1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 bool PageMovable(struct page *page) 114 { 115 const struct movable_operations *mops; 116 117 VM_BUG_ON_PAGE(!PageLocked(page), page); 118 if (!__PageMovable(page)) 119 return false; 120 121 mops = page_movable_ops(page); 122 if (mops) 123 return true; 124 125 return false; 126 } 127 EXPORT_SYMBOL(PageMovable); 128 129 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 130 { 131 VM_BUG_ON_PAGE(!PageLocked(page), page); 132 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 133 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 134 } 135 EXPORT_SYMBOL(__SetPageMovable); 136 137 void __ClearPageMovable(struct page *page) 138 { 139 VM_BUG_ON_PAGE(!PageMovable(page), page); 140 /* 141 * This page still has the type of a movable page, but it's 142 * actually not movable any more. 143 */ 144 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 145 } 146 EXPORT_SYMBOL(__ClearPageMovable); 147 148 /* Do not skip compaction more than 64 times */ 149 #define COMPACT_MAX_DEFER_SHIFT 6 150 151 /* 152 * Compaction is deferred when compaction fails to result in a page 153 * allocation success. 1 << compact_defer_shift, compactions are skipped up 154 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 155 */ 156 static void defer_compaction(struct zone *zone, int order) 157 { 158 zone->compact_considered = 0; 159 zone->compact_defer_shift++; 160 161 if (order < zone->compact_order_failed) 162 zone->compact_order_failed = order; 163 164 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 165 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 166 167 trace_mm_compaction_defer_compaction(zone, order); 168 } 169 170 /* Returns true if compaction should be skipped this time */ 171 static bool compaction_deferred(struct zone *zone, int order) 172 { 173 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 174 175 if (order < zone->compact_order_failed) 176 return false; 177 178 /* Avoid possible overflow */ 179 if (++zone->compact_considered >= defer_limit) { 180 zone->compact_considered = defer_limit; 181 return false; 182 } 183 184 trace_mm_compaction_deferred(zone, order); 185 186 return true; 187 } 188 189 /* 190 * Update defer tracking counters after successful compaction of given order, 191 * which means an allocation either succeeded (alloc_success == true) or is 192 * expected to succeed. 193 */ 194 void compaction_defer_reset(struct zone *zone, int order, 195 bool alloc_success) 196 { 197 if (alloc_success) { 198 zone->compact_considered = 0; 199 zone->compact_defer_shift = 0; 200 } 201 if (order >= zone->compact_order_failed) 202 zone->compact_order_failed = order + 1; 203 204 trace_mm_compaction_defer_reset(zone, order); 205 } 206 207 /* Returns true if restarting compaction after many failures */ 208 static bool compaction_restarting(struct zone *zone, int order) 209 { 210 if (order < zone->compact_order_failed) 211 return false; 212 213 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 214 zone->compact_considered >= 1UL << zone->compact_defer_shift; 215 } 216 217 /* Returns true if the pageblock should be scanned for pages to isolate. */ 218 static inline bool isolation_suitable(struct compact_control *cc, 219 struct page *page) 220 { 221 if (cc->ignore_skip_hint) 222 return true; 223 224 return !get_pageblock_skip(page); 225 } 226 227 static void reset_cached_positions(struct zone *zone) 228 { 229 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 230 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 231 zone->compact_cached_free_pfn = 232 pageblock_start_pfn(zone_end_pfn(zone) - 1); 233 } 234 235 /* 236 * Compound pages of >= pageblock_order should consistently be skipped until 237 * released. It is always pointless to compact pages of such order (if they are 238 * migratable), and the pageblocks they occupy cannot contain any free pages. 239 */ 240 static bool pageblock_skip_persistent(struct page *page) 241 { 242 if (!PageCompound(page)) 243 return false; 244 245 page = compound_head(page); 246 247 if (compound_order(page) >= pageblock_order) 248 return true; 249 250 return false; 251 } 252 253 static bool 254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 255 bool check_target) 256 { 257 struct page *page = pfn_to_online_page(pfn); 258 struct page *block_page; 259 struct page *end_page; 260 unsigned long block_pfn; 261 262 if (!page) 263 return false; 264 if (zone != page_zone(page)) 265 return false; 266 if (pageblock_skip_persistent(page)) 267 return false; 268 269 /* 270 * If skip is already cleared do no further checking once the 271 * restart points have been set. 272 */ 273 if (check_source && check_target && !get_pageblock_skip(page)) 274 return true; 275 276 /* 277 * If clearing skip for the target scanner, do not select a 278 * non-movable pageblock as the starting point. 279 */ 280 if (!check_source && check_target && 281 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 282 return false; 283 284 /* Ensure the start of the pageblock or zone is online and valid */ 285 block_pfn = pageblock_start_pfn(pfn); 286 block_pfn = max(block_pfn, zone->zone_start_pfn); 287 block_page = pfn_to_online_page(block_pfn); 288 if (block_page) { 289 page = block_page; 290 pfn = block_pfn; 291 } 292 293 /* Ensure the end of the pageblock or zone is online and valid */ 294 block_pfn = pageblock_end_pfn(pfn) - 1; 295 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 296 end_page = pfn_to_online_page(block_pfn); 297 if (!end_page) 298 return false; 299 300 /* 301 * Only clear the hint if a sample indicates there is either a 302 * free page or an LRU page in the block. One or other condition 303 * is necessary for the block to be a migration source/target. 304 */ 305 do { 306 if (check_source && PageLRU(page)) { 307 clear_pageblock_skip(page); 308 return true; 309 } 310 311 if (check_target && PageBuddy(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 317 } while (page <= end_page); 318 319 return false; 320 } 321 322 /* 323 * This function is called to clear all cached information on pageblocks that 324 * should be skipped for page isolation when the migrate and free page scanner 325 * meet. 326 */ 327 static void __reset_isolation_suitable(struct zone *zone) 328 { 329 unsigned long migrate_pfn = zone->zone_start_pfn; 330 unsigned long free_pfn = zone_end_pfn(zone) - 1; 331 unsigned long reset_migrate = free_pfn; 332 unsigned long reset_free = migrate_pfn; 333 bool source_set = false; 334 bool free_set = false; 335 336 if (!zone->compact_blockskip_flush) 337 return; 338 339 zone->compact_blockskip_flush = false; 340 341 /* 342 * Walk the zone and update pageblock skip information. Source looks 343 * for PageLRU while target looks for PageBuddy. When the scanner 344 * is found, both PageBuddy and PageLRU are checked as the pageblock 345 * is suitable as both source and target. 346 */ 347 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 348 free_pfn -= pageblock_nr_pages) { 349 cond_resched(); 350 351 /* Update the migrate PFN */ 352 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 353 migrate_pfn < reset_migrate) { 354 source_set = true; 355 reset_migrate = migrate_pfn; 356 zone->compact_init_migrate_pfn = reset_migrate; 357 zone->compact_cached_migrate_pfn[0] = reset_migrate; 358 zone->compact_cached_migrate_pfn[1] = reset_migrate; 359 } 360 361 /* Update the free PFN */ 362 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 363 free_pfn > reset_free) { 364 free_set = true; 365 reset_free = free_pfn; 366 zone->compact_init_free_pfn = reset_free; 367 zone->compact_cached_free_pfn = reset_free; 368 } 369 } 370 371 /* Leave no distance if no suitable block was reset */ 372 if (reset_migrate >= reset_free) { 373 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 374 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 375 zone->compact_cached_free_pfn = free_pfn; 376 } 377 } 378 379 void reset_isolation_suitable(pg_data_t *pgdat) 380 { 381 int zoneid; 382 383 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 384 struct zone *zone = &pgdat->node_zones[zoneid]; 385 if (!populated_zone(zone)) 386 continue; 387 388 /* Only flush if a full compaction finished recently */ 389 if (zone->compact_blockskip_flush) 390 __reset_isolation_suitable(zone); 391 } 392 } 393 394 /* 395 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 396 * locks are not required for read/writers. Returns true if it was already set. 397 */ 398 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 399 unsigned long pfn) 400 { 401 bool skip; 402 403 /* Do no update if skip hint is being ignored */ 404 if (cc->ignore_skip_hint) 405 return false; 406 407 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 408 return false; 409 410 skip = get_pageblock_skip(page); 411 if (!skip && !cc->no_set_skip_hint) 412 set_pageblock_skip(page); 413 414 return skip; 415 } 416 417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 418 { 419 struct zone *zone = cc->zone; 420 421 pfn = pageblock_end_pfn(pfn); 422 423 /* Set for isolation rather than compaction */ 424 if (cc->no_set_skip_hint) 425 return; 426 427 if (pfn > zone->compact_cached_migrate_pfn[0]) 428 zone->compact_cached_migrate_pfn[0] = pfn; 429 if (cc->mode != MIGRATE_ASYNC && 430 pfn > zone->compact_cached_migrate_pfn[1]) 431 zone->compact_cached_migrate_pfn[1] = pfn; 432 } 433 434 /* 435 * If no pages were isolated then mark this pageblock to be skipped in the 436 * future. The information is later cleared by __reset_isolation_suitable(). 437 */ 438 static void update_pageblock_skip(struct compact_control *cc, 439 struct page *page, unsigned long pfn) 440 { 441 struct zone *zone = cc->zone; 442 443 if (cc->no_set_skip_hint) 444 return; 445 446 if (!page) 447 return; 448 449 set_pageblock_skip(page); 450 451 /* Update where async and sync compaction should restart */ 452 if (pfn < zone->compact_cached_free_pfn) 453 zone->compact_cached_free_pfn = pfn; 454 } 455 #else 456 static inline bool isolation_suitable(struct compact_control *cc, 457 struct page *page) 458 { 459 return true; 460 } 461 462 static inline bool pageblock_skip_persistent(struct page *page) 463 { 464 return false; 465 } 466 467 static inline void update_pageblock_skip(struct compact_control *cc, 468 struct page *page, unsigned long pfn) 469 { 470 } 471 472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 473 { 474 } 475 476 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 477 unsigned long pfn) 478 { 479 return false; 480 } 481 #endif /* CONFIG_COMPACTION */ 482 483 /* 484 * Compaction requires the taking of some coarse locks that are potentially 485 * very heavily contended. For async compaction, trylock and record if the 486 * lock is contended. The lock will still be acquired but compaction will 487 * abort when the current block is finished regardless of success rate. 488 * Sync compaction acquires the lock. 489 * 490 * Always returns true which makes it easier to track lock state in callers. 491 */ 492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 493 struct compact_control *cc) 494 __acquires(lock) 495 { 496 /* Track if the lock is contended in async mode */ 497 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 498 if (spin_trylock_irqsave(lock, *flags)) 499 return true; 500 501 cc->contended = true; 502 } 503 504 spin_lock_irqsave(lock, *flags); 505 return true; 506 } 507 508 /* 509 * Compaction requires the taking of some coarse locks that are potentially 510 * very heavily contended. The lock should be periodically unlocked to avoid 511 * having disabled IRQs for a long time, even when there is nobody waiting on 512 * the lock. It might also be that allowing the IRQs will result in 513 * need_resched() becoming true. If scheduling is needed, compaction schedules. 514 * Either compaction type will also abort if a fatal signal is pending. 515 * In either case if the lock was locked, it is dropped and not regained. 516 * 517 * Returns true if compaction should abort due to fatal signal pending. 518 * Returns false when compaction can continue. 519 */ 520 static bool compact_unlock_should_abort(spinlock_t *lock, 521 unsigned long flags, bool *locked, struct compact_control *cc) 522 { 523 if (*locked) { 524 spin_unlock_irqrestore(lock, flags); 525 *locked = false; 526 } 527 528 if (fatal_signal_pending(current)) { 529 cc->contended = true; 530 return true; 531 } 532 533 cond_resched(); 534 535 return false; 536 } 537 538 /* 539 * Isolate free pages onto a private freelist. If @strict is true, will abort 540 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 541 * (even though it may still end up isolating some pages). 542 */ 543 static unsigned long isolate_freepages_block(struct compact_control *cc, 544 unsigned long *start_pfn, 545 unsigned long end_pfn, 546 struct list_head *freelist, 547 unsigned int stride, 548 bool strict) 549 { 550 int nr_scanned = 0, total_isolated = 0; 551 struct page *cursor; 552 unsigned long flags = 0; 553 bool locked = false; 554 unsigned long blockpfn = *start_pfn; 555 unsigned int order; 556 557 /* Strict mode is for isolation, speed is secondary */ 558 if (strict) 559 stride = 1; 560 561 cursor = pfn_to_page(blockpfn); 562 563 /* Isolate free pages. */ 564 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 565 int isolated; 566 struct page *page = cursor; 567 568 /* 569 * Periodically drop the lock (if held) regardless of its 570 * contention, to give chance to IRQs. Abort if fatal signal 571 * pending. 572 */ 573 if (!(blockpfn % COMPACT_CLUSTER_MAX) 574 && compact_unlock_should_abort(&cc->zone->lock, flags, 575 &locked, cc)) 576 break; 577 578 nr_scanned++; 579 580 /* 581 * For compound pages such as THP and hugetlbfs, we can save 582 * potentially a lot of iterations if we skip them at once. 583 * The check is racy, but we can consider only valid values 584 * and the only danger is skipping too much. 585 */ 586 if (PageCompound(page)) { 587 const unsigned int order = compound_order(page); 588 589 if (likely(order < MAX_ORDER)) { 590 blockpfn += (1UL << order) - 1; 591 cursor += (1UL << order) - 1; 592 } 593 goto isolate_fail; 594 } 595 596 if (!PageBuddy(page)) 597 goto isolate_fail; 598 599 /* If we already hold the lock, we can skip some rechecking. */ 600 if (!locked) { 601 locked = compact_lock_irqsave(&cc->zone->lock, 602 &flags, cc); 603 604 /* Recheck this is a buddy page under lock */ 605 if (!PageBuddy(page)) 606 goto isolate_fail; 607 } 608 609 /* Found a free page, will break it into order-0 pages */ 610 order = buddy_order(page); 611 isolated = __isolate_free_page(page, order); 612 if (!isolated) 613 break; 614 set_page_private(page, order); 615 616 total_isolated += isolated; 617 cc->nr_freepages += isolated; 618 list_add_tail(&page->lru, freelist); 619 620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 621 blockpfn += isolated; 622 break; 623 } 624 /* Advance to the end of split page */ 625 blockpfn += isolated - 1; 626 cursor += isolated - 1; 627 continue; 628 629 isolate_fail: 630 if (strict) 631 break; 632 else 633 continue; 634 635 } 636 637 if (locked) 638 spin_unlock_irqrestore(&cc->zone->lock, flags); 639 640 /* 641 * There is a tiny chance that we have read bogus compound_order(), 642 * so be careful to not go outside of the pageblock. 643 */ 644 if (unlikely(blockpfn > end_pfn)) 645 blockpfn = end_pfn; 646 647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 648 nr_scanned, total_isolated); 649 650 /* Record how far we have got within the block */ 651 *start_pfn = blockpfn; 652 653 /* 654 * If strict isolation is requested by CMA then check that all the 655 * pages requested were isolated. If there were any failures, 0 is 656 * returned and CMA will fail. 657 */ 658 if (strict && blockpfn < end_pfn) 659 total_isolated = 0; 660 661 cc->total_free_scanned += nr_scanned; 662 if (total_isolated) 663 count_compact_events(COMPACTISOLATED, total_isolated); 664 return total_isolated; 665 } 666 667 /** 668 * isolate_freepages_range() - isolate free pages. 669 * @cc: Compaction control structure. 670 * @start_pfn: The first PFN to start isolating. 671 * @end_pfn: The one-past-last PFN. 672 * 673 * Non-free pages, invalid PFNs, or zone boundaries within the 674 * [start_pfn, end_pfn) range are considered errors, cause function to 675 * undo its actions and return zero. 676 * 677 * Otherwise, function returns one-past-the-last PFN of isolated page 678 * (which may be greater then end_pfn if end fell in a middle of 679 * a free page). 680 */ 681 unsigned long 682 isolate_freepages_range(struct compact_control *cc, 683 unsigned long start_pfn, unsigned long end_pfn) 684 { 685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 686 LIST_HEAD(freelist); 687 688 pfn = start_pfn; 689 block_start_pfn = pageblock_start_pfn(pfn); 690 if (block_start_pfn < cc->zone->zone_start_pfn) 691 block_start_pfn = cc->zone->zone_start_pfn; 692 block_end_pfn = pageblock_end_pfn(pfn); 693 694 for (; pfn < end_pfn; pfn += isolated, 695 block_start_pfn = block_end_pfn, 696 block_end_pfn += pageblock_nr_pages) { 697 /* Protect pfn from changing by isolate_freepages_block */ 698 unsigned long isolate_start_pfn = pfn; 699 700 block_end_pfn = min(block_end_pfn, end_pfn); 701 702 /* 703 * pfn could pass the block_end_pfn if isolated freepage 704 * is more than pageblock order. In this case, we adjust 705 * scanning range to right one. 706 */ 707 if (pfn >= block_end_pfn) { 708 block_start_pfn = pageblock_start_pfn(pfn); 709 block_end_pfn = pageblock_end_pfn(pfn); 710 block_end_pfn = min(block_end_pfn, end_pfn); 711 } 712 713 if (!pageblock_pfn_to_page(block_start_pfn, 714 block_end_pfn, cc->zone)) 715 break; 716 717 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 718 block_end_pfn, &freelist, 0, true); 719 720 /* 721 * In strict mode, isolate_freepages_block() returns 0 if 722 * there are any holes in the block (ie. invalid PFNs or 723 * non-free pages). 724 */ 725 if (!isolated) 726 break; 727 728 /* 729 * If we managed to isolate pages, it is always (1 << n) * 730 * pageblock_nr_pages for some non-negative n. (Max order 731 * page may span two pageblocks). 732 */ 733 } 734 735 /* __isolate_free_page() does not map the pages */ 736 split_map_pages(&freelist); 737 738 if (pfn < end_pfn) { 739 /* Loop terminated early, cleanup. */ 740 release_freepages(&freelist); 741 return 0; 742 } 743 744 /* We don't use freelists for anything. */ 745 return pfn; 746 } 747 748 /* Similar to reclaim, but different enough that they don't share logic */ 749 static bool too_many_isolated(pg_data_t *pgdat) 750 { 751 bool too_many; 752 753 unsigned long active, inactive, isolated; 754 755 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 756 node_page_state(pgdat, NR_INACTIVE_ANON); 757 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 758 node_page_state(pgdat, NR_ACTIVE_ANON); 759 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 760 node_page_state(pgdat, NR_ISOLATED_ANON); 761 762 too_many = isolated > (inactive + active) / 2; 763 if (!too_many) 764 wake_throttle_isolated(pgdat); 765 766 return too_many; 767 } 768 769 /** 770 * isolate_migratepages_block() - isolate all migrate-able pages within 771 * a single pageblock 772 * @cc: Compaction control structure. 773 * @low_pfn: The first PFN to isolate 774 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 775 * @mode: Isolation mode to be used. 776 * 777 * Isolate all pages that can be migrated from the range specified by 778 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 779 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 780 * -ENOMEM in case we could not allocate a page, or 0. 781 * cc->migrate_pfn will contain the next pfn to scan. 782 * 783 * The pages are isolated on cc->migratepages list (not required to be empty), 784 * and cc->nr_migratepages is updated accordingly. 785 */ 786 static int 787 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 788 unsigned long end_pfn, isolate_mode_t mode) 789 { 790 pg_data_t *pgdat = cc->zone->zone_pgdat; 791 unsigned long nr_scanned = 0, nr_isolated = 0; 792 struct lruvec *lruvec; 793 unsigned long flags = 0; 794 struct lruvec *locked = NULL; 795 struct page *page = NULL, *valid_page = NULL; 796 struct address_space *mapping; 797 unsigned long start_pfn = low_pfn; 798 bool skip_on_failure = false; 799 unsigned long next_skip_pfn = 0; 800 bool skip_updated = false; 801 int ret = 0; 802 803 cc->migrate_pfn = low_pfn; 804 805 /* 806 * Ensure that there are not too many pages isolated from the LRU 807 * list by either parallel reclaimers or compaction. If there are, 808 * delay for some time until fewer pages are isolated 809 */ 810 while (unlikely(too_many_isolated(pgdat))) { 811 /* stop isolation if there are still pages not migrated */ 812 if (cc->nr_migratepages) 813 return -EAGAIN; 814 815 /* async migration should just abort */ 816 if (cc->mode == MIGRATE_ASYNC) 817 return -EAGAIN; 818 819 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 820 821 if (fatal_signal_pending(current)) 822 return -EINTR; 823 } 824 825 cond_resched(); 826 827 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 828 skip_on_failure = true; 829 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 830 } 831 832 /* Time to isolate some pages for migration */ 833 for (; low_pfn < end_pfn; low_pfn++) { 834 835 if (skip_on_failure && low_pfn >= next_skip_pfn) { 836 /* 837 * We have isolated all migration candidates in the 838 * previous order-aligned block, and did not skip it due 839 * to failure. We should migrate the pages now and 840 * hopefully succeed compaction. 841 */ 842 if (nr_isolated) 843 break; 844 845 /* 846 * We failed to isolate in the previous order-aligned 847 * block. Set the new boundary to the end of the 848 * current block. Note we can't simply increase 849 * next_skip_pfn by 1 << order, as low_pfn might have 850 * been incremented by a higher number due to skipping 851 * a compound or a high-order buddy page in the 852 * previous loop iteration. 853 */ 854 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 855 } 856 857 /* 858 * Periodically drop the lock (if held) regardless of its 859 * contention, to give chance to IRQs. Abort completely if 860 * a fatal signal is pending. 861 */ 862 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 863 if (locked) { 864 unlock_page_lruvec_irqrestore(locked, flags); 865 locked = NULL; 866 } 867 868 if (fatal_signal_pending(current)) { 869 cc->contended = true; 870 ret = -EINTR; 871 872 goto fatal_pending; 873 } 874 875 cond_resched(); 876 } 877 878 nr_scanned++; 879 880 page = pfn_to_page(low_pfn); 881 882 /* 883 * Check if the pageblock has already been marked skipped. 884 * Only the aligned PFN is checked as the caller isolates 885 * COMPACT_CLUSTER_MAX at a time so the second call must 886 * not falsely conclude that the block should be skipped. 887 */ 888 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 889 if (!isolation_suitable(cc, page)) { 890 low_pfn = end_pfn; 891 page = NULL; 892 goto isolate_abort; 893 } 894 valid_page = page; 895 } 896 897 if (PageHuge(page) && cc->alloc_contig) { 898 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 899 900 /* 901 * Fail isolation in case isolate_or_dissolve_huge_page() 902 * reports an error. In case of -ENOMEM, abort right away. 903 */ 904 if (ret < 0) { 905 /* Do not report -EBUSY down the chain */ 906 if (ret == -EBUSY) 907 ret = 0; 908 low_pfn += compound_nr(page) - 1; 909 goto isolate_fail; 910 } 911 912 if (PageHuge(page)) { 913 /* 914 * Hugepage was successfully isolated and placed 915 * on the cc->migratepages list. 916 */ 917 low_pfn += compound_nr(page) - 1; 918 goto isolate_success_no_list; 919 } 920 921 /* 922 * Ok, the hugepage was dissolved. Now these pages are 923 * Buddy and cannot be re-allocated because they are 924 * isolated. Fall-through as the check below handles 925 * Buddy pages. 926 */ 927 } 928 929 /* 930 * Skip if free. We read page order here without zone lock 931 * which is generally unsafe, but the race window is small and 932 * the worst thing that can happen is that we skip some 933 * potential isolation targets. 934 */ 935 if (PageBuddy(page)) { 936 unsigned long freepage_order = buddy_order_unsafe(page); 937 938 /* 939 * Without lock, we cannot be sure that what we got is 940 * a valid page order. Consider only values in the 941 * valid order range to prevent low_pfn overflow. 942 */ 943 if (freepage_order > 0 && freepage_order < MAX_ORDER) 944 low_pfn += (1UL << freepage_order) - 1; 945 continue; 946 } 947 948 /* 949 * Regardless of being on LRU, compound pages such as THP and 950 * hugetlbfs are not to be compacted unless we are attempting 951 * an allocation much larger than the huge page size (eg CMA). 952 * We can potentially save a lot of iterations if we skip them 953 * at once. The check is racy, but we can consider only valid 954 * values and the only danger is skipping too much. 955 */ 956 if (PageCompound(page) && !cc->alloc_contig) { 957 const unsigned int order = compound_order(page); 958 959 if (likely(order < MAX_ORDER)) 960 low_pfn += (1UL << order) - 1; 961 goto isolate_fail; 962 } 963 964 /* 965 * Check may be lockless but that's ok as we recheck later. 966 * It's possible to migrate LRU and non-lru movable pages. 967 * Skip any other type of page 968 */ 969 if (!PageLRU(page)) { 970 /* 971 * __PageMovable can return false positive so we need 972 * to verify it under page_lock. 973 */ 974 if (unlikely(__PageMovable(page)) && 975 !PageIsolated(page)) { 976 if (locked) { 977 unlock_page_lruvec_irqrestore(locked, flags); 978 locked = NULL; 979 } 980 981 if (!isolate_movable_page(page, mode)) 982 goto isolate_success; 983 } 984 985 goto isolate_fail; 986 } 987 988 /* 989 * Migration will fail if an anonymous page is pinned in memory, 990 * so avoid taking lru_lock and isolating it unnecessarily in an 991 * admittedly racy check. 992 */ 993 mapping = page_mapping(page); 994 if (!mapping && page_count(page) > page_mapcount(page)) 995 goto isolate_fail; 996 997 /* 998 * Only allow to migrate anonymous pages in GFP_NOFS context 999 * because those do not depend on fs locks. 1000 */ 1001 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1002 goto isolate_fail; 1003 1004 /* 1005 * Be careful not to clear PageLRU until after we're 1006 * sure the page is not being freed elsewhere -- the 1007 * page release code relies on it. 1008 */ 1009 if (unlikely(!get_page_unless_zero(page))) 1010 goto isolate_fail; 1011 1012 /* Only take pages on LRU: a check now makes later tests safe */ 1013 if (!PageLRU(page)) 1014 goto isolate_fail_put; 1015 1016 /* Compaction might skip unevictable pages but CMA takes them */ 1017 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1018 goto isolate_fail_put; 1019 1020 /* 1021 * To minimise LRU disruption, the caller can indicate with 1022 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1023 * it will be able to migrate without blocking - clean pages 1024 * for the most part. PageWriteback would require blocking. 1025 */ 1026 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1027 goto isolate_fail_put; 1028 1029 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1030 bool migrate_dirty; 1031 1032 /* 1033 * Only pages without mappings or that have a 1034 * ->migrate_folio callback are possible to migrate 1035 * without blocking. However, we can be racing with 1036 * truncation so it's necessary to lock the page 1037 * to stabilise the mapping as truncation holds 1038 * the page lock until after the page is removed 1039 * from the page cache. 1040 */ 1041 if (!trylock_page(page)) 1042 goto isolate_fail_put; 1043 1044 mapping = page_mapping(page); 1045 migrate_dirty = !mapping || 1046 mapping->a_ops->migrate_folio; 1047 unlock_page(page); 1048 if (!migrate_dirty) 1049 goto isolate_fail_put; 1050 } 1051 1052 /* Try isolate the page */ 1053 if (!TestClearPageLRU(page)) 1054 goto isolate_fail_put; 1055 1056 lruvec = folio_lruvec(page_folio(page)); 1057 1058 /* If we already hold the lock, we can skip some rechecking */ 1059 if (lruvec != locked) { 1060 if (locked) 1061 unlock_page_lruvec_irqrestore(locked, flags); 1062 1063 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1064 locked = lruvec; 1065 1066 lruvec_memcg_debug(lruvec, page_folio(page)); 1067 1068 /* Try get exclusive access under lock */ 1069 if (!skip_updated) { 1070 skip_updated = true; 1071 if (test_and_set_skip(cc, page, low_pfn)) 1072 goto isolate_abort; 1073 } 1074 1075 /* 1076 * Page become compound since the non-locked check, 1077 * and it's on LRU. It can only be a THP so the order 1078 * is safe to read and it's 0 for tail pages. 1079 */ 1080 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1081 low_pfn += compound_nr(page) - 1; 1082 SetPageLRU(page); 1083 goto isolate_fail_put; 1084 } 1085 } 1086 1087 /* The whole page is taken off the LRU; skip the tail pages. */ 1088 if (PageCompound(page)) 1089 low_pfn += compound_nr(page) - 1; 1090 1091 /* Successfully isolated */ 1092 del_page_from_lru_list(page, lruvec); 1093 mod_node_page_state(page_pgdat(page), 1094 NR_ISOLATED_ANON + page_is_file_lru(page), 1095 thp_nr_pages(page)); 1096 1097 isolate_success: 1098 list_add(&page->lru, &cc->migratepages); 1099 isolate_success_no_list: 1100 cc->nr_migratepages += compound_nr(page); 1101 nr_isolated += compound_nr(page); 1102 1103 /* 1104 * Avoid isolating too much unless this block is being 1105 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1106 * or a lock is contended. For contention, isolate quickly to 1107 * potentially remove one source of contention. 1108 */ 1109 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1110 !cc->rescan && !cc->contended) { 1111 ++low_pfn; 1112 break; 1113 } 1114 1115 continue; 1116 1117 isolate_fail_put: 1118 /* Avoid potential deadlock in freeing page under lru_lock */ 1119 if (locked) { 1120 unlock_page_lruvec_irqrestore(locked, flags); 1121 locked = NULL; 1122 } 1123 put_page(page); 1124 1125 isolate_fail: 1126 if (!skip_on_failure && ret != -ENOMEM) 1127 continue; 1128 1129 /* 1130 * We have isolated some pages, but then failed. Release them 1131 * instead of migrating, as we cannot form the cc->order buddy 1132 * page anyway. 1133 */ 1134 if (nr_isolated) { 1135 if (locked) { 1136 unlock_page_lruvec_irqrestore(locked, flags); 1137 locked = NULL; 1138 } 1139 putback_movable_pages(&cc->migratepages); 1140 cc->nr_migratepages = 0; 1141 nr_isolated = 0; 1142 } 1143 1144 if (low_pfn < next_skip_pfn) { 1145 low_pfn = next_skip_pfn - 1; 1146 /* 1147 * The check near the loop beginning would have updated 1148 * next_skip_pfn too, but this is a bit simpler. 1149 */ 1150 next_skip_pfn += 1UL << cc->order; 1151 } 1152 1153 if (ret == -ENOMEM) 1154 break; 1155 } 1156 1157 /* 1158 * The PageBuddy() check could have potentially brought us outside 1159 * the range to be scanned. 1160 */ 1161 if (unlikely(low_pfn > end_pfn)) 1162 low_pfn = end_pfn; 1163 1164 page = NULL; 1165 1166 isolate_abort: 1167 if (locked) 1168 unlock_page_lruvec_irqrestore(locked, flags); 1169 if (page) { 1170 SetPageLRU(page); 1171 put_page(page); 1172 } 1173 1174 /* 1175 * Updated the cached scanner pfn once the pageblock has been scanned 1176 * Pages will either be migrated in which case there is no point 1177 * scanning in the near future or migration failed in which case the 1178 * failure reason may persist. The block is marked for skipping if 1179 * there were no pages isolated in the block or if the block is 1180 * rescanned twice in a row. 1181 */ 1182 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1183 if (valid_page && !skip_updated) 1184 set_pageblock_skip(valid_page); 1185 update_cached_migrate(cc, low_pfn); 1186 } 1187 1188 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1189 nr_scanned, nr_isolated); 1190 1191 fatal_pending: 1192 cc->total_migrate_scanned += nr_scanned; 1193 if (nr_isolated) 1194 count_compact_events(COMPACTISOLATED, nr_isolated); 1195 1196 cc->migrate_pfn = low_pfn; 1197 1198 return ret; 1199 } 1200 1201 /** 1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1203 * @cc: Compaction control structure. 1204 * @start_pfn: The first PFN to start isolating. 1205 * @end_pfn: The one-past-last PFN. 1206 * 1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1208 * in case we could not allocate a page, or 0. 1209 */ 1210 int 1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1212 unsigned long end_pfn) 1213 { 1214 unsigned long pfn, block_start_pfn, block_end_pfn; 1215 int ret = 0; 1216 1217 /* Scan block by block. First and last block may be incomplete */ 1218 pfn = start_pfn; 1219 block_start_pfn = pageblock_start_pfn(pfn); 1220 if (block_start_pfn < cc->zone->zone_start_pfn) 1221 block_start_pfn = cc->zone->zone_start_pfn; 1222 block_end_pfn = pageblock_end_pfn(pfn); 1223 1224 for (; pfn < end_pfn; pfn = block_end_pfn, 1225 block_start_pfn = block_end_pfn, 1226 block_end_pfn += pageblock_nr_pages) { 1227 1228 block_end_pfn = min(block_end_pfn, end_pfn); 1229 1230 if (!pageblock_pfn_to_page(block_start_pfn, 1231 block_end_pfn, cc->zone)) 1232 continue; 1233 1234 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1235 ISOLATE_UNEVICTABLE); 1236 1237 if (ret) 1238 break; 1239 1240 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1241 break; 1242 } 1243 1244 return ret; 1245 } 1246 1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1248 #ifdef CONFIG_COMPACTION 1249 1250 static bool suitable_migration_source(struct compact_control *cc, 1251 struct page *page) 1252 { 1253 int block_mt; 1254 1255 if (pageblock_skip_persistent(page)) 1256 return false; 1257 1258 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1259 return true; 1260 1261 block_mt = get_pageblock_migratetype(page); 1262 1263 if (cc->migratetype == MIGRATE_MOVABLE) 1264 return is_migrate_movable(block_mt); 1265 else 1266 return block_mt == cc->migratetype; 1267 } 1268 1269 /* Returns true if the page is within a block suitable for migration to */ 1270 static bool suitable_migration_target(struct compact_control *cc, 1271 struct page *page) 1272 { 1273 /* If the page is a large free page, then disallow migration */ 1274 if (PageBuddy(page)) { 1275 /* 1276 * We are checking page_order without zone->lock taken. But 1277 * the only small danger is that we skip a potentially suitable 1278 * pageblock, so it's not worth to check order for valid range. 1279 */ 1280 if (buddy_order_unsafe(page) >= pageblock_order) 1281 return false; 1282 } 1283 1284 if (cc->ignore_block_suitable) 1285 return true; 1286 1287 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1288 if (is_migrate_movable(get_pageblock_migratetype(page))) 1289 return true; 1290 1291 /* Otherwise skip the block */ 1292 return false; 1293 } 1294 1295 static inline unsigned int 1296 freelist_scan_limit(struct compact_control *cc) 1297 { 1298 unsigned short shift = BITS_PER_LONG - 1; 1299 1300 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1301 } 1302 1303 /* 1304 * Test whether the free scanner has reached the same or lower pageblock than 1305 * the migration scanner, and compaction should thus terminate. 1306 */ 1307 static inline bool compact_scanners_met(struct compact_control *cc) 1308 { 1309 return (cc->free_pfn >> pageblock_order) 1310 <= (cc->migrate_pfn >> pageblock_order); 1311 } 1312 1313 /* 1314 * Used when scanning for a suitable migration target which scans freelists 1315 * in reverse. Reorders the list such as the unscanned pages are scanned 1316 * first on the next iteration of the free scanner 1317 */ 1318 static void 1319 move_freelist_head(struct list_head *freelist, struct page *freepage) 1320 { 1321 LIST_HEAD(sublist); 1322 1323 if (!list_is_last(freelist, &freepage->lru)) { 1324 list_cut_before(&sublist, freelist, &freepage->lru); 1325 list_splice_tail(&sublist, freelist); 1326 } 1327 } 1328 1329 /* 1330 * Similar to move_freelist_head except used by the migration scanner 1331 * when scanning forward. It's possible for these list operations to 1332 * move against each other if they search the free list exactly in 1333 * lockstep. 1334 */ 1335 static void 1336 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1337 { 1338 LIST_HEAD(sublist); 1339 1340 if (!list_is_first(freelist, &freepage->lru)) { 1341 list_cut_position(&sublist, freelist, &freepage->lru); 1342 list_splice_tail(&sublist, freelist); 1343 } 1344 } 1345 1346 static void 1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1348 { 1349 unsigned long start_pfn, end_pfn; 1350 struct page *page; 1351 1352 /* Do not search around if there are enough pages already */ 1353 if (cc->nr_freepages >= cc->nr_migratepages) 1354 return; 1355 1356 /* Minimise scanning during async compaction */ 1357 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1358 return; 1359 1360 /* Pageblock boundaries */ 1361 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1362 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1363 1364 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1365 if (!page) 1366 return; 1367 1368 /* Scan before */ 1369 if (start_pfn != pfn) { 1370 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1371 if (cc->nr_freepages >= cc->nr_migratepages) 1372 return; 1373 } 1374 1375 /* Scan after */ 1376 start_pfn = pfn + nr_isolated; 1377 if (start_pfn < end_pfn) 1378 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1379 1380 /* Skip this pageblock in the future as it's full or nearly full */ 1381 if (cc->nr_freepages < cc->nr_migratepages) 1382 set_pageblock_skip(page); 1383 } 1384 1385 /* Search orders in round-robin fashion */ 1386 static int next_search_order(struct compact_control *cc, int order) 1387 { 1388 order--; 1389 if (order < 0) 1390 order = cc->order - 1; 1391 1392 /* Search wrapped around? */ 1393 if (order == cc->search_order) { 1394 cc->search_order--; 1395 if (cc->search_order < 0) 1396 cc->search_order = cc->order - 1; 1397 return -1; 1398 } 1399 1400 return order; 1401 } 1402 1403 static unsigned long 1404 fast_isolate_freepages(struct compact_control *cc) 1405 { 1406 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1407 unsigned int nr_scanned = 0; 1408 unsigned long low_pfn, min_pfn, highest = 0; 1409 unsigned long nr_isolated = 0; 1410 unsigned long distance; 1411 struct page *page = NULL; 1412 bool scan_start = false; 1413 int order; 1414 1415 /* Full compaction passes in a negative order */ 1416 if (cc->order <= 0) 1417 return cc->free_pfn; 1418 1419 /* 1420 * If starting the scan, use a deeper search and use the highest 1421 * PFN found if a suitable one is not found. 1422 */ 1423 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1424 limit = pageblock_nr_pages >> 1; 1425 scan_start = true; 1426 } 1427 1428 /* 1429 * Preferred point is in the top quarter of the scan space but take 1430 * a pfn from the top half if the search is problematic. 1431 */ 1432 distance = (cc->free_pfn - cc->migrate_pfn); 1433 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1434 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1435 1436 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1437 low_pfn = min_pfn; 1438 1439 /* 1440 * Search starts from the last successful isolation order or the next 1441 * order to search after a previous failure 1442 */ 1443 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1444 1445 for (order = cc->search_order; 1446 !page && order >= 0; 1447 order = next_search_order(cc, order)) { 1448 struct free_area *area = &cc->zone->free_area[order]; 1449 struct list_head *freelist; 1450 struct page *freepage; 1451 unsigned long flags; 1452 unsigned int order_scanned = 0; 1453 unsigned long high_pfn = 0; 1454 1455 if (!area->nr_free) 1456 continue; 1457 1458 spin_lock_irqsave(&cc->zone->lock, flags); 1459 freelist = &area->free_list[MIGRATE_MOVABLE]; 1460 list_for_each_entry_reverse(freepage, freelist, lru) { 1461 unsigned long pfn; 1462 1463 order_scanned++; 1464 nr_scanned++; 1465 pfn = page_to_pfn(freepage); 1466 1467 if (pfn >= highest) 1468 highest = max(pageblock_start_pfn(pfn), 1469 cc->zone->zone_start_pfn); 1470 1471 if (pfn >= low_pfn) { 1472 cc->fast_search_fail = 0; 1473 cc->search_order = order; 1474 page = freepage; 1475 break; 1476 } 1477 1478 if (pfn >= min_pfn && pfn > high_pfn) { 1479 high_pfn = pfn; 1480 1481 /* Shorten the scan if a candidate is found */ 1482 limit >>= 1; 1483 } 1484 1485 if (order_scanned >= limit) 1486 break; 1487 } 1488 1489 /* Use a minimum pfn if a preferred one was not found */ 1490 if (!page && high_pfn) { 1491 page = pfn_to_page(high_pfn); 1492 1493 /* Update freepage for the list reorder below */ 1494 freepage = page; 1495 } 1496 1497 /* Reorder to so a future search skips recent pages */ 1498 move_freelist_head(freelist, freepage); 1499 1500 /* Isolate the page if available */ 1501 if (page) { 1502 if (__isolate_free_page(page, order)) { 1503 set_page_private(page, order); 1504 nr_isolated = 1 << order; 1505 cc->nr_freepages += nr_isolated; 1506 list_add_tail(&page->lru, &cc->freepages); 1507 count_compact_events(COMPACTISOLATED, nr_isolated); 1508 } else { 1509 /* If isolation fails, abort the search */ 1510 order = cc->search_order + 1; 1511 page = NULL; 1512 } 1513 } 1514 1515 spin_unlock_irqrestore(&cc->zone->lock, flags); 1516 1517 /* 1518 * Smaller scan on next order so the total scan is related 1519 * to freelist_scan_limit. 1520 */ 1521 if (order_scanned >= limit) 1522 limit = max(1U, limit >> 1); 1523 } 1524 1525 if (!page) { 1526 cc->fast_search_fail++; 1527 if (scan_start) { 1528 /* 1529 * Use the highest PFN found above min. If one was 1530 * not found, be pessimistic for direct compaction 1531 * and use the min mark. 1532 */ 1533 if (highest >= min_pfn) { 1534 page = pfn_to_page(highest); 1535 cc->free_pfn = highest; 1536 } else { 1537 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1538 page = pageblock_pfn_to_page(min_pfn, 1539 min(pageblock_end_pfn(min_pfn), 1540 zone_end_pfn(cc->zone)), 1541 cc->zone); 1542 cc->free_pfn = min_pfn; 1543 } 1544 } 1545 } 1546 } 1547 1548 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1549 highest -= pageblock_nr_pages; 1550 cc->zone->compact_cached_free_pfn = highest; 1551 } 1552 1553 cc->total_free_scanned += nr_scanned; 1554 if (!page) 1555 return cc->free_pfn; 1556 1557 low_pfn = page_to_pfn(page); 1558 fast_isolate_around(cc, low_pfn, nr_isolated); 1559 return low_pfn; 1560 } 1561 1562 /* 1563 * Based on information in the current compact_control, find blocks 1564 * suitable for isolating free pages from and then isolate them. 1565 */ 1566 static void isolate_freepages(struct compact_control *cc) 1567 { 1568 struct zone *zone = cc->zone; 1569 struct page *page; 1570 unsigned long block_start_pfn; /* start of current pageblock */ 1571 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1572 unsigned long block_end_pfn; /* end of current pageblock */ 1573 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1574 struct list_head *freelist = &cc->freepages; 1575 unsigned int stride; 1576 1577 /* Try a small search of the free lists for a candidate */ 1578 fast_isolate_freepages(cc); 1579 if (cc->nr_freepages) 1580 goto splitmap; 1581 1582 /* 1583 * Initialise the free scanner. The starting point is where we last 1584 * successfully isolated from, zone-cached value, or the end of the 1585 * zone when isolating for the first time. For looping we also need 1586 * this pfn aligned down to the pageblock boundary, because we do 1587 * block_start_pfn -= pageblock_nr_pages in the for loop. 1588 * For ending point, take care when isolating in last pageblock of a 1589 * zone which ends in the middle of a pageblock. 1590 * The low boundary is the end of the pageblock the migration scanner 1591 * is using. 1592 */ 1593 isolate_start_pfn = cc->free_pfn; 1594 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1595 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1596 zone_end_pfn(zone)); 1597 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1598 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1599 1600 /* 1601 * Isolate free pages until enough are available to migrate the 1602 * pages on cc->migratepages. We stop searching if the migrate 1603 * and free page scanners meet or enough free pages are isolated. 1604 */ 1605 for (; block_start_pfn >= low_pfn; 1606 block_end_pfn = block_start_pfn, 1607 block_start_pfn -= pageblock_nr_pages, 1608 isolate_start_pfn = block_start_pfn) { 1609 unsigned long nr_isolated; 1610 1611 /* 1612 * This can iterate a massively long zone without finding any 1613 * suitable migration targets, so periodically check resched. 1614 */ 1615 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1616 cond_resched(); 1617 1618 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1619 zone); 1620 if (!page) 1621 continue; 1622 1623 /* Check the block is suitable for migration */ 1624 if (!suitable_migration_target(cc, page)) 1625 continue; 1626 1627 /* If isolation recently failed, do not retry */ 1628 if (!isolation_suitable(cc, page)) 1629 continue; 1630 1631 /* Found a block suitable for isolating free pages from. */ 1632 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1633 block_end_pfn, freelist, stride, false); 1634 1635 /* Update the skip hint if the full pageblock was scanned */ 1636 if (isolate_start_pfn == block_end_pfn) 1637 update_pageblock_skip(cc, page, block_start_pfn); 1638 1639 /* Are enough freepages isolated? */ 1640 if (cc->nr_freepages >= cc->nr_migratepages) { 1641 if (isolate_start_pfn >= block_end_pfn) { 1642 /* 1643 * Restart at previous pageblock if more 1644 * freepages can be isolated next time. 1645 */ 1646 isolate_start_pfn = 1647 block_start_pfn - pageblock_nr_pages; 1648 } 1649 break; 1650 } else if (isolate_start_pfn < block_end_pfn) { 1651 /* 1652 * If isolation failed early, do not continue 1653 * needlessly. 1654 */ 1655 break; 1656 } 1657 1658 /* Adjust stride depending on isolation */ 1659 if (nr_isolated) { 1660 stride = 1; 1661 continue; 1662 } 1663 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1664 } 1665 1666 /* 1667 * Record where the free scanner will restart next time. Either we 1668 * broke from the loop and set isolate_start_pfn based on the last 1669 * call to isolate_freepages_block(), or we met the migration scanner 1670 * and the loop terminated due to isolate_start_pfn < low_pfn 1671 */ 1672 cc->free_pfn = isolate_start_pfn; 1673 1674 splitmap: 1675 /* __isolate_free_page() does not map the pages */ 1676 split_map_pages(freelist); 1677 } 1678 1679 /* 1680 * This is a migrate-callback that "allocates" freepages by taking pages 1681 * from the isolated freelists in the block we are migrating to. 1682 */ 1683 static struct page *compaction_alloc(struct page *migratepage, 1684 unsigned long data) 1685 { 1686 struct compact_control *cc = (struct compact_control *)data; 1687 struct page *freepage; 1688 1689 if (list_empty(&cc->freepages)) { 1690 isolate_freepages(cc); 1691 1692 if (list_empty(&cc->freepages)) 1693 return NULL; 1694 } 1695 1696 freepage = list_entry(cc->freepages.next, struct page, lru); 1697 list_del(&freepage->lru); 1698 cc->nr_freepages--; 1699 1700 return freepage; 1701 } 1702 1703 /* 1704 * This is a migrate-callback that "frees" freepages back to the isolated 1705 * freelist. All pages on the freelist are from the same zone, so there is no 1706 * special handling needed for NUMA. 1707 */ 1708 static void compaction_free(struct page *page, unsigned long data) 1709 { 1710 struct compact_control *cc = (struct compact_control *)data; 1711 1712 list_add(&page->lru, &cc->freepages); 1713 cc->nr_freepages++; 1714 } 1715 1716 /* possible outcome of isolate_migratepages */ 1717 typedef enum { 1718 ISOLATE_ABORT, /* Abort compaction now */ 1719 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1720 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1721 } isolate_migrate_t; 1722 1723 /* 1724 * Allow userspace to control policy on scanning the unevictable LRU for 1725 * compactable pages. 1726 */ 1727 #ifdef CONFIG_PREEMPT_RT 1728 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1729 #else 1730 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1731 #endif 1732 1733 static inline void 1734 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1735 { 1736 if (cc->fast_start_pfn == ULONG_MAX) 1737 return; 1738 1739 if (!cc->fast_start_pfn) 1740 cc->fast_start_pfn = pfn; 1741 1742 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1743 } 1744 1745 static inline unsigned long 1746 reinit_migrate_pfn(struct compact_control *cc) 1747 { 1748 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1749 return cc->migrate_pfn; 1750 1751 cc->migrate_pfn = cc->fast_start_pfn; 1752 cc->fast_start_pfn = ULONG_MAX; 1753 1754 return cc->migrate_pfn; 1755 } 1756 1757 /* 1758 * Briefly search the free lists for a migration source that already has 1759 * some free pages to reduce the number of pages that need migration 1760 * before a pageblock is free. 1761 */ 1762 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1763 { 1764 unsigned int limit = freelist_scan_limit(cc); 1765 unsigned int nr_scanned = 0; 1766 unsigned long distance; 1767 unsigned long pfn = cc->migrate_pfn; 1768 unsigned long high_pfn; 1769 int order; 1770 bool found_block = false; 1771 1772 /* Skip hints are relied on to avoid repeats on the fast search */ 1773 if (cc->ignore_skip_hint) 1774 return pfn; 1775 1776 /* 1777 * If the migrate_pfn is not at the start of a zone or the start 1778 * of a pageblock then assume this is a continuation of a previous 1779 * scan restarted due to COMPACT_CLUSTER_MAX. 1780 */ 1781 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1782 return pfn; 1783 1784 /* 1785 * For smaller orders, just linearly scan as the number of pages 1786 * to migrate should be relatively small and does not necessarily 1787 * justify freeing up a large block for a small allocation. 1788 */ 1789 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1790 return pfn; 1791 1792 /* 1793 * Only allow kcompactd and direct requests for movable pages to 1794 * quickly clear out a MOVABLE pageblock for allocation. This 1795 * reduces the risk that a large movable pageblock is freed for 1796 * an unmovable/reclaimable small allocation. 1797 */ 1798 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1799 return pfn; 1800 1801 /* 1802 * When starting the migration scanner, pick any pageblock within the 1803 * first half of the search space. Otherwise try and pick a pageblock 1804 * within the first eighth to reduce the chances that a migration 1805 * target later becomes a source. 1806 */ 1807 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1808 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1809 distance >>= 2; 1810 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1811 1812 for (order = cc->order - 1; 1813 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1814 order--) { 1815 struct free_area *area = &cc->zone->free_area[order]; 1816 struct list_head *freelist; 1817 unsigned long flags; 1818 struct page *freepage; 1819 1820 if (!area->nr_free) 1821 continue; 1822 1823 spin_lock_irqsave(&cc->zone->lock, flags); 1824 freelist = &area->free_list[MIGRATE_MOVABLE]; 1825 list_for_each_entry(freepage, freelist, lru) { 1826 unsigned long free_pfn; 1827 1828 if (nr_scanned++ >= limit) { 1829 move_freelist_tail(freelist, freepage); 1830 break; 1831 } 1832 1833 free_pfn = page_to_pfn(freepage); 1834 if (free_pfn < high_pfn) { 1835 /* 1836 * Avoid if skipped recently. Ideally it would 1837 * move to the tail but even safe iteration of 1838 * the list assumes an entry is deleted, not 1839 * reordered. 1840 */ 1841 if (get_pageblock_skip(freepage)) 1842 continue; 1843 1844 /* Reorder to so a future search skips recent pages */ 1845 move_freelist_tail(freelist, freepage); 1846 1847 update_fast_start_pfn(cc, free_pfn); 1848 pfn = pageblock_start_pfn(free_pfn); 1849 if (pfn < cc->zone->zone_start_pfn) 1850 pfn = cc->zone->zone_start_pfn; 1851 cc->fast_search_fail = 0; 1852 found_block = true; 1853 set_pageblock_skip(freepage); 1854 break; 1855 } 1856 } 1857 spin_unlock_irqrestore(&cc->zone->lock, flags); 1858 } 1859 1860 cc->total_migrate_scanned += nr_scanned; 1861 1862 /* 1863 * If fast scanning failed then use a cached entry for a page block 1864 * that had free pages as the basis for starting a linear scan. 1865 */ 1866 if (!found_block) { 1867 cc->fast_search_fail++; 1868 pfn = reinit_migrate_pfn(cc); 1869 } 1870 return pfn; 1871 } 1872 1873 /* 1874 * Isolate all pages that can be migrated from the first suitable block, 1875 * starting at the block pointed to by the migrate scanner pfn within 1876 * compact_control. 1877 */ 1878 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1879 { 1880 unsigned long block_start_pfn; 1881 unsigned long block_end_pfn; 1882 unsigned long low_pfn; 1883 struct page *page; 1884 const isolate_mode_t isolate_mode = 1885 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1886 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1887 bool fast_find_block; 1888 1889 /* 1890 * Start at where we last stopped, or beginning of the zone as 1891 * initialized by compact_zone(). The first failure will use 1892 * the lowest PFN as the starting point for linear scanning. 1893 */ 1894 low_pfn = fast_find_migrateblock(cc); 1895 block_start_pfn = pageblock_start_pfn(low_pfn); 1896 if (block_start_pfn < cc->zone->zone_start_pfn) 1897 block_start_pfn = cc->zone->zone_start_pfn; 1898 1899 /* 1900 * fast_find_migrateblock marks a pageblock skipped so to avoid 1901 * the isolation_suitable check below, check whether the fast 1902 * search was successful. 1903 */ 1904 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1905 1906 /* Only scan within a pageblock boundary */ 1907 block_end_pfn = pageblock_end_pfn(low_pfn); 1908 1909 /* 1910 * Iterate over whole pageblocks until we find the first suitable. 1911 * Do not cross the free scanner. 1912 */ 1913 for (; block_end_pfn <= cc->free_pfn; 1914 fast_find_block = false, 1915 cc->migrate_pfn = low_pfn = block_end_pfn, 1916 block_start_pfn = block_end_pfn, 1917 block_end_pfn += pageblock_nr_pages) { 1918 1919 /* 1920 * This can potentially iterate a massively long zone with 1921 * many pageblocks unsuitable, so periodically check if we 1922 * need to schedule. 1923 */ 1924 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1925 cond_resched(); 1926 1927 page = pageblock_pfn_to_page(block_start_pfn, 1928 block_end_pfn, cc->zone); 1929 if (!page) 1930 continue; 1931 1932 /* 1933 * If isolation recently failed, do not retry. Only check the 1934 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1935 * to be visited multiple times. Assume skip was checked 1936 * before making it "skip" so other compaction instances do 1937 * not scan the same block. 1938 */ 1939 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1940 !fast_find_block && !isolation_suitable(cc, page)) 1941 continue; 1942 1943 /* 1944 * For async direct compaction, only scan the pageblocks of the 1945 * same migratetype without huge pages. Async direct compaction 1946 * is optimistic to see if the minimum amount of work satisfies 1947 * the allocation. The cached PFN is updated as it's possible 1948 * that all remaining blocks between source and target are 1949 * unsuitable and the compaction scanners fail to meet. 1950 */ 1951 if (!suitable_migration_source(cc, page)) { 1952 update_cached_migrate(cc, block_end_pfn); 1953 continue; 1954 } 1955 1956 /* Perform the isolation */ 1957 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1958 isolate_mode)) 1959 return ISOLATE_ABORT; 1960 1961 /* 1962 * Either we isolated something and proceed with migration. Or 1963 * we failed and compact_zone should decide if we should 1964 * continue or not. 1965 */ 1966 break; 1967 } 1968 1969 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1970 } 1971 1972 /* 1973 * order == -1 is expected when compacting via 1974 * /proc/sys/vm/compact_memory 1975 */ 1976 static inline bool is_via_compact_memory(int order) 1977 { 1978 return order == -1; 1979 } 1980 1981 static bool kswapd_is_running(pg_data_t *pgdat) 1982 { 1983 return pgdat->kswapd && task_is_running(pgdat->kswapd); 1984 } 1985 1986 /* 1987 * A zone's fragmentation score is the external fragmentation wrt to the 1988 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1989 */ 1990 static unsigned int fragmentation_score_zone(struct zone *zone) 1991 { 1992 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1993 } 1994 1995 /* 1996 * A weighted zone's fragmentation score is the external fragmentation 1997 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1998 * returns a value in the range [0, 100]. 1999 * 2000 * The scaling factor ensures that proactive compaction focuses on larger 2001 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2002 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2003 * and thus never exceeds the high threshold for proactive compaction. 2004 */ 2005 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2006 { 2007 unsigned long score; 2008 2009 score = zone->present_pages * fragmentation_score_zone(zone); 2010 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2011 } 2012 2013 /* 2014 * The per-node proactive (background) compaction process is started by its 2015 * corresponding kcompactd thread when the node's fragmentation score 2016 * exceeds the high threshold. The compaction process remains active till 2017 * the node's score falls below the low threshold, or one of the back-off 2018 * conditions is met. 2019 */ 2020 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2021 { 2022 unsigned int score = 0; 2023 int zoneid; 2024 2025 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2026 struct zone *zone; 2027 2028 zone = &pgdat->node_zones[zoneid]; 2029 score += fragmentation_score_zone_weighted(zone); 2030 } 2031 2032 return score; 2033 } 2034 2035 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2036 { 2037 unsigned int wmark_low; 2038 2039 /* 2040 * Cap the low watermark to avoid excessive compaction 2041 * activity in case a user sets the proactiveness tunable 2042 * close to 100 (maximum). 2043 */ 2044 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2045 return low ? wmark_low : min(wmark_low + 10, 100U); 2046 } 2047 2048 static bool should_proactive_compact_node(pg_data_t *pgdat) 2049 { 2050 int wmark_high; 2051 2052 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2053 return false; 2054 2055 wmark_high = fragmentation_score_wmark(pgdat, false); 2056 return fragmentation_score_node(pgdat) > wmark_high; 2057 } 2058 2059 static enum compact_result __compact_finished(struct compact_control *cc) 2060 { 2061 unsigned int order; 2062 const int migratetype = cc->migratetype; 2063 int ret; 2064 2065 /* Compaction run completes if the migrate and free scanner meet */ 2066 if (compact_scanners_met(cc)) { 2067 /* Let the next compaction start anew. */ 2068 reset_cached_positions(cc->zone); 2069 2070 /* 2071 * Mark that the PG_migrate_skip information should be cleared 2072 * by kswapd when it goes to sleep. kcompactd does not set the 2073 * flag itself as the decision to be clear should be directly 2074 * based on an allocation request. 2075 */ 2076 if (cc->direct_compaction) 2077 cc->zone->compact_blockskip_flush = true; 2078 2079 if (cc->whole_zone) 2080 return COMPACT_COMPLETE; 2081 else 2082 return COMPACT_PARTIAL_SKIPPED; 2083 } 2084 2085 if (cc->proactive_compaction) { 2086 int score, wmark_low; 2087 pg_data_t *pgdat; 2088 2089 pgdat = cc->zone->zone_pgdat; 2090 if (kswapd_is_running(pgdat)) 2091 return COMPACT_PARTIAL_SKIPPED; 2092 2093 score = fragmentation_score_zone(cc->zone); 2094 wmark_low = fragmentation_score_wmark(pgdat, true); 2095 2096 if (score > wmark_low) 2097 ret = COMPACT_CONTINUE; 2098 else 2099 ret = COMPACT_SUCCESS; 2100 2101 goto out; 2102 } 2103 2104 if (is_via_compact_memory(cc->order)) 2105 return COMPACT_CONTINUE; 2106 2107 /* 2108 * Always finish scanning a pageblock to reduce the possibility of 2109 * fallbacks in the future. This is particularly important when 2110 * migration source is unmovable/reclaimable but it's not worth 2111 * special casing. 2112 */ 2113 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2114 return COMPACT_CONTINUE; 2115 2116 /* Direct compactor: Is a suitable page free? */ 2117 ret = COMPACT_NO_SUITABLE_PAGE; 2118 for (order = cc->order; order < MAX_ORDER; order++) { 2119 struct free_area *area = &cc->zone->free_area[order]; 2120 bool can_steal; 2121 2122 /* Job done if page is free of the right migratetype */ 2123 if (!free_area_empty(area, migratetype)) 2124 return COMPACT_SUCCESS; 2125 2126 #ifdef CONFIG_CMA 2127 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2128 if (migratetype == MIGRATE_MOVABLE && 2129 !free_area_empty(area, MIGRATE_CMA)) 2130 return COMPACT_SUCCESS; 2131 #endif 2132 /* 2133 * Job done if allocation would steal freepages from 2134 * other migratetype buddy lists. 2135 */ 2136 if (find_suitable_fallback(area, order, migratetype, 2137 true, &can_steal) != -1) 2138 /* 2139 * Movable pages are OK in any pageblock. If we are 2140 * stealing for a non-movable allocation, make sure 2141 * we finish compacting the current pageblock first 2142 * (which is assured by the above migrate_pfn align 2143 * check) so it is as free as possible and we won't 2144 * have to steal another one soon. 2145 */ 2146 return COMPACT_SUCCESS; 2147 } 2148 2149 out: 2150 if (cc->contended || fatal_signal_pending(current)) 2151 ret = COMPACT_CONTENDED; 2152 2153 return ret; 2154 } 2155 2156 static enum compact_result compact_finished(struct compact_control *cc) 2157 { 2158 int ret; 2159 2160 ret = __compact_finished(cc); 2161 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2162 if (ret == COMPACT_NO_SUITABLE_PAGE) 2163 ret = COMPACT_CONTINUE; 2164 2165 return ret; 2166 } 2167 2168 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2169 unsigned int alloc_flags, 2170 int highest_zoneidx, 2171 unsigned long wmark_target) 2172 { 2173 unsigned long watermark; 2174 2175 if (is_via_compact_memory(order)) 2176 return COMPACT_CONTINUE; 2177 2178 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2179 /* 2180 * If watermarks for high-order allocation are already met, there 2181 * should be no need for compaction at all. 2182 */ 2183 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2184 alloc_flags)) 2185 return COMPACT_SUCCESS; 2186 2187 /* 2188 * Watermarks for order-0 must be met for compaction to be able to 2189 * isolate free pages for migration targets. This means that the 2190 * watermark and alloc_flags have to match, or be more pessimistic than 2191 * the check in __isolate_free_page(). We don't use the direct 2192 * compactor's alloc_flags, as they are not relevant for freepage 2193 * isolation. We however do use the direct compactor's highest_zoneidx 2194 * to skip over zones where lowmem reserves would prevent allocation 2195 * even if compaction succeeds. 2196 * For costly orders, we require low watermark instead of min for 2197 * compaction to proceed to increase its chances. 2198 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2199 * suitable migration targets 2200 */ 2201 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2202 low_wmark_pages(zone) : min_wmark_pages(zone); 2203 watermark += compact_gap(order); 2204 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2205 ALLOC_CMA, wmark_target)) 2206 return COMPACT_SKIPPED; 2207 2208 return COMPACT_CONTINUE; 2209 } 2210 2211 /* 2212 * compaction_suitable: Is this suitable to run compaction on this zone now? 2213 * Returns 2214 * COMPACT_SKIPPED - If there are too few free pages for compaction 2215 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2216 * COMPACT_CONTINUE - If compaction should run now 2217 */ 2218 enum compact_result compaction_suitable(struct zone *zone, int order, 2219 unsigned int alloc_flags, 2220 int highest_zoneidx) 2221 { 2222 enum compact_result ret; 2223 int fragindex; 2224 2225 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2226 zone_page_state(zone, NR_FREE_PAGES)); 2227 /* 2228 * fragmentation index determines if allocation failures are due to 2229 * low memory or external fragmentation 2230 * 2231 * index of -1000 would imply allocations might succeed depending on 2232 * watermarks, but we already failed the high-order watermark check 2233 * index towards 0 implies failure is due to lack of memory 2234 * index towards 1000 implies failure is due to fragmentation 2235 * 2236 * Only compact if a failure would be due to fragmentation. Also 2237 * ignore fragindex for non-costly orders where the alternative to 2238 * a successful reclaim/compaction is OOM. Fragindex and the 2239 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2240 * excessive compaction for costly orders, but it should not be at the 2241 * expense of system stability. 2242 */ 2243 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2244 fragindex = fragmentation_index(zone, order); 2245 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2246 ret = COMPACT_NOT_SUITABLE_ZONE; 2247 } 2248 2249 trace_mm_compaction_suitable(zone, order, ret); 2250 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2251 ret = COMPACT_SKIPPED; 2252 2253 return ret; 2254 } 2255 2256 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2257 int alloc_flags) 2258 { 2259 struct zone *zone; 2260 struct zoneref *z; 2261 2262 /* 2263 * Make sure at least one zone would pass __compaction_suitable if we continue 2264 * retrying the reclaim. 2265 */ 2266 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2267 ac->highest_zoneidx, ac->nodemask) { 2268 unsigned long available; 2269 enum compact_result compact_result; 2270 2271 /* 2272 * Do not consider all the reclaimable memory because we do not 2273 * want to trash just for a single high order allocation which 2274 * is even not guaranteed to appear even if __compaction_suitable 2275 * is happy about the watermark check. 2276 */ 2277 available = zone_reclaimable_pages(zone) / order; 2278 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2279 compact_result = __compaction_suitable(zone, order, alloc_flags, 2280 ac->highest_zoneidx, available); 2281 if (compact_result == COMPACT_CONTINUE) 2282 return true; 2283 } 2284 2285 return false; 2286 } 2287 2288 static enum compact_result 2289 compact_zone(struct compact_control *cc, struct capture_control *capc) 2290 { 2291 enum compact_result ret; 2292 unsigned long start_pfn = cc->zone->zone_start_pfn; 2293 unsigned long end_pfn = zone_end_pfn(cc->zone); 2294 unsigned long last_migrated_pfn; 2295 const bool sync = cc->mode != MIGRATE_ASYNC; 2296 bool update_cached; 2297 unsigned int nr_succeeded = 0; 2298 2299 /* 2300 * These counters track activities during zone compaction. Initialize 2301 * them before compacting a new zone. 2302 */ 2303 cc->total_migrate_scanned = 0; 2304 cc->total_free_scanned = 0; 2305 cc->nr_migratepages = 0; 2306 cc->nr_freepages = 0; 2307 INIT_LIST_HEAD(&cc->freepages); 2308 INIT_LIST_HEAD(&cc->migratepages); 2309 2310 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2311 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2312 cc->highest_zoneidx); 2313 /* Compaction is likely to fail */ 2314 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2315 return ret; 2316 2317 /* huh, compaction_suitable is returning something unexpected */ 2318 VM_BUG_ON(ret != COMPACT_CONTINUE); 2319 2320 /* 2321 * Clear pageblock skip if there were failures recently and compaction 2322 * is about to be retried after being deferred. 2323 */ 2324 if (compaction_restarting(cc->zone, cc->order)) 2325 __reset_isolation_suitable(cc->zone); 2326 2327 /* 2328 * Setup to move all movable pages to the end of the zone. Used cached 2329 * information on where the scanners should start (unless we explicitly 2330 * want to compact the whole zone), but check that it is initialised 2331 * by ensuring the values are within zone boundaries. 2332 */ 2333 cc->fast_start_pfn = 0; 2334 if (cc->whole_zone) { 2335 cc->migrate_pfn = start_pfn; 2336 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2337 } else { 2338 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2339 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2340 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2341 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2342 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2343 } 2344 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2345 cc->migrate_pfn = start_pfn; 2346 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2347 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2348 } 2349 2350 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2351 cc->whole_zone = true; 2352 } 2353 2354 last_migrated_pfn = 0; 2355 2356 /* 2357 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2358 * the basis that some migrations will fail in ASYNC mode. However, 2359 * if the cached PFNs match and pageblocks are skipped due to having 2360 * no isolation candidates, then the sync state does not matter. 2361 * Until a pageblock with isolation candidates is found, keep the 2362 * cached PFNs in sync to avoid revisiting the same blocks. 2363 */ 2364 update_cached = !sync && 2365 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2366 2367 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2368 2369 /* lru_add_drain_all could be expensive with involving other CPUs */ 2370 lru_add_drain(); 2371 2372 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2373 int err; 2374 unsigned long iteration_start_pfn = cc->migrate_pfn; 2375 2376 /* 2377 * Avoid multiple rescans which can happen if a page cannot be 2378 * isolated (dirty/writeback in async mode) or if the migrated 2379 * pages are being allocated before the pageblock is cleared. 2380 * The first rescan will capture the entire pageblock for 2381 * migration. If it fails, it'll be marked skip and scanning 2382 * will proceed as normal. 2383 */ 2384 cc->rescan = false; 2385 if (pageblock_start_pfn(last_migrated_pfn) == 2386 pageblock_start_pfn(iteration_start_pfn)) { 2387 cc->rescan = true; 2388 } 2389 2390 switch (isolate_migratepages(cc)) { 2391 case ISOLATE_ABORT: 2392 ret = COMPACT_CONTENDED; 2393 putback_movable_pages(&cc->migratepages); 2394 cc->nr_migratepages = 0; 2395 goto out; 2396 case ISOLATE_NONE: 2397 if (update_cached) { 2398 cc->zone->compact_cached_migrate_pfn[1] = 2399 cc->zone->compact_cached_migrate_pfn[0]; 2400 } 2401 2402 /* 2403 * We haven't isolated and migrated anything, but 2404 * there might still be unflushed migrations from 2405 * previous cc->order aligned block. 2406 */ 2407 goto check_drain; 2408 case ISOLATE_SUCCESS: 2409 update_cached = false; 2410 last_migrated_pfn = iteration_start_pfn; 2411 } 2412 2413 err = migrate_pages(&cc->migratepages, compaction_alloc, 2414 compaction_free, (unsigned long)cc, cc->mode, 2415 MR_COMPACTION, &nr_succeeded); 2416 2417 trace_mm_compaction_migratepages(cc, nr_succeeded); 2418 2419 /* All pages were either migrated or will be released */ 2420 cc->nr_migratepages = 0; 2421 if (err) { 2422 putback_movable_pages(&cc->migratepages); 2423 /* 2424 * migrate_pages() may return -ENOMEM when scanners meet 2425 * and we want compact_finished() to detect it 2426 */ 2427 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2428 ret = COMPACT_CONTENDED; 2429 goto out; 2430 } 2431 /* 2432 * We failed to migrate at least one page in the current 2433 * order-aligned block, so skip the rest of it. 2434 */ 2435 if (cc->direct_compaction && 2436 (cc->mode == MIGRATE_ASYNC)) { 2437 cc->migrate_pfn = block_end_pfn( 2438 cc->migrate_pfn - 1, cc->order); 2439 /* Draining pcplists is useless in this case */ 2440 last_migrated_pfn = 0; 2441 } 2442 } 2443 2444 check_drain: 2445 /* 2446 * Has the migration scanner moved away from the previous 2447 * cc->order aligned block where we migrated from? If yes, 2448 * flush the pages that were freed, so that they can merge and 2449 * compact_finished() can detect immediately if allocation 2450 * would succeed. 2451 */ 2452 if (cc->order > 0 && last_migrated_pfn) { 2453 unsigned long current_block_start = 2454 block_start_pfn(cc->migrate_pfn, cc->order); 2455 2456 if (last_migrated_pfn < current_block_start) { 2457 lru_add_drain_cpu_zone(cc->zone); 2458 /* No more flushing until we migrate again */ 2459 last_migrated_pfn = 0; 2460 } 2461 } 2462 2463 /* Stop if a page has been captured */ 2464 if (capc && capc->page) { 2465 ret = COMPACT_SUCCESS; 2466 break; 2467 } 2468 } 2469 2470 out: 2471 /* 2472 * Release free pages and update where the free scanner should restart, 2473 * so we don't leave any returned pages behind in the next attempt. 2474 */ 2475 if (cc->nr_freepages > 0) { 2476 unsigned long free_pfn = release_freepages(&cc->freepages); 2477 2478 cc->nr_freepages = 0; 2479 VM_BUG_ON(free_pfn == 0); 2480 /* The cached pfn is always the first in a pageblock */ 2481 free_pfn = pageblock_start_pfn(free_pfn); 2482 /* 2483 * Only go back, not forward. The cached pfn might have been 2484 * already reset to zone end in compact_finished() 2485 */ 2486 if (free_pfn > cc->zone->compact_cached_free_pfn) 2487 cc->zone->compact_cached_free_pfn = free_pfn; 2488 } 2489 2490 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2491 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2492 2493 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2494 2495 return ret; 2496 } 2497 2498 static enum compact_result compact_zone_order(struct zone *zone, int order, 2499 gfp_t gfp_mask, enum compact_priority prio, 2500 unsigned int alloc_flags, int highest_zoneidx, 2501 struct page **capture) 2502 { 2503 enum compact_result ret; 2504 struct compact_control cc = { 2505 .order = order, 2506 .search_order = order, 2507 .gfp_mask = gfp_mask, 2508 .zone = zone, 2509 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2510 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2511 .alloc_flags = alloc_flags, 2512 .highest_zoneidx = highest_zoneidx, 2513 .direct_compaction = true, 2514 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2515 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2516 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2517 }; 2518 struct capture_control capc = { 2519 .cc = &cc, 2520 .page = NULL, 2521 }; 2522 2523 /* 2524 * Make sure the structs are really initialized before we expose the 2525 * capture control, in case we are interrupted and the interrupt handler 2526 * frees a page. 2527 */ 2528 barrier(); 2529 WRITE_ONCE(current->capture_control, &capc); 2530 2531 ret = compact_zone(&cc, &capc); 2532 2533 VM_BUG_ON(!list_empty(&cc.freepages)); 2534 VM_BUG_ON(!list_empty(&cc.migratepages)); 2535 2536 /* 2537 * Make sure we hide capture control first before we read the captured 2538 * page pointer, otherwise an interrupt could free and capture a page 2539 * and we would leak it. 2540 */ 2541 WRITE_ONCE(current->capture_control, NULL); 2542 *capture = READ_ONCE(capc.page); 2543 /* 2544 * Technically, it is also possible that compaction is skipped but 2545 * the page is still captured out of luck(IRQ came and freed the page). 2546 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2547 * the COMPACT[STALL|FAIL] when compaction is skipped. 2548 */ 2549 if (*capture) 2550 ret = COMPACT_SUCCESS; 2551 2552 return ret; 2553 } 2554 2555 int sysctl_extfrag_threshold = 500; 2556 2557 /** 2558 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2559 * @gfp_mask: The GFP mask of the current allocation 2560 * @order: The order of the current allocation 2561 * @alloc_flags: The allocation flags of the current allocation 2562 * @ac: The context of current allocation 2563 * @prio: Determines how hard direct compaction should try to succeed 2564 * @capture: Pointer to free page created by compaction will be stored here 2565 * 2566 * This is the main entry point for direct page compaction. 2567 */ 2568 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2569 unsigned int alloc_flags, const struct alloc_context *ac, 2570 enum compact_priority prio, struct page **capture) 2571 { 2572 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2573 struct zoneref *z; 2574 struct zone *zone; 2575 enum compact_result rc = COMPACT_SKIPPED; 2576 2577 /* 2578 * Check if the GFP flags allow compaction - GFP_NOIO is really 2579 * tricky context because the migration might require IO 2580 */ 2581 if (!may_perform_io) 2582 return COMPACT_SKIPPED; 2583 2584 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2585 2586 /* Compact each zone in the list */ 2587 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2588 ac->highest_zoneidx, ac->nodemask) { 2589 enum compact_result status; 2590 2591 if (prio > MIN_COMPACT_PRIORITY 2592 && compaction_deferred(zone, order)) { 2593 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2594 continue; 2595 } 2596 2597 status = compact_zone_order(zone, order, gfp_mask, prio, 2598 alloc_flags, ac->highest_zoneidx, capture); 2599 rc = max(status, rc); 2600 2601 /* The allocation should succeed, stop compacting */ 2602 if (status == COMPACT_SUCCESS) { 2603 /* 2604 * We think the allocation will succeed in this zone, 2605 * but it is not certain, hence the false. The caller 2606 * will repeat this with true if allocation indeed 2607 * succeeds in this zone. 2608 */ 2609 compaction_defer_reset(zone, order, false); 2610 2611 break; 2612 } 2613 2614 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2615 status == COMPACT_PARTIAL_SKIPPED)) 2616 /* 2617 * We think that allocation won't succeed in this zone 2618 * so we defer compaction there. If it ends up 2619 * succeeding after all, it will be reset. 2620 */ 2621 defer_compaction(zone, order); 2622 2623 /* 2624 * We might have stopped compacting due to need_resched() in 2625 * async compaction, or due to a fatal signal detected. In that 2626 * case do not try further zones 2627 */ 2628 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2629 || fatal_signal_pending(current)) 2630 break; 2631 } 2632 2633 return rc; 2634 } 2635 2636 /* 2637 * Compact all zones within a node till each zone's fragmentation score 2638 * reaches within proactive compaction thresholds (as determined by the 2639 * proactiveness tunable). 2640 * 2641 * It is possible that the function returns before reaching score targets 2642 * due to various back-off conditions, such as, contention on per-node or 2643 * per-zone locks. 2644 */ 2645 static void proactive_compact_node(pg_data_t *pgdat) 2646 { 2647 int zoneid; 2648 struct zone *zone; 2649 struct compact_control cc = { 2650 .order = -1, 2651 .mode = MIGRATE_SYNC_LIGHT, 2652 .ignore_skip_hint = true, 2653 .whole_zone = true, 2654 .gfp_mask = GFP_KERNEL, 2655 .proactive_compaction = true, 2656 }; 2657 2658 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2659 zone = &pgdat->node_zones[zoneid]; 2660 if (!populated_zone(zone)) 2661 continue; 2662 2663 cc.zone = zone; 2664 2665 compact_zone(&cc, NULL); 2666 2667 VM_BUG_ON(!list_empty(&cc.freepages)); 2668 VM_BUG_ON(!list_empty(&cc.migratepages)); 2669 } 2670 } 2671 2672 /* Compact all zones within a node */ 2673 static void compact_node(int nid) 2674 { 2675 pg_data_t *pgdat = NODE_DATA(nid); 2676 int zoneid; 2677 struct zone *zone; 2678 struct compact_control cc = { 2679 .order = -1, 2680 .mode = MIGRATE_SYNC, 2681 .ignore_skip_hint = true, 2682 .whole_zone = true, 2683 .gfp_mask = GFP_KERNEL, 2684 }; 2685 2686 2687 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2688 2689 zone = &pgdat->node_zones[zoneid]; 2690 if (!populated_zone(zone)) 2691 continue; 2692 2693 cc.zone = zone; 2694 2695 compact_zone(&cc, NULL); 2696 2697 VM_BUG_ON(!list_empty(&cc.freepages)); 2698 VM_BUG_ON(!list_empty(&cc.migratepages)); 2699 } 2700 } 2701 2702 /* Compact all nodes in the system */ 2703 static void compact_nodes(void) 2704 { 2705 int nid; 2706 2707 /* Flush pending updates to the LRU lists */ 2708 lru_add_drain_all(); 2709 2710 for_each_online_node(nid) 2711 compact_node(nid); 2712 } 2713 2714 /* 2715 * Tunable for proactive compaction. It determines how 2716 * aggressively the kernel should compact memory in the 2717 * background. It takes values in the range [0, 100]. 2718 */ 2719 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2720 2721 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2722 void *buffer, size_t *length, loff_t *ppos) 2723 { 2724 int rc, nid; 2725 2726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2727 if (rc) 2728 return rc; 2729 2730 if (write && sysctl_compaction_proactiveness) { 2731 for_each_online_node(nid) { 2732 pg_data_t *pgdat = NODE_DATA(nid); 2733 2734 if (pgdat->proactive_compact_trigger) 2735 continue; 2736 2737 pgdat->proactive_compact_trigger = true; 2738 wake_up_interruptible(&pgdat->kcompactd_wait); 2739 } 2740 } 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * This is the entry point for compacting all nodes via 2747 * /proc/sys/vm/compact_memory 2748 */ 2749 int sysctl_compaction_handler(struct ctl_table *table, int write, 2750 void *buffer, size_t *length, loff_t *ppos) 2751 { 2752 if (write) 2753 compact_nodes(); 2754 2755 return 0; 2756 } 2757 2758 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2759 static ssize_t compact_store(struct device *dev, 2760 struct device_attribute *attr, 2761 const char *buf, size_t count) 2762 { 2763 int nid = dev->id; 2764 2765 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2766 /* Flush pending updates to the LRU lists */ 2767 lru_add_drain_all(); 2768 2769 compact_node(nid); 2770 } 2771 2772 return count; 2773 } 2774 static DEVICE_ATTR_WO(compact); 2775 2776 int compaction_register_node(struct node *node) 2777 { 2778 return device_create_file(&node->dev, &dev_attr_compact); 2779 } 2780 2781 void compaction_unregister_node(struct node *node) 2782 { 2783 return device_remove_file(&node->dev, &dev_attr_compact); 2784 } 2785 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2786 2787 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2788 { 2789 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2790 pgdat->proactive_compact_trigger; 2791 } 2792 2793 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2794 { 2795 int zoneid; 2796 struct zone *zone; 2797 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2798 2799 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2800 zone = &pgdat->node_zones[zoneid]; 2801 2802 if (!populated_zone(zone)) 2803 continue; 2804 2805 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2806 highest_zoneidx) == COMPACT_CONTINUE) 2807 return true; 2808 } 2809 2810 return false; 2811 } 2812 2813 static void kcompactd_do_work(pg_data_t *pgdat) 2814 { 2815 /* 2816 * With no special task, compact all zones so that a page of requested 2817 * order is allocatable. 2818 */ 2819 int zoneid; 2820 struct zone *zone; 2821 struct compact_control cc = { 2822 .order = pgdat->kcompactd_max_order, 2823 .search_order = pgdat->kcompactd_max_order, 2824 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2825 .mode = MIGRATE_SYNC_LIGHT, 2826 .ignore_skip_hint = false, 2827 .gfp_mask = GFP_KERNEL, 2828 }; 2829 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2830 cc.highest_zoneidx); 2831 count_compact_event(KCOMPACTD_WAKE); 2832 2833 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2834 int status; 2835 2836 zone = &pgdat->node_zones[zoneid]; 2837 if (!populated_zone(zone)) 2838 continue; 2839 2840 if (compaction_deferred(zone, cc.order)) 2841 continue; 2842 2843 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2844 COMPACT_CONTINUE) 2845 continue; 2846 2847 if (kthread_should_stop()) 2848 return; 2849 2850 cc.zone = zone; 2851 status = compact_zone(&cc, NULL); 2852 2853 if (status == COMPACT_SUCCESS) { 2854 compaction_defer_reset(zone, cc.order, false); 2855 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2856 /* 2857 * Buddy pages may become stranded on pcps that could 2858 * otherwise coalesce on the zone's free area for 2859 * order >= cc.order. This is ratelimited by the 2860 * upcoming deferral. 2861 */ 2862 drain_all_pages(zone); 2863 2864 /* 2865 * We use sync migration mode here, so we defer like 2866 * sync direct compaction does. 2867 */ 2868 defer_compaction(zone, cc.order); 2869 } 2870 2871 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2872 cc.total_migrate_scanned); 2873 count_compact_events(KCOMPACTD_FREE_SCANNED, 2874 cc.total_free_scanned); 2875 2876 VM_BUG_ON(!list_empty(&cc.freepages)); 2877 VM_BUG_ON(!list_empty(&cc.migratepages)); 2878 } 2879 2880 /* 2881 * Regardless of success, we are done until woken up next. But remember 2882 * the requested order/highest_zoneidx in case it was higher/tighter 2883 * than our current ones 2884 */ 2885 if (pgdat->kcompactd_max_order <= cc.order) 2886 pgdat->kcompactd_max_order = 0; 2887 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2888 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2889 } 2890 2891 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2892 { 2893 if (!order) 2894 return; 2895 2896 if (pgdat->kcompactd_max_order < order) 2897 pgdat->kcompactd_max_order = order; 2898 2899 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2900 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2901 2902 /* 2903 * Pairs with implicit barrier in wait_event_freezable() 2904 * such that wakeups are not missed. 2905 */ 2906 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2907 return; 2908 2909 if (!kcompactd_node_suitable(pgdat)) 2910 return; 2911 2912 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2913 highest_zoneidx); 2914 wake_up_interruptible(&pgdat->kcompactd_wait); 2915 } 2916 2917 /* 2918 * The background compaction daemon, started as a kernel thread 2919 * from the init process. 2920 */ 2921 static int kcompactd(void *p) 2922 { 2923 pg_data_t *pgdat = (pg_data_t *)p; 2924 struct task_struct *tsk = current; 2925 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2926 long timeout = default_timeout; 2927 2928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2929 2930 if (!cpumask_empty(cpumask)) 2931 set_cpus_allowed_ptr(tsk, cpumask); 2932 2933 set_freezable(); 2934 2935 pgdat->kcompactd_max_order = 0; 2936 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2937 2938 while (!kthread_should_stop()) { 2939 unsigned long pflags; 2940 2941 /* 2942 * Avoid the unnecessary wakeup for proactive compaction 2943 * when it is disabled. 2944 */ 2945 if (!sysctl_compaction_proactiveness) 2946 timeout = MAX_SCHEDULE_TIMEOUT; 2947 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2948 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2949 kcompactd_work_requested(pgdat), timeout) && 2950 !pgdat->proactive_compact_trigger) { 2951 2952 psi_memstall_enter(&pflags); 2953 kcompactd_do_work(pgdat); 2954 psi_memstall_leave(&pflags); 2955 /* 2956 * Reset the timeout value. The defer timeout from 2957 * proactive compaction is lost here but that is fine 2958 * as the condition of the zone changing substantionally 2959 * then carrying on with the previous defer interval is 2960 * not useful. 2961 */ 2962 timeout = default_timeout; 2963 continue; 2964 } 2965 2966 /* 2967 * Start the proactive work with default timeout. Based 2968 * on the fragmentation score, this timeout is updated. 2969 */ 2970 timeout = default_timeout; 2971 if (should_proactive_compact_node(pgdat)) { 2972 unsigned int prev_score, score; 2973 2974 prev_score = fragmentation_score_node(pgdat); 2975 proactive_compact_node(pgdat); 2976 score = fragmentation_score_node(pgdat); 2977 /* 2978 * Defer proactive compaction if the fragmentation 2979 * score did not go down i.e. no progress made. 2980 */ 2981 if (unlikely(score >= prev_score)) 2982 timeout = 2983 default_timeout << COMPACT_MAX_DEFER_SHIFT; 2984 } 2985 if (unlikely(pgdat->proactive_compact_trigger)) 2986 pgdat->proactive_compact_trigger = false; 2987 } 2988 2989 return 0; 2990 } 2991 2992 /* 2993 * This kcompactd start function will be called by init and node-hot-add. 2994 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2995 */ 2996 void kcompactd_run(int nid) 2997 { 2998 pg_data_t *pgdat = NODE_DATA(nid); 2999 3000 if (pgdat->kcompactd) 3001 return; 3002 3003 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3004 if (IS_ERR(pgdat->kcompactd)) { 3005 pr_err("Failed to start kcompactd on node %d\n", nid); 3006 pgdat->kcompactd = NULL; 3007 } 3008 } 3009 3010 /* 3011 * Called by memory hotplug when all memory in a node is offlined. Caller must 3012 * hold mem_hotplug_begin/end(). 3013 */ 3014 void kcompactd_stop(int nid) 3015 { 3016 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3017 3018 if (kcompactd) { 3019 kthread_stop(kcompactd); 3020 NODE_DATA(nid)->kcompactd = NULL; 3021 } 3022 } 3023 3024 /* 3025 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3026 * not required for correctness. So if the last cpu in a node goes 3027 * away, we get changed to run anywhere: as the first one comes back, 3028 * restore their cpu bindings. 3029 */ 3030 static int kcompactd_cpu_online(unsigned int cpu) 3031 { 3032 int nid; 3033 3034 for_each_node_state(nid, N_MEMORY) { 3035 pg_data_t *pgdat = NODE_DATA(nid); 3036 const struct cpumask *mask; 3037 3038 mask = cpumask_of_node(pgdat->node_id); 3039 3040 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3041 /* One of our CPUs online: restore mask */ 3042 if (pgdat->kcompactd) 3043 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3044 } 3045 return 0; 3046 } 3047 3048 static int __init kcompactd_init(void) 3049 { 3050 int nid; 3051 int ret; 3052 3053 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3054 "mm/compaction:online", 3055 kcompactd_cpu_online, NULL); 3056 if (ret < 0) { 3057 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3058 return ret; 3059 } 3060 3061 for_each_node_state(nid, N_MEMORY) 3062 kcompactd_run(nid); 3063 return 0; 3064 } 3065 subsys_initcall(kcompactd_init) 3066 3067 #endif /* CONFIG_COMPACTION */ 3068