1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149 } 150 EXPORT_SYMBOL(__ClearPageMovable); 151 152 /* Do not skip compaction more than 64 times */ 153 #define COMPACT_MAX_DEFER_SHIFT 6 154 155 /* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160 void defer_compaction(struct zone *zone, int order) 161 { 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172 } 173 174 /* Returns true if compaction should be skipped this time */ 175 bool compaction_deferred(struct zone *zone, int order) 176 { 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered > defer_limit) 184 zone->compact_considered = defer_limit; 185 186 if (zone->compact_considered >= defer_limit) 187 return false; 188 189 trace_mm_compaction_deferred(zone, order); 190 191 return true; 192 } 193 194 /* 195 * Update defer tracking counters after successful compaction of given order, 196 * which means an allocation either succeeded (alloc_success == true) or is 197 * expected to succeed. 198 */ 199 void compaction_defer_reset(struct zone *zone, int order, 200 bool alloc_success) 201 { 202 if (alloc_success) { 203 zone->compact_considered = 0; 204 zone->compact_defer_shift = 0; 205 } 206 if (order >= zone->compact_order_failed) 207 zone->compact_order_failed = order + 1; 208 209 trace_mm_compaction_defer_reset(zone, order); 210 } 211 212 /* Returns true if restarting compaction after many failures */ 213 bool compaction_restarting(struct zone *zone, int order) 214 { 215 if (order < zone->compact_order_failed) 216 return false; 217 218 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 219 zone->compact_considered >= 1UL << zone->compact_defer_shift; 220 } 221 222 /* Returns true if the pageblock should be scanned for pages to isolate. */ 223 static inline bool isolation_suitable(struct compact_control *cc, 224 struct page *page) 225 { 226 if (cc->ignore_skip_hint) 227 return true; 228 229 return !get_pageblock_skip(page); 230 } 231 232 static void reset_cached_positions(struct zone *zone) 233 { 234 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 235 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 236 zone->compact_cached_free_pfn = 237 pageblock_start_pfn(zone_end_pfn(zone) - 1); 238 } 239 240 /* 241 * Compound pages of >= pageblock_order should consistenly be skipped until 242 * released. It is always pointless to compact pages of such order (if they are 243 * migratable), and the pageblocks they occupy cannot contain any free pages. 244 */ 245 static bool pageblock_skip_persistent(struct page *page) 246 { 247 if (!PageCompound(page)) 248 return false; 249 250 page = compound_head(page); 251 252 if (compound_order(page) >= pageblock_order) 253 return true; 254 255 return false; 256 } 257 258 static bool 259 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 260 bool check_target) 261 { 262 struct page *page = pfn_to_online_page(pfn); 263 struct page *block_page; 264 struct page *end_page; 265 unsigned long block_pfn; 266 267 if (!page) 268 return false; 269 if (zone != page_zone(page)) 270 return false; 271 if (pageblock_skip_persistent(page)) 272 return false; 273 274 /* 275 * If skip is already cleared do no further checking once the 276 * restart points have been set. 277 */ 278 if (check_source && check_target && !get_pageblock_skip(page)) 279 return true; 280 281 /* 282 * If clearing skip for the target scanner, do not select a 283 * non-movable pageblock as the starting point. 284 */ 285 if (!check_source && check_target && 286 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 287 return false; 288 289 /* Ensure the start of the pageblock or zone is online and valid */ 290 block_pfn = pageblock_start_pfn(pfn); 291 block_pfn = max(block_pfn, zone->zone_start_pfn); 292 block_page = pfn_to_online_page(block_pfn); 293 if (block_page) { 294 page = block_page; 295 pfn = block_pfn; 296 } 297 298 /* Ensure the end of the pageblock or zone is online and valid */ 299 block_pfn = pageblock_end_pfn(pfn) - 1; 300 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 301 end_page = pfn_to_online_page(block_pfn); 302 if (!end_page) 303 return false; 304 305 /* 306 * Only clear the hint if a sample indicates there is either a 307 * free page or an LRU page in the block. One or other condition 308 * is necessary for the block to be a migration source/target. 309 */ 310 do { 311 if (pfn_valid_within(pfn)) { 312 if (check_source && PageLRU(page)) { 313 clear_pageblock_skip(page); 314 return true; 315 } 316 317 if (check_target && PageBuddy(page)) { 318 clear_pageblock_skip(page); 319 return true; 320 } 321 } 322 323 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 325 } while (page <= end_page); 326 327 return false; 328 } 329 330 /* 331 * This function is called to clear all cached information on pageblocks that 332 * should be skipped for page isolation when the migrate and free page scanner 333 * meet. 334 */ 335 static void __reset_isolation_suitable(struct zone *zone) 336 { 337 unsigned long migrate_pfn = zone->zone_start_pfn; 338 unsigned long free_pfn = zone_end_pfn(zone) - 1; 339 unsigned long reset_migrate = free_pfn; 340 unsigned long reset_free = migrate_pfn; 341 bool source_set = false; 342 bool free_set = false; 343 344 if (!zone->compact_blockskip_flush) 345 return; 346 347 zone->compact_blockskip_flush = false; 348 349 /* 350 * Walk the zone and update pageblock skip information. Source looks 351 * for PageLRU while target looks for PageBuddy. When the scanner 352 * is found, both PageBuddy and PageLRU are checked as the pageblock 353 * is suitable as both source and target. 354 */ 355 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 356 free_pfn -= pageblock_nr_pages) { 357 cond_resched(); 358 359 /* Update the migrate PFN */ 360 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 361 migrate_pfn < reset_migrate) { 362 source_set = true; 363 reset_migrate = migrate_pfn; 364 zone->compact_init_migrate_pfn = reset_migrate; 365 zone->compact_cached_migrate_pfn[0] = reset_migrate; 366 zone->compact_cached_migrate_pfn[1] = reset_migrate; 367 } 368 369 /* Update the free PFN */ 370 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 371 free_pfn > reset_free) { 372 free_set = true; 373 reset_free = free_pfn; 374 zone->compact_init_free_pfn = reset_free; 375 zone->compact_cached_free_pfn = reset_free; 376 } 377 } 378 379 /* Leave no distance if no suitable block was reset */ 380 if (reset_migrate >= reset_free) { 381 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 382 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 383 zone->compact_cached_free_pfn = free_pfn; 384 } 385 } 386 387 void reset_isolation_suitable(pg_data_t *pgdat) 388 { 389 int zoneid; 390 391 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 392 struct zone *zone = &pgdat->node_zones[zoneid]; 393 if (!populated_zone(zone)) 394 continue; 395 396 /* Only flush if a full compaction finished recently */ 397 if (zone->compact_blockskip_flush) 398 __reset_isolation_suitable(zone); 399 } 400 } 401 402 /* 403 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 404 * locks are not required for read/writers. Returns true if it was already set. 405 */ 406 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 407 unsigned long pfn) 408 { 409 bool skip; 410 411 /* Do no update if skip hint is being ignored */ 412 if (cc->ignore_skip_hint) 413 return false; 414 415 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 416 return false; 417 418 skip = get_pageblock_skip(page); 419 if (!skip && !cc->no_set_skip_hint) 420 set_pageblock_skip(page); 421 422 return skip; 423 } 424 425 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 426 { 427 struct zone *zone = cc->zone; 428 429 pfn = pageblock_end_pfn(pfn); 430 431 /* Set for isolation rather than compaction */ 432 if (cc->no_set_skip_hint) 433 return; 434 435 if (pfn > zone->compact_cached_migrate_pfn[0]) 436 zone->compact_cached_migrate_pfn[0] = pfn; 437 if (cc->mode != MIGRATE_ASYNC && 438 pfn > zone->compact_cached_migrate_pfn[1]) 439 zone->compact_cached_migrate_pfn[1] = pfn; 440 } 441 442 /* 443 * If no pages were isolated then mark this pageblock to be skipped in the 444 * future. The information is later cleared by __reset_isolation_suitable(). 445 */ 446 static void update_pageblock_skip(struct compact_control *cc, 447 struct page *page, unsigned long pfn) 448 { 449 struct zone *zone = cc->zone; 450 451 if (cc->no_set_skip_hint) 452 return; 453 454 if (!page) 455 return; 456 457 set_pageblock_skip(page); 458 459 /* Update where async and sync compaction should restart */ 460 if (pfn < zone->compact_cached_free_pfn) 461 zone->compact_cached_free_pfn = pfn; 462 } 463 #else 464 static inline bool isolation_suitable(struct compact_control *cc, 465 struct page *page) 466 { 467 return true; 468 } 469 470 static inline bool pageblock_skip_persistent(struct page *page) 471 { 472 return false; 473 } 474 475 static inline void update_pageblock_skip(struct compact_control *cc, 476 struct page *page, unsigned long pfn) 477 { 478 } 479 480 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 481 { 482 } 483 484 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 485 unsigned long pfn) 486 { 487 return false; 488 } 489 #endif /* CONFIG_COMPACTION */ 490 491 /* 492 * Compaction requires the taking of some coarse locks that are potentially 493 * very heavily contended. For async compaction, trylock and record if the 494 * lock is contended. The lock will still be acquired but compaction will 495 * abort when the current block is finished regardless of success rate. 496 * Sync compaction acquires the lock. 497 * 498 * Always returns true which makes it easier to track lock state in callers. 499 */ 500 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 501 struct compact_control *cc) 502 __acquires(lock) 503 { 504 /* Track if the lock is contended in async mode */ 505 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 506 if (spin_trylock_irqsave(lock, *flags)) 507 return true; 508 509 cc->contended = true; 510 } 511 512 spin_lock_irqsave(lock, *flags); 513 return true; 514 } 515 516 /* 517 * Compaction requires the taking of some coarse locks that are potentially 518 * very heavily contended. The lock should be periodically unlocked to avoid 519 * having disabled IRQs for a long time, even when there is nobody waiting on 520 * the lock. It might also be that allowing the IRQs will result in 521 * need_resched() becoming true. If scheduling is needed, async compaction 522 * aborts. Sync compaction schedules. 523 * Either compaction type will also abort if a fatal signal is pending. 524 * In either case if the lock was locked, it is dropped and not regained. 525 * 526 * Returns true if compaction should abort due to fatal signal pending, or 527 * async compaction due to need_resched() 528 * Returns false when compaction can continue (sync compaction might have 529 * scheduled) 530 */ 531 static bool compact_unlock_should_abort(spinlock_t *lock, 532 unsigned long flags, bool *locked, struct compact_control *cc) 533 { 534 if (*locked) { 535 spin_unlock_irqrestore(lock, flags); 536 *locked = false; 537 } 538 539 if (fatal_signal_pending(current)) { 540 cc->contended = true; 541 return true; 542 } 543 544 cond_resched(); 545 546 return false; 547 } 548 549 /* 550 * Isolate free pages onto a private freelist. If @strict is true, will abort 551 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 552 * (even though it may still end up isolating some pages). 553 */ 554 static unsigned long isolate_freepages_block(struct compact_control *cc, 555 unsigned long *start_pfn, 556 unsigned long end_pfn, 557 struct list_head *freelist, 558 unsigned int stride, 559 bool strict) 560 { 561 int nr_scanned = 0, total_isolated = 0; 562 struct page *cursor; 563 unsigned long flags = 0; 564 bool locked = false; 565 unsigned long blockpfn = *start_pfn; 566 unsigned int order; 567 568 /* Strict mode is for isolation, speed is secondary */ 569 if (strict) 570 stride = 1; 571 572 cursor = pfn_to_page(blockpfn); 573 574 /* Isolate free pages. */ 575 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 576 int isolated; 577 struct page *page = cursor; 578 579 /* 580 * Periodically drop the lock (if held) regardless of its 581 * contention, to give chance to IRQs. Abort if fatal signal 582 * pending or async compaction detects need_resched() 583 */ 584 if (!(blockpfn % SWAP_CLUSTER_MAX) 585 && compact_unlock_should_abort(&cc->zone->lock, flags, 586 &locked, cc)) 587 break; 588 589 nr_scanned++; 590 if (!pfn_valid_within(blockpfn)) 591 goto isolate_fail; 592 593 /* 594 * For compound pages such as THP and hugetlbfs, we can save 595 * potentially a lot of iterations if we skip them at once. 596 * The check is racy, but we can consider only valid values 597 * and the only danger is skipping too much. 598 */ 599 if (PageCompound(page)) { 600 const unsigned int order = compound_order(page); 601 602 if (likely(order < MAX_ORDER)) { 603 blockpfn += (1UL << order) - 1; 604 cursor += (1UL << order) - 1; 605 } 606 goto isolate_fail; 607 } 608 609 if (!PageBuddy(page)) 610 goto isolate_fail; 611 612 /* 613 * If we already hold the lock, we can skip some rechecking. 614 * Note that if we hold the lock now, checked_pageblock was 615 * already set in some previous iteration (or strict is true), 616 * so it is correct to skip the suitable migration target 617 * recheck as well. 618 */ 619 if (!locked) { 620 locked = compact_lock_irqsave(&cc->zone->lock, 621 &flags, cc); 622 623 /* Recheck this is a buddy page under lock */ 624 if (!PageBuddy(page)) 625 goto isolate_fail; 626 } 627 628 /* Found a free page, will break it into order-0 pages */ 629 order = page_order(page); 630 isolated = __isolate_free_page(page, order); 631 if (!isolated) 632 break; 633 set_page_private(page, order); 634 635 total_isolated += isolated; 636 cc->nr_freepages += isolated; 637 list_add_tail(&page->lru, freelist); 638 639 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 640 blockpfn += isolated; 641 break; 642 } 643 /* Advance to the end of split page */ 644 blockpfn += isolated - 1; 645 cursor += isolated - 1; 646 continue; 647 648 isolate_fail: 649 if (strict) 650 break; 651 else 652 continue; 653 654 } 655 656 if (locked) 657 spin_unlock_irqrestore(&cc->zone->lock, flags); 658 659 /* 660 * There is a tiny chance that we have read bogus compound_order(), 661 * so be careful to not go outside of the pageblock. 662 */ 663 if (unlikely(blockpfn > end_pfn)) 664 blockpfn = end_pfn; 665 666 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 667 nr_scanned, total_isolated); 668 669 /* Record how far we have got within the block */ 670 *start_pfn = blockpfn; 671 672 /* 673 * If strict isolation is requested by CMA then check that all the 674 * pages requested were isolated. If there were any failures, 0 is 675 * returned and CMA will fail. 676 */ 677 if (strict && blockpfn < end_pfn) 678 total_isolated = 0; 679 680 cc->total_free_scanned += nr_scanned; 681 if (total_isolated) 682 count_compact_events(COMPACTISOLATED, total_isolated); 683 return total_isolated; 684 } 685 686 /** 687 * isolate_freepages_range() - isolate free pages. 688 * @cc: Compaction control structure. 689 * @start_pfn: The first PFN to start isolating. 690 * @end_pfn: The one-past-last PFN. 691 * 692 * Non-free pages, invalid PFNs, or zone boundaries within the 693 * [start_pfn, end_pfn) range are considered errors, cause function to 694 * undo its actions and return zero. 695 * 696 * Otherwise, function returns one-past-the-last PFN of isolated page 697 * (which may be greater then end_pfn if end fell in a middle of 698 * a free page). 699 */ 700 unsigned long 701 isolate_freepages_range(struct compact_control *cc, 702 unsigned long start_pfn, unsigned long end_pfn) 703 { 704 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 705 LIST_HEAD(freelist); 706 707 pfn = start_pfn; 708 block_start_pfn = pageblock_start_pfn(pfn); 709 if (block_start_pfn < cc->zone->zone_start_pfn) 710 block_start_pfn = cc->zone->zone_start_pfn; 711 block_end_pfn = pageblock_end_pfn(pfn); 712 713 for (; pfn < end_pfn; pfn += isolated, 714 block_start_pfn = block_end_pfn, 715 block_end_pfn += pageblock_nr_pages) { 716 /* Protect pfn from changing by isolate_freepages_block */ 717 unsigned long isolate_start_pfn = pfn; 718 719 block_end_pfn = min(block_end_pfn, end_pfn); 720 721 /* 722 * pfn could pass the block_end_pfn if isolated freepage 723 * is more than pageblock order. In this case, we adjust 724 * scanning range to right one. 725 */ 726 if (pfn >= block_end_pfn) { 727 block_start_pfn = pageblock_start_pfn(pfn); 728 block_end_pfn = pageblock_end_pfn(pfn); 729 block_end_pfn = min(block_end_pfn, end_pfn); 730 } 731 732 if (!pageblock_pfn_to_page(block_start_pfn, 733 block_end_pfn, cc->zone)) 734 break; 735 736 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 737 block_end_pfn, &freelist, 0, true); 738 739 /* 740 * In strict mode, isolate_freepages_block() returns 0 if 741 * there are any holes in the block (ie. invalid PFNs or 742 * non-free pages). 743 */ 744 if (!isolated) 745 break; 746 747 /* 748 * If we managed to isolate pages, it is always (1 << n) * 749 * pageblock_nr_pages for some non-negative n. (Max order 750 * page may span two pageblocks). 751 */ 752 } 753 754 /* __isolate_free_page() does not map the pages */ 755 split_map_pages(&freelist); 756 757 if (pfn < end_pfn) { 758 /* Loop terminated early, cleanup. */ 759 release_freepages(&freelist); 760 return 0; 761 } 762 763 /* We don't use freelists for anything. */ 764 return pfn; 765 } 766 767 /* Similar to reclaim, but different enough that they don't share logic */ 768 static bool too_many_isolated(pg_data_t *pgdat) 769 { 770 unsigned long active, inactive, isolated; 771 772 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 773 node_page_state(pgdat, NR_INACTIVE_ANON); 774 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 775 node_page_state(pgdat, NR_ACTIVE_ANON); 776 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 777 node_page_state(pgdat, NR_ISOLATED_ANON); 778 779 return isolated > (inactive + active) / 2; 780 } 781 782 /** 783 * isolate_migratepages_block() - isolate all migrate-able pages within 784 * a single pageblock 785 * @cc: Compaction control structure. 786 * @low_pfn: The first PFN to isolate 787 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 788 * @isolate_mode: Isolation mode to be used. 789 * 790 * Isolate all pages that can be migrated from the range specified by 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 792 * Returns zero if there is a fatal signal pending, otherwise PFN of the 793 * first page that was not scanned (which may be both less, equal to or more 794 * than end_pfn). 795 * 796 * The pages are isolated on cc->migratepages list (not required to be empty), 797 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 798 * is neither read nor updated. 799 */ 800 static unsigned long 801 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 802 unsigned long end_pfn, isolate_mode_t isolate_mode) 803 { 804 pg_data_t *pgdat = cc->zone->zone_pgdat; 805 unsigned long nr_scanned = 0, nr_isolated = 0; 806 struct lruvec *lruvec; 807 unsigned long flags = 0; 808 bool locked = false; 809 struct page *page = NULL, *valid_page = NULL; 810 unsigned long start_pfn = low_pfn; 811 bool skip_on_failure = false; 812 unsigned long next_skip_pfn = 0; 813 bool skip_updated = false; 814 815 /* 816 * Ensure that there are not too many pages isolated from the LRU 817 * list by either parallel reclaimers or compaction. If there are, 818 * delay for some time until fewer pages are isolated 819 */ 820 while (unlikely(too_many_isolated(pgdat))) { 821 /* async migration should just abort */ 822 if (cc->mode == MIGRATE_ASYNC) 823 return 0; 824 825 congestion_wait(BLK_RW_ASYNC, HZ/10); 826 827 if (fatal_signal_pending(current)) 828 return 0; 829 } 830 831 cond_resched(); 832 833 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 834 skip_on_failure = true; 835 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 836 } 837 838 /* Time to isolate some pages for migration */ 839 for (; low_pfn < end_pfn; low_pfn++) { 840 841 if (skip_on_failure && low_pfn >= next_skip_pfn) { 842 /* 843 * We have isolated all migration candidates in the 844 * previous order-aligned block, and did not skip it due 845 * to failure. We should migrate the pages now and 846 * hopefully succeed compaction. 847 */ 848 if (nr_isolated) 849 break; 850 851 /* 852 * We failed to isolate in the previous order-aligned 853 * block. Set the new boundary to the end of the 854 * current block. Note we can't simply increase 855 * next_skip_pfn by 1 << order, as low_pfn might have 856 * been incremented by a higher number due to skipping 857 * a compound or a high-order buddy page in the 858 * previous loop iteration. 859 */ 860 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 861 } 862 863 /* 864 * Periodically drop the lock (if held) regardless of its 865 * contention, to give chance to IRQs. Abort completely if 866 * a fatal signal is pending. 867 */ 868 if (!(low_pfn % SWAP_CLUSTER_MAX) 869 && compact_unlock_should_abort(&pgdat->lru_lock, 870 flags, &locked, cc)) { 871 low_pfn = 0; 872 goto fatal_pending; 873 } 874 875 if (!pfn_valid_within(low_pfn)) 876 goto isolate_fail; 877 nr_scanned++; 878 879 page = pfn_to_page(low_pfn); 880 881 /* 882 * Check if the pageblock has already been marked skipped. 883 * Only the aligned PFN is checked as the caller isolates 884 * COMPACT_CLUSTER_MAX at a time so the second call must 885 * not falsely conclude that the block should be skipped. 886 */ 887 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 888 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 889 low_pfn = end_pfn; 890 goto isolate_abort; 891 } 892 valid_page = page; 893 } 894 895 /* 896 * Skip if free. We read page order here without zone lock 897 * which is generally unsafe, but the race window is small and 898 * the worst thing that can happen is that we skip some 899 * potential isolation targets. 900 */ 901 if (PageBuddy(page)) { 902 unsigned long freepage_order = page_order_unsafe(page); 903 904 /* 905 * Without lock, we cannot be sure that what we got is 906 * a valid page order. Consider only values in the 907 * valid order range to prevent low_pfn overflow. 908 */ 909 if (freepage_order > 0 && freepage_order < MAX_ORDER) 910 low_pfn += (1UL << freepage_order) - 1; 911 continue; 912 } 913 914 /* 915 * Regardless of being on LRU, compound pages such as THP and 916 * hugetlbfs are not to be compacted unless we are attempting 917 * an allocation much larger than the huge page size (eg CMA). 918 * We can potentially save a lot of iterations if we skip them 919 * at once. The check is racy, but we can consider only valid 920 * values and the only danger is skipping too much. 921 */ 922 if (PageCompound(page) && !cc->alloc_contig) { 923 const unsigned int order = compound_order(page); 924 925 if (likely(order < MAX_ORDER)) 926 low_pfn += (1UL << order) - 1; 927 goto isolate_fail; 928 } 929 930 /* 931 * Check may be lockless but that's ok as we recheck later. 932 * It's possible to migrate LRU and non-lru movable pages. 933 * Skip any other type of page 934 */ 935 if (!PageLRU(page)) { 936 /* 937 * __PageMovable can return false positive so we need 938 * to verify it under page_lock. 939 */ 940 if (unlikely(__PageMovable(page)) && 941 !PageIsolated(page)) { 942 if (locked) { 943 spin_unlock_irqrestore(&pgdat->lru_lock, 944 flags); 945 locked = false; 946 } 947 948 if (!isolate_movable_page(page, isolate_mode)) 949 goto isolate_success; 950 } 951 952 goto isolate_fail; 953 } 954 955 /* 956 * Migration will fail if an anonymous page is pinned in memory, 957 * so avoid taking lru_lock and isolating it unnecessarily in an 958 * admittedly racy check. 959 */ 960 if (!page_mapping(page) && 961 page_count(page) > page_mapcount(page)) 962 goto isolate_fail; 963 964 /* 965 * Only allow to migrate anonymous pages in GFP_NOFS context 966 * because those do not depend on fs locks. 967 */ 968 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 969 goto isolate_fail; 970 971 /* If we already hold the lock, we can skip some rechecking */ 972 if (!locked) { 973 locked = compact_lock_irqsave(&pgdat->lru_lock, 974 &flags, cc); 975 976 /* Try get exclusive access under lock */ 977 if (!skip_updated) { 978 skip_updated = true; 979 if (test_and_set_skip(cc, page, low_pfn)) 980 goto isolate_abort; 981 } 982 983 /* Recheck PageLRU and PageCompound under lock */ 984 if (!PageLRU(page)) 985 goto isolate_fail; 986 987 /* 988 * Page become compound since the non-locked check, 989 * and it's on LRU. It can only be a THP so the order 990 * is safe to read and it's 0 for tail pages. 991 */ 992 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 993 low_pfn += compound_nr(page) - 1; 994 goto isolate_fail; 995 } 996 } 997 998 lruvec = mem_cgroup_page_lruvec(page, pgdat); 999 1000 /* Try isolate the page */ 1001 if (__isolate_lru_page(page, isolate_mode) != 0) 1002 goto isolate_fail; 1003 1004 /* The whole page is taken off the LRU; skip the tail pages. */ 1005 if (PageCompound(page)) 1006 low_pfn += compound_nr(page) - 1; 1007 1008 /* Successfully isolated */ 1009 del_page_from_lru_list(page, lruvec, page_lru(page)); 1010 mod_node_page_state(page_pgdat(page), 1011 NR_ISOLATED_ANON + page_is_file_lru(page), 1012 thp_nr_pages(page)); 1013 1014 isolate_success: 1015 list_add(&page->lru, &cc->migratepages); 1016 cc->nr_migratepages++; 1017 nr_isolated++; 1018 1019 /* 1020 * Avoid isolating too much unless this block is being 1021 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1022 * or a lock is contended. For contention, isolate quickly to 1023 * potentially remove one source of contention. 1024 */ 1025 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1026 !cc->rescan && !cc->contended) { 1027 ++low_pfn; 1028 break; 1029 } 1030 1031 continue; 1032 isolate_fail: 1033 if (!skip_on_failure) 1034 continue; 1035 1036 /* 1037 * We have isolated some pages, but then failed. Release them 1038 * instead of migrating, as we cannot form the cc->order buddy 1039 * page anyway. 1040 */ 1041 if (nr_isolated) { 1042 if (locked) { 1043 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1044 locked = false; 1045 } 1046 putback_movable_pages(&cc->migratepages); 1047 cc->nr_migratepages = 0; 1048 nr_isolated = 0; 1049 } 1050 1051 if (low_pfn < next_skip_pfn) { 1052 low_pfn = next_skip_pfn - 1; 1053 /* 1054 * The check near the loop beginning would have updated 1055 * next_skip_pfn too, but this is a bit simpler. 1056 */ 1057 next_skip_pfn += 1UL << cc->order; 1058 } 1059 } 1060 1061 /* 1062 * The PageBuddy() check could have potentially brought us outside 1063 * the range to be scanned. 1064 */ 1065 if (unlikely(low_pfn > end_pfn)) 1066 low_pfn = end_pfn; 1067 1068 isolate_abort: 1069 if (locked) 1070 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1071 1072 /* 1073 * Updated the cached scanner pfn once the pageblock has been scanned 1074 * Pages will either be migrated in which case there is no point 1075 * scanning in the near future or migration failed in which case the 1076 * failure reason may persist. The block is marked for skipping if 1077 * there were no pages isolated in the block or if the block is 1078 * rescanned twice in a row. 1079 */ 1080 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1081 if (valid_page && !skip_updated) 1082 set_pageblock_skip(valid_page); 1083 update_cached_migrate(cc, low_pfn); 1084 } 1085 1086 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1087 nr_scanned, nr_isolated); 1088 1089 fatal_pending: 1090 cc->total_migrate_scanned += nr_scanned; 1091 if (nr_isolated) 1092 count_compact_events(COMPACTISOLATED, nr_isolated); 1093 1094 return low_pfn; 1095 } 1096 1097 /** 1098 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1099 * @cc: Compaction control structure. 1100 * @start_pfn: The first PFN to start isolating. 1101 * @end_pfn: The one-past-last PFN. 1102 * 1103 * Returns zero if isolation fails fatally due to e.g. pending signal. 1104 * Otherwise, function returns one-past-the-last PFN of isolated page 1105 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1106 */ 1107 unsigned long 1108 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1109 unsigned long end_pfn) 1110 { 1111 unsigned long pfn, block_start_pfn, block_end_pfn; 1112 1113 /* Scan block by block. First and last block may be incomplete */ 1114 pfn = start_pfn; 1115 block_start_pfn = pageblock_start_pfn(pfn); 1116 if (block_start_pfn < cc->zone->zone_start_pfn) 1117 block_start_pfn = cc->zone->zone_start_pfn; 1118 block_end_pfn = pageblock_end_pfn(pfn); 1119 1120 for (; pfn < end_pfn; pfn = block_end_pfn, 1121 block_start_pfn = block_end_pfn, 1122 block_end_pfn += pageblock_nr_pages) { 1123 1124 block_end_pfn = min(block_end_pfn, end_pfn); 1125 1126 if (!pageblock_pfn_to_page(block_start_pfn, 1127 block_end_pfn, cc->zone)) 1128 continue; 1129 1130 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1131 ISOLATE_UNEVICTABLE); 1132 1133 if (!pfn) 1134 break; 1135 1136 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1137 break; 1138 } 1139 1140 return pfn; 1141 } 1142 1143 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1144 #ifdef CONFIG_COMPACTION 1145 1146 static bool suitable_migration_source(struct compact_control *cc, 1147 struct page *page) 1148 { 1149 int block_mt; 1150 1151 if (pageblock_skip_persistent(page)) 1152 return false; 1153 1154 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1155 return true; 1156 1157 block_mt = get_pageblock_migratetype(page); 1158 1159 if (cc->migratetype == MIGRATE_MOVABLE) 1160 return is_migrate_movable(block_mt); 1161 else 1162 return block_mt == cc->migratetype; 1163 } 1164 1165 /* Returns true if the page is within a block suitable for migration to */ 1166 static bool suitable_migration_target(struct compact_control *cc, 1167 struct page *page) 1168 { 1169 /* If the page is a large free page, then disallow migration */ 1170 if (PageBuddy(page)) { 1171 /* 1172 * We are checking page_order without zone->lock taken. But 1173 * the only small danger is that we skip a potentially suitable 1174 * pageblock, so it's not worth to check order for valid range. 1175 */ 1176 if (page_order_unsafe(page) >= pageblock_order) 1177 return false; 1178 } 1179 1180 if (cc->ignore_block_suitable) 1181 return true; 1182 1183 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1184 if (is_migrate_movable(get_pageblock_migratetype(page))) 1185 return true; 1186 1187 /* Otherwise skip the block */ 1188 return false; 1189 } 1190 1191 static inline unsigned int 1192 freelist_scan_limit(struct compact_control *cc) 1193 { 1194 unsigned short shift = BITS_PER_LONG - 1; 1195 1196 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1197 } 1198 1199 /* 1200 * Test whether the free scanner has reached the same or lower pageblock than 1201 * the migration scanner, and compaction should thus terminate. 1202 */ 1203 static inline bool compact_scanners_met(struct compact_control *cc) 1204 { 1205 return (cc->free_pfn >> pageblock_order) 1206 <= (cc->migrate_pfn >> pageblock_order); 1207 } 1208 1209 /* 1210 * Used when scanning for a suitable migration target which scans freelists 1211 * in reverse. Reorders the list such as the unscanned pages are scanned 1212 * first on the next iteration of the free scanner 1213 */ 1214 static void 1215 move_freelist_head(struct list_head *freelist, struct page *freepage) 1216 { 1217 LIST_HEAD(sublist); 1218 1219 if (!list_is_last(freelist, &freepage->lru)) { 1220 list_cut_before(&sublist, freelist, &freepage->lru); 1221 if (!list_empty(&sublist)) 1222 list_splice_tail(&sublist, freelist); 1223 } 1224 } 1225 1226 /* 1227 * Similar to move_freelist_head except used by the migration scanner 1228 * when scanning forward. It's possible for these list operations to 1229 * move against each other if they search the free list exactly in 1230 * lockstep. 1231 */ 1232 static void 1233 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1234 { 1235 LIST_HEAD(sublist); 1236 1237 if (!list_is_first(freelist, &freepage->lru)) { 1238 list_cut_position(&sublist, freelist, &freepage->lru); 1239 if (!list_empty(&sublist)) 1240 list_splice_tail(&sublist, freelist); 1241 } 1242 } 1243 1244 static void 1245 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1246 { 1247 unsigned long start_pfn, end_pfn; 1248 struct page *page = pfn_to_page(pfn); 1249 1250 /* Do not search around if there are enough pages already */ 1251 if (cc->nr_freepages >= cc->nr_migratepages) 1252 return; 1253 1254 /* Minimise scanning during async compaction */ 1255 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1256 return; 1257 1258 /* Pageblock boundaries */ 1259 start_pfn = pageblock_start_pfn(pfn); 1260 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1261 1262 /* Scan before */ 1263 if (start_pfn != pfn) { 1264 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1265 if (cc->nr_freepages >= cc->nr_migratepages) 1266 return; 1267 } 1268 1269 /* Scan after */ 1270 start_pfn = pfn + nr_isolated; 1271 if (start_pfn < end_pfn) 1272 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1273 1274 /* Skip this pageblock in the future as it's full or nearly full */ 1275 if (cc->nr_freepages < cc->nr_migratepages) 1276 set_pageblock_skip(page); 1277 } 1278 1279 /* Search orders in round-robin fashion */ 1280 static int next_search_order(struct compact_control *cc, int order) 1281 { 1282 order--; 1283 if (order < 0) 1284 order = cc->order - 1; 1285 1286 /* Search wrapped around? */ 1287 if (order == cc->search_order) { 1288 cc->search_order--; 1289 if (cc->search_order < 0) 1290 cc->search_order = cc->order - 1; 1291 return -1; 1292 } 1293 1294 return order; 1295 } 1296 1297 static unsigned long 1298 fast_isolate_freepages(struct compact_control *cc) 1299 { 1300 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1301 unsigned int nr_scanned = 0; 1302 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1303 unsigned long nr_isolated = 0; 1304 unsigned long distance; 1305 struct page *page = NULL; 1306 bool scan_start = false; 1307 int order; 1308 1309 /* Full compaction passes in a negative order */ 1310 if (cc->order <= 0) 1311 return cc->free_pfn; 1312 1313 /* 1314 * If starting the scan, use a deeper search and use the highest 1315 * PFN found if a suitable one is not found. 1316 */ 1317 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1318 limit = pageblock_nr_pages >> 1; 1319 scan_start = true; 1320 } 1321 1322 /* 1323 * Preferred point is in the top quarter of the scan space but take 1324 * a pfn from the top half if the search is problematic. 1325 */ 1326 distance = (cc->free_pfn - cc->migrate_pfn); 1327 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1328 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1329 1330 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1331 low_pfn = min_pfn; 1332 1333 /* 1334 * Search starts from the last successful isolation order or the next 1335 * order to search after a previous failure 1336 */ 1337 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1338 1339 for (order = cc->search_order; 1340 !page && order >= 0; 1341 order = next_search_order(cc, order)) { 1342 struct free_area *area = &cc->zone->free_area[order]; 1343 struct list_head *freelist; 1344 struct page *freepage; 1345 unsigned long flags; 1346 unsigned int order_scanned = 0; 1347 1348 if (!area->nr_free) 1349 continue; 1350 1351 spin_lock_irqsave(&cc->zone->lock, flags); 1352 freelist = &area->free_list[MIGRATE_MOVABLE]; 1353 list_for_each_entry_reverse(freepage, freelist, lru) { 1354 unsigned long pfn; 1355 1356 order_scanned++; 1357 nr_scanned++; 1358 pfn = page_to_pfn(freepage); 1359 1360 if (pfn >= highest) 1361 highest = pageblock_start_pfn(pfn); 1362 1363 if (pfn >= low_pfn) { 1364 cc->fast_search_fail = 0; 1365 cc->search_order = order; 1366 page = freepage; 1367 break; 1368 } 1369 1370 if (pfn >= min_pfn && pfn > high_pfn) { 1371 high_pfn = pfn; 1372 1373 /* Shorten the scan if a candidate is found */ 1374 limit >>= 1; 1375 } 1376 1377 if (order_scanned >= limit) 1378 break; 1379 } 1380 1381 /* Use a minimum pfn if a preferred one was not found */ 1382 if (!page && high_pfn) { 1383 page = pfn_to_page(high_pfn); 1384 1385 /* Update freepage for the list reorder below */ 1386 freepage = page; 1387 } 1388 1389 /* Reorder to so a future search skips recent pages */ 1390 move_freelist_head(freelist, freepage); 1391 1392 /* Isolate the page if available */ 1393 if (page) { 1394 if (__isolate_free_page(page, order)) { 1395 set_page_private(page, order); 1396 nr_isolated = 1 << order; 1397 cc->nr_freepages += nr_isolated; 1398 list_add_tail(&page->lru, &cc->freepages); 1399 count_compact_events(COMPACTISOLATED, nr_isolated); 1400 } else { 1401 /* If isolation fails, abort the search */ 1402 order = cc->search_order + 1; 1403 page = NULL; 1404 } 1405 } 1406 1407 spin_unlock_irqrestore(&cc->zone->lock, flags); 1408 1409 /* 1410 * Smaller scan on next order so the total scan ig related 1411 * to freelist_scan_limit. 1412 */ 1413 if (order_scanned >= limit) 1414 limit = min(1U, limit >> 1); 1415 } 1416 1417 if (!page) { 1418 cc->fast_search_fail++; 1419 if (scan_start) { 1420 /* 1421 * Use the highest PFN found above min. If one was 1422 * not found, be pessimistic for direct compaction 1423 * and use the min mark. 1424 */ 1425 if (highest) { 1426 page = pfn_to_page(highest); 1427 cc->free_pfn = highest; 1428 } else { 1429 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1430 page = pageblock_pfn_to_page(min_pfn, 1431 pageblock_end_pfn(min_pfn), 1432 cc->zone); 1433 cc->free_pfn = min_pfn; 1434 } 1435 } 1436 } 1437 } 1438 1439 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1440 highest -= pageblock_nr_pages; 1441 cc->zone->compact_cached_free_pfn = highest; 1442 } 1443 1444 cc->total_free_scanned += nr_scanned; 1445 if (!page) 1446 return cc->free_pfn; 1447 1448 low_pfn = page_to_pfn(page); 1449 fast_isolate_around(cc, low_pfn, nr_isolated); 1450 return low_pfn; 1451 } 1452 1453 /* 1454 * Based on information in the current compact_control, find blocks 1455 * suitable for isolating free pages from and then isolate them. 1456 */ 1457 static void isolate_freepages(struct compact_control *cc) 1458 { 1459 struct zone *zone = cc->zone; 1460 struct page *page; 1461 unsigned long block_start_pfn; /* start of current pageblock */ 1462 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1463 unsigned long block_end_pfn; /* end of current pageblock */ 1464 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1465 struct list_head *freelist = &cc->freepages; 1466 unsigned int stride; 1467 1468 /* Try a small search of the free lists for a candidate */ 1469 isolate_start_pfn = fast_isolate_freepages(cc); 1470 if (cc->nr_freepages) 1471 goto splitmap; 1472 1473 /* 1474 * Initialise the free scanner. The starting point is where we last 1475 * successfully isolated from, zone-cached value, or the end of the 1476 * zone when isolating for the first time. For looping we also need 1477 * this pfn aligned down to the pageblock boundary, because we do 1478 * block_start_pfn -= pageblock_nr_pages in the for loop. 1479 * For ending point, take care when isolating in last pageblock of a 1480 * zone which ends in the middle of a pageblock. 1481 * The low boundary is the end of the pageblock the migration scanner 1482 * is using. 1483 */ 1484 isolate_start_pfn = cc->free_pfn; 1485 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1486 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1487 zone_end_pfn(zone)); 1488 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1489 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1490 1491 /* 1492 * Isolate free pages until enough are available to migrate the 1493 * pages on cc->migratepages. We stop searching if the migrate 1494 * and free page scanners meet or enough free pages are isolated. 1495 */ 1496 for (; block_start_pfn >= low_pfn; 1497 block_end_pfn = block_start_pfn, 1498 block_start_pfn -= pageblock_nr_pages, 1499 isolate_start_pfn = block_start_pfn) { 1500 unsigned long nr_isolated; 1501 1502 /* 1503 * This can iterate a massively long zone without finding any 1504 * suitable migration targets, so periodically check resched. 1505 */ 1506 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1507 cond_resched(); 1508 1509 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1510 zone); 1511 if (!page) 1512 continue; 1513 1514 /* Check the block is suitable for migration */ 1515 if (!suitable_migration_target(cc, page)) 1516 continue; 1517 1518 /* If isolation recently failed, do not retry */ 1519 if (!isolation_suitable(cc, page)) 1520 continue; 1521 1522 /* Found a block suitable for isolating free pages from. */ 1523 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1524 block_end_pfn, freelist, stride, false); 1525 1526 /* Update the skip hint if the full pageblock was scanned */ 1527 if (isolate_start_pfn == block_end_pfn) 1528 update_pageblock_skip(cc, page, block_start_pfn); 1529 1530 /* Are enough freepages isolated? */ 1531 if (cc->nr_freepages >= cc->nr_migratepages) { 1532 if (isolate_start_pfn >= block_end_pfn) { 1533 /* 1534 * Restart at previous pageblock if more 1535 * freepages can be isolated next time. 1536 */ 1537 isolate_start_pfn = 1538 block_start_pfn - pageblock_nr_pages; 1539 } 1540 break; 1541 } else if (isolate_start_pfn < block_end_pfn) { 1542 /* 1543 * If isolation failed early, do not continue 1544 * needlessly. 1545 */ 1546 break; 1547 } 1548 1549 /* Adjust stride depending on isolation */ 1550 if (nr_isolated) { 1551 stride = 1; 1552 continue; 1553 } 1554 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1555 } 1556 1557 /* 1558 * Record where the free scanner will restart next time. Either we 1559 * broke from the loop and set isolate_start_pfn based on the last 1560 * call to isolate_freepages_block(), or we met the migration scanner 1561 * and the loop terminated due to isolate_start_pfn < low_pfn 1562 */ 1563 cc->free_pfn = isolate_start_pfn; 1564 1565 splitmap: 1566 /* __isolate_free_page() does not map the pages */ 1567 split_map_pages(freelist); 1568 } 1569 1570 /* 1571 * This is a migrate-callback that "allocates" freepages by taking pages 1572 * from the isolated freelists in the block we are migrating to. 1573 */ 1574 static struct page *compaction_alloc(struct page *migratepage, 1575 unsigned long data) 1576 { 1577 struct compact_control *cc = (struct compact_control *)data; 1578 struct page *freepage; 1579 1580 if (list_empty(&cc->freepages)) { 1581 isolate_freepages(cc); 1582 1583 if (list_empty(&cc->freepages)) 1584 return NULL; 1585 } 1586 1587 freepage = list_entry(cc->freepages.next, struct page, lru); 1588 list_del(&freepage->lru); 1589 cc->nr_freepages--; 1590 1591 return freepage; 1592 } 1593 1594 /* 1595 * This is a migrate-callback that "frees" freepages back to the isolated 1596 * freelist. All pages on the freelist are from the same zone, so there is no 1597 * special handling needed for NUMA. 1598 */ 1599 static void compaction_free(struct page *page, unsigned long data) 1600 { 1601 struct compact_control *cc = (struct compact_control *)data; 1602 1603 list_add(&page->lru, &cc->freepages); 1604 cc->nr_freepages++; 1605 } 1606 1607 /* possible outcome of isolate_migratepages */ 1608 typedef enum { 1609 ISOLATE_ABORT, /* Abort compaction now */ 1610 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1611 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1612 } isolate_migrate_t; 1613 1614 /* 1615 * Allow userspace to control policy on scanning the unevictable LRU for 1616 * compactable pages. 1617 */ 1618 #ifdef CONFIG_PREEMPT_RT 1619 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1620 #else 1621 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1622 #endif 1623 1624 static inline void 1625 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1626 { 1627 if (cc->fast_start_pfn == ULONG_MAX) 1628 return; 1629 1630 if (!cc->fast_start_pfn) 1631 cc->fast_start_pfn = pfn; 1632 1633 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1634 } 1635 1636 static inline unsigned long 1637 reinit_migrate_pfn(struct compact_control *cc) 1638 { 1639 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1640 return cc->migrate_pfn; 1641 1642 cc->migrate_pfn = cc->fast_start_pfn; 1643 cc->fast_start_pfn = ULONG_MAX; 1644 1645 return cc->migrate_pfn; 1646 } 1647 1648 /* 1649 * Briefly search the free lists for a migration source that already has 1650 * some free pages to reduce the number of pages that need migration 1651 * before a pageblock is free. 1652 */ 1653 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1654 { 1655 unsigned int limit = freelist_scan_limit(cc); 1656 unsigned int nr_scanned = 0; 1657 unsigned long distance; 1658 unsigned long pfn = cc->migrate_pfn; 1659 unsigned long high_pfn; 1660 int order; 1661 1662 /* Skip hints are relied on to avoid repeats on the fast search */ 1663 if (cc->ignore_skip_hint) 1664 return pfn; 1665 1666 /* 1667 * If the migrate_pfn is not at the start of a zone or the start 1668 * of a pageblock then assume this is a continuation of a previous 1669 * scan restarted due to COMPACT_CLUSTER_MAX. 1670 */ 1671 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1672 return pfn; 1673 1674 /* 1675 * For smaller orders, just linearly scan as the number of pages 1676 * to migrate should be relatively small and does not necessarily 1677 * justify freeing up a large block for a small allocation. 1678 */ 1679 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1680 return pfn; 1681 1682 /* 1683 * Only allow kcompactd and direct requests for movable pages to 1684 * quickly clear out a MOVABLE pageblock for allocation. This 1685 * reduces the risk that a large movable pageblock is freed for 1686 * an unmovable/reclaimable small allocation. 1687 */ 1688 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1689 return pfn; 1690 1691 /* 1692 * When starting the migration scanner, pick any pageblock within the 1693 * first half of the search space. Otherwise try and pick a pageblock 1694 * within the first eighth to reduce the chances that a migration 1695 * target later becomes a source. 1696 */ 1697 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1698 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1699 distance >>= 2; 1700 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1701 1702 for (order = cc->order - 1; 1703 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1704 order--) { 1705 struct free_area *area = &cc->zone->free_area[order]; 1706 struct list_head *freelist; 1707 unsigned long flags; 1708 struct page *freepage; 1709 1710 if (!area->nr_free) 1711 continue; 1712 1713 spin_lock_irqsave(&cc->zone->lock, flags); 1714 freelist = &area->free_list[MIGRATE_MOVABLE]; 1715 list_for_each_entry(freepage, freelist, lru) { 1716 unsigned long free_pfn; 1717 1718 nr_scanned++; 1719 free_pfn = page_to_pfn(freepage); 1720 if (free_pfn < high_pfn) { 1721 /* 1722 * Avoid if skipped recently. Ideally it would 1723 * move to the tail but even safe iteration of 1724 * the list assumes an entry is deleted, not 1725 * reordered. 1726 */ 1727 if (get_pageblock_skip(freepage)) { 1728 if (list_is_last(freelist, &freepage->lru)) 1729 break; 1730 1731 continue; 1732 } 1733 1734 /* Reorder to so a future search skips recent pages */ 1735 move_freelist_tail(freelist, freepage); 1736 1737 update_fast_start_pfn(cc, free_pfn); 1738 pfn = pageblock_start_pfn(free_pfn); 1739 cc->fast_search_fail = 0; 1740 set_pageblock_skip(freepage); 1741 break; 1742 } 1743 1744 if (nr_scanned >= limit) { 1745 cc->fast_search_fail++; 1746 move_freelist_tail(freelist, freepage); 1747 break; 1748 } 1749 } 1750 spin_unlock_irqrestore(&cc->zone->lock, flags); 1751 } 1752 1753 cc->total_migrate_scanned += nr_scanned; 1754 1755 /* 1756 * If fast scanning failed then use a cached entry for a page block 1757 * that had free pages as the basis for starting a linear scan. 1758 */ 1759 if (pfn == cc->migrate_pfn) 1760 pfn = reinit_migrate_pfn(cc); 1761 1762 return pfn; 1763 } 1764 1765 /* 1766 * Isolate all pages that can be migrated from the first suitable block, 1767 * starting at the block pointed to by the migrate scanner pfn within 1768 * compact_control. 1769 */ 1770 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1771 { 1772 unsigned long block_start_pfn; 1773 unsigned long block_end_pfn; 1774 unsigned long low_pfn; 1775 struct page *page; 1776 const isolate_mode_t isolate_mode = 1777 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1778 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1779 bool fast_find_block; 1780 1781 /* 1782 * Start at where we last stopped, or beginning of the zone as 1783 * initialized by compact_zone(). The first failure will use 1784 * the lowest PFN as the starting point for linear scanning. 1785 */ 1786 low_pfn = fast_find_migrateblock(cc); 1787 block_start_pfn = pageblock_start_pfn(low_pfn); 1788 if (block_start_pfn < cc->zone->zone_start_pfn) 1789 block_start_pfn = cc->zone->zone_start_pfn; 1790 1791 /* 1792 * fast_find_migrateblock marks a pageblock skipped so to avoid 1793 * the isolation_suitable check below, check whether the fast 1794 * search was successful. 1795 */ 1796 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1797 1798 /* Only scan within a pageblock boundary */ 1799 block_end_pfn = pageblock_end_pfn(low_pfn); 1800 1801 /* 1802 * Iterate over whole pageblocks until we find the first suitable. 1803 * Do not cross the free scanner. 1804 */ 1805 for (; block_end_pfn <= cc->free_pfn; 1806 fast_find_block = false, 1807 low_pfn = block_end_pfn, 1808 block_start_pfn = block_end_pfn, 1809 block_end_pfn += pageblock_nr_pages) { 1810 1811 /* 1812 * This can potentially iterate a massively long zone with 1813 * many pageblocks unsuitable, so periodically check if we 1814 * need to schedule. 1815 */ 1816 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1817 cond_resched(); 1818 1819 page = pageblock_pfn_to_page(block_start_pfn, 1820 block_end_pfn, cc->zone); 1821 if (!page) 1822 continue; 1823 1824 /* 1825 * If isolation recently failed, do not retry. Only check the 1826 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1827 * to be visited multiple times. Assume skip was checked 1828 * before making it "skip" so other compaction instances do 1829 * not scan the same block. 1830 */ 1831 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1832 !fast_find_block && !isolation_suitable(cc, page)) 1833 continue; 1834 1835 /* 1836 * For async compaction, also only scan in MOVABLE blocks 1837 * without huge pages. Async compaction is optimistic to see 1838 * if the minimum amount of work satisfies the allocation. 1839 * The cached PFN is updated as it's possible that all 1840 * remaining blocks between source and target are unsuitable 1841 * and the compaction scanners fail to meet. 1842 */ 1843 if (!suitable_migration_source(cc, page)) { 1844 update_cached_migrate(cc, block_end_pfn); 1845 continue; 1846 } 1847 1848 /* Perform the isolation */ 1849 low_pfn = isolate_migratepages_block(cc, low_pfn, 1850 block_end_pfn, isolate_mode); 1851 1852 if (!low_pfn) 1853 return ISOLATE_ABORT; 1854 1855 /* 1856 * Either we isolated something and proceed with migration. Or 1857 * we failed and compact_zone should decide if we should 1858 * continue or not. 1859 */ 1860 break; 1861 } 1862 1863 /* Record where migration scanner will be restarted. */ 1864 cc->migrate_pfn = low_pfn; 1865 1866 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1867 } 1868 1869 /* 1870 * order == -1 is expected when compacting via 1871 * /proc/sys/vm/compact_memory 1872 */ 1873 static inline bool is_via_compact_memory(int order) 1874 { 1875 return order == -1; 1876 } 1877 1878 static bool kswapd_is_running(pg_data_t *pgdat) 1879 { 1880 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1881 } 1882 1883 /* 1884 * A zone's fragmentation score is the external fragmentation wrt to the 1885 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1886 * in the range [0, 100]. 1887 * 1888 * The scaling factor ensures that proactive compaction focuses on larger 1889 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1890 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1891 * and thus never exceeds the high threshold for proactive compaction. 1892 */ 1893 static unsigned int fragmentation_score_zone(struct zone *zone) 1894 { 1895 unsigned long score; 1896 1897 score = zone->present_pages * 1898 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1899 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1900 } 1901 1902 /* 1903 * The per-node proactive (background) compaction process is started by its 1904 * corresponding kcompactd thread when the node's fragmentation score 1905 * exceeds the high threshold. The compaction process remains active till 1906 * the node's score falls below the low threshold, or one of the back-off 1907 * conditions is met. 1908 */ 1909 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1910 { 1911 unsigned int score = 0; 1912 int zoneid; 1913 1914 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1915 struct zone *zone; 1916 1917 zone = &pgdat->node_zones[zoneid]; 1918 score += fragmentation_score_zone(zone); 1919 } 1920 1921 return score; 1922 } 1923 1924 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1925 { 1926 unsigned int wmark_low; 1927 1928 /* 1929 * Cap the low watermak to avoid excessive compaction 1930 * activity in case a user sets the proactivess tunable 1931 * close to 100 (maximum). 1932 */ 1933 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1934 return low ? wmark_low : min(wmark_low + 10, 100U); 1935 } 1936 1937 static bool should_proactive_compact_node(pg_data_t *pgdat) 1938 { 1939 int wmark_high; 1940 1941 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1942 return false; 1943 1944 wmark_high = fragmentation_score_wmark(pgdat, false); 1945 return fragmentation_score_node(pgdat) > wmark_high; 1946 } 1947 1948 static enum compact_result __compact_finished(struct compact_control *cc) 1949 { 1950 unsigned int order; 1951 const int migratetype = cc->migratetype; 1952 int ret; 1953 1954 /* Compaction run completes if the migrate and free scanner meet */ 1955 if (compact_scanners_met(cc)) { 1956 /* Let the next compaction start anew. */ 1957 reset_cached_positions(cc->zone); 1958 1959 /* 1960 * Mark that the PG_migrate_skip information should be cleared 1961 * by kswapd when it goes to sleep. kcompactd does not set the 1962 * flag itself as the decision to be clear should be directly 1963 * based on an allocation request. 1964 */ 1965 if (cc->direct_compaction) 1966 cc->zone->compact_blockskip_flush = true; 1967 1968 if (cc->whole_zone) 1969 return COMPACT_COMPLETE; 1970 else 1971 return COMPACT_PARTIAL_SKIPPED; 1972 } 1973 1974 if (cc->proactive_compaction) { 1975 int score, wmark_low; 1976 pg_data_t *pgdat; 1977 1978 pgdat = cc->zone->zone_pgdat; 1979 if (kswapd_is_running(pgdat)) 1980 return COMPACT_PARTIAL_SKIPPED; 1981 1982 score = fragmentation_score_zone(cc->zone); 1983 wmark_low = fragmentation_score_wmark(pgdat, true); 1984 1985 if (score > wmark_low) 1986 ret = COMPACT_CONTINUE; 1987 else 1988 ret = COMPACT_SUCCESS; 1989 1990 goto out; 1991 } 1992 1993 if (is_via_compact_memory(cc->order)) 1994 return COMPACT_CONTINUE; 1995 1996 /* 1997 * Always finish scanning a pageblock to reduce the possibility of 1998 * fallbacks in the future. This is particularly important when 1999 * migration source is unmovable/reclaimable but it's not worth 2000 * special casing. 2001 */ 2002 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2003 return COMPACT_CONTINUE; 2004 2005 /* Direct compactor: Is a suitable page free? */ 2006 ret = COMPACT_NO_SUITABLE_PAGE; 2007 for (order = cc->order; order < MAX_ORDER; order++) { 2008 struct free_area *area = &cc->zone->free_area[order]; 2009 bool can_steal; 2010 2011 /* Job done if page is free of the right migratetype */ 2012 if (!free_area_empty(area, migratetype)) 2013 return COMPACT_SUCCESS; 2014 2015 #ifdef CONFIG_CMA 2016 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2017 if (migratetype == MIGRATE_MOVABLE && 2018 !free_area_empty(area, MIGRATE_CMA)) 2019 return COMPACT_SUCCESS; 2020 #endif 2021 /* 2022 * Job done if allocation would steal freepages from 2023 * other migratetype buddy lists. 2024 */ 2025 if (find_suitable_fallback(area, order, migratetype, 2026 true, &can_steal) != -1) { 2027 2028 /* movable pages are OK in any pageblock */ 2029 if (migratetype == MIGRATE_MOVABLE) 2030 return COMPACT_SUCCESS; 2031 2032 /* 2033 * We are stealing for a non-movable allocation. Make 2034 * sure we finish compacting the current pageblock 2035 * first so it is as free as possible and we won't 2036 * have to steal another one soon. This only applies 2037 * to sync compaction, as async compaction operates 2038 * on pageblocks of the same migratetype. 2039 */ 2040 if (cc->mode == MIGRATE_ASYNC || 2041 IS_ALIGNED(cc->migrate_pfn, 2042 pageblock_nr_pages)) { 2043 return COMPACT_SUCCESS; 2044 } 2045 2046 ret = COMPACT_CONTINUE; 2047 break; 2048 } 2049 } 2050 2051 out: 2052 if (cc->contended || fatal_signal_pending(current)) 2053 ret = COMPACT_CONTENDED; 2054 2055 return ret; 2056 } 2057 2058 static enum compact_result compact_finished(struct compact_control *cc) 2059 { 2060 int ret; 2061 2062 ret = __compact_finished(cc); 2063 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2064 if (ret == COMPACT_NO_SUITABLE_PAGE) 2065 ret = COMPACT_CONTINUE; 2066 2067 return ret; 2068 } 2069 2070 /* 2071 * compaction_suitable: Is this suitable to run compaction on this zone now? 2072 * Returns 2073 * COMPACT_SKIPPED - If there are too few free pages for compaction 2074 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2075 * COMPACT_CONTINUE - If compaction should run now 2076 */ 2077 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2078 unsigned int alloc_flags, 2079 int highest_zoneidx, 2080 unsigned long wmark_target) 2081 { 2082 unsigned long watermark; 2083 2084 if (is_via_compact_memory(order)) 2085 return COMPACT_CONTINUE; 2086 2087 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2088 /* 2089 * If watermarks for high-order allocation are already met, there 2090 * should be no need for compaction at all. 2091 */ 2092 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2093 alloc_flags)) 2094 return COMPACT_SUCCESS; 2095 2096 /* 2097 * Watermarks for order-0 must be met for compaction to be able to 2098 * isolate free pages for migration targets. This means that the 2099 * watermark and alloc_flags have to match, or be more pessimistic than 2100 * the check in __isolate_free_page(). We don't use the direct 2101 * compactor's alloc_flags, as they are not relevant for freepage 2102 * isolation. We however do use the direct compactor's highest_zoneidx 2103 * to skip over zones where lowmem reserves would prevent allocation 2104 * even if compaction succeeds. 2105 * For costly orders, we require low watermark instead of min for 2106 * compaction to proceed to increase its chances. 2107 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2108 * suitable migration targets 2109 */ 2110 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2111 low_wmark_pages(zone) : min_wmark_pages(zone); 2112 watermark += compact_gap(order); 2113 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2114 ALLOC_CMA, wmark_target)) 2115 return COMPACT_SKIPPED; 2116 2117 return COMPACT_CONTINUE; 2118 } 2119 2120 enum compact_result compaction_suitable(struct zone *zone, int order, 2121 unsigned int alloc_flags, 2122 int highest_zoneidx) 2123 { 2124 enum compact_result ret; 2125 int fragindex; 2126 2127 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2128 zone_page_state(zone, NR_FREE_PAGES)); 2129 /* 2130 * fragmentation index determines if allocation failures are due to 2131 * low memory or external fragmentation 2132 * 2133 * index of -1000 would imply allocations might succeed depending on 2134 * watermarks, but we already failed the high-order watermark check 2135 * index towards 0 implies failure is due to lack of memory 2136 * index towards 1000 implies failure is due to fragmentation 2137 * 2138 * Only compact if a failure would be due to fragmentation. Also 2139 * ignore fragindex for non-costly orders where the alternative to 2140 * a successful reclaim/compaction is OOM. Fragindex and the 2141 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2142 * excessive compaction for costly orders, but it should not be at the 2143 * expense of system stability. 2144 */ 2145 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2146 fragindex = fragmentation_index(zone, order); 2147 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2148 ret = COMPACT_NOT_SUITABLE_ZONE; 2149 } 2150 2151 trace_mm_compaction_suitable(zone, order, ret); 2152 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2153 ret = COMPACT_SKIPPED; 2154 2155 return ret; 2156 } 2157 2158 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2159 int alloc_flags) 2160 { 2161 struct zone *zone; 2162 struct zoneref *z; 2163 2164 /* 2165 * Make sure at least one zone would pass __compaction_suitable if we continue 2166 * retrying the reclaim. 2167 */ 2168 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2169 ac->highest_zoneidx, ac->nodemask) { 2170 unsigned long available; 2171 enum compact_result compact_result; 2172 2173 /* 2174 * Do not consider all the reclaimable memory because we do not 2175 * want to trash just for a single high order allocation which 2176 * is even not guaranteed to appear even if __compaction_suitable 2177 * is happy about the watermark check. 2178 */ 2179 available = zone_reclaimable_pages(zone) / order; 2180 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2181 compact_result = __compaction_suitable(zone, order, alloc_flags, 2182 ac->highest_zoneidx, available); 2183 if (compact_result != COMPACT_SKIPPED) 2184 return true; 2185 } 2186 2187 return false; 2188 } 2189 2190 static enum compact_result 2191 compact_zone(struct compact_control *cc, struct capture_control *capc) 2192 { 2193 enum compact_result ret; 2194 unsigned long start_pfn = cc->zone->zone_start_pfn; 2195 unsigned long end_pfn = zone_end_pfn(cc->zone); 2196 unsigned long last_migrated_pfn; 2197 const bool sync = cc->mode != MIGRATE_ASYNC; 2198 bool update_cached; 2199 2200 /* 2201 * These counters track activities during zone compaction. Initialize 2202 * them before compacting a new zone. 2203 */ 2204 cc->total_migrate_scanned = 0; 2205 cc->total_free_scanned = 0; 2206 cc->nr_migratepages = 0; 2207 cc->nr_freepages = 0; 2208 INIT_LIST_HEAD(&cc->freepages); 2209 INIT_LIST_HEAD(&cc->migratepages); 2210 2211 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2212 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2213 cc->highest_zoneidx); 2214 /* Compaction is likely to fail */ 2215 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2216 return ret; 2217 2218 /* huh, compaction_suitable is returning something unexpected */ 2219 VM_BUG_ON(ret != COMPACT_CONTINUE); 2220 2221 /* 2222 * Clear pageblock skip if there were failures recently and compaction 2223 * is about to be retried after being deferred. 2224 */ 2225 if (compaction_restarting(cc->zone, cc->order)) 2226 __reset_isolation_suitable(cc->zone); 2227 2228 /* 2229 * Setup to move all movable pages to the end of the zone. Used cached 2230 * information on where the scanners should start (unless we explicitly 2231 * want to compact the whole zone), but check that it is initialised 2232 * by ensuring the values are within zone boundaries. 2233 */ 2234 cc->fast_start_pfn = 0; 2235 if (cc->whole_zone) { 2236 cc->migrate_pfn = start_pfn; 2237 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2238 } else { 2239 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2240 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2241 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2242 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2243 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2244 } 2245 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2246 cc->migrate_pfn = start_pfn; 2247 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2248 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2249 } 2250 2251 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2252 cc->whole_zone = true; 2253 } 2254 2255 last_migrated_pfn = 0; 2256 2257 /* 2258 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2259 * the basis that some migrations will fail in ASYNC mode. However, 2260 * if the cached PFNs match and pageblocks are skipped due to having 2261 * no isolation candidates, then the sync state does not matter. 2262 * Until a pageblock with isolation candidates is found, keep the 2263 * cached PFNs in sync to avoid revisiting the same blocks. 2264 */ 2265 update_cached = !sync && 2266 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2267 2268 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2269 cc->free_pfn, end_pfn, sync); 2270 2271 migrate_prep_local(); 2272 2273 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2274 int err; 2275 unsigned long start_pfn = cc->migrate_pfn; 2276 2277 /* 2278 * Avoid multiple rescans which can happen if a page cannot be 2279 * isolated (dirty/writeback in async mode) or if the migrated 2280 * pages are being allocated before the pageblock is cleared. 2281 * The first rescan will capture the entire pageblock for 2282 * migration. If it fails, it'll be marked skip and scanning 2283 * will proceed as normal. 2284 */ 2285 cc->rescan = false; 2286 if (pageblock_start_pfn(last_migrated_pfn) == 2287 pageblock_start_pfn(start_pfn)) { 2288 cc->rescan = true; 2289 } 2290 2291 switch (isolate_migratepages(cc)) { 2292 case ISOLATE_ABORT: 2293 ret = COMPACT_CONTENDED; 2294 putback_movable_pages(&cc->migratepages); 2295 cc->nr_migratepages = 0; 2296 goto out; 2297 case ISOLATE_NONE: 2298 if (update_cached) { 2299 cc->zone->compact_cached_migrate_pfn[1] = 2300 cc->zone->compact_cached_migrate_pfn[0]; 2301 } 2302 2303 /* 2304 * We haven't isolated and migrated anything, but 2305 * there might still be unflushed migrations from 2306 * previous cc->order aligned block. 2307 */ 2308 goto check_drain; 2309 case ISOLATE_SUCCESS: 2310 update_cached = false; 2311 last_migrated_pfn = start_pfn; 2312 ; 2313 } 2314 2315 err = migrate_pages(&cc->migratepages, compaction_alloc, 2316 compaction_free, (unsigned long)cc, cc->mode, 2317 MR_COMPACTION); 2318 2319 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2320 &cc->migratepages); 2321 2322 /* All pages were either migrated or will be released */ 2323 cc->nr_migratepages = 0; 2324 if (err) { 2325 putback_movable_pages(&cc->migratepages); 2326 /* 2327 * migrate_pages() may return -ENOMEM when scanners meet 2328 * and we want compact_finished() to detect it 2329 */ 2330 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2331 ret = COMPACT_CONTENDED; 2332 goto out; 2333 } 2334 /* 2335 * We failed to migrate at least one page in the current 2336 * order-aligned block, so skip the rest of it. 2337 */ 2338 if (cc->direct_compaction && 2339 (cc->mode == MIGRATE_ASYNC)) { 2340 cc->migrate_pfn = block_end_pfn( 2341 cc->migrate_pfn - 1, cc->order); 2342 /* Draining pcplists is useless in this case */ 2343 last_migrated_pfn = 0; 2344 } 2345 } 2346 2347 check_drain: 2348 /* 2349 * Has the migration scanner moved away from the previous 2350 * cc->order aligned block where we migrated from? If yes, 2351 * flush the pages that were freed, so that they can merge and 2352 * compact_finished() can detect immediately if allocation 2353 * would succeed. 2354 */ 2355 if (cc->order > 0 && last_migrated_pfn) { 2356 unsigned long current_block_start = 2357 block_start_pfn(cc->migrate_pfn, cc->order); 2358 2359 if (last_migrated_pfn < current_block_start) { 2360 lru_add_drain_cpu_zone(cc->zone); 2361 /* No more flushing until we migrate again */ 2362 last_migrated_pfn = 0; 2363 } 2364 } 2365 2366 /* Stop if a page has been captured */ 2367 if (capc && capc->page) { 2368 ret = COMPACT_SUCCESS; 2369 break; 2370 } 2371 } 2372 2373 out: 2374 /* 2375 * Release free pages and update where the free scanner should restart, 2376 * so we don't leave any returned pages behind in the next attempt. 2377 */ 2378 if (cc->nr_freepages > 0) { 2379 unsigned long free_pfn = release_freepages(&cc->freepages); 2380 2381 cc->nr_freepages = 0; 2382 VM_BUG_ON(free_pfn == 0); 2383 /* The cached pfn is always the first in a pageblock */ 2384 free_pfn = pageblock_start_pfn(free_pfn); 2385 /* 2386 * Only go back, not forward. The cached pfn might have been 2387 * already reset to zone end in compact_finished() 2388 */ 2389 if (free_pfn > cc->zone->compact_cached_free_pfn) 2390 cc->zone->compact_cached_free_pfn = free_pfn; 2391 } 2392 2393 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2394 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2395 2396 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2397 cc->free_pfn, end_pfn, sync, ret); 2398 2399 return ret; 2400 } 2401 2402 static enum compact_result compact_zone_order(struct zone *zone, int order, 2403 gfp_t gfp_mask, enum compact_priority prio, 2404 unsigned int alloc_flags, int highest_zoneidx, 2405 struct page **capture) 2406 { 2407 enum compact_result ret; 2408 struct compact_control cc = { 2409 .order = order, 2410 .search_order = order, 2411 .gfp_mask = gfp_mask, 2412 .zone = zone, 2413 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2414 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2415 .alloc_flags = alloc_flags, 2416 .highest_zoneidx = highest_zoneidx, 2417 .direct_compaction = true, 2418 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2419 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2420 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2421 }; 2422 struct capture_control capc = { 2423 .cc = &cc, 2424 .page = NULL, 2425 }; 2426 2427 /* 2428 * Make sure the structs are really initialized before we expose the 2429 * capture control, in case we are interrupted and the interrupt handler 2430 * frees a page. 2431 */ 2432 barrier(); 2433 WRITE_ONCE(current->capture_control, &capc); 2434 2435 ret = compact_zone(&cc, &capc); 2436 2437 VM_BUG_ON(!list_empty(&cc.freepages)); 2438 VM_BUG_ON(!list_empty(&cc.migratepages)); 2439 2440 /* 2441 * Make sure we hide capture control first before we read the captured 2442 * page pointer, otherwise an interrupt could free and capture a page 2443 * and we would leak it. 2444 */ 2445 WRITE_ONCE(current->capture_control, NULL); 2446 *capture = READ_ONCE(capc.page); 2447 2448 return ret; 2449 } 2450 2451 int sysctl_extfrag_threshold = 500; 2452 2453 /** 2454 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2455 * @gfp_mask: The GFP mask of the current allocation 2456 * @order: The order of the current allocation 2457 * @alloc_flags: The allocation flags of the current allocation 2458 * @ac: The context of current allocation 2459 * @prio: Determines how hard direct compaction should try to succeed 2460 * @capture: Pointer to free page created by compaction will be stored here 2461 * 2462 * This is the main entry point for direct page compaction. 2463 */ 2464 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2465 unsigned int alloc_flags, const struct alloc_context *ac, 2466 enum compact_priority prio, struct page **capture) 2467 { 2468 int may_perform_io = gfp_mask & __GFP_IO; 2469 struct zoneref *z; 2470 struct zone *zone; 2471 enum compact_result rc = COMPACT_SKIPPED; 2472 2473 /* 2474 * Check if the GFP flags allow compaction - GFP_NOIO is really 2475 * tricky context because the migration might require IO 2476 */ 2477 if (!may_perform_io) 2478 return COMPACT_SKIPPED; 2479 2480 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2481 2482 /* Compact each zone in the list */ 2483 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2484 ac->highest_zoneidx, ac->nodemask) { 2485 enum compact_result status; 2486 2487 if (prio > MIN_COMPACT_PRIORITY 2488 && compaction_deferred(zone, order)) { 2489 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2490 continue; 2491 } 2492 2493 status = compact_zone_order(zone, order, gfp_mask, prio, 2494 alloc_flags, ac->highest_zoneidx, capture); 2495 rc = max(status, rc); 2496 2497 /* The allocation should succeed, stop compacting */ 2498 if (status == COMPACT_SUCCESS) { 2499 /* 2500 * We think the allocation will succeed in this zone, 2501 * but it is not certain, hence the false. The caller 2502 * will repeat this with true if allocation indeed 2503 * succeeds in this zone. 2504 */ 2505 compaction_defer_reset(zone, order, false); 2506 2507 break; 2508 } 2509 2510 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2511 status == COMPACT_PARTIAL_SKIPPED)) 2512 /* 2513 * We think that allocation won't succeed in this zone 2514 * so we defer compaction there. If it ends up 2515 * succeeding after all, it will be reset. 2516 */ 2517 defer_compaction(zone, order); 2518 2519 /* 2520 * We might have stopped compacting due to need_resched() in 2521 * async compaction, or due to a fatal signal detected. In that 2522 * case do not try further zones 2523 */ 2524 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2525 || fatal_signal_pending(current)) 2526 break; 2527 } 2528 2529 return rc; 2530 } 2531 2532 /* 2533 * Compact all zones within a node till each zone's fragmentation score 2534 * reaches within proactive compaction thresholds (as determined by the 2535 * proactiveness tunable). 2536 * 2537 * It is possible that the function returns before reaching score targets 2538 * due to various back-off conditions, such as, contention on per-node or 2539 * per-zone locks. 2540 */ 2541 static void proactive_compact_node(pg_data_t *pgdat) 2542 { 2543 int zoneid; 2544 struct zone *zone; 2545 struct compact_control cc = { 2546 .order = -1, 2547 .mode = MIGRATE_SYNC_LIGHT, 2548 .ignore_skip_hint = true, 2549 .whole_zone = true, 2550 .gfp_mask = GFP_KERNEL, 2551 .proactive_compaction = true, 2552 }; 2553 2554 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2555 zone = &pgdat->node_zones[zoneid]; 2556 if (!populated_zone(zone)) 2557 continue; 2558 2559 cc.zone = zone; 2560 2561 compact_zone(&cc, NULL); 2562 2563 VM_BUG_ON(!list_empty(&cc.freepages)); 2564 VM_BUG_ON(!list_empty(&cc.migratepages)); 2565 } 2566 } 2567 2568 /* Compact all zones within a node */ 2569 static void compact_node(int nid) 2570 { 2571 pg_data_t *pgdat = NODE_DATA(nid); 2572 int zoneid; 2573 struct zone *zone; 2574 struct compact_control cc = { 2575 .order = -1, 2576 .mode = MIGRATE_SYNC, 2577 .ignore_skip_hint = true, 2578 .whole_zone = true, 2579 .gfp_mask = GFP_KERNEL, 2580 }; 2581 2582 2583 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2584 2585 zone = &pgdat->node_zones[zoneid]; 2586 if (!populated_zone(zone)) 2587 continue; 2588 2589 cc.zone = zone; 2590 2591 compact_zone(&cc, NULL); 2592 2593 VM_BUG_ON(!list_empty(&cc.freepages)); 2594 VM_BUG_ON(!list_empty(&cc.migratepages)); 2595 } 2596 } 2597 2598 /* Compact all nodes in the system */ 2599 static void compact_nodes(void) 2600 { 2601 int nid; 2602 2603 /* Flush pending updates to the LRU lists */ 2604 lru_add_drain_all(); 2605 2606 for_each_online_node(nid) 2607 compact_node(nid); 2608 } 2609 2610 /* The written value is actually unused, all memory is compacted */ 2611 int sysctl_compact_memory; 2612 2613 /* 2614 * Tunable for proactive compaction. It determines how 2615 * aggressively the kernel should compact memory in the 2616 * background. It takes values in the range [0, 100]. 2617 */ 2618 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2619 2620 /* 2621 * This is the entry point for compacting all nodes via 2622 * /proc/sys/vm/compact_memory 2623 */ 2624 int sysctl_compaction_handler(struct ctl_table *table, int write, 2625 void *buffer, size_t *length, loff_t *ppos) 2626 { 2627 if (write) 2628 compact_nodes(); 2629 2630 return 0; 2631 } 2632 2633 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2634 static ssize_t sysfs_compact_node(struct device *dev, 2635 struct device_attribute *attr, 2636 const char *buf, size_t count) 2637 { 2638 int nid = dev->id; 2639 2640 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2641 /* Flush pending updates to the LRU lists */ 2642 lru_add_drain_all(); 2643 2644 compact_node(nid); 2645 } 2646 2647 return count; 2648 } 2649 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2650 2651 int compaction_register_node(struct node *node) 2652 { 2653 return device_create_file(&node->dev, &dev_attr_compact); 2654 } 2655 2656 void compaction_unregister_node(struct node *node) 2657 { 2658 return device_remove_file(&node->dev, &dev_attr_compact); 2659 } 2660 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2661 2662 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2663 { 2664 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2665 } 2666 2667 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2668 { 2669 int zoneid; 2670 struct zone *zone; 2671 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2672 2673 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2674 zone = &pgdat->node_zones[zoneid]; 2675 2676 if (!populated_zone(zone)) 2677 continue; 2678 2679 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2680 highest_zoneidx) == COMPACT_CONTINUE) 2681 return true; 2682 } 2683 2684 return false; 2685 } 2686 2687 static void kcompactd_do_work(pg_data_t *pgdat) 2688 { 2689 /* 2690 * With no special task, compact all zones so that a page of requested 2691 * order is allocatable. 2692 */ 2693 int zoneid; 2694 struct zone *zone; 2695 struct compact_control cc = { 2696 .order = pgdat->kcompactd_max_order, 2697 .search_order = pgdat->kcompactd_max_order, 2698 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2699 .mode = MIGRATE_SYNC_LIGHT, 2700 .ignore_skip_hint = false, 2701 .gfp_mask = GFP_KERNEL, 2702 }; 2703 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2704 cc.highest_zoneidx); 2705 count_compact_event(KCOMPACTD_WAKE); 2706 2707 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2708 int status; 2709 2710 zone = &pgdat->node_zones[zoneid]; 2711 if (!populated_zone(zone)) 2712 continue; 2713 2714 if (compaction_deferred(zone, cc.order)) 2715 continue; 2716 2717 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2718 COMPACT_CONTINUE) 2719 continue; 2720 2721 if (kthread_should_stop()) 2722 return; 2723 2724 cc.zone = zone; 2725 status = compact_zone(&cc, NULL); 2726 2727 if (status == COMPACT_SUCCESS) { 2728 compaction_defer_reset(zone, cc.order, false); 2729 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2730 /* 2731 * Buddy pages may become stranded on pcps that could 2732 * otherwise coalesce on the zone's free area for 2733 * order >= cc.order. This is ratelimited by the 2734 * upcoming deferral. 2735 */ 2736 drain_all_pages(zone); 2737 2738 /* 2739 * We use sync migration mode here, so we defer like 2740 * sync direct compaction does. 2741 */ 2742 defer_compaction(zone, cc.order); 2743 } 2744 2745 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2746 cc.total_migrate_scanned); 2747 count_compact_events(KCOMPACTD_FREE_SCANNED, 2748 cc.total_free_scanned); 2749 2750 VM_BUG_ON(!list_empty(&cc.freepages)); 2751 VM_BUG_ON(!list_empty(&cc.migratepages)); 2752 } 2753 2754 /* 2755 * Regardless of success, we are done until woken up next. But remember 2756 * the requested order/highest_zoneidx in case it was higher/tighter 2757 * than our current ones 2758 */ 2759 if (pgdat->kcompactd_max_order <= cc.order) 2760 pgdat->kcompactd_max_order = 0; 2761 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2762 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2763 } 2764 2765 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2766 { 2767 if (!order) 2768 return; 2769 2770 if (pgdat->kcompactd_max_order < order) 2771 pgdat->kcompactd_max_order = order; 2772 2773 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2774 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2775 2776 /* 2777 * Pairs with implicit barrier in wait_event_freezable() 2778 * such that wakeups are not missed. 2779 */ 2780 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2781 return; 2782 2783 if (!kcompactd_node_suitable(pgdat)) 2784 return; 2785 2786 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2787 highest_zoneidx); 2788 wake_up_interruptible(&pgdat->kcompactd_wait); 2789 } 2790 2791 /* 2792 * The background compaction daemon, started as a kernel thread 2793 * from the init process. 2794 */ 2795 static int kcompactd(void *p) 2796 { 2797 pg_data_t *pgdat = (pg_data_t*)p; 2798 struct task_struct *tsk = current; 2799 unsigned int proactive_defer = 0; 2800 2801 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2802 2803 if (!cpumask_empty(cpumask)) 2804 set_cpus_allowed_ptr(tsk, cpumask); 2805 2806 set_freezable(); 2807 2808 pgdat->kcompactd_max_order = 0; 2809 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2810 2811 while (!kthread_should_stop()) { 2812 unsigned long pflags; 2813 2814 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2815 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2816 kcompactd_work_requested(pgdat), 2817 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2818 2819 psi_memstall_enter(&pflags); 2820 kcompactd_do_work(pgdat); 2821 psi_memstall_leave(&pflags); 2822 continue; 2823 } 2824 2825 /* kcompactd wait timeout */ 2826 if (should_proactive_compact_node(pgdat)) { 2827 unsigned int prev_score, score; 2828 2829 if (proactive_defer) { 2830 proactive_defer--; 2831 continue; 2832 } 2833 prev_score = fragmentation_score_node(pgdat); 2834 proactive_compact_node(pgdat); 2835 score = fragmentation_score_node(pgdat); 2836 /* 2837 * Defer proactive compaction if the fragmentation 2838 * score did not go down i.e. no progress made. 2839 */ 2840 proactive_defer = score < prev_score ? 2841 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2842 } 2843 } 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * This kcompactd start function will be called by init and node-hot-add. 2850 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2851 */ 2852 int kcompactd_run(int nid) 2853 { 2854 pg_data_t *pgdat = NODE_DATA(nid); 2855 int ret = 0; 2856 2857 if (pgdat->kcompactd) 2858 return 0; 2859 2860 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2861 if (IS_ERR(pgdat->kcompactd)) { 2862 pr_err("Failed to start kcompactd on node %d\n", nid); 2863 ret = PTR_ERR(pgdat->kcompactd); 2864 pgdat->kcompactd = NULL; 2865 } 2866 return ret; 2867 } 2868 2869 /* 2870 * Called by memory hotplug when all memory in a node is offlined. Caller must 2871 * hold mem_hotplug_begin/end(). 2872 */ 2873 void kcompactd_stop(int nid) 2874 { 2875 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2876 2877 if (kcompactd) { 2878 kthread_stop(kcompactd); 2879 NODE_DATA(nid)->kcompactd = NULL; 2880 } 2881 } 2882 2883 /* 2884 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2885 * not required for correctness. So if the last cpu in a node goes 2886 * away, we get changed to run anywhere: as the first one comes back, 2887 * restore their cpu bindings. 2888 */ 2889 static int kcompactd_cpu_online(unsigned int cpu) 2890 { 2891 int nid; 2892 2893 for_each_node_state(nid, N_MEMORY) { 2894 pg_data_t *pgdat = NODE_DATA(nid); 2895 const struct cpumask *mask; 2896 2897 mask = cpumask_of_node(pgdat->node_id); 2898 2899 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2900 /* One of our CPUs online: restore mask */ 2901 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2902 } 2903 return 0; 2904 } 2905 2906 static int __init kcompactd_init(void) 2907 { 2908 int nid; 2909 int ret; 2910 2911 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2912 "mm/compaction:online", 2913 kcompactd_cpu_online, NULL); 2914 if (ret < 0) { 2915 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2916 return ret; 2917 } 2918 2919 for_each_node_state(nid, N_MEMORY) 2920 kcompactd_run(nid); 2921 return 0; 2922 } 2923 subsys_initcall(kcompactd_init) 2924 2925 #endif /* CONFIG_COMPACTION */ 2926