1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include "internal.h" 20 21 #ifdef CONFIG_COMPACTION 22 static inline void count_compact_event(enum vm_event_item item) 23 { 24 count_vm_event(item); 25 } 26 27 static inline void count_compact_events(enum vm_event_item item, long delta) 28 { 29 count_vm_events(item, delta); 30 } 31 #else 32 #define count_compact_event(item) do { } while (0) 33 #define count_compact_events(item, delta) do { } while (0) 34 #endif 35 36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/compaction.h> 40 41 static unsigned long release_freepages(struct list_head *freelist) 42 { 43 struct page *page, *next; 44 unsigned long count = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 list_del(&page->lru); 48 __free_page(page); 49 count++; 50 } 51 52 return count; 53 } 54 55 static void map_pages(struct list_head *list) 56 { 57 struct page *page; 58 59 list_for_each_entry(page, list, lru) { 60 arch_alloc_page(page, 0); 61 kernel_map_pages(page, 1, 1); 62 } 63 } 64 65 static inline bool migrate_async_suitable(int migratetype) 66 { 67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 68 } 69 70 #ifdef CONFIG_COMPACTION 71 /* Returns true if the pageblock should be scanned for pages to isolate. */ 72 static inline bool isolation_suitable(struct compact_control *cc, 73 struct page *page) 74 { 75 if (cc->ignore_skip_hint) 76 return true; 77 78 return !get_pageblock_skip(page); 79 } 80 81 /* 82 * This function is called to clear all cached information on pageblocks that 83 * should be skipped for page isolation when the migrate and free page scanner 84 * meet. 85 */ 86 static void __reset_isolation_suitable(struct zone *zone) 87 { 88 unsigned long start_pfn = zone->zone_start_pfn; 89 unsigned long end_pfn = zone_end_pfn(zone); 90 unsigned long pfn; 91 92 zone->compact_cached_migrate_pfn = start_pfn; 93 zone->compact_cached_free_pfn = end_pfn; 94 zone->compact_blockskip_flush = false; 95 96 /* Walk the zone and mark every pageblock as suitable for isolation */ 97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 98 struct page *page; 99 100 cond_resched(); 101 102 if (!pfn_valid(pfn)) 103 continue; 104 105 page = pfn_to_page(pfn); 106 if (zone != page_zone(page)) 107 continue; 108 109 clear_pageblock_skip(page); 110 } 111 } 112 113 void reset_isolation_suitable(pg_data_t *pgdat) 114 { 115 int zoneid; 116 117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 118 struct zone *zone = &pgdat->node_zones[zoneid]; 119 if (!populated_zone(zone)) 120 continue; 121 122 /* Only flush if a full compaction finished recently */ 123 if (zone->compact_blockskip_flush) 124 __reset_isolation_suitable(zone); 125 } 126 } 127 128 /* 129 * If no pages were isolated then mark this pageblock to be skipped in the 130 * future. The information is later cleared by __reset_isolation_suitable(). 131 */ 132 static void update_pageblock_skip(struct compact_control *cc, 133 struct page *page, unsigned long nr_isolated, 134 bool migrate_scanner) 135 { 136 struct zone *zone = cc->zone; 137 if (!page) 138 return; 139 140 if (!nr_isolated) { 141 unsigned long pfn = page_to_pfn(page); 142 set_pageblock_skip(page); 143 144 /* Update where compaction should restart */ 145 if (migrate_scanner) { 146 if (!cc->finished_update_migrate && 147 pfn > zone->compact_cached_migrate_pfn) 148 zone->compact_cached_migrate_pfn = pfn; 149 } else { 150 if (!cc->finished_update_free && 151 pfn < zone->compact_cached_free_pfn) 152 zone->compact_cached_free_pfn = pfn; 153 } 154 } 155 } 156 #else 157 static inline bool isolation_suitable(struct compact_control *cc, 158 struct page *page) 159 { 160 return true; 161 } 162 163 static void update_pageblock_skip(struct compact_control *cc, 164 struct page *page, unsigned long nr_isolated, 165 bool migrate_scanner) 166 { 167 } 168 #endif /* CONFIG_COMPACTION */ 169 170 static inline bool should_release_lock(spinlock_t *lock) 171 { 172 return need_resched() || spin_is_contended(lock); 173 } 174 175 /* 176 * Compaction requires the taking of some coarse locks that are potentially 177 * very heavily contended. Check if the process needs to be scheduled or 178 * if the lock is contended. For async compaction, back out in the event 179 * if contention is severe. For sync compaction, schedule. 180 * 181 * Returns true if the lock is held. 182 * Returns false if the lock is released and compaction should abort 183 */ 184 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 185 bool locked, struct compact_control *cc) 186 { 187 if (should_release_lock(lock)) { 188 if (locked) { 189 spin_unlock_irqrestore(lock, *flags); 190 locked = false; 191 } 192 193 /* async aborts if taking too long or contended */ 194 if (!cc->sync) { 195 cc->contended = true; 196 return false; 197 } 198 199 cond_resched(); 200 } 201 202 if (!locked) 203 spin_lock_irqsave(lock, *flags); 204 return true; 205 } 206 207 static inline bool compact_trylock_irqsave(spinlock_t *lock, 208 unsigned long *flags, struct compact_control *cc) 209 { 210 return compact_checklock_irqsave(lock, flags, false, cc); 211 } 212 213 /* Returns true if the page is within a block suitable for migration to */ 214 static bool suitable_migration_target(struct page *page) 215 { 216 int migratetype = get_pageblock_migratetype(page); 217 218 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 219 if (migratetype == MIGRATE_RESERVE) 220 return false; 221 222 if (is_migrate_isolate(migratetype)) 223 return false; 224 225 /* If the page is a large free page, then allow migration */ 226 if (PageBuddy(page) && page_order(page) >= pageblock_order) 227 return true; 228 229 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 230 if (migrate_async_suitable(migratetype)) 231 return true; 232 233 /* Otherwise skip the block */ 234 return false; 235 } 236 237 /* 238 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 239 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 240 * pages inside of the pageblock (even though it may still end up isolating 241 * some pages). 242 */ 243 static unsigned long isolate_freepages_block(struct compact_control *cc, 244 unsigned long blockpfn, 245 unsigned long end_pfn, 246 struct list_head *freelist, 247 bool strict) 248 { 249 int nr_scanned = 0, total_isolated = 0; 250 struct page *cursor, *valid_page = NULL; 251 unsigned long nr_strict_required = end_pfn - blockpfn; 252 unsigned long flags; 253 bool locked = false; 254 255 cursor = pfn_to_page(blockpfn); 256 257 /* Isolate free pages. */ 258 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 259 int isolated, i; 260 struct page *page = cursor; 261 262 nr_scanned++; 263 if (!pfn_valid_within(blockpfn)) 264 continue; 265 if (!valid_page) 266 valid_page = page; 267 if (!PageBuddy(page)) 268 continue; 269 270 /* 271 * The zone lock must be held to isolate freepages. 272 * Unfortunately this is a very coarse lock and can be 273 * heavily contended if there are parallel allocations 274 * or parallel compactions. For async compaction do not 275 * spin on the lock and we acquire the lock as late as 276 * possible. 277 */ 278 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 279 locked, cc); 280 if (!locked) 281 break; 282 283 /* Recheck this is a suitable migration target under lock */ 284 if (!strict && !suitable_migration_target(page)) 285 break; 286 287 /* Recheck this is a buddy page under lock */ 288 if (!PageBuddy(page)) 289 continue; 290 291 /* Found a free page, break it into order-0 pages */ 292 isolated = split_free_page(page); 293 if (!isolated && strict) 294 break; 295 total_isolated += isolated; 296 for (i = 0; i < isolated; i++) { 297 list_add(&page->lru, freelist); 298 page++; 299 } 300 301 /* If a page was split, advance to the end of it */ 302 if (isolated) { 303 blockpfn += isolated - 1; 304 cursor += isolated - 1; 305 } 306 } 307 308 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 309 310 /* 311 * If strict isolation is requested by CMA then check that all the 312 * pages requested were isolated. If there were any failures, 0 is 313 * returned and CMA will fail. 314 */ 315 if (strict && nr_strict_required > total_isolated) 316 total_isolated = 0; 317 318 if (locked) 319 spin_unlock_irqrestore(&cc->zone->lock, flags); 320 321 /* Update the pageblock-skip if the whole pageblock was scanned */ 322 if (blockpfn == end_pfn) 323 update_pageblock_skip(cc, valid_page, total_isolated, false); 324 325 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 326 if (total_isolated) 327 count_compact_events(COMPACTISOLATED, total_isolated); 328 return total_isolated; 329 } 330 331 /** 332 * isolate_freepages_range() - isolate free pages. 333 * @start_pfn: The first PFN to start isolating. 334 * @end_pfn: The one-past-last PFN. 335 * 336 * Non-free pages, invalid PFNs, or zone boundaries within the 337 * [start_pfn, end_pfn) range are considered errors, cause function to 338 * undo its actions and return zero. 339 * 340 * Otherwise, function returns one-past-the-last PFN of isolated page 341 * (which may be greater then end_pfn if end fell in a middle of 342 * a free page). 343 */ 344 unsigned long 345 isolate_freepages_range(struct compact_control *cc, 346 unsigned long start_pfn, unsigned long end_pfn) 347 { 348 unsigned long isolated, pfn, block_end_pfn; 349 LIST_HEAD(freelist); 350 351 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 352 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 353 break; 354 355 /* 356 * On subsequent iterations ALIGN() is actually not needed, 357 * but we keep it that we not to complicate the code. 358 */ 359 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 360 block_end_pfn = min(block_end_pfn, end_pfn); 361 362 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 363 &freelist, true); 364 365 /* 366 * In strict mode, isolate_freepages_block() returns 0 if 367 * there are any holes in the block (ie. invalid PFNs or 368 * non-free pages). 369 */ 370 if (!isolated) 371 break; 372 373 /* 374 * If we managed to isolate pages, it is always (1 << n) * 375 * pageblock_nr_pages for some non-negative n. (Max order 376 * page may span two pageblocks). 377 */ 378 } 379 380 /* split_free_page does not map the pages */ 381 map_pages(&freelist); 382 383 if (pfn < end_pfn) { 384 /* Loop terminated early, cleanup. */ 385 release_freepages(&freelist); 386 return 0; 387 } 388 389 /* We don't use freelists for anything. */ 390 return pfn; 391 } 392 393 /* Update the number of anon and file isolated pages in the zone */ 394 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 395 { 396 struct page *page; 397 unsigned int count[2] = { 0, }; 398 399 list_for_each_entry(page, &cc->migratepages, lru) 400 count[!!page_is_file_cache(page)]++; 401 402 /* If locked we can use the interrupt unsafe versions */ 403 if (locked) { 404 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 405 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 406 } else { 407 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 408 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 409 } 410 } 411 412 /* Similar to reclaim, but different enough that they don't share logic */ 413 static bool too_many_isolated(struct zone *zone) 414 { 415 unsigned long active, inactive, isolated; 416 417 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 418 zone_page_state(zone, NR_INACTIVE_ANON); 419 active = zone_page_state(zone, NR_ACTIVE_FILE) + 420 zone_page_state(zone, NR_ACTIVE_ANON); 421 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 422 zone_page_state(zone, NR_ISOLATED_ANON); 423 424 return isolated > (inactive + active) / 2; 425 } 426 427 /** 428 * isolate_migratepages_range() - isolate all migrate-able pages in range. 429 * @zone: Zone pages are in. 430 * @cc: Compaction control structure. 431 * @low_pfn: The first PFN of the range. 432 * @end_pfn: The one-past-the-last PFN of the range. 433 * @unevictable: true if it allows to isolate unevictable pages 434 * 435 * Isolate all pages that can be migrated from the range specified by 436 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 437 * pending), otherwise PFN of the first page that was not scanned 438 * (which may be both less, equal to or more then end_pfn). 439 * 440 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 441 * zero. 442 * 443 * Apart from cc->migratepages and cc->nr_migratetypes this function 444 * does not modify any cc's fields, in particular it does not modify 445 * (or read for that matter) cc->migrate_pfn. 446 */ 447 unsigned long 448 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 449 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 450 { 451 unsigned long last_pageblock_nr = 0, pageblock_nr; 452 unsigned long nr_scanned = 0, nr_isolated = 0; 453 struct list_head *migratelist = &cc->migratepages; 454 isolate_mode_t mode = 0; 455 struct lruvec *lruvec; 456 unsigned long flags; 457 bool locked = false; 458 struct page *page = NULL, *valid_page = NULL; 459 460 /* 461 * Ensure that there are not too many pages isolated from the LRU 462 * list by either parallel reclaimers or compaction. If there are, 463 * delay for some time until fewer pages are isolated 464 */ 465 while (unlikely(too_many_isolated(zone))) { 466 /* async migration should just abort */ 467 if (!cc->sync) 468 return 0; 469 470 congestion_wait(BLK_RW_ASYNC, HZ/10); 471 472 if (fatal_signal_pending(current)) 473 return 0; 474 } 475 476 /* Time to isolate some pages for migration */ 477 cond_resched(); 478 for (; low_pfn < end_pfn; low_pfn++) { 479 /* give a chance to irqs before checking need_resched() */ 480 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 481 if (should_release_lock(&zone->lru_lock)) { 482 spin_unlock_irqrestore(&zone->lru_lock, flags); 483 locked = false; 484 } 485 } 486 487 /* 488 * migrate_pfn does not necessarily start aligned to a 489 * pageblock. Ensure that pfn_valid is called when moving 490 * into a new MAX_ORDER_NR_PAGES range in case of large 491 * memory holes within the zone 492 */ 493 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 494 if (!pfn_valid(low_pfn)) { 495 low_pfn += MAX_ORDER_NR_PAGES - 1; 496 continue; 497 } 498 } 499 500 if (!pfn_valid_within(low_pfn)) 501 continue; 502 nr_scanned++; 503 504 /* 505 * Get the page and ensure the page is within the same zone. 506 * See the comment in isolate_freepages about overlapping 507 * nodes. It is deliberate that the new zone lock is not taken 508 * as memory compaction should not move pages between nodes. 509 */ 510 page = pfn_to_page(low_pfn); 511 if (page_zone(page) != zone) 512 continue; 513 514 if (!valid_page) 515 valid_page = page; 516 517 /* If isolation recently failed, do not retry */ 518 pageblock_nr = low_pfn >> pageblock_order; 519 if (!isolation_suitable(cc, page)) 520 goto next_pageblock; 521 522 /* Skip if free */ 523 if (PageBuddy(page)) 524 continue; 525 526 /* 527 * For async migration, also only scan in MOVABLE blocks. Async 528 * migration is optimistic to see if the minimum amount of work 529 * satisfies the allocation 530 */ 531 if (!cc->sync && last_pageblock_nr != pageblock_nr && 532 !migrate_async_suitable(get_pageblock_migratetype(page))) { 533 cc->finished_update_migrate = true; 534 goto next_pageblock; 535 } 536 537 /* 538 * Check may be lockless but that's ok as we recheck later. 539 * It's possible to migrate LRU pages and balloon pages 540 * Skip any other type of page 541 */ 542 if (!PageLRU(page)) { 543 if (unlikely(balloon_page_movable(page))) { 544 if (locked && balloon_page_isolate(page)) { 545 /* Successfully isolated */ 546 cc->finished_update_migrate = true; 547 list_add(&page->lru, migratelist); 548 cc->nr_migratepages++; 549 nr_isolated++; 550 goto check_compact_cluster; 551 } 552 } 553 continue; 554 } 555 556 /* 557 * PageLRU is set. lru_lock normally excludes isolation 558 * splitting and collapsing (collapsing has already happened 559 * if PageLRU is set) but the lock is not necessarily taken 560 * here and it is wasteful to take it just to check transhuge. 561 * Check TransHuge without lock and skip the whole pageblock if 562 * it's either a transhuge or hugetlbfs page, as calling 563 * compound_order() without preventing THP from splitting the 564 * page underneath us may return surprising results. 565 */ 566 if (PageTransHuge(page)) { 567 if (!locked) 568 goto next_pageblock; 569 low_pfn += (1 << compound_order(page)) - 1; 570 continue; 571 } 572 573 /* Check if it is ok to still hold the lock */ 574 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 575 locked, cc); 576 if (!locked || fatal_signal_pending(current)) 577 break; 578 579 /* Recheck PageLRU and PageTransHuge under lock */ 580 if (!PageLRU(page)) 581 continue; 582 if (PageTransHuge(page)) { 583 low_pfn += (1 << compound_order(page)) - 1; 584 continue; 585 } 586 587 if (!cc->sync) 588 mode |= ISOLATE_ASYNC_MIGRATE; 589 590 if (unevictable) 591 mode |= ISOLATE_UNEVICTABLE; 592 593 lruvec = mem_cgroup_page_lruvec(page, zone); 594 595 /* Try isolate the page */ 596 if (__isolate_lru_page(page, mode) != 0) 597 continue; 598 599 VM_BUG_ON(PageTransCompound(page)); 600 601 /* Successfully isolated */ 602 cc->finished_update_migrate = true; 603 del_page_from_lru_list(page, lruvec, page_lru(page)); 604 list_add(&page->lru, migratelist); 605 cc->nr_migratepages++; 606 nr_isolated++; 607 608 check_compact_cluster: 609 /* Avoid isolating too much */ 610 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 611 ++low_pfn; 612 break; 613 } 614 615 continue; 616 617 next_pageblock: 618 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; 619 last_pageblock_nr = pageblock_nr; 620 } 621 622 acct_isolated(zone, locked, cc); 623 624 if (locked) 625 spin_unlock_irqrestore(&zone->lru_lock, flags); 626 627 /* Update the pageblock-skip if the whole pageblock was scanned */ 628 if (low_pfn == end_pfn) 629 update_pageblock_skip(cc, valid_page, nr_isolated, true); 630 631 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 632 633 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 634 if (nr_isolated) 635 count_compact_events(COMPACTISOLATED, nr_isolated); 636 637 return low_pfn; 638 } 639 640 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 641 #ifdef CONFIG_COMPACTION 642 /* 643 * Based on information in the current compact_control, find blocks 644 * suitable for isolating free pages from and then isolate them. 645 */ 646 static void isolate_freepages(struct zone *zone, 647 struct compact_control *cc) 648 { 649 struct page *page; 650 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; 651 int nr_freepages = cc->nr_freepages; 652 struct list_head *freelist = &cc->freepages; 653 654 /* 655 * Initialise the free scanner. The starting point is where we last 656 * scanned from (or the end of the zone if starting). The low point 657 * is the end of the pageblock the migration scanner is using. 658 */ 659 pfn = cc->free_pfn; 660 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 661 662 /* 663 * Take care that if the migration scanner is at the end of the zone 664 * that the free scanner does not accidentally move to the next zone 665 * in the next isolation cycle. 666 */ 667 high_pfn = min(low_pfn, pfn); 668 669 z_end_pfn = zone_end_pfn(zone); 670 671 /* 672 * Isolate free pages until enough are available to migrate the 673 * pages on cc->migratepages. We stop searching if the migrate 674 * and free page scanners meet or enough free pages are isolated. 675 */ 676 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 677 pfn -= pageblock_nr_pages) { 678 unsigned long isolated; 679 680 /* 681 * This can iterate a massively long zone without finding any 682 * suitable migration targets, so periodically check if we need 683 * to schedule. 684 */ 685 cond_resched(); 686 687 if (!pfn_valid(pfn)) 688 continue; 689 690 /* 691 * Check for overlapping nodes/zones. It's possible on some 692 * configurations to have a setup like 693 * node0 node1 node0 694 * i.e. it's possible that all pages within a zones range of 695 * pages do not belong to a single zone. 696 */ 697 page = pfn_to_page(pfn); 698 if (page_zone(page) != zone) 699 continue; 700 701 /* Check the block is suitable for migration */ 702 if (!suitable_migration_target(page)) 703 continue; 704 705 /* If isolation recently failed, do not retry */ 706 if (!isolation_suitable(cc, page)) 707 continue; 708 709 /* Found a block suitable for isolating free pages from */ 710 isolated = 0; 711 712 /* 713 * As pfn may not start aligned, pfn+pageblock_nr_page 714 * may cross a MAX_ORDER_NR_PAGES boundary and miss 715 * a pfn_valid check. Ensure isolate_freepages_block() 716 * only scans within a pageblock 717 */ 718 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 719 end_pfn = min(end_pfn, z_end_pfn); 720 isolated = isolate_freepages_block(cc, pfn, end_pfn, 721 freelist, false); 722 nr_freepages += isolated; 723 724 /* 725 * Record the highest PFN we isolated pages from. When next 726 * looking for free pages, the search will restart here as 727 * page migration may have returned some pages to the allocator 728 */ 729 if (isolated) { 730 cc->finished_update_free = true; 731 high_pfn = max(high_pfn, pfn); 732 } 733 } 734 735 /* split_free_page does not map the pages */ 736 map_pages(freelist); 737 738 cc->free_pfn = high_pfn; 739 cc->nr_freepages = nr_freepages; 740 } 741 742 /* 743 * This is a migrate-callback that "allocates" freepages by taking pages 744 * from the isolated freelists in the block we are migrating to. 745 */ 746 static struct page *compaction_alloc(struct page *migratepage, 747 unsigned long data, 748 int **result) 749 { 750 struct compact_control *cc = (struct compact_control *)data; 751 struct page *freepage; 752 753 /* Isolate free pages if necessary */ 754 if (list_empty(&cc->freepages)) { 755 isolate_freepages(cc->zone, cc); 756 757 if (list_empty(&cc->freepages)) 758 return NULL; 759 } 760 761 freepage = list_entry(cc->freepages.next, struct page, lru); 762 list_del(&freepage->lru); 763 cc->nr_freepages--; 764 765 return freepage; 766 } 767 768 /* 769 * We cannot control nr_migratepages and nr_freepages fully when migration is 770 * running as migrate_pages() has no knowledge of compact_control. When 771 * migration is complete, we count the number of pages on the lists by hand. 772 */ 773 static void update_nr_listpages(struct compact_control *cc) 774 { 775 int nr_migratepages = 0; 776 int nr_freepages = 0; 777 struct page *page; 778 779 list_for_each_entry(page, &cc->migratepages, lru) 780 nr_migratepages++; 781 list_for_each_entry(page, &cc->freepages, lru) 782 nr_freepages++; 783 784 cc->nr_migratepages = nr_migratepages; 785 cc->nr_freepages = nr_freepages; 786 } 787 788 /* possible outcome of isolate_migratepages */ 789 typedef enum { 790 ISOLATE_ABORT, /* Abort compaction now */ 791 ISOLATE_NONE, /* No pages isolated, continue scanning */ 792 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 793 } isolate_migrate_t; 794 795 /* 796 * Isolate all pages that can be migrated from the block pointed to by 797 * the migrate scanner within compact_control. 798 */ 799 static isolate_migrate_t isolate_migratepages(struct zone *zone, 800 struct compact_control *cc) 801 { 802 unsigned long low_pfn, end_pfn; 803 804 /* Do not scan outside zone boundaries */ 805 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 806 807 /* Only scan within a pageblock boundary */ 808 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 809 810 /* Do not cross the free scanner or scan within a memory hole */ 811 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 812 cc->migrate_pfn = end_pfn; 813 return ISOLATE_NONE; 814 } 815 816 /* Perform the isolation */ 817 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 818 if (!low_pfn || cc->contended) 819 return ISOLATE_ABORT; 820 821 cc->migrate_pfn = low_pfn; 822 823 return ISOLATE_SUCCESS; 824 } 825 826 static int compact_finished(struct zone *zone, 827 struct compact_control *cc) 828 { 829 unsigned int order; 830 unsigned long watermark; 831 832 if (fatal_signal_pending(current)) 833 return COMPACT_PARTIAL; 834 835 /* Compaction run completes if the migrate and free scanner meet */ 836 if (cc->free_pfn <= cc->migrate_pfn) { 837 /* 838 * Mark that the PG_migrate_skip information should be cleared 839 * by kswapd when it goes to sleep. kswapd does not set the 840 * flag itself as the decision to be clear should be directly 841 * based on an allocation request. 842 */ 843 if (!current_is_kswapd()) 844 zone->compact_blockskip_flush = true; 845 846 return COMPACT_COMPLETE; 847 } 848 849 /* 850 * order == -1 is expected when compacting via 851 * /proc/sys/vm/compact_memory 852 */ 853 if (cc->order == -1) 854 return COMPACT_CONTINUE; 855 856 /* Compaction run is not finished if the watermark is not met */ 857 watermark = low_wmark_pages(zone); 858 watermark += (1 << cc->order); 859 860 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 861 return COMPACT_CONTINUE; 862 863 /* Direct compactor: Is a suitable page free? */ 864 for (order = cc->order; order < MAX_ORDER; order++) { 865 struct free_area *area = &zone->free_area[order]; 866 867 /* Job done if page is free of the right migratetype */ 868 if (!list_empty(&area->free_list[cc->migratetype])) 869 return COMPACT_PARTIAL; 870 871 /* Job done if allocation would set block type */ 872 if (cc->order >= pageblock_order && area->nr_free) 873 return COMPACT_PARTIAL; 874 } 875 876 return COMPACT_CONTINUE; 877 } 878 879 /* 880 * compaction_suitable: Is this suitable to run compaction on this zone now? 881 * Returns 882 * COMPACT_SKIPPED - If there are too few free pages for compaction 883 * COMPACT_PARTIAL - If the allocation would succeed without compaction 884 * COMPACT_CONTINUE - If compaction should run now 885 */ 886 unsigned long compaction_suitable(struct zone *zone, int order) 887 { 888 int fragindex; 889 unsigned long watermark; 890 891 /* 892 * order == -1 is expected when compacting via 893 * /proc/sys/vm/compact_memory 894 */ 895 if (order == -1) 896 return COMPACT_CONTINUE; 897 898 /* 899 * Watermarks for order-0 must be met for compaction. Note the 2UL. 900 * This is because during migration, copies of pages need to be 901 * allocated and for a short time, the footprint is higher 902 */ 903 watermark = low_wmark_pages(zone) + (2UL << order); 904 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 905 return COMPACT_SKIPPED; 906 907 /* 908 * fragmentation index determines if allocation failures are due to 909 * low memory or external fragmentation 910 * 911 * index of -1000 implies allocations might succeed depending on 912 * watermarks 913 * index towards 0 implies failure is due to lack of memory 914 * index towards 1000 implies failure is due to fragmentation 915 * 916 * Only compact if a failure would be due to fragmentation. 917 */ 918 fragindex = fragmentation_index(zone, order); 919 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 920 return COMPACT_SKIPPED; 921 922 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 923 0, 0)) 924 return COMPACT_PARTIAL; 925 926 return COMPACT_CONTINUE; 927 } 928 929 static int compact_zone(struct zone *zone, struct compact_control *cc) 930 { 931 int ret; 932 unsigned long start_pfn = zone->zone_start_pfn; 933 unsigned long end_pfn = zone_end_pfn(zone); 934 935 ret = compaction_suitable(zone, cc->order); 936 switch (ret) { 937 case COMPACT_PARTIAL: 938 case COMPACT_SKIPPED: 939 /* Compaction is likely to fail */ 940 return ret; 941 case COMPACT_CONTINUE: 942 /* Fall through to compaction */ 943 ; 944 } 945 946 /* 947 * Setup to move all movable pages to the end of the zone. Used cached 948 * information on where the scanners should start but check that it 949 * is initialised by ensuring the values are within zone boundaries. 950 */ 951 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 952 cc->free_pfn = zone->compact_cached_free_pfn; 953 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 954 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 955 zone->compact_cached_free_pfn = cc->free_pfn; 956 } 957 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 958 cc->migrate_pfn = start_pfn; 959 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 960 } 961 962 /* 963 * Clear pageblock skip if there were failures recently and compaction 964 * is about to be retried after being deferred. kswapd does not do 965 * this reset as it'll reset the cached information when going to sleep. 966 */ 967 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 968 __reset_isolation_suitable(zone); 969 970 migrate_prep_local(); 971 972 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 973 unsigned long nr_migrate, nr_remaining; 974 int err; 975 976 switch (isolate_migratepages(zone, cc)) { 977 case ISOLATE_ABORT: 978 ret = COMPACT_PARTIAL; 979 putback_movable_pages(&cc->migratepages); 980 cc->nr_migratepages = 0; 981 goto out; 982 case ISOLATE_NONE: 983 continue; 984 case ISOLATE_SUCCESS: 985 ; 986 } 987 988 nr_migrate = cc->nr_migratepages; 989 err = migrate_pages(&cc->migratepages, compaction_alloc, 990 (unsigned long)cc, 991 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 992 MR_COMPACTION); 993 update_nr_listpages(cc); 994 nr_remaining = cc->nr_migratepages; 995 996 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 997 nr_remaining); 998 999 /* Release isolated pages not migrated */ 1000 if (err) { 1001 putback_movable_pages(&cc->migratepages); 1002 cc->nr_migratepages = 0; 1003 if (err == -ENOMEM) { 1004 ret = COMPACT_PARTIAL; 1005 goto out; 1006 } 1007 } 1008 } 1009 1010 out: 1011 /* Release free pages and check accounting */ 1012 cc->nr_freepages -= release_freepages(&cc->freepages); 1013 VM_BUG_ON(cc->nr_freepages != 0); 1014 1015 return ret; 1016 } 1017 1018 static unsigned long compact_zone_order(struct zone *zone, 1019 int order, gfp_t gfp_mask, 1020 bool sync, bool *contended) 1021 { 1022 unsigned long ret; 1023 struct compact_control cc = { 1024 .nr_freepages = 0, 1025 .nr_migratepages = 0, 1026 .order = order, 1027 .migratetype = allocflags_to_migratetype(gfp_mask), 1028 .zone = zone, 1029 .sync = sync, 1030 }; 1031 INIT_LIST_HEAD(&cc.freepages); 1032 INIT_LIST_HEAD(&cc.migratepages); 1033 1034 ret = compact_zone(zone, &cc); 1035 1036 VM_BUG_ON(!list_empty(&cc.freepages)); 1037 VM_BUG_ON(!list_empty(&cc.migratepages)); 1038 1039 *contended = cc.contended; 1040 return ret; 1041 } 1042 1043 int sysctl_extfrag_threshold = 500; 1044 1045 /** 1046 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1047 * @zonelist: The zonelist used for the current allocation 1048 * @order: The order of the current allocation 1049 * @gfp_mask: The GFP mask of the current allocation 1050 * @nodemask: The allowed nodes to allocate from 1051 * @sync: Whether migration is synchronous or not 1052 * @contended: Return value that is true if compaction was aborted due to lock contention 1053 * @page: Optionally capture a free page of the requested order during compaction 1054 * 1055 * This is the main entry point for direct page compaction. 1056 */ 1057 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1058 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1059 bool sync, bool *contended) 1060 { 1061 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1062 int may_enter_fs = gfp_mask & __GFP_FS; 1063 int may_perform_io = gfp_mask & __GFP_IO; 1064 struct zoneref *z; 1065 struct zone *zone; 1066 int rc = COMPACT_SKIPPED; 1067 int alloc_flags = 0; 1068 1069 /* Check if the GFP flags allow compaction */ 1070 if (!order || !may_enter_fs || !may_perform_io) 1071 return rc; 1072 1073 count_compact_event(COMPACTSTALL); 1074 1075 #ifdef CONFIG_CMA 1076 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1077 alloc_flags |= ALLOC_CMA; 1078 #endif 1079 /* Compact each zone in the list */ 1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1081 nodemask) { 1082 int status; 1083 1084 status = compact_zone_order(zone, order, gfp_mask, sync, 1085 contended); 1086 rc = max(status, rc); 1087 1088 /* If a normal allocation would succeed, stop compacting */ 1089 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1090 alloc_flags)) 1091 break; 1092 } 1093 1094 return rc; 1095 } 1096 1097 1098 /* Compact all zones within a node */ 1099 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1100 { 1101 int zoneid; 1102 struct zone *zone; 1103 1104 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1105 1106 zone = &pgdat->node_zones[zoneid]; 1107 if (!populated_zone(zone)) 1108 continue; 1109 1110 cc->nr_freepages = 0; 1111 cc->nr_migratepages = 0; 1112 cc->zone = zone; 1113 INIT_LIST_HEAD(&cc->freepages); 1114 INIT_LIST_HEAD(&cc->migratepages); 1115 1116 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1117 compact_zone(zone, cc); 1118 1119 if (cc->order > 0) { 1120 int ok = zone_watermark_ok(zone, cc->order, 1121 low_wmark_pages(zone), 0, 0); 1122 if (ok && cc->order >= zone->compact_order_failed) 1123 zone->compact_order_failed = cc->order + 1; 1124 /* Currently async compaction is never deferred. */ 1125 else if (!ok && cc->sync) 1126 defer_compaction(zone, cc->order); 1127 } 1128 1129 VM_BUG_ON(!list_empty(&cc->freepages)); 1130 VM_BUG_ON(!list_empty(&cc->migratepages)); 1131 } 1132 } 1133 1134 void compact_pgdat(pg_data_t *pgdat, int order) 1135 { 1136 struct compact_control cc = { 1137 .order = order, 1138 .sync = false, 1139 }; 1140 1141 if (!order) 1142 return; 1143 1144 __compact_pgdat(pgdat, &cc); 1145 } 1146 1147 static void compact_node(int nid) 1148 { 1149 struct compact_control cc = { 1150 .order = -1, 1151 .sync = true, 1152 }; 1153 1154 __compact_pgdat(NODE_DATA(nid), &cc); 1155 } 1156 1157 /* Compact all nodes in the system */ 1158 static void compact_nodes(void) 1159 { 1160 int nid; 1161 1162 /* Flush pending updates to the LRU lists */ 1163 lru_add_drain_all(); 1164 1165 for_each_online_node(nid) 1166 compact_node(nid); 1167 } 1168 1169 /* The written value is actually unused, all memory is compacted */ 1170 int sysctl_compact_memory; 1171 1172 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1173 int sysctl_compaction_handler(struct ctl_table *table, int write, 1174 void __user *buffer, size_t *length, loff_t *ppos) 1175 { 1176 if (write) 1177 compact_nodes(); 1178 1179 return 0; 1180 } 1181 1182 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1183 void __user *buffer, size_t *length, loff_t *ppos) 1184 { 1185 proc_dointvec_minmax(table, write, buffer, length, ppos); 1186 1187 return 0; 1188 } 1189 1190 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1191 ssize_t sysfs_compact_node(struct device *dev, 1192 struct device_attribute *attr, 1193 const char *buf, size_t count) 1194 { 1195 int nid = dev->id; 1196 1197 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1198 /* Flush pending updates to the LRU lists */ 1199 lru_add_drain_all(); 1200 1201 compact_node(nid); 1202 } 1203 1204 return count; 1205 } 1206 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1207 1208 int compaction_register_node(struct node *node) 1209 { 1210 return device_create_file(&node->dev, &dev_attr_compact); 1211 } 1212 1213 void compaction_unregister_node(struct node *node) 1214 { 1215 return device_remove_file(&node->dev, &dev_attr_compact); 1216 } 1217 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1218 1219 #endif /* CONFIG_COMPACTION */ 1220