xref: /openbmc/linux/mm/compaction.c (revision db181ce0)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 					struct page *page)
74 {
75 	if (cc->ignore_skip_hint)
76 		return true;
77 
78 	return !get_pageblock_skip(page);
79 }
80 
81 /*
82  * This function is called to clear all cached information on pageblocks that
83  * should be skipped for page isolation when the migrate and free page scanner
84  * meet.
85  */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 	unsigned long start_pfn = zone->zone_start_pfn;
89 	unsigned long end_pfn = zone_end_pfn(zone);
90 	unsigned long pfn;
91 
92 	zone->compact_cached_migrate_pfn[0] = start_pfn;
93 	zone->compact_cached_migrate_pfn[1] = start_pfn;
94 	zone->compact_cached_free_pfn = end_pfn;
95 	zone->compact_blockskip_flush = false;
96 
97 	/* Walk the zone and mark every pageblock as suitable for isolation */
98 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
99 		struct page *page;
100 
101 		cond_resched();
102 
103 		if (!pfn_valid(pfn))
104 			continue;
105 
106 		page = pfn_to_page(pfn);
107 		if (zone != page_zone(page))
108 			continue;
109 
110 		clear_pageblock_skip(page);
111 	}
112 }
113 
114 void reset_isolation_suitable(pg_data_t *pgdat)
115 {
116 	int zoneid;
117 
118 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
119 		struct zone *zone = &pgdat->node_zones[zoneid];
120 		if (!populated_zone(zone))
121 			continue;
122 
123 		/* Only flush if a full compaction finished recently */
124 		if (zone->compact_blockskip_flush)
125 			__reset_isolation_suitable(zone);
126 	}
127 }
128 
129 /*
130  * If no pages were isolated then mark this pageblock to be skipped in the
131  * future. The information is later cleared by __reset_isolation_suitable().
132  */
133 static void update_pageblock_skip(struct compact_control *cc,
134 			struct page *page, unsigned long nr_isolated,
135 			bool set_unsuitable, bool migrate_scanner)
136 {
137 	struct zone *zone = cc->zone;
138 	unsigned long pfn;
139 
140 	if (cc->ignore_skip_hint)
141 		return;
142 
143 	if (!page)
144 		return;
145 
146 	if (nr_isolated)
147 		return;
148 
149 	/*
150 	 * Only skip pageblocks when all forms of compaction will be known to
151 	 * fail in the near future.
152 	 */
153 	if (set_unsuitable)
154 		set_pageblock_skip(page);
155 
156 	pfn = page_to_pfn(page);
157 
158 	/* Update where async and sync compaction should restart */
159 	if (migrate_scanner) {
160 		if (cc->finished_update_migrate)
161 			return;
162 		if (pfn > zone->compact_cached_migrate_pfn[0])
163 			zone->compact_cached_migrate_pfn[0] = pfn;
164 		if (cc->mode != MIGRATE_ASYNC &&
165 		    pfn > zone->compact_cached_migrate_pfn[1])
166 			zone->compact_cached_migrate_pfn[1] = pfn;
167 	} else {
168 		if (cc->finished_update_free)
169 			return;
170 		if (pfn < zone->compact_cached_free_pfn)
171 			zone->compact_cached_free_pfn = pfn;
172 	}
173 }
174 #else
175 static inline bool isolation_suitable(struct compact_control *cc,
176 					struct page *page)
177 {
178 	return true;
179 }
180 
181 static void update_pageblock_skip(struct compact_control *cc,
182 			struct page *page, unsigned long nr_isolated,
183 			bool set_unsuitable, bool migrate_scanner)
184 {
185 }
186 #endif /* CONFIG_COMPACTION */
187 
188 static inline bool should_release_lock(spinlock_t *lock)
189 {
190 	return need_resched() || spin_is_contended(lock);
191 }
192 
193 /*
194  * Compaction requires the taking of some coarse locks that are potentially
195  * very heavily contended. Check if the process needs to be scheduled or
196  * if the lock is contended. For async compaction, back out in the event
197  * if contention is severe. For sync compaction, schedule.
198  *
199  * Returns true if the lock is held.
200  * Returns false if the lock is released and compaction should abort
201  */
202 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
203 				      bool locked, struct compact_control *cc)
204 {
205 	if (should_release_lock(lock)) {
206 		if (locked) {
207 			spin_unlock_irqrestore(lock, *flags);
208 			locked = false;
209 		}
210 
211 		/* async aborts if taking too long or contended */
212 		if (cc->mode == MIGRATE_ASYNC) {
213 			cc->contended = true;
214 			return false;
215 		}
216 
217 		cond_resched();
218 	}
219 
220 	if (!locked)
221 		spin_lock_irqsave(lock, *flags);
222 	return true;
223 }
224 
225 /*
226  * Aside from avoiding lock contention, compaction also periodically checks
227  * need_resched() and either schedules in sync compaction or aborts async
228  * compaction. This is similar to what compact_checklock_irqsave() does, but
229  * is used where no lock is concerned.
230  *
231  * Returns false when no scheduling was needed, or sync compaction scheduled.
232  * Returns true when async compaction should abort.
233  */
234 static inline bool compact_should_abort(struct compact_control *cc)
235 {
236 	/* async compaction aborts if contended */
237 	if (need_resched()) {
238 		if (cc->mode == MIGRATE_ASYNC) {
239 			cc->contended = true;
240 			return true;
241 		}
242 
243 		cond_resched();
244 	}
245 
246 	return false;
247 }
248 
249 /* Returns true if the page is within a block suitable for migration to */
250 static bool suitable_migration_target(struct page *page)
251 {
252 	/* If the page is a large free page, then disallow migration */
253 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
254 		return false;
255 
256 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
257 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
258 		return true;
259 
260 	/* Otherwise skip the block */
261 	return false;
262 }
263 
264 /*
265  * Isolate free pages onto a private freelist. If @strict is true, will abort
266  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
267  * (even though it may still end up isolating some pages).
268  */
269 static unsigned long isolate_freepages_block(struct compact_control *cc,
270 				unsigned long blockpfn,
271 				unsigned long end_pfn,
272 				struct list_head *freelist,
273 				bool strict)
274 {
275 	int nr_scanned = 0, total_isolated = 0;
276 	struct page *cursor, *valid_page = NULL;
277 	unsigned long flags;
278 	bool locked = false;
279 	bool checked_pageblock = false;
280 
281 	cursor = pfn_to_page(blockpfn);
282 
283 	/* Isolate free pages. */
284 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
285 		int isolated, i;
286 		struct page *page = cursor;
287 
288 		nr_scanned++;
289 		if (!pfn_valid_within(blockpfn))
290 			goto isolate_fail;
291 
292 		if (!valid_page)
293 			valid_page = page;
294 		if (!PageBuddy(page))
295 			goto isolate_fail;
296 
297 		/*
298 		 * The zone lock must be held to isolate freepages.
299 		 * Unfortunately this is a very coarse lock and can be
300 		 * heavily contended if there are parallel allocations
301 		 * or parallel compactions. For async compaction do not
302 		 * spin on the lock and we acquire the lock as late as
303 		 * possible.
304 		 */
305 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
306 								locked, cc);
307 		if (!locked)
308 			break;
309 
310 		/* Recheck this is a suitable migration target under lock */
311 		if (!strict && !checked_pageblock) {
312 			/*
313 			 * We need to check suitability of pageblock only once
314 			 * and this isolate_freepages_block() is called with
315 			 * pageblock range, so just check once is sufficient.
316 			 */
317 			checked_pageblock = true;
318 			if (!suitable_migration_target(page))
319 				break;
320 		}
321 
322 		/* Recheck this is a buddy page under lock */
323 		if (!PageBuddy(page))
324 			goto isolate_fail;
325 
326 		/* Found a free page, break it into order-0 pages */
327 		isolated = split_free_page(page);
328 		total_isolated += isolated;
329 		for (i = 0; i < isolated; i++) {
330 			list_add(&page->lru, freelist);
331 			page++;
332 		}
333 
334 		/* If a page was split, advance to the end of it */
335 		if (isolated) {
336 			blockpfn += isolated - 1;
337 			cursor += isolated - 1;
338 			continue;
339 		}
340 
341 isolate_fail:
342 		if (strict)
343 			break;
344 		else
345 			continue;
346 
347 	}
348 
349 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
350 
351 	/*
352 	 * If strict isolation is requested by CMA then check that all the
353 	 * pages requested were isolated. If there were any failures, 0 is
354 	 * returned and CMA will fail.
355 	 */
356 	if (strict && blockpfn < end_pfn)
357 		total_isolated = 0;
358 
359 	if (locked)
360 		spin_unlock_irqrestore(&cc->zone->lock, flags);
361 
362 	/* Update the pageblock-skip if the whole pageblock was scanned */
363 	if (blockpfn == end_pfn)
364 		update_pageblock_skip(cc, valid_page, total_isolated, true,
365 				      false);
366 
367 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
368 	if (total_isolated)
369 		count_compact_events(COMPACTISOLATED, total_isolated);
370 	return total_isolated;
371 }
372 
373 /**
374  * isolate_freepages_range() - isolate free pages.
375  * @start_pfn: The first PFN to start isolating.
376  * @end_pfn:   The one-past-last PFN.
377  *
378  * Non-free pages, invalid PFNs, or zone boundaries within the
379  * [start_pfn, end_pfn) range are considered errors, cause function to
380  * undo its actions and return zero.
381  *
382  * Otherwise, function returns one-past-the-last PFN of isolated page
383  * (which may be greater then end_pfn if end fell in a middle of
384  * a free page).
385  */
386 unsigned long
387 isolate_freepages_range(struct compact_control *cc,
388 			unsigned long start_pfn, unsigned long end_pfn)
389 {
390 	unsigned long isolated, pfn, block_end_pfn;
391 	LIST_HEAD(freelist);
392 
393 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
394 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
395 			break;
396 
397 		/*
398 		 * On subsequent iterations ALIGN() is actually not needed,
399 		 * but we keep it that we not to complicate the code.
400 		 */
401 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
402 		block_end_pfn = min(block_end_pfn, end_pfn);
403 
404 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
405 						   &freelist, true);
406 
407 		/*
408 		 * In strict mode, isolate_freepages_block() returns 0 if
409 		 * there are any holes in the block (ie. invalid PFNs or
410 		 * non-free pages).
411 		 */
412 		if (!isolated)
413 			break;
414 
415 		/*
416 		 * If we managed to isolate pages, it is always (1 << n) *
417 		 * pageblock_nr_pages for some non-negative n.  (Max order
418 		 * page may span two pageblocks).
419 		 */
420 	}
421 
422 	/* split_free_page does not map the pages */
423 	map_pages(&freelist);
424 
425 	if (pfn < end_pfn) {
426 		/* Loop terminated early, cleanup. */
427 		release_freepages(&freelist);
428 		return 0;
429 	}
430 
431 	/* We don't use freelists for anything. */
432 	return pfn;
433 }
434 
435 /* Update the number of anon and file isolated pages in the zone */
436 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
437 {
438 	struct page *page;
439 	unsigned int count[2] = { 0, };
440 
441 	list_for_each_entry(page, &cc->migratepages, lru)
442 		count[!!page_is_file_cache(page)]++;
443 
444 	/* If locked we can use the interrupt unsafe versions */
445 	if (locked) {
446 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
447 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
448 	} else {
449 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
450 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
451 	}
452 }
453 
454 /* Similar to reclaim, but different enough that they don't share logic */
455 static bool too_many_isolated(struct zone *zone)
456 {
457 	unsigned long active, inactive, isolated;
458 
459 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
460 					zone_page_state(zone, NR_INACTIVE_ANON);
461 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
462 					zone_page_state(zone, NR_ACTIVE_ANON);
463 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
464 					zone_page_state(zone, NR_ISOLATED_ANON);
465 
466 	return isolated > (inactive + active) / 2;
467 }
468 
469 /**
470  * isolate_migratepages_range() - isolate all migrate-able pages in range.
471  * @zone:	Zone pages are in.
472  * @cc:		Compaction control structure.
473  * @low_pfn:	The first PFN of the range.
474  * @end_pfn:	The one-past-the-last PFN of the range.
475  * @unevictable: true if it allows to isolate unevictable pages
476  *
477  * Isolate all pages that can be migrated from the range specified by
478  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
479  * pending), otherwise PFN of the first page that was not scanned
480  * (which may be both less, equal to or more then end_pfn).
481  *
482  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
483  * zero.
484  *
485  * Apart from cc->migratepages and cc->nr_migratetypes this function
486  * does not modify any cc's fields, in particular it does not modify
487  * (or read for that matter) cc->migrate_pfn.
488  */
489 unsigned long
490 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
491 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
492 {
493 	unsigned long last_pageblock_nr = 0, pageblock_nr;
494 	unsigned long nr_scanned = 0, nr_isolated = 0;
495 	struct list_head *migratelist = &cc->migratepages;
496 	struct lruvec *lruvec;
497 	unsigned long flags;
498 	bool locked = false;
499 	struct page *page = NULL, *valid_page = NULL;
500 	bool set_unsuitable = true;
501 	const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
502 					ISOLATE_ASYNC_MIGRATE : 0) |
503 				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
504 
505 	/*
506 	 * Ensure that there are not too many pages isolated from the LRU
507 	 * list by either parallel reclaimers or compaction. If there are,
508 	 * delay for some time until fewer pages are isolated
509 	 */
510 	while (unlikely(too_many_isolated(zone))) {
511 		/* async migration should just abort */
512 		if (cc->mode == MIGRATE_ASYNC)
513 			return 0;
514 
515 		congestion_wait(BLK_RW_ASYNC, HZ/10);
516 
517 		if (fatal_signal_pending(current))
518 			return 0;
519 	}
520 
521 	if (compact_should_abort(cc))
522 		return 0;
523 
524 	/* Time to isolate some pages for migration */
525 	for (; low_pfn < end_pfn; low_pfn++) {
526 		/* give a chance to irqs before checking need_resched() */
527 		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
528 			if (should_release_lock(&zone->lru_lock)) {
529 				spin_unlock_irqrestore(&zone->lru_lock, flags);
530 				locked = false;
531 			}
532 		}
533 
534 		/*
535 		 * migrate_pfn does not necessarily start aligned to a
536 		 * pageblock. Ensure that pfn_valid is called when moving
537 		 * into a new MAX_ORDER_NR_PAGES range in case of large
538 		 * memory holes within the zone
539 		 */
540 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
541 			if (!pfn_valid(low_pfn)) {
542 				low_pfn += MAX_ORDER_NR_PAGES - 1;
543 				continue;
544 			}
545 		}
546 
547 		if (!pfn_valid_within(low_pfn))
548 			continue;
549 		nr_scanned++;
550 
551 		/*
552 		 * Get the page and ensure the page is within the same zone.
553 		 * See the comment in isolate_freepages about overlapping
554 		 * nodes. It is deliberate that the new zone lock is not taken
555 		 * as memory compaction should not move pages between nodes.
556 		 */
557 		page = pfn_to_page(low_pfn);
558 		if (page_zone(page) != zone)
559 			continue;
560 
561 		if (!valid_page)
562 			valid_page = page;
563 
564 		/* If isolation recently failed, do not retry */
565 		pageblock_nr = low_pfn >> pageblock_order;
566 		if (last_pageblock_nr != pageblock_nr) {
567 			int mt;
568 
569 			last_pageblock_nr = pageblock_nr;
570 			if (!isolation_suitable(cc, page))
571 				goto next_pageblock;
572 
573 			/*
574 			 * For async migration, also only scan in MOVABLE
575 			 * blocks. Async migration is optimistic to see if
576 			 * the minimum amount of work satisfies the allocation
577 			 */
578 			mt = get_pageblock_migratetype(page);
579 			if (cc->mode == MIGRATE_ASYNC &&
580 			    !migrate_async_suitable(mt)) {
581 				set_unsuitable = false;
582 				goto next_pageblock;
583 			}
584 		}
585 
586 		/*
587 		 * Skip if free. page_order cannot be used without zone->lock
588 		 * as nothing prevents parallel allocations or buddy merging.
589 		 */
590 		if (PageBuddy(page))
591 			continue;
592 
593 		/*
594 		 * Check may be lockless but that's ok as we recheck later.
595 		 * It's possible to migrate LRU pages and balloon pages
596 		 * Skip any other type of page
597 		 */
598 		if (!PageLRU(page)) {
599 			if (unlikely(balloon_page_movable(page))) {
600 				if (locked && balloon_page_isolate(page)) {
601 					/* Successfully isolated */
602 					goto isolate_success;
603 				}
604 			}
605 			continue;
606 		}
607 
608 		/*
609 		 * PageLRU is set. lru_lock normally excludes isolation
610 		 * splitting and collapsing (collapsing has already happened
611 		 * if PageLRU is set) but the lock is not necessarily taken
612 		 * here and it is wasteful to take it just to check transhuge.
613 		 * Check TransHuge without lock and skip the whole pageblock if
614 		 * it's either a transhuge or hugetlbfs page, as calling
615 		 * compound_order() without preventing THP from splitting the
616 		 * page underneath us may return surprising results.
617 		 */
618 		if (PageTransHuge(page)) {
619 			if (!locked)
620 				goto next_pageblock;
621 			low_pfn += (1 << compound_order(page)) - 1;
622 			continue;
623 		}
624 
625 		/*
626 		 * Migration will fail if an anonymous page is pinned in memory,
627 		 * so avoid taking lru_lock and isolating it unnecessarily in an
628 		 * admittedly racy check.
629 		 */
630 		if (!page_mapping(page) &&
631 		    page_count(page) > page_mapcount(page))
632 			continue;
633 
634 		/* Check if it is ok to still hold the lock */
635 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
636 								locked, cc);
637 		if (!locked || fatal_signal_pending(current))
638 			break;
639 
640 		/* Recheck PageLRU and PageTransHuge under lock */
641 		if (!PageLRU(page))
642 			continue;
643 		if (PageTransHuge(page)) {
644 			low_pfn += (1 << compound_order(page)) - 1;
645 			continue;
646 		}
647 
648 		lruvec = mem_cgroup_page_lruvec(page, zone);
649 
650 		/* Try isolate the page */
651 		if (__isolate_lru_page(page, mode) != 0)
652 			continue;
653 
654 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
655 
656 		/* Successfully isolated */
657 		del_page_from_lru_list(page, lruvec, page_lru(page));
658 
659 isolate_success:
660 		cc->finished_update_migrate = true;
661 		list_add(&page->lru, migratelist);
662 		cc->nr_migratepages++;
663 		nr_isolated++;
664 
665 		/* Avoid isolating too much */
666 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
667 			++low_pfn;
668 			break;
669 		}
670 
671 		continue;
672 
673 next_pageblock:
674 		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
675 	}
676 
677 	acct_isolated(zone, locked, cc);
678 
679 	if (locked)
680 		spin_unlock_irqrestore(&zone->lru_lock, flags);
681 
682 	/*
683 	 * Update the pageblock-skip information and cached scanner pfn,
684 	 * if the whole pageblock was scanned without isolating any page.
685 	 */
686 	if (low_pfn == end_pfn)
687 		update_pageblock_skip(cc, valid_page, nr_isolated,
688 				      set_unsuitable, true);
689 
690 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
691 
692 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
693 	if (nr_isolated)
694 		count_compact_events(COMPACTISOLATED, nr_isolated);
695 
696 	return low_pfn;
697 }
698 
699 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
700 #ifdef CONFIG_COMPACTION
701 /*
702  * Based on information in the current compact_control, find blocks
703  * suitable for isolating free pages from and then isolate them.
704  */
705 static void isolate_freepages(struct zone *zone,
706 				struct compact_control *cc)
707 {
708 	struct page *page;
709 	unsigned long block_start_pfn;	/* start of current pageblock */
710 	unsigned long block_end_pfn;	/* end of current pageblock */
711 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
712 	int nr_freepages = cc->nr_freepages;
713 	struct list_head *freelist = &cc->freepages;
714 
715 	/*
716 	 * Initialise the free scanner. The starting point is where we last
717 	 * successfully isolated from, zone-cached value, or the end of the
718 	 * zone when isolating for the first time. We need this aligned to
719 	 * the pageblock boundary, because we do
720 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
721 	 * For ending point, take care when isolating in last pageblock of a
722 	 * a zone which ends in the middle of a pageblock.
723 	 * The low boundary is the end of the pageblock the migration scanner
724 	 * is using.
725 	 */
726 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
727 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
728 						zone_end_pfn(zone));
729 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
730 
731 	/*
732 	 * Isolate free pages until enough are available to migrate the
733 	 * pages on cc->migratepages. We stop searching if the migrate
734 	 * and free page scanners meet or enough free pages are isolated.
735 	 */
736 	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
737 				block_end_pfn = block_start_pfn,
738 				block_start_pfn -= pageblock_nr_pages) {
739 		unsigned long isolated;
740 
741 		/*
742 		 * This can iterate a massively long zone without finding any
743 		 * suitable migration targets, so periodically check if we need
744 		 * to schedule, or even abort async compaction.
745 		 */
746 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
747 						&& compact_should_abort(cc))
748 			break;
749 
750 		if (!pfn_valid(block_start_pfn))
751 			continue;
752 
753 		/*
754 		 * Check for overlapping nodes/zones. It's possible on some
755 		 * configurations to have a setup like
756 		 * node0 node1 node0
757 		 * i.e. it's possible that all pages within a zones range of
758 		 * pages do not belong to a single zone.
759 		 */
760 		page = pfn_to_page(block_start_pfn);
761 		if (page_zone(page) != zone)
762 			continue;
763 
764 		/* Check the block is suitable for migration */
765 		if (!suitable_migration_target(page))
766 			continue;
767 
768 		/* If isolation recently failed, do not retry */
769 		if (!isolation_suitable(cc, page))
770 			continue;
771 
772 		/* Found a block suitable for isolating free pages from */
773 		cc->free_pfn = block_start_pfn;
774 		isolated = isolate_freepages_block(cc, block_start_pfn,
775 					block_end_pfn, freelist, false);
776 		nr_freepages += isolated;
777 
778 		/*
779 		 * Set a flag that we successfully isolated in this pageblock.
780 		 * In the next loop iteration, zone->compact_cached_free_pfn
781 		 * will not be updated and thus it will effectively contain the
782 		 * highest pageblock we isolated pages from.
783 		 */
784 		if (isolated)
785 			cc->finished_update_free = true;
786 
787 		/*
788 		 * isolate_freepages_block() might have aborted due to async
789 		 * compaction being contended
790 		 */
791 		if (cc->contended)
792 			break;
793 	}
794 
795 	/* split_free_page does not map the pages */
796 	map_pages(freelist);
797 
798 	/*
799 	 * If we crossed the migrate scanner, we want to keep it that way
800 	 * so that compact_finished() may detect this
801 	 */
802 	if (block_start_pfn < low_pfn)
803 		cc->free_pfn = cc->migrate_pfn;
804 
805 	cc->nr_freepages = nr_freepages;
806 }
807 
808 /*
809  * This is a migrate-callback that "allocates" freepages by taking pages
810  * from the isolated freelists in the block we are migrating to.
811  */
812 static struct page *compaction_alloc(struct page *migratepage,
813 					unsigned long data,
814 					int **result)
815 {
816 	struct compact_control *cc = (struct compact_control *)data;
817 	struct page *freepage;
818 
819 	/*
820 	 * Isolate free pages if necessary, and if we are not aborting due to
821 	 * contention.
822 	 */
823 	if (list_empty(&cc->freepages)) {
824 		if (!cc->contended)
825 			isolate_freepages(cc->zone, cc);
826 
827 		if (list_empty(&cc->freepages))
828 			return NULL;
829 	}
830 
831 	freepage = list_entry(cc->freepages.next, struct page, lru);
832 	list_del(&freepage->lru);
833 	cc->nr_freepages--;
834 
835 	return freepage;
836 }
837 
838 /*
839  * This is a migrate-callback that "frees" freepages back to the isolated
840  * freelist.  All pages on the freelist are from the same zone, so there is no
841  * special handling needed for NUMA.
842  */
843 static void compaction_free(struct page *page, unsigned long data)
844 {
845 	struct compact_control *cc = (struct compact_control *)data;
846 
847 	list_add(&page->lru, &cc->freepages);
848 	cc->nr_freepages++;
849 }
850 
851 /* possible outcome of isolate_migratepages */
852 typedef enum {
853 	ISOLATE_ABORT,		/* Abort compaction now */
854 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
855 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
856 } isolate_migrate_t;
857 
858 /*
859  * Isolate all pages that can be migrated from the block pointed to by
860  * the migrate scanner within compact_control.
861  */
862 static isolate_migrate_t isolate_migratepages(struct zone *zone,
863 					struct compact_control *cc)
864 {
865 	unsigned long low_pfn, end_pfn;
866 
867 	/* Do not scan outside zone boundaries */
868 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
869 
870 	/* Only scan within a pageblock boundary */
871 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
872 
873 	/* Do not cross the free scanner or scan within a memory hole */
874 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
875 		cc->migrate_pfn = end_pfn;
876 		return ISOLATE_NONE;
877 	}
878 
879 	/* Perform the isolation */
880 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
881 	if (!low_pfn || cc->contended)
882 		return ISOLATE_ABORT;
883 
884 	cc->migrate_pfn = low_pfn;
885 
886 	return ISOLATE_SUCCESS;
887 }
888 
889 static int compact_finished(struct zone *zone,
890 			    struct compact_control *cc)
891 {
892 	unsigned int order;
893 	unsigned long watermark;
894 
895 	if (cc->contended || fatal_signal_pending(current))
896 		return COMPACT_PARTIAL;
897 
898 	/* Compaction run completes if the migrate and free scanner meet */
899 	if (cc->free_pfn <= cc->migrate_pfn) {
900 		/* Let the next compaction start anew. */
901 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
902 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
903 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
904 
905 		/*
906 		 * Mark that the PG_migrate_skip information should be cleared
907 		 * by kswapd when it goes to sleep. kswapd does not set the
908 		 * flag itself as the decision to be clear should be directly
909 		 * based on an allocation request.
910 		 */
911 		if (!current_is_kswapd())
912 			zone->compact_blockskip_flush = true;
913 
914 		return COMPACT_COMPLETE;
915 	}
916 
917 	/*
918 	 * order == -1 is expected when compacting via
919 	 * /proc/sys/vm/compact_memory
920 	 */
921 	if (cc->order == -1)
922 		return COMPACT_CONTINUE;
923 
924 	/* Compaction run is not finished if the watermark is not met */
925 	watermark = low_wmark_pages(zone);
926 	watermark += (1 << cc->order);
927 
928 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
929 		return COMPACT_CONTINUE;
930 
931 	/* Direct compactor: Is a suitable page free? */
932 	for (order = cc->order; order < MAX_ORDER; order++) {
933 		struct free_area *area = &zone->free_area[order];
934 
935 		/* Job done if page is free of the right migratetype */
936 		if (!list_empty(&area->free_list[cc->migratetype]))
937 			return COMPACT_PARTIAL;
938 
939 		/* Job done if allocation would set block type */
940 		if (cc->order >= pageblock_order && area->nr_free)
941 			return COMPACT_PARTIAL;
942 	}
943 
944 	return COMPACT_CONTINUE;
945 }
946 
947 /*
948  * compaction_suitable: Is this suitable to run compaction on this zone now?
949  * Returns
950  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
951  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
952  *   COMPACT_CONTINUE - If compaction should run now
953  */
954 unsigned long compaction_suitable(struct zone *zone, int order)
955 {
956 	int fragindex;
957 	unsigned long watermark;
958 
959 	/*
960 	 * order == -1 is expected when compacting via
961 	 * /proc/sys/vm/compact_memory
962 	 */
963 	if (order == -1)
964 		return COMPACT_CONTINUE;
965 
966 	/*
967 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
968 	 * This is because during migration, copies of pages need to be
969 	 * allocated and for a short time, the footprint is higher
970 	 */
971 	watermark = low_wmark_pages(zone) + (2UL << order);
972 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
973 		return COMPACT_SKIPPED;
974 
975 	/*
976 	 * fragmentation index determines if allocation failures are due to
977 	 * low memory or external fragmentation
978 	 *
979 	 * index of -1000 implies allocations might succeed depending on
980 	 * watermarks
981 	 * index towards 0 implies failure is due to lack of memory
982 	 * index towards 1000 implies failure is due to fragmentation
983 	 *
984 	 * Only compact if a failure would be due to fragmentation.
985 	 */
986 	fragindex = fragmentation_index(zone, order);
987 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
988 		return COMPACT_SKIPPED;
989 
990 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
991 	    0, 0))
992 		return COMPACT_PARTIAL;
993 
994 	return COMPACT_CONTINUE;
995 }
996 
997 static int compact_zone(struct zone *zone, struct compact_control *cc)
998 {
999 	int ret;
1000 	unsigned long start_pfn = zone->zone_start_pfn;
1001 	unsigned long end_pfn = zone_end_pfn(zone);
1002 	const bool sync = cc->mode != MIGRATE_ASYNC;
1003 
1004 	ret = compaction_suitable(zone, cc->order);
1005 	switch (ret) {
1006 	case COMPACT_PARTIAL:
1007 	case COMPACT_SKIPPED:
1008 		/* Compaction is likely to fail */
1009 		return ret;
1010 	case COMPACT_CONTINUE:
1011 		/* Fall through to compaction */
1012 		;
1013 	}
1014 
1015 	/*
1016 	 * Clear pageblock skip if there were failures recently and compaction
1017 	 * is about to be retried after being deferred. kswapd does not do
1018 	 * this reset as it'll reset the cached information when going to sleep.
1019 	 */
1020 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1021 		__reset_isolation_suitable(zone);
1022 
1023 	/*
1024 	 * Setup to move all movable pages to the end of the zone. Used cached
1025 	 * information on where the scanners should start but check that it
1026 	 * is initialised by ensuring the values are within zone boundaries.
1027 	 */
1028 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1029 	cc->free_pfn = zone->compact_cached_free_pfn;
1030 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1031 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1032 		zone->compact_cached_free_pfn = cc->free_pfn;
1033 	}
1034 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1035 		cc->migrate_pfn = start_pfn;
1036 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1037 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1038 	}
1039 
1040 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1041 
1042 	migrate_prep_local();
1043 
1044 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1045 		int err;
1046 
1047 		switch (isolate_migratepages(zone, cc)) {
1048 		case ISOLATE_ABORT:
1049 			ret = COMPACT_PARTIAL;
1050 			putback_movable_pages(&cc->migratepages);
1051 			cc->nr_migratepages = 0;
1052 			goto out;
1053 		case ISOLATE_NONE:
1054 			continue;
1055 		case ISOLATE_SUCCESS:
1056 			;
1057 		}
1058 
1059 		if (!cc->nr_migratepages)
1060 			continue;
1061 
1062 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1063 				compaction_free, (unsigned long)cc, cc->mode,
1064 				MR_COMPACTION);
1065 
1066 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1067 							&cc->migratepages);
1068 
1069 		/* All pages were either migrated or will be released */
1070 		cc->nr_migratepages = 0;
1071 		if (err) {
1072 			putback_movable_pages(&cc->migratepages);
1073 			/*
1074 			 * migrate_pages() may return -ENOMEM when scanners meet
1075 			 * and we want compact_finished() to detect it
1076 			 */
1077 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1078 				ret = COMPACT_PARTIAL;
1079 				goto out;
1080 			}
1081 		}
1082 	}
1083 
1084 out:
1085 	/* Release free pages and check accounting */
1086 	cc->nr_freepages -= release_freepages(&cc->freepages);
1087 	VM_BUG_ON(cc->nr_freepages != 0);
1088 
1089 	trace_mm_compaction_end(ret);
1090 
1091 	return ret;
1092 }
1093 
1094 static unsigned long compact_zone_order(struct zone *zone, int order,
1095 		gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1096 {
1097 	unsigned long ret;
1098 	struct compact_control cc = {
1099 		.nr_freepages = 0,
1100 		.nr_migratepages = 0,
1101 		.order = order,
1102 		.migratetype = allocflags_to_migratetype(gfp_mask),
1103 		.zone = zone,
1104 		.mode = mode,
1105 	};
1106 	INIT_LIST_HEAD(&cc.freepages);
1107 	INIT_LIST_HEAD(&cc.migratepages);
1108 
1109 	ret = compact_zone(zone, &cc);
1110 
1111 	VM_BUG_ON(!list_empty(&cc.freepages));
1112 	VM_BUG_ON(!list_empty(&cc.migratepages));
1113 
1114 	*contended = cc.contended;
1115 	return ret;
1116 }
1117 
1118 int sysctl_extfrag_threshold = 500;
1119 
1120 /**
1121  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1122  * @zonelist: The zonelist used for the current allocation
1123  * @order: The order of the current allocation
1124  * @gfp_mask: The GFP mask of the current allocation
1125  * @nodemask: The allowed nodes to allocate from
1126  * @mode: The migration mode for async, sync light, or sync migration
1127  * @contended: Return value that is true if compaction was aborted due to lock contention
1128  * @page: Optionally capture a free page of the requested order during compaction
1129  *
1130  * This is the main entry point for direct page compaction.
1131  */
1132 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1133 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1134 			enum migrate_mode mode, bool *contended)
1135 {
1136 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1137 	int may_enter_fs = gfp_mask & __GFP_FS;
1138 	int may_perform_io = gfp_mask & __GFP_IO;
1139 	struct zoneref *z;
1140 	struct zone *zone;
1141 	int rc = COMPACT_SKIPPED;
1142 	int alloc_flags = 0;
1143 
1144 	/* Check if the GFP flags allow compaction */
1145 	if (!order || !may_enter_fs || !may_perform_io)
1146 		return rc;
1147 
1148 	count_compact_event(COMPACTSTALL);
1149 
1150 #ifdef CONFIG_CMA
1151 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1152 		alloc_flags |= ALLOC_CMA;
1153 #endif
1154 	/* Compact each zone in the list */
1155 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1156 								nodemask) {
1157 		int status;
1158 
1159 		status = compact_zone_order(zone, order, gfp_mask, mode,
1160 						contended);
1161 		rc = max(status, rc);
1162 
1163 		/* If a normal allocation would succeed, stop compacting */
1164 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1165 				      alloc_flags))
1166 			break;
1167 	}
1168 
1169 	return rc;
1170 }
1171 
1172 
1173 /* Compact all zones within a node */
1174 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1175 {
1176 	int zoneid;
1177 	struct zone *zone;
1178 
1179 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1180 
1181 		zone = &pgdat->node_zones[zoneid];
1182 		if (!populated_zone(zone))
1183 			continue;
1184 
1185 		cc->nr_freepages = 0;
1186 		cc->nr_migratepages = 0;
1187 		cc->zone = zone;
1188 		INIT_LIST_HEAD(&cc->freepages);
1189 		INIT_LIST_HEAD(&cc->migratepages);
1190 
1191 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1192 			compact_zone(zone, cc);
1193 
1194 		if (cc->order > 0) {
1195 			if (zone_watermark_ok(zone, cc->order,
1196 						low_wmark_pages(zone), 0, 0))
1197 				compaction_defer_reset(zone, cc->order, false);
1198 		}
1199 
1200 		VM_BUG_ON(!list_empty(&cc->freepages));
1201 		VM_BUG_ON(!list_empty(&cc->migratepages));
1202 	}
1203 }
1204 
1205 void compact_pgdat(pg_data_t *pgdat, int order)
1206 {
1207 	struct compact_control cc = {
1208 		.order = order,
1209 		.mode = MIGRATE_ASYNC,
1210 	};
1211 
1212 	if (!order)
1213 		return;
1214 
1215 	__compact_pgdat(pgdat, &cc);
1216 }
1217 
1218 static void compact_node(int nid)
1219 {
1220 	struct compact_control cc = {
1221 		.order = -1,
1222 		.mode = MIGRATE_SYNC,
1223 		.ignore_skip_hint = true,
1224 	};
1225 
1226 	__compact_pgdat(NODE_DATA(nid), &cc);
1227 }
1228 
1229 /* Compact all nodes in the system */
1230 static void compact_nodes(void)
1231 {
1232 	int nid;
1233 
1234 	/* Flush pending updates to the LRU lists */
1235 	lru_add_drain_all();
1236 
1237 	for_each_online_node(nid)
1238 		compact_node(nid);
1239 }
1240 
1241 /* The written value is actually unused, all memory is compacted */
1242 int sysctl_compact_memory;
1243 
1244 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1245 int sysctl_compaction_handler(struct ctl_table *table, int write,
1246 			void __user *buffer, size_t *length, loff_t *ppos)
1247 {
1248 	if (write)
1249 		compact_nodes();
1250 
1251 	return 0;
1252 }
1253 
1254 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1255 			void __user *buffer, size_t *length, loff_t *ppos)
1256 {
1257 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1258 
1259 	return 0;
1260 }
1261 
1262 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1263 static ssize_t sysfs_compact_node(struct device *dev,
1264 			struct device_attribute *attr,
1265 			const char *buf, size_t count)
1266 {
1267 	int nid = dev->id;
1268 
1269 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1270 		/* Flush pending updates to the LRU lists */
1271 		lru_add_drain_all();
1272 
1273 		compact_node(nid);
1274 	}
1275 
1276 	return count;
1277 }
1278 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1279 
1280 int compaction_register_node(struct node *node)
1281 {
1282 	return device_create_file(&node->dev, &dev_attr_compact);
1283 }
1284 
1285 void compaction_unregister_node(struct node *node)
1286 {
1287 	return device_remove_file(&node->dev, &dev_attr_compact);
1288 }
1289 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1290 
1291 #endif /* CONFIG_COMPACTION */
1292