xref: /openbmc/linux/mm/compaction.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered > defer_limit)
184 		zone->compact_considered = defer_limit;
185 
186 	if (zone->compact_considered >= defer_limit)
187 		return false;
188 
189 	trace_mm_compaction_deferred(zone, order);
190 
191 	return true;
192 }
193 
194 /*
195  * Update defer tracking counters after successful compaction of given order,
196  * which means an allocation either succeeded (alloc_success == true) or is
197  * expected to succeed.
198  */
199 void compaction_defer_reset(struct zone *zone, int order,
200 		bool alloc_success)
201 {
202 	if (alloc_success) {
203 		zone->compact_considered = 0;
204 		zone->compact_defer_shift = 0;
205 	}
206 	if (order >= zone->compact_order_failed)
207 		zone->compact_order_failed = order + 1;
208 
209 	trace_mm_compaction_defer_reset(zone, order);
210 }
211 
212 /* Returns true if restarting compaction after many failures */
213 bool compaction_restarting(struct zone *zone, int order)
214 {
215 	if (order < zone->compact_order_failed)
216 		return false;
217 
218 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
219 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
220 }
221 
222 /* Returns true if the pageblock should be scanned for pages to isolate. */
223 static inline bool isolation_suitable(struct compact_control *cc,
224 					struct page *page)
225 {
226 	if (cc->ignore_skip_hint)
227 		return true;
228 
229 	return !get_pageblock_skip(page);
230 }
231 
232 static void reset_cached_positions(struct zone *zone)
233 {
234 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
235 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
236 	zone->compact_cached_free_pfn =
237 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
238 }
239 
240 /*
241  * Compound pages of >= pageblock_order should consistenly be skipped until
242  * released. It is always pointless to compact pages of such order (if they are
243  * migratable), and the pageblocks they occupy cannot contain any free pages.
244  */
245 static bool pageblock_skip_persistent(struct page *page)
246 {
247 	if (!PageCompound(page))
248 		return false;
249 
250 	page = compound_head(page);
251 
252 	if (compound_order(page) >= pageblock_order)
253 		return true;
254 
255 	return false;
256 }
257 
258 static bool
259 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
260 							bool check_target)
261 {
262 	struct page *page = pfn_to_online_page(pfn);
263 	struct page *block_page;
264 	struct page *end_page;
265 	unsigned long block_pfn;
266 
267 	if (!page)
268 		return false;
269 	if (zone != page_zone(page))
270 		return false;
271 	if (pageblock_skip_persistent(page))
272 		return false;
273 
274 	/*
275 	 * If skip is already cleared do no further checking once the
276 	 * restart points have been set.
277 	 */
278 	if (check_source && check_target && !get_pageblock_skip(page))
279 		return true;
280 
281 	/*
282 	 * If clearing skip for the target scanner, do not select a
283 	 * non-movable pageblock as the starting point.
284 	 */
285 	if (!check_source && check_target &&
286 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
287 		return false;
288 
289 	/* Ensure the start of the pageblock or zone is online and valid */
290 	block_pfn = pageblock_start_pfn(pfn);
291 	block_pfn = max(block_pfn, zone->zone_start_pfn);
292 	block_page = pfn_to_online_page(block_pfn);
293 	if (block_page) {
294 		page = block_page;
295 		pfn = block_pfn;
296 	}
297 
298 	/* Ensure the end of the pageblock or zone is online and valid */
299 	block_pfn = pageblock_end_pfn(pfn) - 1;
300 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
301 	end_page = pfn_to_online_page(block_pfn);
302 	if (!end_page)
303 		return false;
304 
305 	/*
306 	 * Only clear the hint if a sample indicates there is either a
307 	 * free page or an LRU page in the block. One or other condition
308 	 * is necessary for the block to be a migration source/target.
309 	 */
310 	do {
311 		if (pfn_valid_within(pfn)) {
312 			if (check_source && PageLRU(page)) {
313 				clear_pageblock_skip(page);
314 				return true;
315 			}
316 
317 			if (check_target && PageBuddy(page)) {
318 				clear_pageblock_skip(page);
319 				return true;
320 			}
321 		}
322 
323 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
325 	} while (page <= end_page);
326 
327 	return false;
328 }
329 
330 /*
331  * This function is called to clear all cached information on pageblocks that
332  * should be skipped for page isolation when the migrate and free page scanner
333  * meet.
334  */
335 static void __reset_isolation_suitable(struct zone *zone)
336 {
337 	unsigned long migrate_pfn = zone->zone_start_pfn;
338 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
339 	unsigned long reset_migrate = free_pfn;
340 	unsigned long reset_free = migrate_pfn;
341 	bool source_set = false;
342 	bool free_set = false;
343 
344 	if (!zone->compact_blockskip_flush)
345 		return;
346 
347 	zone->compact_blockskip_flush = false;
348 
349 	/*
350 	 * Walk the zone and update pageblock skip information. Source looks
351 	 * for PageLRU while target looks for PageBuddy. When the scanner
352 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
353 	 * is suitable as both source and target.
354 	 */
355 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
356 					free_pfn -= pageblock_nr_pages) {
357 		cond_resched();
358 
359 		/* Update the migrate PFN */
360 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
361 		    migrate_pfn < reset_migrate) {
362 			source_set = true;
363 			reset_migrate = migrate_pfn;
364 			zone->compact_init_migrate_pfn = reset_migrate;
365 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
366 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
367 		}
368 
369 		/* Update the free PFN */
370 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
371 		    free_pfn > reset_free) {
372 			free_set = true;
373 			reset_free = free_pfn;
374 			zone->compact_init_free_pfn = reset_free;
375 			zone->compact_cached_free_pfn = reset_free;
376 		}
377 	}
378 
379 	/* Leave no distance if no suitable block was reset */
380 	if (reset_migrate >= reset_free) {
381 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
382 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
383 		zone->compact_cached_free_pfn = free_pfn;
384 	}
385 }
386 
387 void reset_isolation_suitable(pg_data_t *pgdat)
388 {
389 	int zoneid;
390 
391 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
392 		struct zone *zone = &pgdat->node_zones[zoneid];
393 		if (!populated_zone(zone))
394 			continue;
395 
396 		/* Only flush if a full compaction finished recently */
397 		if (zone->compact_blockskip_flush)
398 			__reset_isolation_suitable(zone);
399 	}
400 }
401 
402 /*
403  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
404  * locks are not required for read/writers. Returns true if it was already set.
405  */
406 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
407 							unsigned long pfn)
408 {
409 	bool skip;
410 
411 	/* Do no update if skip hint is being ignored */
412 	if (cc->ignore_skip_hint)
413 		return false;
414 
415 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
416 		return false;
417 
418 	skip = get_pageblock_skip(page);
419 	if (!skip && !cc->no_set_skip_hint)
420 		set_pageblock_skip(page);
421 
422 	return skip;
423 }
424 
425 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
426 {
427 	struct zone *zone = cc->zone;
428 
429 	pfn = pageblock_end_pfn(pfn);
430 
431 	/* Set for isolation rather than compaction */
432 	if (cc->no_set_skip_hint)
433 		return;
434 
435 	if (pfn > zone->compact_cached_migrate_pfn[0])
436 		zone->compact_cached_migrate_pfn[0] = pfn;
437 	if (cc->mode != MIGRATE_ASYNC &&
438 	    pfn > zone->compact_cached_migrate_pfn[1])
439 		zone->compact_cached_migrate_pfn[1] = pfn;
440 }
441 
442 /*
443  * If no pages were isolated then mark this pageblock to be skipped in the
444  * future. The information is later cleared by __reset_isolation_suitable().
445  */
446 static void update_pageblock_skip(struct compact_control *cc,
447 			struct page *page, unsigned long pfn)
448 {
449 	struct zone *zone = cc->zone;
450 
451 	if (cc->no_set_skip_hint)
452 		return;
453 
454 	if (!page)
455 		return;
456 
457 	set_pageblock_skip(page);
458 
459 	/* Update where async and sync compaction should restart */
460 	if (pfn < zone->compact_cached_free_pfn)
461 		zone->compact_cached_free_pfn = pfn;
462 }
463 #else
464 static inline bool isolation_suitable(struct compact_control *cc,
465 					struct page *page)
466 {
467 	return true;
468 }
469 
470 static inline bool pageblock_skip_persistent(struct page *page)
471 {
472 	return false;
473 }
474 
475 static inline void update_pageblock_skip(struct compact_control *cc,
476 			struct page *page, unsigned long pfn)
477 {
478 }
479 
480 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
481 {
482 }
483 
484 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
485 							unsigned long pfn)
486 {
487 	return false;
488 }
489 #endif /* CONFIG_COMPACTION */
490 
491 /*
492  * Compaction requires the taking of some coarse locks that are potentially
493  * very heavily contended. For async compaction, trylock and record if the
494  * lock is contended. The lock will still be acquired but compaction will
495  * abort when the current block is finished regardless of success rate.
496  * Sync compaction acquires the lock.
497  *
498  * Always returns true which makes it easier to track lock state in callers.
499  */
500 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
501 						struct compact_control *cc)
502 	__acquires(lock)
503 {
504 	/* Track if the lock is contended in async mode */
505 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
506 		if (spin_trylock_irqsave(lock, *flags))
507 			return true;
508 
509 		cc->contended = true;
510 	}
511 
512 	spin_lock_irqsave(lock, *flags);
513 	return true;
514 }
515 
516 /*
517  * Compaction requires the taking of some coarse locks that are potentially
518  * very heavily contended. The lock should be periodically unlocked to avoid
519  * having disabled IRQs for a long time, even when there is nobody waiting on
520  * the lock. It might also be that allowing the IRQs will result in
521  * need_resched() becoming true. If scheduling is needed, async compaction
522  * aborts. Sync compaction schedules.
523  * Either compaction type will also abort if a fatal signal is pending.
524  * In either case if the lock was locked, it is dropped and not regained.
525  *
526  * Returns true if compaction should abort due to fatal signal pending, or
527  *		async compaction due to need_resched()
528  * Returns false when compaction can continue (sync compaction might have
529  *		scheduled)
530  */
531 static bool compact_unlock_should_abort(spinlock_t *lock,
532 		unsigned long flags, bool *locked, struct compact_control *cc)
533 {
534 	if (*locked) {
535 		spin_unlock_irqrestore(lock, flags);
536 		*locked = false;
537 	}
538 
539 	if (fatal_signal_pending(current)) {
540 		cc->contended = true;
541 		return true;
542 	}
543 
544 	cond_resched();
545 
546 	return false;
547 }
548 
549 /*
550  * Isolate free pages onto a private freelist. If @strict is true, will abort
551  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
552  * (even though it may still end up isolating some pages).
553  */
554 static unsigned long isolate_freepages_block(struct compact_control *cc,
555 				unsigned long *start_pfn,
556 				unsigned long end_pfn,
557 				struct list_head *freelist,
558 				unsigned int stride,
559 				bool strict)
560 {
561 	int nr_scanned = 0, total_isolated = 0;
562 	struct page *cursor;
563 	unsigned long flags = 0;
564 	bool locked = false;
565 	unsigned long blockpfn = *start_pfn;
566 	unsigned int order;
567 
568 	/* Strict mode is for isolation, speed is secondary */
569 	if (strict)
570 		stride = 1;
571 
572 	cursor = pfn_to_page(blockpfn);
573 
574 	/* Isolate free pages. */
575 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
576 		int isolated;
577 		struct page *page = cursor;
578 
579 		/*
580 		 * Periodically drop the lock (if held) regardless of its
581 		 * contention, to give chance to IRQs. Abort if fatal signal
582 		 * pending or async compaction detects need_resched()
583 		 */
584 		if (!(blockpfn % SWAP_CLUSTER_MAX)
585 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
586 								&locked, cc))
587 			break;
588 
589 		nr_scanned++;
590 		if (!pfn_valid_within(blockpfn))
591 			goto isolate_fail;
592 
593 		/*
594 		 * For compound pages such as THP and hugetlbfs, we can save
595 		 * potentially a lot of iterations if we skip them at once.
596 		 * The check is racy, but we can consider only valid values
597 		 * and the only danger is skipping too much.
598 		 */
599 		if (PageCompound(page)) {
600 			const unsigned int order = compound_order(page);
601 
602 			if (likely(order < MAX_ORDER)) {
603 				blockpfn += (1UL << order) - 1;
604 				cursor += (1UL << order) - 1;
605 			}
606 			goto isolate_fail;
607 		}
608 
609 		if (!PageBuddy(page))
610 			goto isolate_fail;
611 
612 		/*
613 		 * If we already hold the lock, we can skip some rechecking.
614 		 * Note that if we hold the lock now, checked_pageblock was
615 		 * already set in some previous iteration (or strict is true),
616 		 * so it is correct to skip the suitable migration target
617 		 * recheck as well.
618 		 */
619 		if (!locked) {
620 			locked = compact_lock_irqsave(&cc->zone->lock,
621 								&flags, cc);
622 
623 			/* Recheck this is a buddy page under lock */
624 			if (!PageBuddy(page))
625 				goto isolate_fail;
626 		}
627 
628 		/* Found a free page, will break it into order-0 pages */
629 		order = page_order(page);
630 		isolated = __isolate_free_page(page, order);
631 		if (!isolated)
632 			break;
633 		set_page_private(page, order);
634 
635 		total_isolated += isolated;
636 		cc->nr_freepages += isolated;
637 		list_add_tail(&page->lru, freelist);
638 
639 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
640 			blockpfn += isolated;
641 			break;
642 		}
643 		/* Advance to the end of split page */
644 		blockpfn += isolated - 1;
645 		cursor += isolated - 1;
646 		continue;
647 
648 isolate_fail:
649 		if (strict)
650 			break;
651 		else
652 			continue;
653 
654 	}
655 
656 	if (locked)
657 		spin_unlock_irqrestore(&cc->zone->lock, flags);
658 
659 	/*
660 	 * There is a tiny chance that we have read bogus compound_order(),
661 	 * so be careful to not go outside of the pageblock.
662 	 */
663 	if (unlikely(blockpfn > end_pfn))
664 		blockpfn = end_pfn;
665 
666 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
667 					nr_scanned, total_isolated);
668 
669 	/* Record how far we have got within the block */
670 	*start_pfn = blockpfn;
671 
672 	/*
673 	 * If strict isolation is requested by CMA then check that all the
674 	 * pages requested were isolated. If there were any failures, 0 is
675 	 * returned and CMA will fail.
676 	 */
677 	if (strict && blockpfn < end_pfn)
678 		total_isolated = 0;
679 
680 	cc->total_free_scanned += nr_scanned;
681 	if (total_isolated)
682 		count_compact_events(COMPACTISOLATED, total_isolated);
683 	return total_isolated;
684 }
685 
686 /**
687  * isolate_freepages_range() - isolate free pages.
688  * @cc:        Compaction control structure.
689  * @start_pfn: The first PFN to start isolating.
690  * @end_pfn:   The one-past-last PFN.
691  *
692  * Non-free pages, invalid PFNs, or zone boundaries within the
693  * [start_pfn, end_pfn) range are considered errors, cause function to
694  * undo its actions and return zero.
695  *
696  * Otherwise, function returns one-past-the-last PFN of isolated page
697  * (which may be greater then end_pfn if end fell in a middle of
698  * a free page).
699  */
700 unsigned long
701 isolate_freepages_range(struct compact_control *cc,
702 			unsigned long start_pfn, unsigned long end_pfn)
703 {
704 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
705 	LIST_HEAD(freelist);
706 
707 	pfn = start_pfn;
708 	block_start_pfn = pageblock_start_pfn(pfn);
709 	if (block_start_pfn < cc->zone->zone_start_pfn)
710 		block_start_pfn = cc->zone->zone_start_pfn;
711 	block_end_pfn = pageblock_end_pfn(pfn);
712 
713 	for (; pfn < end_pfn; pfn += isolated,
714 				block_start_pfn = block_end_pfn,
715 				block_end_pfn += pageblock_nr_pages) {
716 		/* Protect pfn from changing by isolate_freepages_block */
717 		unsigned long isolate_start_pfn = pfn;
718 
719 		block_end_pfn = min(block_end_pfn, end_pfn);
720 
721 		/*
722 		 * pfn could pass the block_end_pfn if isolated freepage
723 		 * is more than pageblock order. In this case, we adjust
724 		 * scanning range to right one.
725 		 */
726 		if (pfn >= block_end_pfn) {
727 			block_start_pfn = pageblock_start_pfn(pfn);
728 			block_end_pfn = pageblock_end_pfn(pfn);
729 			block_end_pfn = min(block_end_pfn, end_pfn);
730 		}
731 
732 		if (!pageblock_pfn_to_page(block_start_pfn,
733 					block_end_pfn, cc->zone))
734 			break;
735 
736 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
737 					block_end_pfn, &freelist, 0, true);
738 
739 		/*
740 		 * In strict mode, isolate_freepages_block() returns 0 if
741 		 * there are any holes in the block (ie. invalid PFNs or
742 		 * non-free pages).
743 		 */
744 		if (!isolated)
745 			break;
746 
747 		/*
748 		 * If we managed to isolate pages, it is always (1 << n) *
749 		 * pageblock_nr_pages for some non-negative n.  (Max order
750 		 * page may span two pageblocks).
751 		 */
752 	}
753 
754 	/* __isolate_free_page() does not map the pages */
755 	split_map_pages(&freelist);
756 
757 	if (pfn < end_pfn) {
758 		/* Loop terminated early, cleanup. */
759 		release_freepages(&freelist);
760 		return 0;
761 	}
762 
763 	/* We don't use freelists for anything. */
764 	return pfn;
765 }
766 
767 /* Similar to reclaim, but different enough that they don't share logic */
768 static bool too_many_isolated(pg_data_t *pgdat)
769 {
770 	unsigned long active, inactive, isolated;
771 
772 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
773 			node_page_state(pgdat, NR_INACTIVE_ANON);
774 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
775 			node_page_state(pgdat, NR_ACTIVE_ANON);
776 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
777 			node_page_state(pgdat, NR_ISOLATED_ANON);
778 
779 	return isolated > (inactive + active) / 2;
780 }
781 
782 /**
783  * isolate_migratepages_block() - isolate all migrate-able pages within
784  *				  a single pageblock
785  * @cc:		Compaction control structure.
786  * @low_pfn:	The first PFN to isolate
787  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
788  * @isolate_mode: Isolation mode to be used.
789  *
790  * Isolate all pages that can be migrated from the range specified by
791  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
792  * Returns zero if there is a fatal signal pending, otherwise PFN of the
793  * first page that was not scanned (which may be both less, equal to or more
794  * than end_pfn).
795  *
796  * The pages are isolated on cc->migratepages list (not required to be empty),
797  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
798  * is neither read nor updated.
799  */
800 static unsigned long
801 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
802 			unsigned long end_pfn, isolate_mode_t isolate_mode)
803 {
804 	pg_data_t *pgdat = cc->zone->zone_pgdat;
805 	unsigned long nr_scanned = 0, nr_isolated = 0;
806 	struct lruvec *lruvec;
807 	unsigned long flags = 0;
808 	bool locked = false;
809 	struct page *page = NULL, *valid_page = NULL;
810 	unsigned long start_pfn = low_pfn;
811 	bool skip_on_failure = false;
812 	unsigned long next_skip_pfn = 0;
813 	bool skip_updated = false;
814 
815 	/*
816 	 * Ensure that there are not too many pages isolated from the LRU
817 	 * list by either parallel reclaimers or compaction. If there are,
818 	 * delay for some time until fewer pages are isolated
819 	 */
820 	while (unlikely(too_many_isolated(pgdat))) {
821 		/* async migration should just abort */
822 		if (cc->mode == MIGRATE_ASYNC)
823 			return 0;
824 
825 		congestion_wait(BLK_RW_ASYNC, HZ/10);
826 
827 		if (fatal_signal_pending(current))
828 			return 0;
829 	}
830 
831 	cond_resched();
832 
833 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
834 		skip_on_failure = true;
835 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
836 	}
837 
838 	/* Time to isolate some pages for migration */
839 	for (; low_pfn < end_pfn; low_pfn++) {
840 
841 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
842 			/*
843 			 * We have isolated all migration candidates in the
844 			 * previous order-aligned block, and did not skip it due
845 			 * to failure. We should migrate the pages now and
846 			 * hopefully succeed compaction.
847 			 */
848 			if (nr_isolated)
849 				break;
850 
851 			/*
852 			 * We failed to isolate in the previous order-aligned
853 			 * block. Set the new boundary to the end of the
854 			 * current block. Note we can't simply increase
855 			 * next_skip_pfn by 1 << order, as low_pfn might have
856 			 * been incremented by a higher number due to skipping
857 			 * a compound or a high-order buddy page in the
858 			 * previous loop iteration.
859 			 */
860 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 		}
862 
863 		/*
864 		 * Periodically drop the lock (if held) regardless of its
865 		 * contention, to give chance to IRQs. Abort completely if
866 		 * a fatal signal is pending.
867 		 */
868 		if (!(low_pfn % SWAP_CLUSTER_MAX)
869 		    && compact_unlock_should_abort(&pgdat->lru_lock,
870 					    flags, &locked, cc)) {
871 			low_pfn = 0;
872 			goto fatal_pending;
873 		}
874 
875 		if (!pfn_valid_within(low_pfn))
876 			goto isolate_fail;
877 		nr_scanned++;
878 
879 		page = pfn_to_page(low_pfn);
880 
881 		/*
882 		 * Check if the pageblock has already been marked skipped.
883 		 * Only the aligned PFN is checked as the caller isolates
884 		 * COMPACT_CLUSTER_MAX at a time so the second call must
885 		 * not falsely conclude that the block should be skipped.
886 		 */
887 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
888 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
889 				low_pfn = end_pfn;
890 				goto isolate_abort;
891 			}
892 			valid_page = page;
893 		}
894 
895 		/*
896 		 * Skip if free. We read page order here without zone lock
897 		 * which is generally unsafe, but the race window is small and
898 		 * the worst thing that can happen is that we skip some
899 		 * potential isolation targets.
900 		 */
901 		if (PageBuddy(page)) {
902 			unsigned long freepage_order = page_order_unsafe(page);
903 
904 			/*
905 			 * Without lock, we cannot be sure that what we got is
906 			 * a valid page order. Consider only values in the
907 			 * valid order range to prevent low_pfn overflow.
908 			 */
909 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
910 				low_pfn += (1UL << freepage_order) - 1;
911 			continue;
912 		}
913 
914 		/*
915 		 * Regardless of being on LRU, compound pages such as THP and
916 		 * hugetlbfs are not to be compacted unless we are attempting
917 		 * an allocation much larger than the huge page size (eg CMA).
918 		 * We can potentially save a lot of iterations if we skip them
919 		 * at once. The check is racy, but we can consider only valid
920 		 * values and the only danger is skipping too much.
921 		 */
922 		if (PageCompound(page) && !cc->alloc_contig) {
923 			const unsigned int order = compound_order(page);
924 
925 			if (likely(order < MAX_ORDER))
926 				low_pfn += (1UL << order) - 1;
927 			goto isolate_fail;
928 		}
929 
930 		/*
931 		 * Check may be lockless but that's ok as we recheck later.
932 		 * It's possible to migrate LRU and non-lru movable pages.
933 		 * Skip any other type of page
934 		 */
935 		if (!PageLRU(page)) {
936 			/*
937 			 * __PageMovable can return false positive so we need
938 			 * to verify it under page_lock.
939 			 */
940 			if (unlikely(__PageMovable(page)) &&
941 					!PageIsolated(page)) {
942 				if (locked) {
943 					spin_unlock_irqrestore(&pgdat->lru_lock,
944 									flags);
945 					locked = false;
946 				}
947 
948 				if (!isolate_movable_page(page, isolate_mode))
949 					goto isolate_success;
950 			}
951 
952 			goto isolate_fail;
953 		}
954 
955 		/*
956 		 * Migration will fail if an anonymous page is pinned in memory,
957 		 * so avoid taking lru_lock and isolating it unnecessarily in an
958 		 * admittedly racy check.
959 		 */
960 		if (!page_mapping(page) &&
961 		    page_count(page) > page_mapcount(page))
962 			goto isolate_fail;
963 
964 		/*
965 		 * Only allow to migrate anonymous pages in GFP_NOFS context
966 		 * because those do not depend on fs locks.
967 		 */
968 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
969 			goto isolate_fail;
970 
971 		/* If we already hold the lock, we can skip some rechecking */
972 		if (!locked) {
973 			locked = compact_lock_irqsave(&pgdat->lru_lock,
974 								&flags, cc);
975 
976 			/* Try get exclusive access under lock */
977 			if (!skip_updated) {
978 				skip_updated = true;
979 				if (test_and_set_skip(cc, page, low_pfn))
980 					goto isolate_abort;
981 			}
982 
983 			/* Recheck PageLRU and PageCompound under lock */
984 			if (!PageLRU(page))
985 				goto isolate_fail;
986 
987 			/*
988 			 * Page become compound since the non-locked check,
989 			 * and it's on LRU. It can only be a THP so the order
990 			 * is safe to read and it's 0 for tail pages.
991 			 */
992 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
993 				low_pfn += compound_nr(page) - 1;
994 				goto isolate_fail;
995 			}
996 		}
997 
998 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
999 
1000 		/* Try isolate the page */
1001 		if (__isolate_lru_page(page, isolate_mode) != 0)
1002 			goto isolate_fail;
1003 
1004 		/* The whole page is taken off the LRU; skip the tail pages. */
1005 		if (PageCompound(page))
1006 			low_pfn += compound_nr(page) - 1;
1007 
1008 		/* Successfully isolated */
1009 		del_page_from_lru_list(page, lruvec, page_lru(page));
1010 		mod_node_page_state(page_pgdat(page),
1011 				NR_ISOLATED_ANON + page_is_file_lru(page),
1012 				thp_nr_pages(page));
1013 
1014 isolate_success:
1015 		list_add(&page->lru, &cc->migratepages);
1016 		cc->nr_migratepages++;
1017 		nr_isolated++;
1018 
1019 		/*
1020 		 * Avoid isolating too much unless this block is being
1021 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1022 		 * or a lock is contended. For contention, isolate quickly to
1023 		 * potentially remove one source of contention.
1024 		 */
1025 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1026 		    !cc->rescan && !cc->contended) {
1027 			++low_pfn;
1028 			break;
1029 		}
1030 
1031 		continue;
1032 isolate_fail:
1033 		if (!skip_on_failure)
1034 			continue;
1035 
1036 		/*
1037 		 * We have isolated some pages, but then failed. Release them
1038 		 * instead of migrating, as we cannot form the cc->order buddy
1039 		 * page anyway.
1040 		 */
1041 		if (nr_isolated) {
1042 			if (locked) {
1043 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1044 				locked = false;
1045 			}
1046 			putback_movable_pages(&cc->migratepages);
1047 			cc->nr_migratepages = 0;
1048 			nr_isolated = 0;
1049 		}
1050 
1051 		if (low_pfn < next_skip_pfn) {
1052 			low_pfn = next_skip_pfn - 1;
1053 			/*
1054 			 * The check near the loop beginning would have updated
1055 			 * next_skip_pfn too, but this is a bit simpler.
1056 			 */
1057 			next_skip_pfn += 1UL << cc->order;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The PageBuddy() check could have potentially brought us outside
1063 	 * the range to be scanned.
1064 	 */
1065 	if (unlikely(low_pfn > end_pfn))
1066 		low_pfn = end_pfn;
1067 
1068 isolate_abort:
1069 	if (locked)
1070 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1071 
1072 	/*
1073 	 * Updated the cached scanner pfn once the pageblock has been scanned
1074 	 * Pages will either be migrated in which case there is no point
1075 	 * scanning in the near future or migration failed in which case the
1076 	 * failure reason may persist. The block is marked for skipping if
1077 	 * there were no pages isolated in the block or if the block is
1078 	 * rescanned twice in a row.
1079 	 */
1080 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1081 		if (valid_page && !skip_updated)
1082 			set_pageblock_skip(valid_page);
1083 		update_cached_migrate(cc, low_pfn);
1084 	}
1085 
1086 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1087 						nr_scanned, nr_isolated);
1088 
1089 fatal_pending:
1090 	cc->total_migrate_scanned += nr_scanned;
1091 	if (nr_isolated)
1092 		count_compact_events(COMPACTISOLATED, nr_isolated);
1093 
1094 	return low_pfn;
1095 }
1096 
1097 /**
1098  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1099  * @cc:        Compaction control structure.
1100  * @start_pfn: The first PFN to start isolating.
1101  * @end_pfn:   The one-past-last PFN.
1102  *
1103  * Returns zero if isolation fails fatally due to e.g. pending signal.
1104  * Otherwise, function returns one-past-the-last PFN of isolated page
1105  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1106  */
1107 unsigned long
1108 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1109 							unsigned long end_pfn)
1110 {
1111 	unsigned long pfn, block_start_pfn, block_end_pfn;
1112 
1113 	/* Scan block by block. First and last block may be incomplete */
1114 	pfn = start_pfn;
1115 	block_start_pfn = pageblock_start_pfn(pfn);
1116 	if (block_start_pfn < cc->zone->zone_start_pfn)
1117 		block_start_pfn = cc->zone->zone_start_pfn;
1118 	block_end_pfn = pageblock_end_pfn(pfn);
1119 
1120 	for (; pfn < end_pfn; pfn = block_end_pfn,
1121 				block_start_pfn = block_end_pfn,
1122 				block_end_pfn += pageblock_nr_pages) {
1123 
1124 		block_end_pfn = min(block_end_pfn, end_pfn);
1125 
1126 		if (!pageblock_pfn_to_page(block_start_pfn,
1127 					block_end_pfn, cc->zone))
1128 			continue;
1129 
1130 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1131 							ISOLATE_UNEVICTABLE);
1132 
1133 		if (!pfn)
1134 			break;
1135 
1136 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1137 			break;
1138 	}
1139 
1140 	return pfn;
1141 }
1142 
1143 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1144 #ifdef CONFIG_COMPACTION
1145 
1146 static bool suitable_migration_source(struct compact_control *cc,
1147 							struct page *page)
1148 {
1149 	int block_mt;
1150 
1151 	if (pageblock_skip_persistent(page))
1152 		return false;
1153 
1154 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1155 		return true;
1156 
1157 	block_mt = get_pageblock_migratetype(page);
1158 
1159 	if (cc->migratetype == MIGRATE_MOVABLE)
1160 		return is_migrate_movable(block_mt);
1161 	else
1162 		return block_mt == cc->migratetype;
1163 }
1164 
1165 /* Returns true if the page is within a block suitable for migration to */
1166 static bool suitable_migration_target(struct compact_control *cc,
1167 							struct page *page)
1168 {
1169 	/* If the page is a large free page, then disallow migration */
1170 	if (PageBuddy(page)) {
1171 		/*
1172 		 * We are checking page_order without zone->lock taken. But
1173 		 * the only small danger is that we skip a potentially suitable
1174 		 * pageblock, so it's not worth to check order for valid range.
1175 		 */
1176 		if (page_order_unsafe(page) >= pageblock_order)
1177 			return false;
1178 	}
1179 
1180 	if (cc->ignore_block_suitable)
1181 		return true;
1182 
1183 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1184 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1185 		return true;
1186 
1187 	/* Otherwise skip the block */
1188 	return false;
1189 }
1190 
1191 static inline unsigned int
1192 freelist_scan_limit(struct compact_control *cc)
1193 {
1194 	unsigned short shift = BITS_PER_LONG - 1;
1195 
1196 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1197 }
1198 
1199 /*
1200  * Test whether the free scanner has reached the same or lower pageblock than
1201  * the migration scanner, and compaction should thus terminate.
1202  */
1203 static inline bool compact_scanners_met(struct compact_control *cc)
1204 {
1205 	return (cc->free_pfn >> pageblock_order)
1206 		<= (cc->migrate_pfn >> pageblock_order);
1207 }
1208 
1209 /*
1210  * Used when scanning for a suitable migration target which scans freelists
1211  * in reverse. Reorders the list such as the unscanned pages are scanned
1212  * first on the next iteration of the free scanner
1213  */
1214 static void
1215 move_freelist_head(struct list_head *freelist, struct page *freepage)
1216 {
1217 	LIST_HEAD(sublist);
1218 
1219 	if (!list_is_last(freelist, &freepage->lru)) {
1220 		list_cut_before(&sublist, freelist, &freepage->lru);
1221 		if (!list_empty(&sublist))
1222 			list_splice_tail(&sublist, freelist);
1223 	}
1224 }
1225 
1226 /*
1227  * Similar to move_freelist_head except used by the migration scanner
1228  * when scanning forward. It's possible for these list operations to
1229  * move against each other if they search the free list exactly in
1230  * lockstep.
1231  */
1232 static void
1233 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1234 {
1235 	LIST_HEAD(sublist);
1236 
1237 	if (!list_is_first(freelist, &freepage->lru)) {
1238 		list_cut_position(&sublist, freelist, &freepage->lru);
1239 		if (!list_empty(&sublist))
1240 			list_splice_tail(&sublist, freelist);
1241 	}
1242 }
1243 
1244 static void
1245 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1246 {
1247 	unsigned long start_pfn, end_pfn;
1248 	struct page *page = pfn_to_page(pfn);
1249 
1250 	/* Do not search around if there are enough pages already */
1251 	if (cc->nr_freepages >= cc->nr_migratepages)
1252 		return;
1253 
1254 	/* Minimise scanning during async compaction */
1255 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1256 		return;
1257 
1258 	/* Pageblock boundaries */
1259 	start_pfn = pageblock_start_pfn(pfn);
1260 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1261 
1262 	/* Scan before */
1263 	if (start_pfn != pfn) {
1264 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1265 		if (cc->nr_freepages >= cc->nr_migratepages)
1266 			return;
1267 	}
1268 
1269 	/* Scan after */
1270 	start_pfn = pfn + nr_isolated;
1271 	if (start_pfn < end_pfn)
1272 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1273 
1274 	/* Skip this pageblock in the future as it's full or nearly full */
1275 	if (cc->nr_freepages < cc->nr_migratepages)
1276 		set_pageblock_skip(page);
1277 }
1278 
1279 /* Search orders in round-robin fashion */
1280 static int next_search_order(struct compact_control *cc, int order)
1281 {
1282 	order--;
1283 	if (order < 0)
1284 		order = cc->order - 1;
1285 
1286 	/* Search wrapped around? */
1287 	if (order == cc->search_order) {
1288 		cc->search_order--;
1289 		if (cc->search_order < 0)
1290 			cc->search_order = cc->order - 1;
1291 		return -1;
1292 	}
1293 
1294 	return order;
1295 }
1296 
1297 static unsigned long
1298 fast_isolate_freepages(struct compact_control *cc)
1299 {
1300 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1301 	unsigned int nr_scanned = 0;
1302 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1303 	unsigned long nr_isolated = 0;
1304 	unsigned long distance;
1305 	struct page *page = NULL;
1306 	bool scan_start = false;
1307 	int order;
1308 
1309 	/* Full compaction passes in a negative order */
1310 	if (cc->order <= 0)
1311 		return cc->free_pfn;
1312 
1313 	/*
1314 	 * If starting the scan, use a deeper search and use the highest
1315 	 * PFN found if a suitable one is not found.
1316 	 */
1317 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1318 		limit = pageblock_nr_pages >> 1;
1319 		scan_start = true;
1320 	}
1321 
1322 	/*
1323 	 * Preferred point is in the top quarter of the scan space but take
1324 	 * a pfn from the top half if the search is problematic.
1325 	 */
1326 	distance = (cc->free_pfn - cc->migrate_pfn);
1327 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1328 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1329 
1330 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1331 		low_pfn = min_pfn;
1332 
1333 	/*
1334 	 * Search starts from the last successful isolation order or the next
1335 	 * order to search after a previous failure
1336 	 */
1337 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1338 
1339 	for (order = cc->search_order;
1340 	     !page && order >= 0;
1341 	     order = next_search_order(cc, order)) {
1342 		struct free_area *area = &cc->zone->free_area[order];
1343 		struct list_head *freelist;
1344 		struct page *freepage;
1345 		unsigned long flags;
1346 		unsigned int order_scanned = 0;
1347 
1348 		if (!area->nr_free)
1349 			continue;
1350 
1351 		spin_lock_irqsave(&cc->zone->lock, flags);
1352 		freelist = &area->free_list[MIGRATE_MOVABLE];
1353 		list_for_each_entry_reverse(freepage, freelist, lru) {
1354 			unsigned long pfn;
1355 
1356 			order_scanned++;
1357 			nr_scanned++;
1358 			pfn = page_to_pfn(freepage);
1359 
1360 			if (pfn >= highest)
1361 				highest = pageblock_start_pfn(pfn);
1362 
1363 			if (pfn >= low_pfn) {
1364 				cc->fast_search_fail = 0;
1365 				cc->search_order = order;
1366 				page = freepage;
1367 				break;
1368 			}
1369 
1370 			if (pfn >= min_pfn && pfn > high_pfn) {
1371 				high_pfn = pfn;
1372 
1373 				/* Shorten the scan if a candidate is found */
1374 				limit >>= 1;
1375 			}
1376 
1377 			if (order_scanned >= limit)
1378 				break;
1379 		}
1380 
1381 		/* Use a minimum pfn if a preferred one was not found */
1382 		if (!page && high_pfn) {
1383 			page = pfn_to_page(high_pfn);
1384 
1385 			/* Update freepage for the list reorder below */
1386 			freepage = page;
1387 		}
1388 
1389 		/* Reorder to so a future search skips recent pages */
1390 		move_freelist_head(freelist, freepage);
1391 
1392 		/* Isolate the page if available */
1393 		if (page) {
1394 			if (__isolate_free_page(page, order)) {
1395 				set_page_private(page, order);
1396 				nr_isolated = 1 << order;
1397 				cc->nr_freepages += nr_isolated;
1398 				list_add_tail(&page->lru, &cc->freepages);
1399 				count_compact_events(COMPACTISOLATED, nr_isolated);
1400 			} else {
1401 				/* If isolation fails, abort the search */
1402 				order = cc->search_order + 1;
1403 				page = NULL;
1404 			}
1405 		}
1406 
1407 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1408 
1409 		/*
1410 		 * Smaller scan on next order so the total scan ig related
1411 		 * to freelist_scan_limit.
1412 		 */
1413 		if (order_scanned >= limit)
1414 			limit = min(1U, limit >> 1);
1415 	}
1416 
1417 	if (!page) {
1418 		cc->fast_search_fail++;
1419 		if (scan_start) {
1420 			/*
1421 			 * Use the highest PFN found above min. If one was
1422 			 * not found, be pessimistic for direct compaction
1423 			 * and use the min mark.
1424 			 */
1425 			if (highest) {
1426 				page = pfn_to_page(highest);
1427 				cc->free_pfn = highest;
1428 			} else {
1429 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1430 					page = pageblock_pfn_to_page(min_pfn,
1431 						pageblock_end_pfn(min_pfn),
1432 						cc->zone);
1433 					cc->free_pfn = min_pfn;
1434 				}
1435 			}
1436 		}
1437 	}
1438 
1439 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1440 		highest -= pageblock_nr_pages;
1441 		cc->zone->compact_cached_free_pfn = highest;
1442 	}
1443 
1444 	cc->total_free_scanned += nr_scanned;
1445 	if (!page)
1446 		return cc->free_pfn;
1447 
1448 	low_pfn = page_to_pfn(page);
1449 	fast_isolate_around(cc, low_pfn, nr_isolated);
1450 	return low_pfn;
1451 }
1452 
1453 /*
1454  * Based on information in the current compact_control, find blocks
1455  * suitable for isolating free pages from and then isolate them.
1456  */
1457 static void isolate_freepages(struct compact_control *cc)
1458 {
1459 	struct zone *zone = cc->zone;
1460 	struct page *page;
1461 	unsigned long block_start_pfn;	/* start of current pageblock */
1462 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1463 	unsigned long block_end_pfn;	/* end of current pageblock */
1464 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1465 	struct list_head *freelist = &cc->freepages;
1466 	unsigned int stride;
1467 
1468 	/* Try a small search of the free lists for a candidate */
1469 	isolate_start_pfn = fast_isolate_freepages(cc);
1470 	if (cc->nr_freepages)
1471 		goto splitmap;
1472 
1473 	/*
1474 	 * Initialise the free scanner. The starting point is where we last
1475 	 * successfully isolated from, zone-cached value, or the end of the
1476 	 * zone when isolating for the first time. For looping we also need
1477 	 * this pfn aligned down to the pageblock boundary, because we do
1478 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1479 	 * For ending point, take care when isolating in last pageblock of a
1480 	 * zone which ends in the middle of a pageblock.
1481 	 * The low boundary is the end of the pageblock the migration scanner
1482 	 * is using.
1483 	 */
1484 	isolate_start_pfn = cc->free_pfn;
1485 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1486 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1487 						zone_end_pfn(zone));
1488 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1489 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1490 
1491 	/*
1492 	 * Isolate free pages until enough are available to migrate the
1493 	 * pages on cc->migratepages. We stop searching if the migrate
1494 	 * and free page scanners meet or enough free pages are isolated.
1495 	 */
1496 	for (; block_start_pfn >= low_pfn;
1497 				block_end_pfn = block_start_pfn,
1498 				block_start_pfn -= pageblock_nr_pages,
1499 				isolate_start_pfn = block_start_pfn) {
1500 		unsigned long nr_isolated;
1501 
1502 		/*
1503 		 * This can iterate a massively long zone without finding any
1504 		 * suitable migration targets, so periodically check resched.
1505 		 */
1506 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1507 			cond_resched();
1508 
1509 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1510 									zone);
1511 		if (!page)
1512 			continue;
1513 
1514 		/* Check the block is suitable for migration */
1515 		if (!suitable_migration_target(cc, page))
1516 			continue;
1517 
1518 		/* If isolation recently failed, do not retry */
1519 		if (!isolation_suitable(cc, page))
1520 			continue;
1521 
1522 		/* Found a block suitable for isolating free pages from. */
1523 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1524 					block_end_pfn, freelist, stride, false);
1525 
1526 		/* Update the skip hint if the full pageblock was scanned */
1527 		if (isolate_start_pfn == block_end_pfn)
1528 			update_pageblock_skip(cc, page, block_start_pfn);
1529 
1530 		/* Are enough freepages isolated? */
1531 		if (cc->nr_freepages >= cc->nr_migratepages) {
1532 			if (isolate_start_pfn >= block_end_pfn) {
1533 				/*
1534 				 * Restart at previous pageblock if more
1535 				 * freepages can be isolated next time.
1536 				 */
1537 				isolate_start_pfn =
1538 					block_start_pfn - pageblock_nr_pages;
1539 			}
1540 			break;
1541 		} else if (isolate_start_pfn < block_end_pfn) {
1542 			/*
1543 			 * If isolation failed early, do not continue
1544 			 * needlessly.
1545 			 */
1546 			break;
1547 		}
1548 
1549 		/* Adjust stride depending on isolation */
1550 		if (nr_isolated) {
1551 			stride = 1;
1552 			continue;
1553 		}
1554 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1555 	}
1556 
1557 	/*
1558 	 * Record where the free scanner will restart next time. Either we
1559 	 * broke from the loop and set isolate_start_pfn based on the last
1560 	 * call to isolate_freepages_block(), or we met the migration scanner
1561 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1562 	 */
1563 	cc->free_pfn = isolate_start_pfn;
1564 
1565 splitmap:
1566 	/* __isolate_free_page() does not map the pages */
1567 	split_map_pages(freelist);
1568 }
1569 
1570 /*
1571  * This is a migrate-callback that "allocates" freepages by taking pages
1572  * from the isolated freelists in the block we are migrating to.
1573  */
1574 static struct page *compaction_alloc(struct page *migratepage,
1575 					unsigned long data)
1576 {
1577 	struct compact_control *cc = (struct compact_control *)data;
1578 	struct page *freepage;
1579 
1580 	if (list_empty(&cc->freepages)) {
1581 		isolate_freepages(cc);
1582 
1583 		if (list_empty(&cc->freepages))
1584 			return NULL;
1585 	}
1586 
1587 	freepage = list_entry(cc->freepages.next, struct page, lru);
1588 	list_del(&freepage->lru);
1589 	cc->nr_freepages--;
1590 
1591 	return freepage;
1592 }
1593 
1594 /*
1595  * This is a migrate-callback that "frees" freepages back to the isolated
1596  * freelist.  All pages on the freelist are from the same zone, so there is no
1597  * special handling needed for NUMA.
1598  */
1599 static void compaction_free(struct page *page, unsigned long data)
1600 {
1601 	struct compact_control *cc = (struct compact_control *)data;
1602 
1603 	list_add(&page->lru, &cc->freepages);
1604 	cc->nr_freepages++;
1605 }
1606 
1607 /* possible outcome of isolate_migratepages */
1608 typedef enum {
1609 	ISOLATE_ABORT,		/* Abort compaction now */
1610 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1611 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1612 } isolate_migrate_t;
1613 
1614 /*
1615  * Allow userspace to control policy on scanning the unevictable LRU for
1616  * compactable pages.
1617  */
1618 #ifdef CONFIG_PREEMPT_RT
1619 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1620 #else
1621 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1622 #endif
1623 
1624 static inline void
1625 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1626 {
1627 	if (cc->fast_start_pfn == ULONG_MAX)
1628 		return;
1629 
1630 	if (!cc->fast_start_pfn)
1631 		cc->fast_start_pfn = pfn;
1632 
1633 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1634 }
1635 
1636 static inline unsigned long
1637 reinit_migrate_pfn(struct compact_control *cc)
1638 {
1639 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1640 		return cc->migrate_pfn;
1641 
1642 	cc->migrate_pfn = cc->fast_start_pfn;
1643 	cc->fast_start_pfn = ULONG_MAX;
1644 
1645 	return cc->migrate_pfn;
1646 }
1647 
1648 /*
1649  * Briefly search the free lists for a migration source that already has
1650  * some free pages to reduce the number of pages that need migration
1651  * before a pageblock is free.
1652  */
1653 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1654 {
1655 	unsigned int limit = freelist_scan_limit(cc);
1656 	unsigned int nr_scanned = 0;
1657 	unsigned long distance;
1658 	unsigned long pfn = cc->migrate_pfn;
1659 	unsigned long high_pfn;
1660 	int order;
1661 
1662 	/* Skip hints are relied on to avoid repeats on the fast search */
1663 	if (cc->ignore_skip_hint)
1664 		return pfn;
1665 
1666 	/*
1667 	 * If the migrate_pfn is not at the start of a zone or the start
1668 	 * of a pageblock then assume this is a continuation of a previous
1669 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1670 	 */
1671 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1672 		return pfn;
1673 
1674 	/*
1675 	 * For smaller orders, just linearly scan as the number of pages
1676 	 * to migrate should be relatively small and does not necessarily
1677 	 * justify freeing up a large block for a small allocation.
1678 	 */
1679 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1680 		return pfn;
1681 
1682 	/*
1683 	 * Only allow kcompactd and direct requests for movable pages to
1684 	 * quickly clear out a MOVABLE pageblock for allocation. This
1685 	 * reduces the risk that a large movable pageblock is freed for
1686 	 * an unmovable/reclaimable small allocation.
1687 	 */
1688 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1689 		return pfn;
1690 
1691 	/*
1692 	 * When starting the migration scanner, pick any pageblock within the
1693 	 * first half of the search space. Otherwise try and pick a pageblock
1694 	 * within the first eighth to reduce the chances that a migration
1695 	 * target later becomes a source.
1696 	 */
1697 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1698 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1699 		distance >>= 2;
1700 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1701 
1702 	for (order = cc->order - 1;
1703 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1704 	     order--) {
1705 		struct free_area *area = &cc->zone->free_area[order];
1706 		struct list_head *freelist;
1707 		unsigned long flags;
1708 		struct page *freepage;
1709 
1710 		if (!area->nr_free)
1711 			continue;
1712 
1713 		spin_lock_irqsave(&cc->zone->lock, flags);
1714 		freelist = &area->free_list[MIGRATE_MOVABLE];
1715 		list_for_each_entry(freepage, freelist, lru) {
1716 			unsigned long free_pfn;
1717 
1718 			nr_scanned++;
1719 			free_pfn = page_to_pfn(freepage);
1720 			if (free_pfn < high_pfn) {
1721 				/*
1722 				 * Avoid if skipped recently. Ideally it would
1723 				 * move to the tail but even safe iteration of
1724 				 * the list assumes an entry is deleted, not
1725 				 * reordered.
1726 				 */
1727 				if (get_pageblock_skip(freepage)) {
1728 					if (list_is_last(freelist, &freepage->lru))
1729 						break;
1730 
1731 					continue;
1732 				}
1733 
1734 				/* Reorder to so a future search skips recent pages */
1735 				move_freelist_tail(freelist, freepage);
1736 
1737 				update_fast_start_pfn(cc, free_pfn);
1738 				pfn = pageblock_start_pfn(free_pfn);
1739 				cc->fast_search_fail = 0;
1740 				set_pageblock_skip(freepage);
1741 				break;
1742 			}
1743 
1744 			if (nr_scanned >= limit) {
1745 				cc->fast_search_fail++;
1746 				move_freelist_tail(freelist, freepage);
1747 				break;
1748 			}
1749 		}
1750 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1751 	}
1752 
1753 	cc->total_migrate_scanned += nr_scanned;
1754 
1755 	/*
1756 	 * If fast scanning failed then use a cached entry for a page block
1757 	 * that had free pages as the basis for starting a linear scan.
1758 	 */
1759 	if (pfn == cc->migrate_pfn)
1760 		pfn = reinit_migrate_pfn(cc);
1761 
1762 	return pfn;
1763 }
1764 
1765 /*
1766  * Isolate all pages that can be migrated from the first suitable block,
1767  * starting at the block pointed to by the migrate scanner pfn within
1768  * compact_control.
1769  */
1770 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1771 {
1772 	unsigned long block_start_pfn;
1773 	unsigned long block_end_pfn;
1774 	unsigned long low_pfn;
1775 	struct page *page;
1776 	const isolate_mode_t isolate_mode =
1777 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1778 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1779 	bool fast_find_block;
1780 
1781 	/*
1782 	 * Start at where we last stopped, or beginning of the zone as
1783 	 * initialized by compact_zone(). The first failure will use
1784 	 * the lowest PFN as the starting point for linear scanning.
1785 	 */
1786 	low_pfn = fast_find_migrateblock(cc);
1787 	block_start_pfn = pageblock_start_pfn(low_pfn);
1788 	if (block_start_pfn < cc->zone->zone_start_pfn)
1789 		block_start_pfn = cc->zone->zone_start_pfn;
1790 
1791 	/*
1792 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1793 	 * the isolation_suitable check below, check whether the fast
1794 	 * search was successful.
1795 	 */
1796 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1797 
1798 	/* Only scan within a pageblock boundary */
1799 	block_end_pfn = pageblock_end_pfn(low_pfn);
1800 
1801 	/*
1802 	 * Iterate over whole pageblocks until we find the first suitable.
1803 	 * Do not cross the free scanner.
1804 	 */
1805 	for (; block_end_pfn <= cc->free_pfn;
1806 			fast_find_block = false,
1807 			low_pfn = block_end_pfn,
1808 			block_start_pfn = block_end_pfn,
1809 			block_end_pfn += pageblock_nr_pages) {
1810 
1811 		/*
1812 		 * This can potentially iterate a massively long zone with
1813 		 * many pageblocks unsuitable, so periodically check if we
1814 		 * need to schedule.
1815 		 */
1816 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1817 			cond_resched();
1818 
1819 		page = pageblock_pfn_to_page(block_start_pfn,
1820 						block_end_pfn, cc->zone);
1821 		if (!page)
1822 			continue;
1823 
1824 		/*
1825 		 * If isolation recently failed, do not retry. Only check the
1826 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1827 		 * to be visited multiple times. Assume skip was checked
1828 		 * before making it "skip" so other compaction instances do
1829 		 * not scan the same block.
1830 		 */
1831 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1832 		    !fast_find_block && !isolation_suitable(cc, page))
1833 			continue;
1834 
1835 		/*
1836 		 * For async compaction, also only scan in MOVABLE blocks
1837 		 * without huge pages. Async compaction is optimistic to see
1838 		 * if the minimum amount of work satisfies the allocation.
1839 		 * The cached PFN is updated as it's possible that all
1840 		 * remaining blocks between source and target are unsuitable
1841 		 * and the compaction scanners fail to meet.
1842 		 */
1843 		if (!suitable_migration_source(cc, page)) {
1844 			update_cached_migrate(cc, block_end_pfn);
1845 			continue;
1846 		}
1847 
1848 		/* Perform the isolation */
1849 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1850 						block_end_pfn, isolate_mode);
1851 
1852 		if (!low_pfn)
1853 			return ISOLATE_ABORT;
1854 
1855 		/*
1856 		 * Either we isolated something and proceed with migration. Or
1857 		 * we failed and compact_zone should decide if we should
1858 		 * continue or not.
1859 		 */
1860 		break;
1861 	}
1862 
1863 	/* Record where migration scanner will be restarted. */
1864 	cc->migrate_pfn = low_pfn;
1865 
1866 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1867 }
1868 
1869 /*
1870  * order == -1 is expected when compacting via
1871  * /proc/sys/vm/compact_memory
1872  */
1873 static inline bool is_via_compact_memory(int order)
1874 {
1875 	return order == -1;
1876 }
1877 
1878 static bool kswapd_is_running(pg_data_t *pgdat)
1879 {
1880 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1881 }
1882 
1883 /*
1884  * A zone's fragmentation score is the external fragmentation wrt to the
1885  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1886  * in the range [0, 100].
1887  *
1888  * The scaling factor ensures that proactive compaction focuses on larger
1889  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1890  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1891  * and thus never exceeds the high threshold for proactive compaction.
1892  */
1893 static unsigned int fragmentation_score_zone(struct zone *zone)
1894 {
1895 	unsigned long score;
1896 
1897 	score = zone->present_pages *
1898 			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1899 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1900 }
1901 
1902 /*
1903  * The per-node proactive (background) compaction process is started by its
1904  * corresponding kcompactd thread when the node's fragmentation score
1905  * exceeds the high threshold. The compaction process remains active till
1906  * the node's score falls below the low threshold, or one of the back-off
1907  * conditions is met.
1908  */
1909 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1910 {
1911 	unsigned int score = 0;
1912 	int zoneid;
1913 
1914 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1915 		struct zone *zone;
1916 
1917 		zone = &pgdat->node_zones[zoneid];
1918 		score += fragmentation_score_zone(zone);
1919 	}
1920 
1921 	return score;
1922 }
1923 
1924 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1925 {
1926 	unsigned int wmark_low;
1927 
1928 	/*
1929 	 * Cap the low watermak to avoid excessive compaction
1930 	 * activity in case a user sets the proactivess tunable
1931 	 * close to 100 (maximum).
1932 	 */
1933 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1934 	return low ? wmark_low : min(wmark_low + 10, 100U);
1935 }
1936 
1937 static bool should_proactive_compact_node(pg_data_t *pgdat)
1938 {
1939 	int wmark_high;
1940 
1941 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1942 		return false;
1943 
1944 	wmark_high = fragmentation_score_wmark(pgdat, false);
1945 	return fragmentation_score_node(pgdat) > wmark_high;
1946 }
1947 
1948 static enum compact_result __compact_finished(struct compact_control *cc)
1949 {
1950 	unsigned int order;
1951 	const int migratetype = cc->migratetype;
1952 	int ret;
1953 
1954 	/* Compaction run completes if the migrate and free scanner meet */
1955 	if (compact_scanners_met(cc)) {
1956 		/* Let the next compaction start anew. */
1957 		reset_cached_positions(cc->zone);
1958 
1959 		/*
1960 		 * Mark that the PG_migrate_skip information should be cleared
1961 		 * by kswapd when it goes to sleep. kcompactd does not set the
1962 		 * flag itself as the decision to be clear should be directly
1963 		 * based on an allocation request.
1964 		 */
1965 		if (cc->direct_compaction)
1966 			cc->zone->compact_blockskip_flush = true;
1967 
1968 		if (cc->whole_zone)
1969 			return COMPACT_COMPLETE;
1970 		else
1971 			return COMPACT_PARTIAL_SKIPPED;
1972 	}
1973 
1974 	if (cc->proactive_compaction) {
1975 		int score, wmark_low;
1976 		pg_data_t *pgdat;
1977 
1978 		pgdat = cc->zone->zone_pgdat;
1979 		if (kswapd_is_running(pgdat))
1980 			return COMPACT_PARTIAL_SKIPPED;
1981 
1982 		score = fragmentation_score_zone(cc->zone);
1983 		wmark_low = fragmentation_score_wmark(pgdat, true);
1984 
1985 		if (score > wmark_low)
1986 			ret = COMPACT_CONTINUE;
1987 		else
1988 			ret = COMPACT_SUCCESS;
1989 
1990 		goto out;
1991 	}
1992 
1993 	if (is_via_compact_memory(cc->order))
1994 		return COMPACT_CONTINUE;
1995 
1996 	/*
1997 	 * Always finish scanning a pageblock to reduce the possibility of
1998 	 * fallbacks in the future. This is particularly important when
1999 	 * migration source is unmovable/reclaimable but it's not worth
2000 	 * special casing.
2001 	 */
2002 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2003 		return COMPACT_CONTINUE;
2004 
2005 	/* Direct compactor: Is a suitable page free? */
2006 	ret = COMPACT_NO_SUITABLE_PAGE;
2007 	for (order = cc->order; order < MAX_ORDER; order++) {
2008 		struct free_area *area = &cc->zone->free_area[order];
2009 		bool can_steal;
2010 
2011 		/* Job done if page is free of the right migratetype */
2012 		if (!free_area_empty(area, migratetype))
2013 			return COMPACT_SUCCESS;
2014 
2015 #ifdef CONFIG_CMA
2016 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2017 		if (migratetype == MIGRATE_MOVABLE &&
2018 			!free_area_empty(area, MIGRATE_CMA))
2019 			return COMPACT_SUCCESS;
2020 #endif
2021 		/*
2022 		 * Job done if allocation would steal freepages from
2023 		 * other migratetype buddy lists.
2024 		 */
2025 		if (find_suitable_fallback(area, order, migratetype,
2026 						true, &can_steal) != -1) {
2027 
2028 			/* movable pages are OK in any pageblock */
2029 			if (migratetype == MIGRATE_MOVABLE)
2030 				return COMPACT_SUCCESS;
2031 
2032 			/*
2033 			 * We are stealing for a non-movable allocation. Make
2034 			 * sure we finish compacting the current pageblock
2035 			 * first so it is as free as possible and we won't
2036 			 * have to steal another one soon. This only applies
2037 			 * to sync compaction, as async compaction operates
2038 			 * on pageblocks of the same migratetype.
2039 			 */
2040 			if (cc->mode == MIGRATE_ASYNC ||
2041 					IS_ALIGNED(cc->migrate_pfn,
2042 							pageblock_nr_pages)) {
2043 				return COMPACT_SUCCESS;
2044 			}
2045 
2046 			ret = COMPACT_CONTINUE;
2047 			break;
2048 		}
2049 	}
2050 
2051 out:
2052 	if (cc->contended || fatal_signal_pending(current))
2053 		ret = COMPACT_CONTENDED;
2054 
2055 	return ret;
2056 }
2057 
2058 static enum compact_result compact_finished(struct compact_control *cc)
2059 {
2060 	int ret;
2061 
2062 	ret = __compact_finished(cc);
2063 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2064 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2065 		ret = COMPACT_CONTINUE;
2066 
2067 	return ret;
2068 }
2069 
2070 /*
2071  * compaction_suitable: Is this suitable to run compaction on this zone now?
2072  * Returns
2073  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2074  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2075  *   COMPACT_CONTINUE - If compaction should run now
2076  */
2077 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2078 					unsigned int alloc_flags,
2079 					int highest_zoneidx,
2080 					unsigned long wmark_target)
2081 {
2082 	unsigned long watermark;
2083 
2084 	if (is_via_compact_memory(order))
2085 		return COMPACT_CONTINUE;
2086 
2087 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2088 	/*
2089 	 * If watermarks for high-order allocation are already met, there
2090 	 * should be no need for compaction at all.
2091 	 */
2092 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2093 								alloc_flags))
2094 		return COMPACT_SUCCESS;
2095 
2096 	/*
2097 	 * Watermarks for order-0 must be met for compaction to be able to
2098 	 * isolate free pages for migration targets. This means that the
2099 	 * watermark and alloc_flags have to match, or be more pessimistic than
2100 	 * the check in __isolate_free_page(). We don't use the direct
2101 	 * compactor's alloc_flags, as they are not relevant for freepage
2102 	 * isolation. We however do use the direct compactor's highest_zoneidx
2103 	 * to skip over zones where lowmem reserves would prevent allocation
2104 	 * even if compaction succeeds.
2105 	 * For costly orders, we require low watermark instead of min for
2106 	 * compaction to proceed to increase its chances.
2107 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2108 	 * suitable migration targets
2109 	 */
2110 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2111 				low_wmark_pages(zone) : min_wmark_pages(zone);
2112 	watermark += compact_gap(order);
2113 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2114 						ALLOC_CMA, wmark_target))
2115 		return COMPACT_SKIPPED;
2116 
2117 	return COMPACT_CONTINUE;
2118 }
2119 
2120 enum compact_result compaction_suitable(struct zone *zone, int order,
2121 					unsigned int alloc_flags,
2122 					int highest_zoneidx)
2123 {
2124 	enum compact_result ret;
2125 	int fragindex;
2126 
2127 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2128 				    zone_page_state(zone, NR_FREE_PAGES));
2129 	/*
2130 	 * fragmentation index determines if allocation failures are due to
2131 	 * low memory or external fragmentation
2132 	 *
2133 	 * index of -1000 would imply allocations might succeed depending on
2134 	 * watermarks, but we already failed the high-order watermark check
2135 	 * index towards 0 implies failure is due to lack of memory
2136 	 * index towards 1000 implies failure is due to fragmentation
2137 	 *
2138 	 * Only compact if a failure would be due to fragmentation. Also
2139 	 * ignore fragindex for non-costly orders where the alternative to
2140 	 * a successful reclaim/compaction is OOM. Fragindex and the
2141 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2142 	 * excessive compaction for costly orders, but it should not be at the
2143 	 * expense of system stability.
2144 	 */
2145 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2146 		fragindex = fragmentation_index(zone, order);
2147 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2148 			ret = COMPACT_NOT_SUITABLE_ZONE;
2149 	}
2150 
2151 	trace_mm_compaction_suitable(zone, order, ret);
2152 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2153 		ret = COMPACT_SKIPPED;
2154 
2155 	return ret;
2156 }
2157 
2158 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2159 		int alloc_flags)
2160 {
2161 	struct zone *zone;
2162 	struct zoneref *z;
2163 
2164 	/*
2165 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2166 	 * retrying the reclaim.
2167 	 */
2168 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2169 				ac->highest_zoneidx, ac->nodemask) {
2170 		unsigned long available;
2171 		enum compact_result compact_result;
2172 
2173 		/*
2174 		 * Do not consider all the reclaimable memory because we do not
2175 		 * want to trash just for a single high order allocation which
2176 		 * is even not guaranteed to appear even if __compaction_suitable
2177 		 * is happy about the watermark check.
2178 		 */
2179 		available = zone_reclaimable_pages(zone) / order;
2180 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2181 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2182 				ac->highest_zoneidx, available);
2183 		if (compact_result != COMPACT_SKIPPED)
2184 			return true;
2185 	}
2186 
2187 	return false;
2188 }
2189 
2190 static enum compact_result
2191 compact_zone(struct compact_control *cc, struct capture_control *capc)
2192 {
2193 	enum compact_result ret;
2194 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2195 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2196 	unsigned long last_migrated_pfn;
2197 	const bool sync = cc->mode != MIGRATE_ASYNC;
2198 	bool update_cached;
2199 
2200 	/*
2201 	 * These counters track activities during zone compaction.  Initialize
2202 	 * them before compacting a new zone.
2203 	 */
2204 	cc->total_migrate_scanned = 0;
2205 	cc->total_free_scanned = 0;
2206 	cc->nr_migratepages = 0;
2207 	cc->nr_freepages = 0;
2208 	INIT_LIST_HEAD(&cc->freepages);
2209 	INIT_LIST_HEAD(&cc->migratepages);
2210 
2211 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2212 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2213 							cc->highest_zoneidx);
2214 	/* Compaction is likely to fail */
2215 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2216 		return ret;
2217 
2218 	/* huh, compaction_suitable is returning something unexpected */
2219 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2220 
2221 	/*
2222 	 * Clear pageblock skip if there were failures recently and compaction
2223 	 * is about to be retried after being deferred.
2224 	 */
2225 	if (compaction_restarting(cc->zone, cc->order))
2226 		__reset_isolation_suitable(cc->zone);
2227 
2228 	/*
2229 	 * Setup to move all movable pages to the end of the zone. Used cached
2230 	 * information on where the scanners should start (unless we explicitly
2231 	 * want to compact the whole zone), but check that it is initialised
2232 	 * by ensuring the values are within zone boundaries.
2233 	 */
2234 	cc->fast_start_pfn = 0;
2235 	if (cc->whole_zone) {
2236 		cc->migrate_pfn = start_pfn;
2237 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2238 	} else {
2239 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2240 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2241 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2242 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2243 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2244 		}
2245 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2246 			cc->migrate_pfn = start_pfn;
2247 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2248 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2249 		}
2250 
2251 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2252 			cc->whole_zone = true;
2253 	}
2254 
2255 	last_migrated_pfn = 0;
2256 
2257 	/*
2258 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2259 	 * the basis that some migrations will fail in ASYNC mode. However,
2260 	 * if the cached PFNs match and pageblocks are skipped due to having
2261 	 * no isolation candidates, then the sync state does not matter.
2262 	 * Until a pageblock with isolation candidates is found, keep the
2263 	 * cached PFNs in sync to avoid revisiting the same blocks.
2264 	 */
2265 	update_cached = !sync &&
2266 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2267 
2268 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2269 				cc->free_pfn, end_pfn, sync);
2270 
2271 	migrate_prep_local();
2272 
2273 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2274 		int err;
2275 		unsigned long start_pfn = cc->migrate_pfn;
2276 
2277 		/*
2278 		 * Avoid multiple rescans which can happen if a page cannot be
2279 		 * isolated (dirty/writeback in async mode) or if the migrated
2280 		 * pages are being allocated before the pageblock is cleared.
2281 		 * The first rescan will capture the entire pageblock for
2282 		 * migration. If it fails, it'll be marked skip and scanning
2283 		 * will proceed as normal.
2284 		 */
2285 		cc->rescan = false;
2286 		if (pageblock_start_pfn(last_migrated_pfn) ==
2287 		    pageblock_start_pfn(start_pfn)) {
2288 			cc->rescan = true;
2289 		}
2290 
2291 		switch (isolate_migratepages(cc)) {
2292 		case ISOLATE_ABORT:
2293 			ret = COMPACT_CONTENDED;
2294 			putback_movable_pages(&cc->migratepages);
2295 			cc->nr_migratepages = 0;
2296 			goto out;
2297 		case ISOLATE_NONE:
2298 			if (update_cached) {
2299 				cc->zone->compact_cached_migrate_pfn[1] =
2300 					cc->zone->compact_cached_migrate_pfn[0];
2301 			}
2302 
2303 			/*
2304 			 * We haven't isolated and migrated anything, but
2305 			 * there might still be unflushed migrations from
2306 			 * previous cc->order aligned block.
2307 			 */
2308 			goto check_drain;
2309 		case ISOLATE_SUCCESS:
2310 			update_cached = false;
2311 			last_migrated_pfn = start_pfn;
2312 			;
2313 		}
2314 
2315 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2316 				compaction_free, (unsigned long)cc, cc->mode,
2317 				MR_COMPACTION);
2318 
2319 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2320 							&cc->migratepages);
2321 
2322 		/* All pages were either migrated or will be released */
2323 		cc->nr_migratepages = 0;
2324 		if (err) {
2325 			putback_movable_pages(&cc->migratepages);
2326 			/*
2327 			 * migrate_pages() may return -ENOMEM when scanners meet
2328 			 * and we want compact_finished() to detect it
2329 			 */
2330 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2331 				ret = COMPACT_CONTENDED;
2332 				goto out;
2333 			}
2334 			/*
2335 			 * We failed to migrate at least one page in the current
2336 			 * order-aligned block, so skip the rest of it.
2337 			 */
2338 			if (cc->direct_compaction &&
2339 						(cc->mode == MIGRATE_ASYNC)) {
2340 				cc->migrate_pfn = block_end_pfn(
2341 						cc->migrate_pfn - 1, cc->order);
2342 				/* Draining pcplists is useless in this case */
2343 				last_migrated_pfn = 0;
2344 			}
2345 		}
2346 
2347 check_drain:
2348 		/*
2349 		 * Has the migration scanner moved away from the previous
2350 		 * cc->order aligned block where we migrated from? If yes,
2351 		 * flush the pages that were freed, so that they can merge and
2352 		 * compact_finished() can detect immediately if allocation
2353 		 * would succeed.
2354 		 */
2355 		if (cc->order > 0 && last_migrated_pfn) {
2356 			unsigned long current_block_start =
2357 				block_start_pfn(cc->migrate_pfn, cc->order);
2358 
2359 			if (last_migrated_pfn < current_block_start) {
2360 				lru_add_drain_cpu_zone(cc->zone);
2361 				/* No more flushing until we migrate again */
2362 				last_migrated_pfn = 0;
2363 			}
2364 		}
2365 
2366 		/* Stop if a page has been captured */
2367 		if (capc && capc->page) {
2368 			ret = COMPACT_SUCCESS;
2369 			break;
2370 		}
2371 	}
2372 
2373 out:
2374 	/*
2375 	 * Release free pages and update where the free scanner should restart,
2376 	 * so we don't leave any returned pages behind in the next attempt.
2377 	 */
2378 	if (cc->nr_freepages > 0) {
2379 		unsigned long free_pfn = release_freepages(&cc->freepages);
2380 
2381 		cc->nr_freepages = 0;
2382 		VM_BUG_ON(free_pfn == 0);
2383 		/* The cached pfn is always the first in a pageblock */
2384 		free_pfn = pageblock_start_pfn(free_pfn);
2385 		/*
2386 		 * Only go back, not forward. The cached pfn might have been
2387 		 * already reset to zone end in compact_finished()
2388 		 */
2389 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2390 			cc->zone->compact_cached_free_pfn = free_pfn;
2391 	}
2392 
2393 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2394 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2395 
2396 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2397 				cc->free_pfn, end_pfn, sync, ret);
2398 
2399 	return ret;
2400 }
2401 
2402 static enum compact_result compact_zone_order(struct zone *zone, int order,
2403 		gfp_t gfp_mask, enum compact_priority prio,
2404 		unsigned int alloc_flags, int highest_zoneidx,
2405 		struct page **capture)
2406 {
2407 	enum compact_result ret;
2408 	struct compact_control cc = {
2409 		.order = order,
2410 		.search_order = order,
2411 		.gfp_mask = gfp_mask,
2412 		.zone = zone,
2413 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2414 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2415 		.alloc_flags = alloc_flags,
2416 		.highest_zoneidx = highest_zoneidx,
2417 		.direct_compaction = true,
2418 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2419 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2420 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2421 	};
2422 	struct capture_control capc = {
2423 		.cc = &cc,
2424 		.page = NULL,
2425 	};
2426 
2427 	/*
2428 	 * Make sure the structs are really initialized before we expose the
2429 	 * capture control, in case we are interrupted and the interrupt handler
2430 	 * frees a page.
2431 	 */
2432 	barrier();
2433 	WRITE_ONCE(current->capture_control, &capc);
2434 
2435 	ret = compact_zone(&cc, &capc);
2436 
2437 	VM_BUG_ON(!list_empty(&cc.freepages));
2438 	VM_BUG_ON(!list_empty(&cc.migratepages));
2439 
2440 	/*
2441 	 * Make sure we hide capture control first before we read the captured
2442 	 * page pointer, otherwise an interrupt could free and capture a page
2443 	 * and we would leak it.
2444 	 */
2445 	WRITE_ONCE(current->capture_control, NULL);
2446 	*capture = READ_ONCE(capc.page);
2447 
2448 	return ret;
2449 }
2450 
2451 int sysctl_extfrag_threshold = 500;
2452 
2453 /**
2454  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2455  * @gfp_mask: The GFP mask of the current allocation
2456  * @order: The order of the current allocation
2457  * @alloc_flags: The allocation flags of the current allocation
2458  * @ac: The context of current allocation
2459  * @prio: Determines how hard direct compaction should try to succeed
2460  * @capture: Pointer to free page created by compaction will be stored here
2461  *
2462  * This is the main entry point for direct page compaction.
2463  */
2464 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2465 		unsigned int alloc_flags, const struct alloc_context *ac,
2466 		enum compact_priority prio, struct page **capture)
2467 {
2468 	int may_perform_io = gfp_mask & __GFP_IO;
2469 	struct zoneref *z;
2470 	struct zone *zone;
2471 	enum compact_result rc = COMPACT_SKIPPED;
2472 
2473 	/*
2474 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2475 	 * tricky context because the migration might require IO
2476 	 */
2477 	if (!may_perform_io)
2478 		return COMPACT_SKIPPED;
2479 
2480 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2481 
2482 	/* Compact each zone in the list */
2483 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2484 					ac->highest_zoneidx, ac->nodemask) {
2485 		enum compact_result status;
2486 
2487 		if (prio > MIN_COMPACT_PRIORITY
2488 					&& compaction_deferred(zone, order)) {
2489 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2490 			continue;
2491 		}
2492 
2493 		status = compact_zone_order(zone, order, gfp_mask, prio,
2494 				alloc_flags, ac->highest_zoneidx, capture);
2495 		rc = max(status, rc);
2496 
2497 		/* The allocation should succeed, stop compacting */
2498 		if (status == COMPACT_SUCCESS) {
2499 			/*
2500 			 * We think the allocation will succeed in this zone,
2501 			 * but it is not certain, hence the false. The caller
2502 			 * will repeat this with true if allocation indeed
2503 			 * succeeds in this zone.
2504 			 */
2505 			compaction_defer_reset(zone, order, false);
2506 
2507 			break;
2508 		}
2509 
2510 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2511 					status == COMPACT_PARTIAL_SKIPPED))
2512 			/*
2513 			 * We think that allocation won't succeed in this zone
2514 			 * so we defer compaction there. If it ends up
2515 			 * succeeding after all, it will be reset.
2516 			 */
2517 			defer_compaction(zone, order);
2518 
2519 		/*
2520 		 * We might have stopped compacting due to need_resched() in
2521 		 * async compaction, or due to a fatal signal detected. In that
2522 		 * case do not try further zones
2523 		 */
2524 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2525 					|| fatal_signal_pending(current))
2526 			break;
2527 	}
2528 
2529 	return rc;
2530 }
2531 
2532 /*
2533  * Compact all zones within a node till each zone's fragmentation score
2534  * reaches within proactive compaction thresholds (as determined by the
2535  * proactiveness tunable).
2536  *
2537  * It is possible that the function returns before reaching score targets
2538  * due to various back-off conditions, such as, contention on per-node or
2539  * per-zone locks.
2540  */
2541 static void proactive_compact_node(pg_data_t *pgdat)
2542 {
2543 	int zoneid;
2544 	struct zone *zone;
2545 	struct compact_control cc = {
2546 		.order = -1,
2547 		.mode = MIGRATE_SYNC_LIGHT,
2548 		.ignore_skip_hint = true,
2549 		.whole_zone = true,
2550 		.gfp_mask = GFP_KERNEL,
2551 		.proactive_compaction = true,
2552 	};
2553 
2554 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2555 		zone = &pgdat->node_zones[zoneid];
2556 		if (!populated_zone(zone))
2557 			continue;
2558 
2559 		cc.zone = zone;
2560 
2561 		compact_zone(&cc, NULL);
2562 
2563 		VM_BUG_ON(!list_empty(&cc.freepages));
2564 		VM_BUG_ON(!list_empty(&cc.migratepages));
2565 	}
2566 }
2567 
2568 /* Compact all zones within a node */
2569 static void compact_node(int nid)
2570 {
2571 	pg_data_t *pgdat = NODE_DATA(nid);
2572 	int zoneid;
2573 	struct zone *zone;
2574 	struct compact_control cc = {
2575 		.order = -1,
2576 		.mode = MIGRATE_SYNC,
2577 		.ignore_skip_hint = true,
2578 		.whole_zone = true,
2579 		.gfp_mask = GFP_KERNEL,
2580 	};
2581 
2582 
2583 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2584 
2585 		zone = &pgdat->node_zones[zoneid];
2586 		if (!populated_zone(zone))
2587 			continue;
2588 
2589 		cc.zone = zone;
2590 
2591 		compact_zone(&cc, NULL);
2592 
2593 		VM_BUG_ON(!list_empty(&cc.freepages));
2594 		VM_BUG_ON(!list_empty(&cc.migratepages));
2595 	}
2596 }
2597 
2598 /* Compact all nodes in the system */
2599 static void compact_nodes(void)
2600 {
2601 	int nid;
2602 
2603 	/* Flush pending updates to the LRU lists */
2604 	lru_add_drain_all();
2605 
2606 	for_each_online_node(nid)
2607 		compact_node(nid);
2608 }
2609 
2610 /* The written value is actually unused, all memory is compacted */
2611 int sysctl_compact_memory;
2612 
2613 /*
2614  * Tunable for proactive compaction. It determines how
2615  * aggressively the kernel should compact memory in the
2616  * background. It takes values in the range [0, 100].
2617  */
2618 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2619 
2620 /*
2621  * This is the entry point for compacting all nodes via
2622  * /proc/sys/vm/compact_memory
2623  */
2624 int sysctl_compaction_handler(struct ctl_table *table, int write,
2625 			void *buffer, size_t *length, loff_t *ppos)
2626 {
2627 	if (write)
2628 		compact_nodes();
2629 
2630 	return 0;
2631 }
2632 
2633 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2634 static ssize_t sysfs_compact_node(struct device *dev,
2635 			struct device_attribute *attr,
2636 			const char *buf, size_t count)
2637 {
2638 	int nid = dev->id;
2639 
2640 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2641 		/* Flush pending updates to the LRU lists */
2642 		lru_add_drain_all();
2643 
2644 		compact_node(nid);
2645 	}
2646 
2647 	return count;
2648 }
2649 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2650 
2651 int compaction_register_node(struct node *node)
2652 {
2653 	return device_create_file(&node->dev, &dev_attr_compact);
2654 }
2655 
2656 void compaction_unregister_node(struct node *node)
2657 {
2658 	return device_remove_file(&node->dev, &dev_attr_compact);
2659 }
2660 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2661 
2662 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2663 {
2664 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2665 }
2666 
2667 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2668 {
2669 	int zoneid;
2670 	struct zone *zone;
2671 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2672 
2673 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2674 		zone = &pgdat->node_zones[zoneid];
2675 
2676 		if (!populated_zone(zone))
2677 			continue;
2678 
2679 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2680 					highest_zoneidx) == COMPACT_CONTINUE)
2681 			return true;
2682 	}
2683 
2684 	return false;
2685 }
2686 
2687 static void kcompactd_do_work(pg_data_t *pgdat)
2688 {
2689 	/*
2690 	 * With no special task, compact all zones so that a page of requested
2691 	 * order is allocatable.
2692 	 */
2693 	int zoneid;
2694 	struct zone *zone;
2695 	struct compact_control cc = {
2696 		.order = pgdat->kcompactd_max_order,
2697 		.search_order = pgdat->kcompactd_max_order,
2698 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2699 		.mode = MIGRATE_SYNC_LIGHT,
2700 		.ignore_skip_hint = false,
2701 		.gfp_mask = GFP_KERNEL,
2702 	};
2703 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2704 							cc.highest_zoneidx);
2705 	count_compact_event(KCOMPACTD_WAKE);
2706 
2707 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2708 		int status;
2709 
2710 		zone = &pgdat->node_zones[zoneid];
2711 		if (!populated_zone(zone))
2712 			continue;
2713 
2714 		if (compaction_deferred(zone, cc.order))
2715 			continue;
2716 
2717 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2718 							COMPACT_CONTINUE)
2719 			continue;
2720 
2721 		if (kthread_should_stop())
2722 			return;
2723 
2724 		cc.zone = zone;
2725 		status = compact_zone(&cc, NULL);
2726 
2727 		if (status == COMPACT_SUCCESS) {
2728 			compaction_defer_reset(zone, cc.order, false);
2729 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2730 			/*
2731 			 * Buddy pages may become stranded on pcps that could
2732 			 * otherwise coalesce on the zone's free area for
2733 			 * order >= cc.order.  This is ratelimited by the
2734 			 * upcoming deferral.
2735 			 */
2736 			drain_all_pages(zone);
2737 
2738 			/*
2739 			 * We use sync migration mode here, so we defer like
2740 			 * sync direct compaction does.
2741 			 */
2742 			defer_compaction(zone, cc.order);
2743 		}
2744 
2745 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2746 				     cc.total_migrate_scanned);
2747 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2748 				     cc.total_free_scanned);
2749 
2750 		VM_BUG_ON(!list_empty(&cc.freepages));
2751 		VM_BUG_ON(!list_empty(&cc.migratepages));
2752 	}
2753 
2754 	/*
2755 	 * Regardless of success, we are done until woken up next. But remember
2756 	 * the requested order/highest_zoneidx in case it was higher/tighter
2757 	 * than our current ones
2758 	 */
2759 	if (pgdat->kcompactd_max_order <= cc.order)
2760 		pgdat->kcompactd_max_order = 0;
2761 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2762 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2763 }
2764 
2765 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2766 {
2767 	if (!order)
2768 		return;
2769 
2770 	if (pgdat->kcompactd_max_order < order)
2771 		pgdat->kcompactd_max_order = order;
2772 
2773 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2774 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2775 
2776 	/*
2777 	 * Pairs with implicit barrier in wait_event_freezable()
2778 	 * such that wakeups are not missed.
2779 	 */
2780 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2781 		return;
2782 
2783 	if (!kcompactd_node_suitable(pgdat))
2784 		return;
2785 
2786 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2787 							highest_zoneidx);
2788 	wake_up_interruptible(&pgdat->kcompactd_wait);
2789 }
2790 
2791 /*
2792  * The background compaction daemon, started as a kernel thread
2793  * from the init process.
2794  */
2795 static int kcompactd(void *p)
2796 {
2797 	pg_data_t *pgdat = (pg_data_t*)p;
2798 	struct task_struct *tsk = current;
2799 	unsigned int proactive_defer = 0;
2800 
2801 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2802 
2803 	if (!cpumask_empty(cpumask))
2804 		set_cpus_allowed_ptr(tsk, cpumask);
2805 
2806 	set_freezable();
2807 
2808 	pgdat->kcompactd_max_order = 0;
2809 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2810 
2811 	while (!kthread_should_stop()) {
2812 		unsigned long pflags;
2813 
2814 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2815 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2816 			kcompactd_work_requested(pgdat),
2817 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2818 
2819 			psi_memstall_enter(&pflags);
2820 			kcompactd_do_work(pgdat);
2821 			psi_memstall_leave(&pflags);
2822 			continue;
2823 		}
2824 
2825 		/* kcompactd wait timeout */
2826 		if (should_proactive_compact_node(pgdat)) {
2827 			unsigned int prev_score, score;
2828 
2829 			if (proactive_defer) {
2830 				proactive_defer--;
2831 				continue;
2832 			}
2833 			prev_score = fragmentation_score_node(pgdat);
2834 			proactive_compact_node(pgdat);
2835 			score = fragmentation_score_node(pgdat);
2836 			/*
2837 			 * Defer proactive compaction if the fragmentation
2838 			 * score did not go down i.e. no progress made.
2839 			 */
2840 			proactive_defer = score < prev_score ?
2841 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2842 		}
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * This kcompactd start function will be called by init and node-hot-add.
2850  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2851  */
2852 int kcompactd_run(int nid)
2853 {
2854 	pg_data_t *pgdat = NODE_DATA(nid);
2855 	int ret = 0;
2856 
2857 	if (pgdat->kcompactd)
2858 		return 0;
2859 
2860 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2861 	if (IS_ERR(pgdat->kcompactd)) {
2862 		pr_err("Failed to start kcompactd on node %d\n", nid);
2863 		ret = PTR_ERR(pgdat->kcompactd);
2864 		pgdat->kcompactd = NULL;
2865 	}
2866 	return ret;
2867 }
2868 
2869 /*
2870  * Called by memory hotplug when all memory in a node is offlined. Caller must
2871  * hold mem_hotplug_begin/end().
2872  */
2873 void kcompactd_stop(int nid)
2874 {
2875 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2876 
2877 	if (kcompactd) {
2878 		kthread_stop(kcompactd);
2879 		NODE_DATA(nid)->kcompactd = NULL;
2880 	}
2881 }
2882 
2883 /*
2884  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2885  * not required for correctness. So if the last cpu in a node goes
2886  * away, we get changed to run anywhere: as the first one comes back,
2887  * restore their cpu bindings.
2888  */
2889 static int kcompactd_cpu_online(unsigned int cpu)
2890 {
2891 	int nid;
2892 
2893 	for_each_node_state(nid, N_MEMORY) {
2894 		pg_data_t *pgdat = NODE_DATA(nid);
2895 		const struct cpumask *mask;
2896 
2897 		mask = cpumask_of_node(pgdat->node_id);
2898 
2899 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2900 			/* One of our CPUs online: restore mask */
2901 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2902 	}
2903 	return 0;
2904 }
2905 
2906 static int __init kcompactd_init(void)
2907 {
2908 	int nid;
2909 	int ret;
2910 
2911 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2912 					"mm/compaction:online",
2913 					kcompactd_cpu_online, NULL);
2914 	if (ret < 0) {
2915 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2916 		return ret;
2917 	}
2918 
2919 	for_each_node_state(nid, N_MEMORY)
2920 		kcompactd_run(nid);
2921 	return 0;
2922 }
2923 subsys_initcall(kcompactd_init)
2924 
2925 #endif /* CONFIG_COMPACTION */
2926