * to sync compaction, as async compaction operates
2037 			 * on pageblocks of the same migratetype.
2038 			 */
2039 			if (cc->mode == MIGRATE_ASYNC ||
2040 					IS_ALIGNED(cc->migrate_pfn,
2041 							pageblock_nr_pages)) {
2042 				return COMPACT_SUCCESS;
2043 			}
2044 
2045 			ret = COMPACT_CONTINUE;
2046 			break;
2047 		}
2048 	}
2049 
2050 out:
2051 	if (cc->contended || fatal_signal_pending(current))
2052 		ret = COMPACT_CONTENDED;
2053 
2054 	return ret;
2055 }
2056 
2057 static enum compact_result compact_finished(struct compact_control *cc)
2058 {
2059 	int ret;
2060 
2061 	ret = __compact_finished(cc);
2062 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2063 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2064 		ret = COMPACT_CONTINUE;
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * compaction_suitable: Is this suitable to run compaction on this zone now?
2071  * Returns
2072  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2073  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2074  *   COMPACT_CONTINUE - If compaction should run now
2075  */
2076 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2077 					unsigned int alloc_flags,
2078 					int highest_zoneidx,
2079 					unsigned long wmark_target)
2080 {
2081 	unsigned long watermark;
2082 
2083 	if (is_via_compact_memory(order))
2084 		return COMPACT_CONTINUE;
2085 
2086 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2087 	/*
2088 	 * If watermarks for high-order allocation are already met, there
2089 	 * should be no need for compaction at all.
2090 	 */
2091 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2092 								alloc_flags))
2093 		return COMPACT_SUCCESS;
2094 
2095 	/*
2096 	 * Watermarks for order-0 must be met for compaction to be able to
2097 	 * isolate free pages for migration targets. This means that the
2098 	 * watermark and alloc_flags have to match, or be more pessimistic than
2099 	 * the check in __isolate_free_page(). We don't use the direct
2100 	 * compactor's alloc_flags, as they are not relevant for freepage
2101 	 * isolation. We however do use the direct compactor's highest_zoneidx
2102 	 * to skip over zones where lowmem reserves would prevent allocation
2103 	 * even if compaction succeeds.
2104 	 * For costly orders, we require low watermark instead of min for
2105 	 * compaction to proceed to increase its chances.
2106 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2107 	 * suitable migration targets
2108 	 */
2109 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2110 				low_wmark_pages(zone) : min_wmark_pages(zone);
2111 	watermark += compact_gap(order);
2112 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2113 						ALLOC_CMA, wmark_target))
2114 		return COMPACT_SKIPPED;
2115 
2116 	return COMPACT_CONTINUE;
2117 }
2118 
2119 enum compact_result compaction_suitable(struct zone *zone, int order,
2120 					unsigned int alloc_flags,
2121 					int highest_zoneidx)
2122 {
2123 	enum compact_result ret;
2124 	int fragindex;
2125 
2126 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2127 				    zone_page_state(zone, NR_FREE_PAGES));
2128 	/*
2129 	 * fragmentation index determines if allocation failures are due to
2130 	 * low memory or external fragmentation
2131 	 *
2132 	 * index of -1000 would imply allocations might succeed depending on
2133 	 * watermarks, but we already failed the high-order watermark check
2134 	 * index towards 0 implies failure is due to lack of memory
2135 	 * index towards 1000 implies failure is due to fragmentation
2136 	 *
2137 	 * Only compact if a failure would be due to fragmentation. Also
2138 	 * ignore fragindex for non-costly orders where the alternative to
2139 	 * a successful reclaim/compaction is OOM. Fragindex and the
2140 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2141 	 * excessive compaction for costly orders, but it should not be at the
2142 	 * expense of system stability.
2143 	 */
2144 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2145 		fragindex = fragmentation_index(zone, order);
2146 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2147 			ret = COMPACT_NOT_SUITABLE_ZONE;
2148 	}
2149 
2150 	trace_mm_compaction_suitable(zone, order, ret);
2151 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2152 		ret = COMPACT_SKIPPED;
2153 
2154 	return ret;
2155 }
2156 
2157 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2158 		int alloc_flags)
2159 {
2160 	struct zone *zone;
2161 	struct zoneref *z;
2162 
2163 	/*
2164 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2165 	 * retrying the reclaim.
2166 	 */
2167 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2168 				ac->highest_zoneidx, ac->nodemask) {
2169 		unsigned long available;
2170 		enum compact_result compact_result;
2171 
2172 		/*
2173 		 * Do not consider all the reclaimable memory because we do not
2174 		 * want to trash just for a single high order allocation which
2175 		 * is even not guaranteed to appear even if __compaction_suitable
2176 		 * is happy about the watermark check.
2177 		 */
2178 		available = zone_reclaimable_pages(zone) / order;
2179 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2180 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2181 				ac->highest_zoneidx, available);
2182 		if (compact_result != COMPACT_SKIPPED)
2183 			return true;
2184 	}
2185 
2186 	return false;
2187 }
2188 
2189 static enum compact_result
2190 compact_zone(struct compact_control *cc, struct capture_control *capc)
2191 {
2192 	enum compact_result ret;
2193 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2194 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2195 	unsigned long last_migrated_pfn;
2196 	const bool sync = cc->mode != MIGRATE_ASYNC;
2197 	bool update_cached;
2198 
2199 	/*
2200 	 * These counters track activities during zone compaction.  Initialize
2201 	 * them before compacting a new zone.
2202 	 */
2203 	cc->total_migrate_scanned = 0;
2204 	cc->total_free_scanned = 0;
2205 	cc->nr_migratepages = 0;
2206 	cc->nr_freepages = 0;
2207 	INIT_LIST_HEAD(&cc->freepages);
2208 	INIT_LIST_HEAD(&cc->migratepages);
2209 
2210 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2211 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2212 							cc->highest_zoneidx);
2213 	/* Compaction is likely to fail */
2214 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2215 		return ret;
2216 
2217 	/* huh, compaction_suitable is returning something unexpected */
2218 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2219 
2220 	/*
2221 	 * Clear pageblock skip if there were failures recently and compaction
2222 	 * is about to be retried after being deferred.
2223 	 */
2224 	if (compaction_restarting(cc->zone, cc->order))
2225 		__reset_isolation_suitable(cc->zone);
2226 
2227 	/*
2228 	 * Setup to move all movable pages to the end of the zone. Used cached
2229 	 * information on where the scanners should start (unless we explicitly
2230 	 * want to compact the whole zone), but check that it is initialised
2231 	 * by ensuring the values are within zone boundaries.
2232 	 */
2233 	cc->fast_start_pfn = 0;
2234 	if (cc->whole_zone) {
2235 		cc->migrate_pfn = start_pfn;
2236 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2237 	} else {
2238 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2239 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2240 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2241 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2242 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2243 		}
2244 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2245 			cc->migrate_pfn = start_pfn;
2246 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2247 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2248 		}
2249 
2250 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2251 			cc->whole_zone = true;
2252 	}
2253 
2254 	last_migrated_pfn = 0;
2255 
2256 	/*
2257 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2258 	 * the basis that some migrations will fail in ASYNC mode. However,
2259 	 * if the cached PFNs match and pageblocks are skipped due to having
2260 	 * no isolation candidates, then the sync state does not matter.
2261 	 * Until a pageblock with isolation candidates is found, keep the
2262 	 * cached PFNs in sync to avoid revisiting the same blocks.
2263 	 */
2264 	update_cached = !sync &&
2265 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2266 
2267 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2268 				cc->free_pfn, end_pfn, sync);
2269 
2270 	migrate_prep_local();
2271 
2272 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2273 		int err;
2274 		unsigned long start_pfn = cc->migrate_pfn;
2275 
2276 		/*
2277 		 * Avoid multiple rescans which can happen if a page cannot be
2278 		 * isolated (dirty/writeback in async mode) or if the migrated
2279 		 * pages are being allocated before the pageblock is cleared.
2280 		 * The first rescan will capture the entire pageblock for
2281 		 * migration. If it fails, it'll be marked skip and scanning
2282 		 * will proceed as normal.
2283 		 */
2284 		cc->rescan = false;
2285 		if (pageblock_start_pfn(last_migrated_pfn) ==
2286 		    pageblock_start_pfn(start_pfn)) {
2287 			cc->rescan = true;
2288 		}
2289 
2290 		switch (isolate_migratepages(cc)) {
2291 		case ISOLATE_ABORT:
2292 			ret = COMPACT_CONTENDED;
2293 			putback_movable_pages(&cc->migratepages);
2294 			cc->nr_migratepages = 0;
2295 			goto out;
2296 		case ISOLATE_NONE:
2297 			if (update_cached) {
2298 				cc->zone->compact_cached_migrate_pfn[1] =
2299 					cc->zone->compact_cached_migrate_pfn[0];
2300 			}
2301 
2302 			/*
2303 			 * We haven't isolated and migrated anything, but
2304 			 * there might still be unflushed migrations from
2305 			 * previous cc->order aligned block.
2306 			 */
2307 			goto check_drain;
2308 		case ISOLATE_SUCCESS:
2309 			update_cached = false;
2310 			last_migrated_pfn = start_pfn;
2311 			;
2312 		}
2313 
2314 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2315 				compaction_free, (unsigned long)cc, cc->mode,
2316 				MR_COMPACTION);
2317 
2318 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2319 							&cc->migratepages);
2320 
2321 		/* All pages were either migrated or will be released */
2322 		cc->nr_migratepages = 0;
2323 		if (err) {
2324 			putback_movable_pages(&cc->migratepages);
2325 			/*
2326 			 * migrate_pages() may return -ENOMEM when scanners meet
2327 			 * and we want compact_finished() to detect it
2328 			 */
2329 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2330 				ret = COMPACT_CONTENDED;
2331 				goto out;
2332 			}
2333 			/*
2334 			 * We failed to migrate at least one page in the current
2335 			 * order-aligned block, so skip the rest of it.
2336 			 */
2337 			if (cc->direct_compaction &&
2338 						(cc->mode == MIGRATE_ASYNC)) {
2339 				cc->migrate_pfn = block_end_pfn(
2340 						cc->migrate_pfn - 1, cc->order);
2341 				/* Draining pcplists is useless in this case */
2342 				last_migrated_pfn = 0;
2343 			}
2344 		}
2345 
2346 check_drain:
2347 		/*
2348 		 * Has the migration scanner moved away from the previous
2349 		 * cc->order aligned block where we migrated from? If yes,
2350 		 * flush the pages that were freed, so that they can merge and
2351 		 * compact_finished() can detect immediately if allocation
2352 		 * would succeed.
2353 		 */
2354 		if (cc->order > 0 && last_migrated_pfn) {
2355 			unsigned long current_block_start =
2356 				block_start_pfn(cc->migrate_pfn, cc->order);
2357 
2358 			if (last_migrated_pfn < current_block_start) {
2359 				lru_add_drain_cpu_zone(cc->zone);
2360 				/* No more flushing until we migrate again */
2361 				last_migrated_pfn = 0;
2362 			}
2363 		}
2364 
2365 		/* Stop if a page has been captured */
2366 		if (capc && capc->page) {
2367 			ret = COMPACT_SUCCESS;
2368 			break;
2369 		}
2370 	}
2371 
2372 out:
2373 	/*
2374 	 * Release free pages and update where the free scanner should restart,
2375 	 * so we don't leave any returned pages behind in the next attempt.
2376 	 */
2377 	if (cc->nr_freepages > 0) {
2378 		unsigned long free_pfn = release_freepages(&cc->freepages);
2379 
2380 		cc->nr_freepages = 0;
2381 		VM_BUG_ON(free_pfn == 0);
2382 		/* The cached pfn is always the first in a pageblock */
2383 		free_pfn = pageblock_start_pfn(free_pfn);
2384 		/*
2385 		 * Only go back, not forward. The cached pfn might have been
2386 		 * already reset to zone end in compact_finished()
2387 		 */
2388 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2389 			cc->zone->compact_cached_free_pfn = free_pfn;
2390 	}
2391 
2392 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2393 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2394 
2395 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2396 				cc->free_pfn, end_pfn, sync, ret);
2397 
2398 	return ret;
2399 }
2400 
2401 static enum compact_result compact_zone_order(struct zone *zone, int order,
2402 		gfp_t gfp_mask, enum compact_priority prio,
2403 		unsigned int alloc_flags, int highest_zoneidx,
2404 		struct page **capture)
2405 {
2406 	enum compact_result ret;
2407 	struct compact_control cc = {
2408 		.order = order,
2409 		.search_order = order,
2410 		.gfp_mask = gfp_mask,
2411 		.zone = zone,
2412 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2413 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2414 		.alloc_flags = alloc_flags,
2415 		.highest_zoneidx = highest_zoneidx,
2416 		.direct_compaction = true,
2417 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2418 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2419 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2420 	};
2421 	struct capture_control capc = {
2422 		.cc = &cc,
2423 		.page = NULL,
2424 	};
2425 
2426 	/*
2427 	 * Make sure the structs are really initialized before we expose the
2428 	 * capture control, in case we are interrupted and the interrupt handler
2429 	 * frees a page.
2430 	 */
2431 	barrier();
2432 	WRITE_ONCE(current->capture_control, &capc);
2433 
2434 	ret = compact_zone(&cc, &capc);
2435 
2436 	VM_BUG_ON(!list_empty(&cc.freepages));
2437 	VM_BUG_ON(!list_empty(&cc.migratepages));
2438 
2439 	/*
2440 	 * Make sure we hide capture control first before we read the captured
2441 	 * page pointer, otherwise an interrupt could free and capture a page
2442 	 * and we would leak it.
2443 	 */
2444 	WRITE_ONCE(current->capture_control, NULL);
2445 	*capture = READ_ONCE(capc.page);
2446 
2447 	return ret;
2448 }
2449 
2450 int sysctl_extfrag_threshold = 500;
2451 
2452 /**
2453  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2454  * @gfp_mask: The GFP mask of the current allocation
2455  * @order: The order of the current allocation
2456  * @alloc_flags: The allocation flags of the current allocation
2457  * @ac: The context of current allocation
2458  * @prio: Determines how hard direct compaction should try to succeed
2459  * @capture: Pointer to free page created by compaction will be stored here
2460  *
2461  * This is the main entry point for direct page compaction.
2462  */
2463 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2464 		unsigned int alloc_flags, const struct alloc_context *ac,
2465 		enum compact_priority prio, struct page **capture)
2466 {
2467 	int may_perform_io = gfp_mask & __GFP_IO;
2468 	struct zoneref *z;
2469 	struct zone *zone;
2470 	enum compact_result rc = COMPACT_SKIPPED;
2471 
2472 	/*
2473 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2474 	 * tricky context because the migration might require IO
2475 	 */
2476 	if (!may_perform_io)
2477 		return COMPACT_SKIPPED;
2478 
2479 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2480 
2481 	/* Compact each zone in the list */
2482 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2483 					ac->highest_zoneidx, ac->nodemask) {
2484 		enum compact_result status;
2485 
2486 		if (prio > MIN_COMPACT_PRIORITY
2487 					&& compaction_deferred(zone, order)) {
2488 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2489 			continue;
2490 		}
2491 
2492 		status = compact_zone_order(zone, order, gfp_mask, prio,
2493 				alloc_flags, ac->highest_zoneidx, capture);
2494 		rc = max(status, rc);
2495 
2496 		/* The allocation should succeed, stop compacting */
2497 		if (status == COMPACT_SUCCESS) {
2498 			/*
2499 			 * We think the allocation will succeed in this zone,
2500 			 * but it is not certain, hence the false. The caller
2501 			 * will repeat this with true if allocation indeed
2502 			 * succeeds in this zone.
2503 			 */
2504 			compaction_defer_reset(zone, order, false);
2505 
2506 			break;
2507 		}
2508 
2509 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2510 					status == COMPACT_PARTIAL_SKIPPED))
2511 			/*
2512 			 * We think that allocation won't succeed in this zone
2513 			 * so we defer compaction there. If it ends up
2514 			 * succeeding after all, it will be reset.
2515 			 */
2516 			defer_compaction(zone, order);
2517 
2518 		/*
2519 		 * We might have stopped compacting due to need_resched() in
2520 		 * async compaction, or due to a fatal signal detected. In that
2521 		 * case do not try further zones
2522 		 */
2523 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2524 					|| fatal_signal_pending(current))
2525 			break;
2526 	}
2527 
2528 	return rc;
2529 }
2530 
2531 /*
2532  * Compact all zones within a node till each zone's fragmentation score
2533  * reaches within proactive compaction thresholds (as determined by the
2534  * proactiveness tunable).
2535  *
2536  * It is possible that the function returns before reaching score targets
2537  * due to various back-off conditions, such as, contention on per-node or
2538  * per-zone locks.
2539  */
2540 static void proactive_compact_node(pg_data_t *pgdat)
2541 {
2542 	int zoneid;
2543 	struct zone *zone;
2544 	struct compact_control cc = {
2545 		.order = -1,
2546 		.mode = MIGRATE_SYNC_LIGHT,
2547 		.ignore_skip_hint = true,
2548 		.whole_zone = true,
2549 		.gfp_mask = GFP_KERNEL,
2550 		.proactive_compaction = true,
2551 	};
2552 
2553 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2554 		zone = &pgdat->node_zones[zoneid];
2555 		if (!populated_zone(zone))
2556 			continue;
2557 
2558 		cc.zone = zone;
2559 
2560 		compact_zone(&cc, NULL);
2561 
2562 		VM_BUG_ON(!list_empty(&cc.freepages));
2563 		VM_BUG_ON(!list_empty(&cc.migratepages));
2564 	}
2565 }
2566 
2567 /* Compact all zones within a node */
2568 static void compact_node(int nid)
2569 {
2570 	pg_data_t *pgdat = NODE_DATA(nid);
2571 	int zoneid;
2572 	struct zone *zone;
2573 	struct compact_control cc = {
2574 		.order = -1,
2575 		.mode = MIGRATE_SYNC,
2576 		.ignore_skip_hint = true,
2577 		.whole_zone = true,
2578 		.gfp_mask = GFP_KERNEL,
2579 	};
2580 
2581 
2582 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2583 
2584 		zone = &pgdat->node_zones[zoneid];
2585 		if (!populated_zone(zone))
2586 			continue;
2587 
2588 		cc.zone = zone;
2589 
2590 		compact_zone(&cc, NULL);
2591 
2592 		VM_BUG_ON(!list_empty(&cc.freepages));
2593 		VM_BUG_ON(!list_empty(&cc.migratepages));
2594 	}
2595 }
2596 
2597 /* Compact all nodes in the system */
2598 static void compact_nodes(void)
2599 {
2600 	int nid;
2601 
2602 	/* Flush pending updates to the LRU lists */
2603 	lru_add_drain_all();
2604 
2605 	for_each_online_node(nid)
2606 		compact_node(nid);
2607 }
2608 
2609 /* The written value is actually unused, all memory is compacted */
2610 int sysctl_compact_memory;
2611 
2612 /*
2613  * Tunable for proactive compaction. It determines how
2614  * aggressively the kernel should compact memory in the
2615  * background. It takes values in the range [0, 100].
2616  */
2617 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2618 
2619 /*
2620  * This is the entry point for compacting all nodes via
2621  * /proc/sys/vm/compact_memory
2622  */
2623 int sysctl_compaction_handler(struct ctl_table *table, int write,
2624 			void *buffer, size_t *length, loff_t *ppos)
2625 {
2626 	if (write)
2627 		compact_nodes();
2628 
2629 	return 0;
2630 }
2631 
2632 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2633 static ssize_t sysfs_compact_node(struct device *dev,
2634 			struct device_attribute *attr,
2635 			const char *buf, size_t count)
2636 {
2637 	int nid = dev->id;
2638 
2639 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2640 		/* Flush pending updates to the LRU lists */
2641 		lru_add_drain_all();
2642 
2643 		compact_node(nid);
2644 	}
2645 
2646 	return count;
2647 }
2648 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2649 
2650 int compaction_register_node(struct node *node)
2651 {
2652 	return device_create_file(&node->dev, &dev_attr_compact);
2653 }
2654 
2655 void compaction_unregister_node(struct node *node)
2656 {
2657 	return device_remove_file(&node->dev, &dev_attr_compact);
2658 }
2659 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2660 
2661 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2662 {
2663 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2664 }
2665 
2666 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2667 {
2668 	int zoneid;
2669 	struct zone *zone;
2670 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2671 
2672 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2673 		zone = &pgdat->node_zones[zoneid];
2674 
2675 		if (!populated_zone(zone))
2676 			continue;
2677 
2678 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2679 					highest_zoneidx) == COMPACT_CONTINUE)
2680 			return true;
2681 	}
2682 
2683 	return false;
2684 }
2685 
2686 static void kcompactd_do_work(pg_data_t *pgdat)
2687 {
2688 	/*
2689 	 * With no special task, compact all zones so that a page of requested
2690 	 * order is allocatable.
2691 	 */
2692 	int zoneid;
2693 	struct zone *zone;
2694 	struct compact_control cc = {
2695 		.order = pgdat->kcompactd_max_order,
2696 		.search_order = pgdat->kcompactd_max_order,
2697 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2698 		.mode = MIGRATE_SYNC_LIGHT,
2699 		.ignore_skip_hint = false,
2700 		.gfp_mask = GFP_KERNEL,
2701 	};
2702 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2703 							cc.highest_zoneidx);
2704 	count_compact_event(KCOMPACTD_WAKE);
2705 
2706 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2707 		int status;
2708 
2709 		zone = &pgdat->node_zones[zoneid];
2710 		if (!populated_zone(zone))
2711 			continue;
2712 
2713 		if (compaction_deferred(zone, cc.order))
2714 			continue;
2715 
2716 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2717 							COMPACT_CONTINUE)
2718 			continue;
2719 
2720 		if (kthread_should_stop())
2721 			return;
2722 
2723 		cc.zone = zone;
2724 		status = compact_zone(&cc, NULL);
2725 
2726 		if (status == COMPACT_SUCCESS) {
2727 			compaction_defer_reset(zone, cc.order, false);
2728 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2729 			/*
2730 			 * Buddy pages may become stranded on pcps that could
2731 			 * otherwise coalesce on the zone's free area for
2732 			 * order >= cc.order.  This is ratelimited by the
2733 			 * upcoming deferral.
2734 			 */
2735 			drain_all_pages(zone);
2736 
2737 			/*
2738 			 * We use sync migration mode here, so we defer like
2739 			 * sync direct compaction does.
2740 			 */
2741 			defer_compaction(zone, cc.order);
2742 		}
2743 
2744 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2745 				     cc.total_migrate_scanned);
2746 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2747 				     cc.total_free_scanned);
2748 
2749 		VM_BUG_ON(!list_empty(&cc.freepages));
2750 		VM_BUG_ON(!list_empty(&cc.migratepages));
2751 	}
2752 
2753 	/*
2754 	 * Regardless of success, we are done until woken up next. But remember
2755 	 * the requested order/highest_zoneidx in case it was higher/tighter
2756 	 * than our current ones
2757 	 */
2758 	if (pgdat->kcompactd_max_order <= cc.order)
2759 		pgdat->kcompactd_max_order = 0;
2760 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2761 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2762 }
2763 
2764 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2765 {
2766 	if (!order)
2767 		return;
2768 
2769 	if (pgdat->kcompactd_max_order < order)
2770 		pgdat->kcompactd_max_order = order;
2771 
2772 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2773 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2774 
2775 	/*
2776 	 * Pairs with implicit barrier in wait_event_freezable()
2777 	 * such that wakeups are not missed.
2778 	 */
2779 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2780 		return;
2781 
2782 	if (!kcompactd_node_suitable(pgdat))
2783 		return;
2784 
2785 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2786 							highest_zoneidx);
2787 	wake_up_interruptible(&pgdat->kcompactd_wait);
2788 }
2789 
2790 /*
2791  * The background compaction daemon, started as a kernel thread
2792  * from the init process.
2793  */
2794 static int kcompactd(void *p)
2795 {
2796 	pg_data_t *pgdat = (pg_data_t*)p;
2797 	struct task_struct *tsk = current;
2798 	unsigned int proactive_defer = 0;
2799 
2800 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2801 
2802 	if (!cpumask_empty(cpumask))
2803 		set_cpus_allowed_ptr(tsk, cpumask);
2804 
2805 	set_freezable();
2806 
2807 	pgdat->kcompactd_max_order = 0;
2808 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2809 
2810 	while (!kthread_should_stop()) {
2811 		unsigned long pflags;
2812 
2813 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2814 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2815 			kcompactd_work_requested(pgdat),
2816 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2817 
2818 			psi_memstall_enter(&pflags);
2819 			kcompactd_do_work(pgdat);
2820 			psi_memstall_leave(&pflags);
2821 			continue;
2822 		}
2823 
2824 		/* kcompactd wait timeout */
2825 		if (should_proactive_compact_node(pgdat)) {
2826 			unsigned int prev_score, score;
2827 
2828 			if (proactive_defer) {
2829 				proactive_defer--;
2830 				continue;
2831 			}
2832 			prev_score = fragmentation_score_node(pgdat);
2833 			proactive_compact_node(pgdat);
2834 			score = fragmentation_score_node(pgdat);
2835 			/*
2836 			 * Defer proactive compaction if the fragmentation
2837 			 * score did not go down i.e. no progress made.
2838 			 */
2839 			proactive_defer = score < prev_score ?
2840 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2841 		}
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /*
2848  * This kcompactd start function will be called by init and node-hot-add.
2849  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2850  */
2851 int kcompactd_run(int nid)
2852 {
2853 	pg_data_t *pgdat = NODE_DATA(nid);
2854 	int ret = 0;
2855 
2856 	if (pgdat->kcompactd)
2857 		return 0;
2858 
2859 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2860 	if (IS_ERR(pgdat->kcompactd)) {
2861 		pr_err("Failed to start kcompactd on node %d\n", nid);
2862 		ret = PTR_ERR(pgdat->kcompactd);
2863 		pgdat->kcompactd = NULL;
2864 	}
2865 	return ret;
2866 }
2867 
2868 /*
2869  * Called by memory hotplug when all memory in a node is offlined. Caller must
2870  * hold mem_hotplug_begin/end().
2871  */
2872 void kcompactd_stop(int nid)
2873 {
2874 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2875 
2876 	if (kcompactd) {
2877 		kthread_stop(kcompactd);
2878 		NODE_DATA(nid)->kcompactd = NULL;
2879 	}
2880 }
2881 
2882 /*
2883  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2884  * not required for correctness. So if the last cpu in a node goes
2885  * away, we get changed to run anywhere: as the first one comes back,
2886  * restore their cpu bindings.
2887  */
2888 static int kcompactd_cpu_online(unsigned int cpu)
2889 {
2890 	int nid;
2891 
2892 	for_each_node_state(nid, N_MEMORY) {
2893 		pg_data_t *pgdat = NODE_DATA(nid);
2894 		const struct cpumask *mask;
2895 
2896 		mask = cpumask_of_node(pgdat->node_id);
2897 
2898 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2899 			/* One of our CPUs online: restore mask */
2900 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2901 	}
2902 	return 0;
2903 }
2904 
2905 static int __init kcompactd_init(void)
2906 {
2907 	int nid;
2908 	int ret;
2909 
2910 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2911 					"mm/compaction:online",
2912 					kcompactd_cpu_online, NULL);
2913 	if (ret < 0) {
2914 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2915 		return ret;
2916 	}
2917 
2918 	for_each_node_state(nid, N_MEMORY)
2919 		kcompactd_run(nid);
2920 	return 0;
2921 }
2922 subsys_initcall(kcompactd_init)
2923 
2924 #endif /* CONFIG_COMPACTION */
2925