xref: /openbmc/linux/mm/compaction.c (revision d0b73b48)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19 
20 #ifdef CONFIG_COMPACTION
21 static inline void count_compact_event(enum vm_event_item item)
22 {
23 	count_vm_event(item);
24 }
25 
26 static inline void count_compact_events(enum vm_event_item item, long delta)
27 {
28 	count_vm_events(item, delta);
29 }
30 #else
31 #define count_compact_event(item) do { } while (0)
32 #define count_compact_events(item, delta) do { } while (0)
33 #endif
34 
35 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/compaction.h>
39 
40 static unsigned long release_freepages(struct list_head *freelist)
41 {
42 	struct page *page, *next;
43 	unsigned long count = 0;
44 
45 	list_for_each_entry_safe(page, next, freelist, lru) {
46 		list_del(&page->lru);
47 		__free_page(page);
48 		count++;
49 	}
50 
51 	return count;
52 }
53 
54 static void map_pages(struct list_head *list)
55 {
56 	struct page *page;
57 
58 	list_for_each_entry(page, list, lru) {
59 		arch_alloc_page(page, 0);
60 		kernel_map_pages(page, 1, 1);
61 	}
62 }
63 
64 static inline bool migrate_async_suitable(int migratetype)
65 {
66 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
67 }
68 
69 #ifdef CONFIG_COMPACTION
70 /* Returns true if the pageblock should be scanned for pages to isolate. */
71 static inline bool isolation_suitable(struct compact_control *cc,
72 					struct page *page)
73 {
74 	if (cc->ignore_skip_hint)
75 		return true;
76 
77 	return !get_pageblock_skip(page);
78 }
79 
80 /*
81  * This function is called to clear all cached information on pageblocks that
82  * should be skipped for page isolation when the migrate and free page scanner
83  * meet.
84  */
85 static void __reset_isolation_suitable(struct zone *zone)
86 {
87 	unsigned long start_pfn = zone->zone_start_pfn;
88 	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
89 	unsigned long pfn;
90 
91 	zone->compact_cached_migrate_pfn = start_pfn;
92 	zone->compact_cached_free_pfn = end_pfn;
93 	zone->compact_blockskip_flush = false;
94 
95 	/* Walk the zone and mark every pageblock as suitable for isolation */
96 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
97 		struct page *page;
98 
99 		cond_resched();
100 
101 		if (!pfn_valid(pfn))
102 			continue;
103 
104 		page = pfn_to_page(pfn);
105 		if (zone != page_zone(page))
106 			continue;
107 
108 		clear_pageblock_skip(page);
109 	}
110 }
111 
112 void reset_isolation_suitable(pg_data_t *pgdat)
113 {
114 	int zoneid;
115 
116 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
117 		struct zone *zone = &pgdat->node_zones[zoneid];
118 		if (!populated_zone(zone))
119 			continue;
120 
121 		/* Only flush if a full compaction finished recently */
122 		if (zone->compact_blockskip_flush)
123 			__reset_isolation_suitable(zone);
124 	}
125 }
126 
127 /*
128  * If no pages were isolated then mark this pageblock to be skipped in the
129  * future. The information is later cleared by __reset_isolation_suitable().
130  */
131 static void update_pageblock_skip(struct compact_control *cc,
132 			struct page *page, unsigned long nr_isolated,
133 			bool migrate_scanner)
134 {
135 	struct zone *zone = cc->zone;
136 	if (!page)
137 		return;
138 
139 	if (!nr_isolated) {
140 		unsigned long pfn = page_to_pfn(page);
141 		set_pageblock_skip(page);
142 
143 		/* Update where compaction should restart */
144 		if (migrate_scanner) {
145 			if (!cc->finished_update_migrate &&
146 			    pfn > zone->compact_cached_migrate_pfn)
147 				zone->compact_cached_migrate_pfn = pfn;
148 		} else {
149 			if (!cc->finished_update_free &&
150 			    pfn < zone->compact_cached_free_pfn)
151 				zone->compact_cached_free_pfn = pfn;
152 		}
153 	}
154 }
155 #else
156 static inline bool isolation_suitable(struct compact_control *cc,
157 					struct page *page)
158 {
159 	return true;
160 }
161 
162 static void update_pageblock_skip(struct compact_control *cc,
163 			struct page *page, unsigned long nr_isolated,
164 			bool migrate_scanner)
165 {
166 }
167 #endif /* CONFIG_COMPACTION */
168 
169 static inline bool should_release_lock(spinlock_t *lock)
170 {
171 	return need_resched() || spin_is_contended(lock);
172 }
173 
174 /*
175  * Compaction requires the taking of some coarse locks that are potentially
176  * very heavily contended. Check if the process needs to be scheduled or
177  * if the lock is contended. For async compaction, back out in the event
178  * if contention is severe. For sync compaction, schedule.
179  *
180  * Returns true if the lock is held.
181  * Returns false if the lock is released and compaction should abort
182  */
183 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
184 				      bool locked, struct compact_control *cc)
185 {
186 	if (should_release_lock(lock)) {
187 		if (locked) {
188 			spin_unlock_irqrestore(lock, *flags);
189 			locked = false;
190 		}
191 
192 		/* async aborts if taking too long or contended */
193 		if (!cc->sync) {
194 			cc->contended = true;
195 			return false;
196 		}
197 
198 		cond_resched();
199 	}
200 
201 	if (!locked)
202 		spin_lock_irqsave(lock, *flags);
203 	return true;
204 }
205 
206 static inline bool compact_trylock_irqsave(spinlock_t *lock,
207 			unsigned long *flags, struct compact_control *cc)
208 {
209 	return compact_checklock_irqsave(lock, flags, false, cc);
210 }
211 
212 /* Returns true if the page is within a block suitable for migration to */
213 static bool suitable_migration_target(struct page *page)
214 {
215 	int migratetype = get_pageblock_migratetype(page);
216 
217 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
218 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
219 		return false;
220 
221 	/* If the page is a large free page, then allow migration */
222 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
223 		return true;
224 
225 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
226 	if (migrate_async_suitable(migratetype))
227 		return true;
228 
229 	/* Otherwise skip the block */
230 	return false;
231 }
232 
233 /*
234  * Isolate free pages onto a private freelist. Caller must hold zone->lock.
235  * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
236  * pages inside of the pageblock (even though it may still end up isolating
237  * some pages).
238  */
239 static unsigned long isolate_freepages_block(struct compact_control *cc,
240 				unsigned long blockpfn,
241 				unsigned long end_pfn,
242 				struct list_head *freelist,
243 				bool strict)
244 {
245 	int nr_scanned = 0, total_isolated = 0;
246 	struct page *cursor, *valid_page = NULL;
247 	unsigned long nr_strict_required = end_pfn - blockpfn;
248 	unsigned long flags;
249 	bool locked = false;
250 
251 	cursor = pfn_to_page(blockpfn);
252 
253 	/* Isolate free pages. */
254 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
255 		int isolated, i;
256 		struct page *page = cursor;
257 
258 		nr_scanned++;
259 		if (!pfn_valid_within(blockpfn))
260 			continue;
261 		if (!valid_page)
262 			valid_page = page;
263 		if (!PageBuddy(page))
264 			continue;
265 
266 		/*
267 		 * The zone lock must be held to isolate freepages.
268 		 * Unfortunately this is a very coarse lock and can be
269 		 * heavily contended if there are parallel allocations
270 		 * or parallel compactions. For async compaction do not
271 		 * spin on the lock and we acquire the lock as late as
272 		 * possible.
273 		 */
274 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
275 								locked, cc);
276 		if (!locked)
277 			break;
278 
279 		/* Recheck this is a suitable migration target under lock */
280 		if (!strict && !suitable_migration_target(page))
281 			break;
282 
283 		/* Recheck this is a buddy page under lock */
284 		if (!PageBuddy(page))
285 			continue;
286 
287 		/* Found a free page, break it into order-0 pages */
288 		isolated = split_free_page(page);
289 		if (!isolated && strict)
290 			break;
291 		total_isolated += isolated;
292 		for (i = 0; i < isolated; i++) {
293 			list_add(&page->lru, freelist);
294 			page++;
295 		}
296 
297 		/* If a page was split, advance to the end of it */
298 		if (isolated) {
299 			blockpfn += isolated - 1;
300 			cursor += isolated - 1;
301 		}
302 	}
303 
304 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
305 
306 	/*
307 	 * If strict isolation is requested by CMA then check that all the
308 	 * pages requested were isolated. If there were any failures, 0 is
309 	 * returned and CMA will fail.
310 	 */
311 	if (strict && nr_strict_required > total_isolated)
312 		total_isolated = 0;
313 
314 	if (locked)
315 		spin_unlock_irqrestore(&cc->zone->lock, flags);
316 
317 	/* Update the pageblock-skip if the whole pageblock was scanned */
318 	if (blockpfn == end_pfn)
319 		update_pageblock_skip(cc, valid_page, total_isolated, false);
320 
321 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
322 	if (total_isolated)
323 		count_compact_events(COMPACTISOLATED, total_isolated);
324 	return total_isolated;
325 }
326 
327 /**
328  * isolate_freepages_range() - isolate free pages.
329  * @start_pfn: The first PFN to start isolating.
330  * @end_pfn:   The one-past-last PFN.
331  *
332  * Non-free pages, invalid PFNs, or zone boundaries within the
333  * [start_pfn, end_pfn) range are considered errors, cause function to
334  * undo its actions and return zero.
335  *
336  * Otherwise, function returns one-past-the-last PFN of isolated page
337  * (which may be greater then end_pfn if end fell in a middle of
338  * a free page).
339  */
340 unsigned long
341 isolate_freepages_range(struct compact_control *cc,
342 			unsigned long start_pfn, unsigned long end_pfn)
343 {
344 	unsigned long isolated, pfn, block_end_pfn;
345 	LIST_HEAD(freelist);
346 
347 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
348 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
349 			break;
350 
351 		/*
352 		 * On subsequent iterations ALIGN() is actually not needed,
353 		 * but we keep it that we not to complicate the code.
354 		 */
355 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
356 		block_end_pfn = min(block_end_pfn, end_pfn);
357 
358 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
359 						   &freelist, true);
360 
361 		/*
362 		 * In strict mode, isolate_freepages_block() returns 0 if
363 		 * there are any holes in the block (ie. invalid PFNs or
364 		 * non-free pages).
365 		 */
366 		if (!isolated)
367 			break;
368 
369 		/*
370 		 * If we managed to isolate pages, it is always (1 << n) *
371 		 * pageblock_nr_pages for some non-negative n.  (Max order
372 		 * page may span two pageblocks).
373 		 */
374 	}
375 
376 	/* split_free_page does not map the pages */
377 	map_pages(&freelist);
378 
379 	if (pfn < end_pfn) {
380 		/* Loop terminated early, cleanup. */
381 		release_freepages(&freelist);
382 		return 0;
383 	}
384 
385 	/* We don't use freelists for anything. */
386 	return pfn;
387 }
388 
389 /* Update the number of anon and file isolated pages in the zone */
390 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
391 {
392 	struct page *page;
393 	unsigned int count[2] = { 0, };
394 
395 	list_for_each_entry(page, &cc->migratepages, lru)
396 		count[!!page_is_file_cache(page)]++;
397 
398 	/* If locked we can use the interrupt unsafe versions */
399 	if (locked) {
400 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
401 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
402 	} else {
403 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
404 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
405 	}
406 }
407 
408 /* Similar to reclaim, but different enough that they don't share logic */
409 static bool too_many_isolated(struct zone *zone)
410 {
411 	unsigned long active, inactive, isolated;
412 
413 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
414 					zone_page_state(zone, NR_INACTIVE_ANON);
415 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
416 					zone_page_state(zone, NR_ACTIVE_ANON);
417 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
418 					zone_page_state(zone, NR_ISOLATED_ANON);
419 
420 	return isolated > (inactive + active) / 2;
421 }
422 
423 /**
424  * isolate_migratepages_range() - isolate all migrate-able pages in range.
425  * @zone:	Zone pages are in.
426  * @cc:		Compaction control structure.
427  * @low_pfn:	The first PFN of the range.
428  * @end_pfn:	The one-past-the-last PFN of the range.
429  * @unevictable: true if it allows to isolate unevictable pages
430  *
431  * Isolate all pages that can be migrated from the range specified by
432  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
433  * pending), otherwise PFN of the first page that was not scanned
434  * (which may be both less, equal to or more then end_pfn).
435  *
436  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
437  * zero.
438  *
439  * Apart from cc->migratepages and cc->nr_migratetypes this function
440  * does not modify any cc's fields, in particular it does not modify
441  * (or read for that matter) cc->migrate_pfn.
442  */
443 unsigned long
444 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
445 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
446 {
447 	unsigned long last_pageblock_nr = 0, pageblock_nr;
448 	unsigned long nr_scanned = 0, nr_isolated = 0;
449 	struct list_head *migratelist = &cc->migratepages;
450 	isolate_mode_t mode = 0;
451 	struct lruvec *lruvec;
452 	unsigned long flags;
453 	bool locked = false;
454 	struct page *page = NULL, *valid_page = NULL;
455 
456 	/*
457 	 * Ensure that there are not too many pages isolated from the LRU
458 	 * list by either parallel reclaimers or compaction. If there are,
459 	 * delay for some time until fewer pages are isolated
460 	 */
461 	while (unlikely(too_many_isolated(zone))) {
462 		/* async migration should just abort */
463 		if (!cc->sync)
464 			return 0;
465 
466 		congestion_wait(BLK_RW_ASYNC, HZ/10);
467 
468 		if (fatal_signal_pending(current))
469 			return 0;
470 	}
471 
472 	/* Time to isolate some pages for migration */
473 	cond_resched();
474 	for (; low_pfn < end_pfn; low_pfn++) {
475 		/* give a chance to irqs before checking need_resched() */
476 		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
477 			if (should_release_lock(&zone->lru_lock)) {
478 				spin_unlock_irqrestore(&zone->lru_lock, flags);
479 				locked = false;
480 			}
481 		}
482 
483 		/*
484 		 * migrate_pfn does not necessarily start aligned to a
485 		 * pageblock. Ensure that pfn_valid is called when moving
486 		 * into a new MAX_ORDER_NR_PAGES range in case of large
487 		 * memory holes within the zone
488 		 */
489 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
490 			if (!pfn_valid(low_pfn)) {
491 				low_pfn += MAX_ORDER_NR_PAGES - 1;
492 				continue;
493 			}
494 		}
495 
496 		if (!pfn_valid_within(low_pfn))
497 			continue;
498 		nr_scanned++;
499 
500 		/*
501 		 * Get the page and ensure the page is within the same zone.
502 		 * See the comment in isolate_freepages about overlapping
503 		 * nodes. It is deliberate that the new zone lock is not taken
504 		 * as memory compaction should not move pages between nodes.
505 		 */
506 		page = pfn_to_page(low_pfn);
507 		if (page_zone(page) != zone)
508 			continue;
509 
510 		if (!valid_page)
511 			valid_page = page;
512 
513 		/* If isolation recently failed, do not retry */
514 		pageblock_nr = low_pfn >> pageblock_order;
515 		if (!isolation_suitable(cc, page))
516 			goto next_pageblock;
517 
518 		/* Skip if free */
519 		if (PageBuddy(page))
520 			continue;
521 
522 		/*
523 		 * For async migration, also only scan in MOVABLE blocks. Async
524 		 * migration is optimistic to see if the minimum amount of work
525 		 * satisfies the allocation
526 		 */
527 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
528 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
529 			cc->finished_update_migrate = true;
530 			goto next_pageblock;
531 		}
532 
533 		/*
534 		 * Check may be lockless but that's ok as we recheck later.
535 		 * It's possible to migrate LRU pages and balloon pages
536 		 * Skip any other type of page
537 		 */
538 		if (!PageLRU(page)) {
539 			if (unlikely(balloon_page_movable(page))) {
540 				if (locked && balloon_page_isolate(page)) {
541 					/* Successfully isolated */
542 					cc->finished_update_migrate = true;
543 					list_add(&page->lru, migratelist);
544 					cc->nr_migratepages++;
545 					nr_isolated++;
546 					goto check_compact_cluster;
547 				}
548 			}
549 			continue;
550 		}
551 
552 		/*
553 		 * PageLRU is set. lru_lock normally excludes isolation
554 		 * splitting and collapsing (collapsing has already happened
555 		 * if PageLRU is set) but the lock is not necessarily taken
556 		 * here and it is wasteful to take it just to check transhuge.
557 		 * Check TransHuge without lock and skip the whole pageblock if
558 		 * it's either a transhuge or hugetlbfs page, as calling
559 		 * compound_order() without preventing THP from splitting the
560 		 * page underneath us may return surprising results.
561 		 */
562 		if (PageTransHuge(page)) {
563 			if (!locked)
564 				goto next_pageblock;
565 			low_pfn += (1 << compound_order(page)) - 1;
566 			continue;
567 		}
568 
569 		/* Check if it is ok to still hold the lock */
570 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
571 								locked, cc);
572 		if (!locked || fatal_signal_pending(current))
573 			break;
574 
575 		/* Recheck PageLRU and PageTransHuge under lock */
576 		if (!PageLRU(page))
577 			continue;
578 		if (PageTransHuge(page)) {
579 			low_pfn += (1 << compound_order(page)) - 1;
580 			continue;
581 		}
582 
583 		if (!cc->sync)
584 			mode |= ISOLATE_ASYNC_MIGRATE;
585 
586 		if (unevictable)
587 			mode |= ISOLATE_UNEVICTABLE;
588 
589 		lruvec = mem_cgroup_page_lruvec(page, zone);
590 
591 		/* Try isolate the page */
592 		if (__isolate_lru_page(page, mode) != 0)
593 			continue;
594 
595 		VM_BUG_ON(PageTransCompound(page));
596 
597 		/* Successfully isolated */
598 		cc->finished_update_migrate = true;
599 		del_page_from_lru_list(page, lruvec, page_lru(page));
600 		list_add(&page->lru, migratelist);
601 		cc->nr_migratepages++;
602 		nr_isolated++;
603 
604 check_compact_cluster:
605 		/* Avoid isolating too much */
606 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
607 			++low_pfn;
608 			break;
609 		}
610 
611 		continue;
612 
613 next_pageblock:
614 		low_pfn += pageblock_nr_pages;
615 		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
616 		last_pageblock_nr = pageblock_nr;
617 	}
618 
619 	acct_isolated(zone, locked, cc);
620 
621 	if (locked)
622 		spin_unlock_irqrestore(&zone->lru_lock, flags);
623 
624 	/* Update the pageblock-skip if the whole pageblock was scanned */
625 	if (low_pfn == end_pfn)
626 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
627 
628 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
629 
630 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
631 	if (nr_isolated)
632 		count_compact_events(COMPACTISOLATED, nr_isolated);
633 
634 	return low_pfn;
635 }
636 
637 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
638 #ifdef CONFIG_COMPACTION
639 /*
640  * Based on information in the current compact_control, find blocks
641  * suitable for isolating free pages from and then isolate them.
642  */
643 static void isolate_freepages(struct zone *zone,
644 				struct compact_control *cc)
645 {
646 	struct page *page;
647 	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
648 	int nr_freepages = cc->nr_freepages;
649 	struct list_head *freelist = &cc->freepages;
650 
651 	/*
652 	 * Initialise the free scanner. The starting point is where we last
653 	 * scanned from (or the end of the zone if starting). The low point
654 	 * is the end of the pageblock the migration scanner is using.
655 	 */
656 	pfn = cc->free_pfn;
657 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
658 
659 	/*
660 	 * Take care that if the migration scanner is at the end of the zone
661 	 * that the free scanner does not accidentally move to the next zone
662 	 * in the next isolation cycle.
663 	 */
664 	high_pfn = min(low_pfn, pfn);
665 
666 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
667 
668 	/*
669 	 * Isolate free pages until enough are available to migrate the
670 	 * pages on cc->migratepages. We stop searching if the migrate
671 	 * and free page scanners meet or enough free pages are isolated.
672 	 */
673 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
674 					pfn -= pageblock_nr_pages) {
675 		unsigned long isolated;
676 
677 		if (!pfn_valid(pfn))
678 			continue;
679 
680 		/*
681 		 * Check for overlapping nodes/zones. It's possible on some
682 		 * configurations to have a setup like
683 		 * node0 node1 node0
684 		 * i.e. it's possible that all pages within a zones range of
685 		 * pages do not belong to a single zone.
686 		 */
687 		page = pfn_to_page(pfn);
688 		if (page_zone(page) != zone)
689 			continue;
690 
691 		/* Check the block is suitable for migration */
692 		if (!suitable_migration_target(page))
693 			continue;
694 
695 		/* If isolation recently failed, do not retry */
696 		if (!isolation_suitable(cc, page))
697 			continue;
698 
699 		/* Found a block suitable for isolating free pages from */
700 		isolated = 0;
701 
702 		/*
703 		 * As pfn may not start aligned, pfn+pageblock_nr_page
704 		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
705 		 * a pfn_valid check. Ensure isolate_freepages_block()
706 		 * only scans within a pageblock
707 		 */
708 		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
709 		end_pfn = min(end_pfn, zone_end_pfn);
710 		isolated = isolate_freepages_block(cc, pfn, end_pfn,
711 						   freelist, false);
712 		nr_freepages += isolated;
713 
714 		/*
715 		 * Record the highest PFN we isolated pages from. When next
716 		 * looking for free pages, the search will restart here as
717 		 * page migration may have returned some pages to the allocator
718 		 */
719 		if (isolated) {
720 			cc->finished_update_free = true;
721 			high_pfn = max(high_pfn, pfn);
722 		}
723 	}
724 
725 	/* split_free_page does not map the pages */
726 	map_pages(freelist);
727 
728 	cc->free_pfn = high_pfn;
729 	cc->nr_freepages = nr_freepages;
730 }
731 
732 /*
733  * This is a migrate-callback that "allocates" freepages by taking pages
734  * from the isolated freelists in the block we are migrating to.
735  */
736 static struct page *compaction_alloc(struct page *migratepage,
737 					unsigned long data,
738 					int **result)
739 {
740 	struct compact_control *cc = (struct compact_control *)data;
741 	struct page *freepage;
742 
743 	/* Isolate free pages if necessary */
744 	if (list_empty(&cc->freepages)) {
745 		isolate_freepages(cc->zone, cc);
746 
747 		if (list_empty(&cc->freepages))
748 			return NULL;
749 	}
750 
751 	freepage = list_entry(cc->freepages.next, struct page, lru);
752 	list_del(&freepage->lru);
753 	cc->nr_freepages--;
754 
755 	return freepage;
756 }
757 
758 /*
759  * We cannot control nr_migratepages and nr_freepages fully when migration is
760  * running as migrate_pages() has no knowledge of compact_control. When
761  * migration is complete, we count the number of pages on the lists by hand.
762  */
763 static void update_nr_listpages(struct compact_control *cc)
764 {
765 	int nr_migratepages = 0;
766 	int nr_freepages = 0;
767 	struct page *page;
768 
769 	list_for_each_entry(page, &cc->migratepages, lru)
770 		nr_migratepages++;
771 	list_for_each_entry(page, &cc->freepages, lru)
772 		nr_freepages++;
773 
774 	cc->nr_migratepages = nr_migratepages;
775 	cc->nr_freepages = nr_freepages;
776 }
777 
778 /* possible outcome of isolate_migratepages */
779 typedef enum {
780 	ISOLATE_ABORT,		/* Abort compaction now */
781 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
782 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
783 } isolate_migrate_t;
784 
785 /*
786  * Isolate all pages that can be migrated from the block pointed to by
787  * the migrate scanner within compact_control.
788  */
789 static isolate_migrate_t isolate_migratepages(struct zone *zone,
790 					struct compact_control *cc)
791 {
792 	unsigned long low_pfn, end_pfn;
793 
794 	/* Do not scan outside zone boundaries */
795 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
796 
797 	/* Only scan within a pageblock boundary */
798 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
799 
800 	/* Do not cross the free scanner or scan within a memory hole */
801 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
802 		cc->migrate_pfn = end_pfn;
803 		return ISOLATE_NONE;
804 	}
805 
806 	/* Perform the isolation */
807 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
808 	if (!low_pfn || cc->contended)
809 		return ISOLATE_ABORT;
810 
811 	cc->migrate_pfn = low_pfn;
812 
813 	return ISOLATE_SUCCESS;
814 }
815 
816 static int compact_finished(struct zone *zone,
817 			    struct compact_control *cc)
818 {
819 	unsigned int order;
820 	unsigned long watermark;
821 
822 	if (fatal_signal_pending(current))
823 		return COMPACT_PARTIAL;
824 
825 	/* Compaction run completes if the migrate and free scanner meet */
826 	if (cc->free_pfn <= cc->migrate_pfn) {
827 		/*
828 		 * Mark that the PG_migrate_skip information should be cleared
829 		 * by kswapd when it goes to sleep. kswapd does not set the
830 		 * flag itself as the decision to be clear should be directly
831 		 * based on an allocation request.
832 		 */
833 		if (!current_is_kswapd())
834 			zone->compact_blockskip_flush = true;
835 
836 		return COMPACT_COMPLETE;
837 	}
838 
839 	/*
840 	 * order == -1 is expected when compacting via
841 	 * /proc/sys/vm/compact_memory
842 	 */
843 	if (cc->order == -1)
844 		return COMPACT_CONTINUE;
845 
846 	/* Compaction run is not finished if the watermark is not met */
847 	watermark = low_wmark_pages(zone);
848 	watermark += (1 << cc->order);
849 
850 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
851 		return COMPACT_CONTINUE;
852 
853 	/* Direct compactor: Is a suitable page free? */
854 	for (order = cc->order; order < MAX_ORDER; order++) {
855 		struct free_area *area = &zone->free_area[order];
856 
857 		/* Job done if page is free of the right migratetype */
858 		if (!list_empty(&area->free_list[cc->migratetype]))
859 			return COMPACT_PARTIAL;
860 
861 		/* Job done if allocation would set block type */
862 		if (cc->order >= pageblock_order && area->nr_free)
863 			return COMPACT_PARTIAL;
864 	}
865 
866 	return COMPACT_CONTINUE;
867 }
868 
869 /*
870  * compaction_suitable: Is this suitable to run compaction on this zone now?
871  * Returns
872  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
873  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
874  *   COMPACT_CONTINUE - If compaction should run now
875  */
876 unsigned long compaction_suitable(struct zone *zone, int order)
877 {
878 	int fragindex;
879 	unsigned long watermark;
880 
881 	/*
882 	 * order == -1 is expected when compacting via
883 	 * /proc/sys/vm/compact_memory
884 	 */
885 	if (order == -1)
886 		return COMPACT_CONTINUE;
887 
888 	/*
889 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
890 	 * This is because during migration, copies of pages need to be
891 	 * allocated and for a short time, the footprint is higher
892 	 */
893 	watermark = low_wmark_pages(zone) + (2UL << order);
894 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
895 		return COMPACT_SKIPPED;
896 
897 	/*
898 	 * fragmentation index determines if allocation failures are due to
899 	 * low memory or external fragmentation
900 	 *
901 	 * index of -1000 implies allocations might succeed depending on
902 	 * watermarks
903 	 * index towards 0 implies failure is due to lack of memory
904 	 * index towards 1000 implies failure is due to fragmentation
905 	 *
906 	 * Only compact if a failure would be due to fragmentation.
907 	 */
908 	fragindex = fragmentation_index(zone, order);
909 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
910 		return COMPACT_SKIPPED;
911 
912 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
913 	    0, 0))
914 		return COMPACT_PARTIAL;
915 
916 	return COMPACT_CONTINUE;
917 }
918 
919 static int compact_zone(struct zone *zone, struct compact_control *cc)
920 {
921 	int ret;
922 	unsigned long start_pfn = zone->zone_start_pfn;
923 	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
924 
925 	ret = compaction_suitable(zone, cc->order);
926 	switch (ret) {
927 	case COMPACT_PARTIAL:
928 	case COMPACT_SKIPPED:
929 		/* Compaction is likely to fail */
930 		return ret;
931 	case COMPACT_CONTINUE:
932 		/* Fall through to compaction */
933 		;
934 	}
935 
936 	/*
937 	 * Setup to move all movable pages to the end of the zone. Used cached
938 	 * information on where the scanners should start but check that it
939 	 * is initialised by ensuring the values are within zone boundaries.
940 	 */
941 	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
942 	cc->free_pfn = zone->compact_cached_free_pfn;
943 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
944 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
945 		zone->compact_cached_free_pfn = cc->free_pfn;
946 	}
947 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
948 		cc->migrate_pfn = start_pfn;
949 		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
950 	}
951 
952 	/*
953 	 * Clear pageblock skip if there were failures recently and compaction
954 	 * is about to be retried after being deferred. kswapd does not do
955 	 * this reset as it'll reset the cached information when going to sleep.
956 	 */
957 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
958 		__reset_isolation_suitable(zone);
959 
960 	migrate_prep_local();
961 
962 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
963 		unsigned long nr_migrate, nr_remaining;
964 		int err;
965 
966 		switch (isolate_migratepages(zone, cc)) {
967 		case ISOLATE_ABORT:
968 			ret = COMPACT_PARTIAL;
969 			putback_movable_pages(&cc->migratepages);
970 			cc->nr_migratepages = 0;
971 			goto out;
972 		case ISOLATE_NONE:
973 			continue;
974 		case ISOLATE_SUCCESS:
975 			;
976 		}
977 
978 		nr_migrate = cc->nr_migratepages;
979 		err = migrate_pages(&cc->migratepages, compaction_alloc,
980 				(unsigned long)cc, false,
981 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
982 				MR_COMPACTION);
983 		update_nr_listpages(cc);
984 		nr_remaining = cc->nr_migratepages;
985 
986 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
987 						nr_remaining);
988 
989 		/* Release isolated pages not migrated */
990 		if (err) {
991 			putback_movable_pages(&cc->migratepages);
992 			cc->nr_migratepages = 0;
993 			if (err == -ENOMEM) {
994 				ret = COMPACT_PARTIAL;
995 				goto out;
996 			}
997 		}
998 	}
999 
1000 out:
1001 	/* Release free pages and check accounting */
1002 	cc->nr_freepages -= release_freepages(&cc->freepages);
1003 	VM_BUG_ON(cc->nr_freepages != 0);
1004 
1005 	return ret;
1006 }
1007 
1008 static unsigned long compact_zone_order(struct zone *zone,
1009 				 int order, gfp_t gfp_mask,
1010 				 bool sync, bool *contended)
1011 {
1012 	unsigned long ret;
1013 	struct compact_control cc = {
1014 		.nr_freepages = 0,
1015 		.nr_migratepages = 0,
1016 		.order = order,
1017 		.migratetype = allocflags_to_migratetype(gfp_mask),
1018 		.zone = zone,
1019 		.sync = sync,
1020 	};
1021 	INIT_LIST_HEAD(&cc.freepages);
1022 	INIT_LIST_HEAD(&cc.migratepages);
1023 
1024 	ret = compact_zone(zone, &cc);
1025 
1026 	VM_BUG_ON(!list_empty(&cc.freepages));
1027 	VM_BUG_ON(!list_empty(&cc.migratepages));
1028 
1029 	*contended = cc.contended;
1030 	return ret;
1031 }
1032 
1033 int sysctl_extfrag_threshold = 500;
1034 
1035 /**
1036  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1037  * @zonelist: The zonelist used for the current allocation
1038  * @order: The order of the current allocation
1039  * @gfp_mask: The GFP mask of the current allocation
1040  * @nodemask: The allowed nodes to allocate from
1041  * @sync: Whether migration is synchronous or not
1042  * @contended: Return value that is true if compaction was aborted due to lock contention
1043  * @page: Optionally capture a free page of the requested order during compaction
1044  *
1045  * This is the main entry point for direct page compaction.
1046  */
1047 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1048 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1049 			bool sync, bool *contended)
1050 {
1051 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1052 	int may_enter_fs = gfp_mask & __GFP_FS;
1053 	int may_perform_io = gfp_mask & __GFP_IO;
1054 	struct zoneref *z;
1055 	struct zone *zone;
1056 	int rc = COMPACT_SKIPPED;
1057 	int alloc_flags = 0;
1058 
1059 	/* Check if the GFP flags allow compaction */
1060 	if (!order || !may_enter_fs || !may_perform_io)
1061 		return rc;
1062 
1063 	count_compact_event(COMPACTSTALL);
1064 
1065 #ifdef CONFIG_CMA
1066 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1067 		alloc_flags |= ALLOC_CMA;
1068 #endif
1069 	/* Compact each zone in the list */
1070 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1071 								nodemask) {
1072 		int status;
1073 
1074 		status = compact_zone_order(zone, order, gfp_mask, sync,
1075 						contended);
1076 		rc = max(status, rc);
1077 
1078 		/* If a normal allocation would succeed, stop compacting */
1079 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1080 				      alloc_flags))
1081 			break;
1082 	}
1083 
1084 	return rc;
1085 }
1086 
1087 
1088 /* Compact all zones within a node */
1089 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1090 {
1091 	int zoneid;
1092 	struct zone *zone;
1093 
1094 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1095 
1096 		zone = &pgdat->node_zones[zoneid];
1097 		if (!populated_zone(zone))
1098 			continue;
1099 
1100 		cc->nr_freepages = 0;
1101 		cc->nr_migratepages = 0;
1102 		cc->zone = zone;
1103 		INIT_LIST_HEAD(&cc->freepages);
1104 		INIT_LIST_HEAD(&cc->migratepages);
1105 
1106 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1107 			compact_zone(zone, cc);
1108 
1109 		if (cc->order > 0) {
1110 			int ok = zone_watermark_ok(zone, cc->order,
1111 						low_wmark_pages(zone), 0, 0);
1112 			if (ok && cc->order >= zone->compact_order_failed)
1113 				zone->compact_order_failed = cc->order + 1;
1114 			/* Currently async compaction is never deferred. */
1115 			else if (!ok && cc->sync)
1116 				defer_compaction(zone, cc->order);
1117 		}
1118 
1119 		VM_BUG_ON(!list_empty(&cc->freepages));
1120 		VM_BUG_ON(!list_empty(&cc->migratepages));
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 int compact_pgdat(pg_data_t *pgdat, int order)
1127 {
1128 	struct compact_control cc = {
1129 		.order = order,
1130 		.sync = false,
1131 	};
1132 
1133 	return __compact_pgdat(pgdat, &cc);
1134 }
1135 
1136 static int compact_node(int nid)
1137 {
1138 	struct compact_control cc = {
1139 		.order = -1,
1140 		.sync = true,
1141 	};
1142 
1143 	return __compact_pgdat(NODE_DATA(nid), &cc);
1144 }
1145 
1146 /* Compact all nodes in the system */
1147 static void compact_nodes(void)
1148 {
1149 	int nid;
1150 
1151 	/* Flush pending updates to the LRU lists */
1152 	lru_add_drain_all();
1153 
1154 	for_each_online_node(nid)
1155 		compact_node(nid);
1156 }
1157 
1158 /* The written value is actually unused, all memory is compacted */
1159 int sysctl_compact_memory;
1160 
1161 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1162 int sysctl_compaction_handler(struct ctl_table *table, int write,
1163 			void __user *buffer, size_t *length, loff_t *ppos)
1164 {
1165 	if (write)
1166 		compact_nodes();
1167 
1168 	return 0;
1169 }
1170 
1171 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1172 			void __user *buffer, size_t *length, loff_t *ppos)
1173 {
1174 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1175 
1176 	return 0;
1177 }
1178 
1179 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1180 ssize_t sysfs_compact_node(struct device *dev,
1181 			struct device_attribute *attr,
1182 			const char *buf, size_t count)
1183 {
1184 	int nid = dev->id;
1185 
1186 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1187 		/* Flush pending updates to the LRU lists */
1188 		lru_add_drain_all();
1189 
1190 		compact_node(nid);
1191 	}
1192 
1193 	return count;
1194 }
1195 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1196 
1197 int compaction_register_node(struct node *node)
1198 {
1199 	return device_create_file(&node->dev, &dev_attr_compact);
1200 }
1201 
1202 void compaction_unregister_node(struct node *node)
1203 {
1204 	return device_remove_file(&node->dev, &dev_attr_compact);
1205 }
1206 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1207 
1208 #endif /* CONFIG_COMPACTION */
1209