1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn)); 274 if (block_page) { 275 page = block_page; 276 pfn = block_pfn; 277 } 278 279 /* Ensure the end of the pageblock or zone is online and valid */ 280 block_pfn += pageblock_nr_pages; 281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 282 end_page = pfn_to_online_page(block_pfn); 283 if (!end_page) 284 return false; 285 286 /* 287 * Only clear the hint if a sample indicates there is either a 288 * free page or an LRU page in the block. One or other condition 289 * is necessary for the block to be a migration source/target. 290 */ 291 do { 292 if (pfn_valid_within(pfn)) { 293 if (check_source && PageLRU(page)) { 294 clear_pageblock_skip(page); 295 return true; 296 } 297 298 if (check_target && PageBuddy(page)) { 299 clear_pageblock_skip(page); 300 return true; 301 } 302 } 303 304 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 } while (page < end_page); 307 308 return false; 309 } 310 311 /* 312 * This function is called to clear all cached information on pageblocks that 313 * should be skipped for page isolation when the migrate and free page scanner 314 * meet. 315 */ 316 static void __reset_isolation_suitable(struct zone *zone) 317 { 318 unsigned long migrate_pfn = zone->zone_start_pfn; 319 unsigned long free_pfn = zone_end_pfn(zone) - 1; 320 unsigned long reset_migrate = free_pfn; 321 unsigned long reset_free = migrate_pfn; 322 bool source_set = false; 323 bool free_set = false; 324 325 if (!zone->compact_blockskip_flush) 326 return; 327 328 zone->compact_blockskip_flush = false; 329 330 /* 331 * Walk the zone and update pageblock skip information. Source looks 332 * for PageLRU while target looks for PageBuddy. When the scanner 333 * is found, both PageBuddy and PageLRU are checked as the pageblock 334 * is suitable as both source and target. 335 */ 336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 337 free_pfn -= pageblock_nr_pages) { 338 cond_resched(); 339 340 /* Update the migrate PFN */ 341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 342 migrate_pfn < reset_migrate) { 343 source_set = true; 344 reset_migrate = migrate_pfn; 345 zone->compact_init_migrate_pfn = reset_migrate; 346 zone->compact_cached_migrate_pfn[0] = reset_migrate; 347 zone->compact_cached_migrate_pfn[1] = reset_migrate; 348 } 349 350 /* Update the free PFN */ 351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 352 free_pfn > reset_free) { 353 free_set = true; 354 reset_free = free_pfn; 355 zone->compact_init_free_pfn = reset_free; 356 zone->compact_cached_free_pfn = reset_free; 357 } 358 } 359 360 /* Leave no distance if no suitable block was reset */ 361 if (reset_migrate >= reset_free) { 362 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 363 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 364 zone->compact_cached_free_pfn = free_pfn; 365 } 366 } 367 368 void reset_isolation_suitable(pg_data_t *pgdat) 369 { 370 int zoneid; 371 372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 373 struct zone *zone = &pgdat->node_zones[zoneid]; 374 if (!populated_zone(zone)) 375 continue; 376 377 /* Only flush if a full compaction finished recently */ 378 if (zone->compact_blockskip_flush) 379 __reset_isolation_suitable(zone); 380 } 381 } 382 383 /* 384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 385 * locks are not required for read/writers. Returns true if it was already set. 386 */ 387 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 388 unsigned long pfn) 389 { 390 bool skip; 391 392 /* Do no update if skip hint is being ignored */ 393 if (cc->ignore_skip_hint) 394 return false; 395 396 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 397 return false; 398 399 skip = get_pageblock_skip(page); 400 if (!skip && !cc->no_set_skip_hint) 401 set_pageblock_skip(page); 402 403 return skip; 404 } 405 406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 407 { 408 struct zone *zone = cc->zone; 409 410 pfn = pageblock_end_pfn(pfn); 411 412 /* Set for isolation rather than compaction */ 413 if (cc->no_set_skip_hint) 414 return; 415 416 if (pfn > zone->compact_cached_migrate_pfn[0]) 417 zone->compact_cached_migrate_pfn[0] = pfn; 418 if (cc->mode != MIGRATE_ASYNC && 419 pfn > zone->compact_cached_migrate_pfn[1]) 420 zone->compact_cached_migrate_pfn[1] = pfn; 421 } 422 423 /* 424 * If no pages were isolated then mark this pageblock to be skipped in the 425 * future. The information is later cleared by __reset_isolation_suitable(). 426 */ 427 static void update_pageblock_skip(struct compact_control *cc, 428 struct page *page, unsigned long pfn) 429 { 430 struct zone *zone = cc->zone; 431 432 if (cc->no_set_skip_hint) 433 return; 434 435 if (!page) 436 return; 437 438 set_pageblock_skip(page); 439 440 /* Update where async and sync compaction should restart */ 441 if (pfn < zone->compact_cached_free_pfn) 442 zone->compact_cached_free_pfn = pfn; 443 } 444 #else 445 static inline bool isolation_suitable(struct compact_control *cc, 446 struct page *page) 447 { 448 return true; 449 } 450 451 static inline bool pageblock_skip_persistent(struct page *page) 452 { 453 return false; 454 } 455 456 static inline void update_pageblock_skip(struct compact_control *cc, 457 struct page *page, unsigned long pfn) 458 { 459 } 460 461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 462 { 463 } 464 465 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 466 unsigned long pfn) 467 { 468 return false; 469 } 470 #endif /* CONFIG_COMPACTION */ 471 472 /* 473 * Compaction requires the taking of some coarse locks that are potentially 474 * very heavily contended. For async compaction, trylock and record if the 475 * lock is contended. The lock will still be acquired but compaction will 476 * abort when the current block is finished regardless of success rate. 477 * Sync compaction acquires the lock. 478 * 479 * Always returns true which makes it easier to track lock state in callers. 480 */ 481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 482 struct compact_control *cc) 483 { 484 /* Track if the lock is contended in async mode */ 485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 486 if (spin_trylock_irqsave(lock, *flags)) 487 return true; 488 489 cc->contended = true; 490 } 491 492 spin_lock_irqsave(lock, *flags); 493 return true; 494 } 495 496 /* 497 * Compaction requires the taking of some coarse locks that are potentially 498 * very heavily contended. The lock should be periodically unlocked to avoid 499 * having disabled IRQs for a long time, even when there is nobody waiting on 500 * the lock. It might also be that allowing the IRQs will result in 501 * need_resched() becoming true. If scheduling is needed, async compaction 502 * aborts. Sync compaction schedules. 503 * Either compaction type will also abort if a fatal signal is pending. 504 * In either case if the lock was locked, it is dropped and not regained. 505 * 506 * Returns true if compaction should abort due to fatal signal pending, or 507 * async compaction due to need_resched() 508 * Returns false when compaction can continue (sync compaction might have 509 * scheduled) 510 */ 511 static bool compact_unlock_should_abort(spinlock_t *lock, 512 unsigned long flags, bool *locked, struct compact_control *cc) 513 { 514 if (*locked) { 515 spin_unlock_irqrestore(lock, flags); 516 *locked = false; 517 } 518 519 if (fatal_signal_pending(current)) { 520 cc->contended = true; 521 return true; 522 } 523 524 cond_resched(); 525 526 return false; 527 } 528 529 /* 530 * Isolate free pages onto a private freelist. If @strict is true, will abort 531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 532 * (even though it may still end up isolating some pages). 533 */ 534 static unsigned long isolate_freepages_block(struct compact_control *cc, 535 unsigned long *start_pfn, 536 unsigned long end_pfn, 537 struct list_head *freelist, 538 unsigned int stride, 539 bool strict) 540 { 541 int nr_scanned = 0, total_isolated = 0; 542 struct page *cursor; 543 unsigned long flags = 0; 544 bool locked = false; 545 unsigned long blockpfn = *start_pfn; 546 unsigned int order; 547 548 /* Strict mode is for isolation, speed is secondary */ 549 if (strict) 550 stride = 1; 551 552 cursor = pfn_to_page(blockpfn); 553 554 /* Isolate free pages. */ 555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 556 int isolated; 557 struct page *page = cursor; 558 559 /* 560 * Periodically drop the lock (if held) regardless of its 561 * contention, to give chance to IRQs. Abort if fatal signal 562 * pending or async compaction detects need_resched() 563 */ 564 if (!(blockpfn % SWAP_CLUSTER_MAX) 565 && compact_unlock_should_abort(&cc->zone->lock, flags, 566 &locked, cc)) 567 break; 568 569 nr_scanned++; 570 if (!pfn_valid_within(blockpfn)) 571 goto isolate_fail; 572 573 /* 574 * For compound pages such as THP and hugetlbfs, we can save 575 * potentially a lot of iterations if we skip them at once. 576 * The check is racy, but we can consider only valid values 577 * and the only danger is skipping too much. 578 */ 579 if (PageCompound(page)) { 580 const unsigned int order = compound_order(page); 581 582 if (likely(order < MAX_ORDER)) { 583 blockpfn += (1UL << order) - 1; 584 cursor += (1UL << order) - 1; 585 } 586 goto isolate_fail; 587 } 588 589 if (!PageBuddy(page)) 590 goto isolate_fail; 591 592 /* 593 * If we already hold the lock, we can skip some rechecking. 594 * Note that if we hold the lock now, checked_pageblock was 595 * already set in some previous iteration (or strict is true), 596 * so it is correct to skip the suitable migration target 597 * recheck as well. 598 */ 599 if (!locked) { 600 locked = compact_lock_irqsave(&cc->zone->lock, 601 &flags, cc); 602 603 /* Recheck this is a buddy page under lock */ 604 if (!PageBuddy(page)) 605 goto isolate_fail; 606 } 607 608 /* Found a free page, will break it into order-0 pages */ 609 order = page_order(page); 610 isolated = __isolate_free_page(page, order); 611 if (!isolated) 612 break; 613 set_page_private(page, order); 614 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 unsigned long active, inactive, isolated; 751 752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 753 node_page_state(pgdat, NR_INACTIVE_ANON); 754 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 755 node_page_state(pgdat, NR_ACTIVE_ANON); 756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 757 node_page_state(pgdat, NR_ISOLATED_ANON); 758 759 return isolated > (inactive + active) / 2; 760 } 761 762 /** 763 * isolate_migratepages_block() - isolate all migrate-able pages within 764 * a single pageblock 765 * @cc: Compaction control structure. 766 * @low_pfn: The first PFN to isolate 767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 768 * @isolate_mode: Isolation mode to be used. 769 * 770 * Isolate all pages that can be migrated from the range specified by 771 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 772 * Returns zero if there is a fatal signal pending, otherwise PFN of the 773 * first page that was not scanned (which may be both less, equal to or more 774 * than end_pfn). 775 * 776 * The pages are isolated on cc->migratepages list (not required to be empty), 777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 778 * is neither read nor updated. 779 */ 780 static unsigned long 781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 782 unsigned long end_pfn, isolate_mode_t isolate_mode) 783 { 784 pg_data_t *pgdat = cc->zone->zone_pgdat; 785 unsigned long nr_scanned = 0, nr_isolated = 0; 786 struct lruvec *lruvec; 787 unsigned long flags = 0; 788 bool locked = false; 789 struct page *page = NULL, *valid_page = NULL; 790 unsigned long start_pfn = low_pfn; 791 bool skip_on_failure = false; 792 unsigned long next_skip_pfn = 0; 793 bool skip_updated = false; 794 795 /* 796 * Ensure that there are not too many pages isolated from the LRU 797 * list by either parallel reclaimers or compaction. If there are, 798 * delay for some time until fewer pages are isolated 799 */ 800 while (unlikely(too_many_isolated(pgdat))) { 801 /* async migration should just abort */ 802 if (cc->mode == MIGRATE_ASYNC) 803 return 0; 804 805 congestion_wait(BLK_RW_ASYNC, HZ/10); 806 807 if (fatal_signal_pending(current)) 808 return 0; 809 } 810 811 cond_resched(); 812 813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 814 skip_on_failure = true; 815 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 816 } 817 818 /* Time to isolate some pages for migration */ 819 for (; low_pfn < end_pfn; low_pfn++) { 820 821 if (skip_on_failure && low_pfn >= next_skip_pfn) { 822 /* 823 * We have isolated all migration candidates in the 824 * previous order-aligned block, and did not skip it due 825 * to failure. We should migrate the pages now and 826 * hopefully succeed compaction. 827 */ 828 if (nr_isolated) 829 break; 830 831 /* 832 * We failed to isolate in the previous order-aligned 833 * block. Set the new boundary to the end of the 834 * current block. Note we can't simply increase 835 * next_skip_pfn by 1 << order, as low_pfn might have 836 * been incremented by a higher number due to skipping 837 * a compound or a high-order buddy page in the 838 * previous loop iteration. 839 */ 840 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 841 } 842 843 /* 844 * Periodically drop the lock (if held) regardless of its 845 * contention, to give chance to IRQs. Abort async compaction 846 * if contended. 847 */ 848 if (!(low_pfn % SWAP_CLUSTER_MAX) 849 && compact_unlock_should_abort(&pgdat->lru_lock, 850 flags, &locked, cc)) 851 break; 852 853 if (!pfn_valid_within(low_pfn)) 854 goto isolate_fail; 855 nr_scanned++; 856 857 page = pfn_to_page(low_pfn); 858 859 /* 860 * Check if the pageblock has already been marked skipped. 861 * Only the aligned PFN is checked as the caller isolates 862 * COMPACT_CLUSTER_MAX at a time so the second call must 863 * not falsely conclude that the block should be skipped. 864 */ 865 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 866 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 867 low_pfn = end_pfn; 868 goto isolate_abort; 869 } 870 valid_page = page; 871 } 872 873 /* 874 * Skip if free. We read page order here without zone lock 875 * which is generally unsafe, but the race window is small and 876 * the worst thing that can happen is that we skip some 877 * potential isolation targets. 878 */ 879 if (PageBuddy(page)) { 880 unsigned long freepage_order = page_order_unsafe(page); 881 882 /* 883 * Without lock, we cannot be sure that what we got is 884 * a valid page order. Consider only values in the 885 * valid order range to prevent low_pfn overflow. 886 */ 887 if (freepage_order > 0 && freepage_order < MAX_ORDER) 888 low_pfn += (1UL << freepage_order) - 1; 889 continue; 890 } 891 892 /* 893 * Regardless of being on LRU, compound pages such as THP and 894 * hugetlbfs are not to be compacted. We can potentially save 895 * a lot of iterations if we skip them at once. The check is 896 * racy, but we can consider only valid values and the only 897 * danger is skipping too much. 898 */ 899 if (PageCompound(page)) { 900 const unsigned int order = compound_order(page); 901 902 if (likely(order < MAX_ORDER)) 903 low_pfn += (1UL << order) - 1; 904 goto isolate_fail; 905 } 906 907 /* 908 * Check may be lockless but that's ok as we recheck later. 909 * It's possible to migrate LRU and non-lru movable pages. 910 * Skip any other type of page 911 */ 912 if (!PageLRU(page)) { 913 /* 914 * __PageMovable can return false positive so we need 915 * to verify it under page_lock. 916 */ 917 if (unlikely(__PageMovable(page)) && 918 !PageIsolated(page)) { 919 if (locked) { 920 spin_unlock_irqrestore(&pgdat->lru_lock, 921 flags); 922 locked = false; 923 } 924 925 if (!isolate_movable_page(page, isolate_mode)) 926 goto isolate_success; 927 } 928 929 goto isolate_fail; 930 } 931 932 /* 933 * Migration will fail if an anonymous page is pinned in memory, 934 * so avoid taking lru_lock and isolating it unnecessarily in an 935 * admittedly racy check. 936 */ 937 if (!page_mapping(page) && 938 page_count(page) > page_mapcount(page)) 939 goto isolate_fail; 940 941 /* 942 * Only allow to migrate anonymous pages in GFP_NOFS context 943 * because those do not depend on fs locks. 944 */ 945 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 946 goto isolate_fail; 947 948 /* If we already hold the lock, we can skip some rechecking */ 949 if (!locked) { 950 locked = compact_lock_irqsave(&pgdat->lru_lock, 951 &flags, cc); 952 953 /* Try get exclusive access under lock */ 954 if (!skip_updated) { 955 skip_updated = true; 956 if (test_and_set_skip(cc, page, low_pfn)) 957 goto isolate_abort; 958 } 959 960 /* Recheck PageLRU and PageCompound under lock */ 961 if (!PageLRU(page)) 962 goto isolate_fail; 963 964 /* 965 * Page become compound since the non-locked check, 966 * and it's on LRU. It can only be a THP so the order 967 * is safe to read and it's 0 for tail pages. 968 */ 969 if (unlikely(PageCompound(page))) { 970 low_pfn += (1UL << compound_order(page)) - 1; 971 goto isolate_fail; 972 } 973 } 974 975 lruvec = mem_cgroup_page_lruvec(page, pgdat); 976 977 /* Try isolate the page */ 978 if (__isolate_lru_page(page, isolate_mode) != 0) 979 goto isolate_fail; 980 981 VM_BUG_ON_PAGE(PageCompound(page), page); 982 983 /* Successfully isolated */ 984 del_page_from_lru_list(page, lruvec, page_lru(page)); 985 inc_node_page_state(page, 986 NR_ISOLATED_ANON + page_is_file_cache(page)); 987 988 isolate_success: 989 list_add(&page->lru, &cc->migratepages); 990 cc->nr_migratepages++; 991 nr_isolated++; 992 993 /* 994 * Avoid isolating too much unless this block is being 995 * rescanned (e.g. dirty/writeback pages, parallel allocation) 996 * or a lock is contended. For contention, isolate quickly to 997 * potentially remove one source of contention. 998 */ 999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1000 !cc->rescan && !cc->contended) { 1001 ++low_pfn; 1002 break; 1003 } 1004 1005 continue; 1006 isolate_fail: 1007 if (!skip_on_failure) 1008 continue; 1009 1010 /* 1011 * We have isolated some pages, but then failed. Release them 1012 * instead of migrating, as we cannot form the cc->order buddy 1013 * page anyway. 1014 */ 1015 if (nr_isolated) { 1016 if (locked) { 1017 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1018 locked = false; 1019 } 1020 putback_movable_pages(&cc->migratepages); 1021 cc->nr_migratepages = 0; 1022 nr_isolated = 0; 1023 } 1024 1025 if (low_pfn < next_skip_pfn) { 1026 low_pfn = next_skip_pfn - 1; 1027 /* 1028 * The check near the loop beginning would have updated 1029 * next_skip_pfn too, but this is a bit simpler. 1030 */ 1031 next_skip_pfn += 1UL << cc->order; 1032 } 1033 } 1034 1035 /* 1036 * The PageBuddy() check could have potentially brought us outside 1037 * the range to be scanned. 1038 */ 1039 if (unlikely(low_pfn > end_pfn)) 1040 low_pfn = end_pfn; 1041 1042 isolate_abort: 1043 if (locked) 1044 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1045 1046 /* 1047 * Updated the cached scanner pfn once the pageblock has been scanned 1048 * Pages will either be migrated in which case there is no point 1049 * scanning in the near future or migration failed in which case the 1050 * failure reason may persist. The block is marked for skipping if 1051 * there were no pages isolated in the block or if the block is 1052 * rescanned twice in a row. 1053 */ 1054 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1055 if (valid_page && !skip_updated) 1056 set_pageblock_skip(valid_page); 1057 update_cached_migrate(cc, low_pfn); 1058 } 1059 1060 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1061 nr_scanned, nr_isolated); 1062 1063 cc->total_migrate_scanned += nr_scanned; 1064 if (nr_isolated) 1065 count_compact_events(COMPACTISOLATED, nr_isolated); 1066 1067 return low_pfn; 1068 } 1069 1070 /** 1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1072 * @cc: Compaction control structure. 1073 * @start_pfn: The first PFN to start isolating. 1074 * @end_pfn: The one-past-last PFN. 1075 * 1076 * Returns zero if isolation fails fatally due to e.g. pending signal. 1077 * Otherwise, function returns one-past-the-last PFN of isolated page 1078 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1079 */ 1080 unsigned long 1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1082 unsigned long end_pfn) 1083 { 1084 unsigned long pfn, block_start_pfn, block_end_pfn; 1085 1086 /* Scan block by block. First and last block may be incomplete */ 1087 pfn = start_pfn; 1088 block_start_pfn = pageblock_start_pfn(pfn); 1089 if (block_start_pfn < cc->zone->zone_start_pfn) 1090 block_start_pfn = cc->zone->zone_start_pfn; 1091 block_end_pfn = pageblock_end_pfn(pfn); 1092 1093 for (; pfn < end_pfn; pfn = block_end_pfn, 1094 block_start_pfn = block_end_pfn, 1095 block_end_pfn += pageblock_nr_pages) { 1096 1097 block_end_pfn = min(block_end_pfn, end_pfn); 1098 1099 if (!pageblock_pfn_to_page(block_start_pfn, 1100 block_end_pfn, cc->zone)) 1101 continue; 1102 1103 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1104 ISOLATE_UNEVICTABLE); 1105 1106 if (!pfn) 1107 break; 1108 1109 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1110 break; 1111 } 1112 1113 return pfn; 1114 } 1115 1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1117 #ifdef CONFIG_COMPACTION 1118 1119 static bool suitable_migration_source(struct compact_control *cc, 1120 struct page *page) 1121 { 1122 int block_mt; 1123 1124 if (pageblock_skip_persistent(page)) 1125 return false; 1126 1127 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1128 return true; 1129 1130 block_mt = get_pageblock_migratetype(page); 1131 1132 if (cc->migratetype == MIGRATE_MOVABLE) 1133 return is_migrate_movable(block_mt); 1134 else 1135 return block_mt == cc->migratetype; 1136 } 1137 1138 /* Returns true if the page is within a block suitable for migration to */ 1139 static bool suitable_migration_target(struct compact_control *cc, 1140 struct page *page) 1141 { 1142 /* If the page is a large free page, then disallow migration */ 1143 if (PageBuddy(page)) { 1144 /* 1145 * We are checking page_order without zone->lock taken. But 1146 * the only small danger is that we skip a potentially suitable 1147 * pageblock, so it's not worth to check order for valid range. 1148 */ 1149 if (page_order_unsafe(page) >= pageblock_order) 1150 return false; 1151 } 1152 1153 if (cc->ignore_block_suitable) 1154 return true; 1155 1156 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1157 if (is_migrate_movable(get_pageblock_migratetype(page))) 1158 return true; 1159 1160 /* Otherwise skip the block */ 1161 return false; 1162 } 1163 1164 static inline unsigned int 1165 freelist_scan_limit(struct compact_control *cc) 1166 { 1167 unsigned short shift = BITS_PER_LONG - 1; 1168 1169 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1170 } 1171 1172 /* 1173 * Test whether the free scanner has reached the same or lower pageblock than 1174 * the migration scanner, and compaction should thus terminate. 1175 */ 1176 static inline bool compact_scanners_met(struct compact_control *cc) 1177 { 1178 return (cc->free_pfn >> pageblock_order) 1179 <= (cc->migrate_pfn >> pageblock_order); 1180 } 1181 1182 /* 1183 * Used when scanning for a suitable migration target which scans freelists 1184 * in reverse. Reorders the list such as the unscanned pages are scanned 1185 * first on the next iteration of the free scanner 1186 */ 1187 static void 1188 move_freelist_head(struct list_head *freelist, struct page *freepage) 1189 { 1190 LIST_HEAD(sublist); 1191 1192 if (!list_is_last(freelist, &freepage->lru)) { 1193 list_cut_before(&sublist, freelist, &freepage->lru); 1194 if (!list_empty(&sublist)) 1195 list_splice_tail(&sublist, freelist); 1196 } 1197 } 1198 1199 /* 1200 * Similar to move_freelist_head except used by the migration scanner 1201 * when scanning forward. It's possible for these list operations to 1202 * move against each other if they search the free list exactly in 1203 * lockstep. 1204 */ 1205 static void 1206 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1207 { 1208 LIST_HEAD(sublist); 1209 1210 if (!list_is_first(freelist, &freepage->lru)) { 1211 list_cut_position(&sublist, freelist, &freepage->lru); 1212 if (!list_empty(&sublist)) 1213 list_splice_tail(&sublist, freelist); 1214 } 1215 } 1216 1217 static void 1218 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1219 { 1220 unsigned long start_pfn, end_pfn; 1221 struct page *page = pfn_to_page(pfn); 1222 1223 /* Do not search around if there are enough pages already */ 1224 if (cc->nr_freepages >= cc->nr_migratepages) 1225 return; 1226 1227 /* Minimise scanning during async compaction */ 1228 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1229 return; 1230 1231 /* Pageblock boundaries */ 1232 start_pfn = pageblock_start_pfn(pfn); 1233 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1234 1235 /* Scan before */ 1236 if (start_pfn != pfn) { 1237 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1238 if (cc->nr_freepages >= cc->nr_migratepages) 1239 return; 1240 } 1241 1242 /* Scan after */ 1243 start_pfn = pfn + nr_isolated; 1244 if (start_pfn < end_pfn) 1245 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1246 1247 /* Skip this pageblock in the future as it's full or nearly full */ 1248 if (cc->nr_freepages < cc->nr_migratepages) 1249 set_pageblock_skip(page); 1250 } 1251 1252 /* Search orders in round-robin fashion */ 1253 static int next_search_order(struct compact_control *cc, int order) 1254 { 1255 order--; 1256 if (order < 0) 1257 order = cc->order - 1; 1258 1259 /* Search wrapped around? */ 1260 if (order == cc->search_order) { 1261 cc->search_order--; 1262 if (cc->search_order < 0) 1263 cc->search_order = cc->order - 1; 1264 return -1; 1265 } 1266 1267 return order; 1268 } 1269 1270 static unsigned long 1271 fast_isolate_freepages(struct compact_control *cc) 1272 { 1273 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1274 unsigned int nr_scanned = 0; 1275 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1276 unsigned long nr_isolated = 0; 1277 unsigned long distance; 1278 struct page *page = NULL; 1279 bool scan_start = false; 1280 int order; 1281 1282 /* Full compaction passes in a negative order */ 1283 if (cc->order <= 0) 1284 return cc->free_pfn; 1285 1286 /* 1287 * If starting the scan, use a deeper search and use the highest 1288 * PFN found if a suitable one is not found. 1289 */ 1290 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1291 limit = pageblock_nr_pages >> 1; 1292 scan_start = true; 1293 } 1294 1295 /* 1296 * Preferred point is in the top quarter of the scan space but take 1297 * a pfn from the top half if the search is problematic. 1298 */ 1299 distance = (cc->free_pfn - cc->migrate_pfn); 1300 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1301 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1302 1303 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1304 low_pfn = min_pfn; 1305 1306 /* 1307 * Search starts from the last successful isolation order or the next 1308 * order to search after a previous failure 1309 */ 1310 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1311 1312 for (order = cc->search_order; 1313 !page && order >= 0; 1314 order = next_search_order(cc, order)) { 1315 struct free_area *area = &cc->zone->free_area[order]; 1316 struct list_head *freelist; 1317 struct page *freepage; 1318 unsigned long flags; 1319 unsigned int order_scanned = 0; 1320 1321 if (!area->nr_free) 1322 continue; 1323 1324 spin_lock_irqsave(&cc->zone->lock, flags); 1325 freelist = &area->free_list[MIGRATE_MOVABLE]; 1326 list_for_each_entry_reverse(freepage, freelist, lru) { 1327 unsigned long pfn; 1328 1329 order_scanned++; 1330 nr_scanned++; 1331 pfn = page_to_pfn(freepage); 1332 1333 if (pfn >= highest) 1334 highest = pageblock_start_pfn(pfn); 1335 1336 if (pfn >= low_pfn) { 1337 cc->fast_search_fail = 0; 1338 cc->search_order = order; 1339 page = freepage; 1340 break; 1341 } 1342 1343 if (pfn >= min_pfn && pfn > high_pfn) { 1344 high_pfn = pfn; 1345 1346 /* Shorten the scan if a candidate is found */ 1347 limit >>= 1; 1348 } 1349 1350 if (order_scanned >= limit) 1351 break; 1352 } 1353 1354 /* Use a minimum pfn if a preferred one was not found */ 1355 if (!page && high_pfn) { 1356 page = pfn_to_page(high_pfn); 1357 1358 /* Update freepage for the list reorder below */ 1359 freepage = page; 1360 } 1361 1362 /* Reorder to so a future search skips recent pages */ 1363 move_freelist_head(freelist, freepage); 1364 1365 /* Isolate the page if available */ 1366 if (page) { 1367 if (__isolate_free_page(page, order)) { 1368 set_page_private(page, order); 1369 nr_isolated = 1 << order; 1370 cc->nr_freepages += nr_isolated; 1371 list_add_tail(&page->lru, &cc->freepages); 1372 count_compact_events(COMPACTISOLATED, nr_isolated); 1373 } else { 1374 /* If isolation fails, abort the search */ 1375 order = cc->search_order + 1; 1376 page = NULL; 1377 } 1378 } 1379 1380 spin_unlock_irqrestore(&cc->zone->lock, flags); 1381 1382 /* 1383 * Smaller scan on next order so the total scan ig related 1384 * to freelist_scan_limit. 1385 */ 1386 if (order_scanned >= limit) 1387 limit = min(1U, limit >> 1); 1388 } 1389 1390 if (!page) { 1391 cc->fast_search_fail++; 1392 if (scan_start) { 1393 /* 1394 * Use the highest PFN found above min. If one was 1395 * not found, be pessemistic for direct compaction 1396 * and use the min mark. 1397 */ 1398 if (highest) { 1399 page = pfn_to_page(highest); 1400 cc->free_pfn = highest; 1401 } else { 1402 if (cc->direct_compaction) { 1403 page = pfn_to_page(min_pfn); 1404 cc->free_pfn = min_pfn; 1405 } 1406 } 1407 } 1408 } 1409 1410 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1411 highest -= pageblock_nr_pages; 1412 cc->zone->compact_cached_free_pfn = highest; 1413 } 1414 1415 cc->total_free_scanned += nr_scanned; 1416 if (!page) 1417 return cc->free_pfn; 1418 1419 low_pfn = page_to_pfn(page); 1420 fast_isolate_around(cc, low_pfn, nr_isolated); 1421 return low_pfn; 1422 } 1423 1424 /* 1425 * Based on information in the current compact_control, find blocks 1426 * suitable for isolating free pages from and then isolate them. 1427 */ 1428 static void isolate_freepages(struct compact_control *cc) 1429 { 1430 struct zone *zone = cc->zone; 1431 struct page *page; 1432 unsigned long block_start_pfn; /* start of current pageblock */ 1433 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1434 unsigned long block_end_pfn; /* end of current pageblock */ 1435 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1436 struct list_head *freelist = &cc->freepages; 1437 unsigned int stride; 1438 1439 /* Try a small search of the free lists for a candidate */ 1440 isolate_start_pfn = fast_isolate_freepages(cc); 1441 if (cc->nr_freepages) 1442 goto splitmap; 1443 1444 /* 1445 * Initialise the free scanner. The starting point is where we last 1446 * successfully isolated from, zone-cached value, or the end of the 1447 * zone when isolating for the first time. For looping we also need 1448 * this pfn aligned down to the pageblock boundary, because we do 1449 * block_start_pfn -= pageblock_nr_pages in the for loop. 1450 * For ending point, take care when isolating in last pageblock of a 1451 * a zone which ends in the middle of a pageblock. 1452 * The low boundary is the end of the pageblock the migration scanner 1453 * is using. 1454 */ 1455 isolate_start_pfn = cc->free_pfn; 1456 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1457 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1458 zone_end_pfn(zone)); 1459 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1460 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1461 1462 /* 1463 * Isolate free pages until enough are available to migrate the 1464 * pages on cc->migratepages. We stop searching if the migrate 1465 * and free page scanners meet or enough free pages are isolated. 1466 */ 1467 for (; block_start_pfn >= low_pfn; 1468 block_end_pfn = block_start_pfn, 1469 block_start_pfn -= pageblock_nr_pages, 1470 isolate_start_pfn = block_start_pfn) { 1471 unsigned long nr_isolated; 1472 1473 /* 1474 * This can iterate a massively long zone without finding any 1475 * suitable migration targets, so periodically check resched. 1476 */ 1477 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1478 cond_resched(); 1479 1480 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1481 zone); 1482 if (!page) 1483 continue; 1484 1485 /* Check the block is suitable for migration */ 1486 if (!suitable_migration_target(cc, page)) 1487 continue; 1488 1489 /* If isolation recently failed, do not retry */ 1490 if (!isolation_suitable(cc, page)) 1491 continue; 1492 1493 /* Found a block suitable for isolating free pages from. */ 1494 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1495 block_end_pfn, freelist, stride, false); 1496 1497 /* Update the skip hint if the full pageblock was scanned */ 1498 if (isolate_start_pfn == block_end_pfn) 1499 update_pageblock_skip(cc, page, block_start_pfn); 1500 1501 /* Are enough freepages isolated? */ 1502 if (cc->nr_freepages >= cc->nr_migratepages) { 1503 if (isolate_start_pfn >= block_end_pfn) { 1504 /* 1505 * Restart at previous pageblock if more 1506 * freepages can be isolated next time. 1507 */ 1508 isolate_start_pfn = 1509 block_start_pfn - pageblock_nr_pages; 1510 } 1511 break; 1512 } else if (isolate_start_pfn < block_end_pfn) { 1513 /* 1514 * If isolation failed early, do not continue 1515 * needlessly. 1516 */ 1517 break; 1518 } 1519 1520 /* Adjust stride depending on isolation */ 1521 if (nr_isolated) { 1522 stride = 1; 1523 continue; 1524 } 1525 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1526 } 1527 1528 /* 1529 * Record where the free scanner will restart next time. Either we 1530 * broke from the loop and set isolate_start_pfn based on the last 1531 * call to isolate_freepages_block(), or we met the migration scanner 1532 * and the loop terminated due to isolate_start_pfn < low_pfn 1533 */ 1534 cc->free_pfn = isolate_start_pfn; 1535 1536 splitmap: 1537 /* __isolate_free_page() does not map the pages */ 1538 split_map_pages(freelist); 1539 } 1540 1541 /* 1542 * This is a migrate-callback that "allocates" freepages by taking pages 1543 * from the isolated freelists in the block we are migrating to. 1544 */ 1545 static struct page *compaction_alloc(struct page *migratepage, 1546 unsigned long data) 1547 { 1548 struct compact_control *cc = (struct compact_control *)data; 1549 struct page *freepage; 1550 1551 if (list_empty(&cc->freepages)) { 1552 isolate_freepages(cc); 1553 1554 if (list_empty(&cc->freepages)) 1555 return NULL; 1556 } 1557 1558 freepage = list_entry(cc->freepages.next, struct page, lru); 1559 list_del(&freepage->lru); 1560 cc->nr_freepages--; 1561 1562 return freepage; 1563 } 1564 1565 /* 1566 * This is a migrate-callback that "frees" freepages back to the isolated 1567 * freelist. All pages on the freelist are from the same zone, so there is no 1568 * special handling needed for NUMA. 1569 */ 1570 static void compaction_free(struct page *page, unsigned long data) 1571 { 1572 struct compact_control *cc = (struct compact_control *)data; 1573 1574 list_add(&page->lru, &cc->freepages); 1575 cc->nr_freepages++; 1576 } 1577 1578 /* possible outcome of isolate_migratepages */ 1579 typedef enum { 1580 ISOLATE_ABORT, /* Abort compaction now */ 1581 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1582 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1583 } isolate_migrate_t; 1584 1585 /* 1586 * Allow userspace to control policy on scanning the unevictable LRU for 1587 * compactable pages. 1588 */ 1589 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1590 1591 static inline void 1592 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1593 { 1594 if (cc->fast_start_pfn == ULONG_MAX) 1595 return; 1596 1597 if (!cc->fast_start_pfn) 1598 cc->fast_start_pfn = pfn; 1599 1600 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1601 } 1602 1603 static inline unsigned long 1604 reinit_migrate_pfn(struct compact_control *cc) 1605 { 1606 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1607 return cc->migrate_pfn; 1608 1609 cc->migrate_pfn = cc->fast_start_pfn; 1610 cc->fast_start_pfn = ULONG_MAX; 1611 1612 return cc->migrate_pfn; 1613 } 1614 1615 /* 1616 * Briefly search the free lists for a migration source that already has 1617 * some free pages to reduce the number of pages that need migration 1618 * before a pageblock is free. 1619 */ 1620 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1621 { 1622 unsigned int limit = freelist_scan_limit(cc); 1623 unsigned int nr_scanned = 0; 1624 unsigned long distance; 1625 unsigned long pfn = cc->migrate_pfn; 1626 unsigned long high_pfn; 1627 int order; 1628 1629 /* Skip hints are relied on to avoid repeats on the fast search */ 1630 if (cc->ignore_skip_hint) 1631 return pfn; 1632 1633 /* 1634 * If the migrate_pfn is not at the start of a zone or the start 1635 * of a pageblock then assume this is a continuation of a previous 1636 * scan restarted due to COMPACT_CLUSTER_MAX. 1637 */ 1638 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1639 return pfn; 1640 1641 /* 1642 * For smaller orders, just linearly scan as the number of pages 1643 * to migrate should be relatively small and does not necessarily 1644 * justify freeing up a large block for a small allocation. 1645 */ 1646 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1647 return pfn; 1648 1649 /* 1650 * Only allow kcompactd and direct requests for movable pages to 1651 * quickly clear out a MOVABLE pageblock for allocation. This 1652 * reduces the risk that a large movable pageblock is freed for 1653 * an unmovable/reclaimable small allocation. 1654 */ 1655 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1656 return pfn; 1657 1658 /* 1659 * When starting the migration scanner, pick any pageblock within the 1660 * first half of the search space. Otherwise try and pick a pageblock 1661 * within the first eighth to reduce the chances that a migration 1662 * target later becomes a source. 1663 */ 1664 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1665 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1666 distance >>= 2; 1667 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1668 1669 for (order = cc->order - 1; 1670 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1671 order--) { 1672 struct free_area *area = &cc->zone->free_area[order]; 1673 struct list_head *freelist; 1674 unsigned long flags; 1675 struct page *freepage; 1676 1677 if (!area->nr_free) 1678 continue; 1679 1680 spin_lock_irqsave(&cc->zone->lock, flags); 1681 freelist = &area->free_list[MIGRATE_MOVABLE]; 1682 list_for_each_entry(freepage, freelist, lru) { 1683 unsigned long free_pfn; 1684 1685 nr_scanned++; 1686 free_pfn = page_to_pfn(freepage); 1687 if (free_pfn < high_pfn) { 1688 /* 1689 * Avoid if skipped recently. Ideally it would 1690 * move to the tail but even safe iteration of 1691 * the list assumes an entry is deleted, not 1692 * reordered. 1693 */ 1694 if (get_pageblock_skip(freepage)) { 1695 if (list_is_last(freelist, &freepage->lru)) 1696 break; 1697 1698 continue; 1699 } 1700 1701 /* Reorder to so a future search skips recent pages */ 1702 move_freelist_tail(freelist, freepage); 1703 1704 update_fast_start_pfn(cc, free_pfn); 1705 pfn = pageblock_start_pfn(free_pfn); 1706 cc->fast_search_fail = 0; 1707 set_pageblock_skip(freepage); 1708 break; 1709 } 1710 1711 if (nr_scanned >= limit) { 1712 cc->fast_search_fail++; 1713 move_freelist_tail(freelist, freepage); 1714 break; 1715 } 1716 } 1717 spin_unlock_irqrestore(&cc->zone->lock, flags); 1718 } 1719 1720 cc->total_migrate_scanned += nr_scanned; 1721 1722 /* 1723 * If fast scanning failed then use a cached entry for a page block 1724 * that had free pages as the basis for starting a linear scan. 1725 */ 1726 if (pfn == cc->migrate_pfn) 1727 pfn = reinit_migrate_pfn(cc); 1728 1729 return pfn; 1730 } 1731 1732 /* 1733 * Isolate all pages that can be migrated from the first suitable block, 1734 * starting at the block pointed to by the migrate scanner pfn within 1735 * compact_control. 1736 */ 1737 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1738 struct compact_control *cc) 1739 { 1740 unsigned long block_start_pfn; 1741 unsigned long block_end_pfn; 1742 unsigned long low_pfn; 1743 struct page *page; 1744 const isolate_mode_t isolate_mode = 1745 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1746 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1747 bool fast_find_block; 1748 1749 /* 1750 * Start at where we last stopped, or beginning of the zone as 1751 * initialized by compact_zone(). The first failure will use 1752 * the lowest PFN as the starting point for linear scanning. 1753 */ 1754 low_pfn = fast_find_migrateblock(cc); 1755 block_start_pfn = pageblock_start_pfn(low_pfn); 1756 if (block_start_pfn < zone->zone_start_pfn) 1757 block_start_pfn = zone->zone_start_pfn; 1758 1759 /* 1760 * fast_find_migrateblock marks a pageblock skipped so to avoid 1761 * the isolation_suitable check below, check whether the fast 1762 * search was successful. 1763 */ 1764 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1765 1766 /* Only scan within a pageblock boundary */ 1767 block_end_pfn = pageblock_end_pfn(low_pfn); 1768 1769 /* 1770 * Iterate over whole pageblocks until we find the first suitable. 1771 * Do not cross the free scanner. 1772 */ 1773 for (; block_end_pfn <= cc->free_pfn; 1774 fast_find_block = false, 1775 low_pfn = block_end_pfn, 1776 block_start_pfn = block_end_pfn, 1777 block_end_pfn += pageblock_nr_pages) { 1778 1779 /* 1780 * This can potentially iterate a massively long zone with 1781 * many pageblocks unsuitable, so periodically check if we 1782 * need to schedule. 1783 */ 1784 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1785 cond_resched(); 1786 1787 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1788 zone); 1789 if (!page) 1790 continue; 1791 1792 /* 1793 * If isolation recently failed, do not retry. Only check the 1794 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1795 * to be visited multiple times. Assume skip was checked 1796 * before making it "skip" so other compaction instances do 1797 * not scan the same block. 1798 */ 1799 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1800 !fast_find_block && !isolation_suitable(cc, page)) 1801 continue; 1802 1803 /* 1804 * For async compaction, also only scan in MOVABLE blocks 1805 * without huge pages. Async compaction is optimistic to see 1806 * if the minimum amount of work satisfies the allocation. 1807 * The cached PFN is updated as it's possible that all 1808 * remaining blocks between source and target are unsuitable 1809 * and the compaction scanners fail to meet. 1810 */ 1811 if (!suitable_migration_source(cc, page)) { 1812 update_cached_migrate(cc, block_end_pfn); 1813 continue; 1814 } 1815 1816 /* Perform the isolation */ 1817 low_pfn = isolate_migratepages_block(cc, low_pfn, 1818 block_end_pfn, isolate_mode); 1819 1820 if (!low_pfn) 1821 return ISOLATE_ABORT; 1822 1823 /* 1824 * Either we isolated something and proceed with migration. Or 1825 * we failed and compact_zone should decide if we should 1826 * continue or not. 1827 */ 1828 break; 1829 } 1830 1831 /* Record where migration scanner will be restarted. */ 1832 cc->migrate_pfn = low_pfn; 1833 1834 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1835 } 1836 1837 /* 1838 * order == -1 is expected when compacting via 1839 * /proc/sys/vm/compact_memory 1840 */ 1841 static inline bool is_via_compact_memory(int order) 1842 { 1843 return order == -1; 1844 } 1845 1846 static enum compact_result __compact_finished(struct compact_control *cc) 1847 { 1848 unsigned int order; 1849 const int migratetype = cc->migratetype; 1850 int ret; 1851 1852 /* Compaction run completes if the migrate and free scanner meet */ 1853 if (compact_scanners_met(cc)) { 1854 /* Let the next compaction start anew. */ 1855 reset_cached_positions(cc->zone); 1856 1857 /* 1858 * Mark that the PG_migrate_skip information should be cleared 1859 * by kswapd when it goes to sleep. kcompactd does not set the 1860 * flag itself as the decision to be clear should be directly 1861 * based on an allocation request. 1862 */ 1863 if (cc->direct_compaction) 1864 cc->zone->compact_blockskip_flush = true; 1865 1866 if (cc->whole_zone) 1867 return COMPACT_COMPLETE; 1868 else 1869 return COMPACT_PARTIAL_SKIPPED; 1870 } 1871 1872 if (is_via_compact_memory(cc->order)) 1873 return COMPACT_CONTINUE; 1874 1875 /* 1876 * Always finish scanning a pageblock to reduce the possibility of 1877 * fallbacks in the future. This is particularly important when 1878 * migration source is unmovable/reclaimable but it's not worth 1879 * special casing. 1880 */ 1881 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1882 return COMPACT_CONTINUE; 1883 1884 /* Direct compactor: Is a suitable page free? */ 1885 ret = COMPACT_NO_SUITABLE_PAGE; 1886 for (order = cc->order; order < MAX_ORDER; order++) { 1887 struct free_area *area = &cc->zone->free_area[order]; 1888 bool can_steal; 1889 1890 /* Job done if page is free of the right migratetype */ 1891 if (!free_area_empty(area, migratetype)) 1892 return COMPACT_SUCCESS; 1893 1894 #ifdef CONFIG_CMA 1895 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1896 if (migratetype == MIGRATE_MOVABLE && 1897 !free_area_empty(area, MIGRATE_CMA)) 1898 return COMPACT_SUCCESS; 1899 #endif 1900 /* 1901 * Job done if allocation would steal freepages from 1902 * other migratetype buddy lists. 1903 */ 1904 if (find_suitable_fallback(area, order, migratetype, 1905 true, &can_steal) != -1) { 1906 1907 /* movable pages are OK in any pageblock */ 1908 if (migratetype == MIGRATE_MOVABLE) 1909 return COMPACT_SUCCESS; 1910 1911 /* 1912 * We are stealing for a non-movable allocation. Make 1913 * sure we finish compacting the current pageblock 1914 * first so it is as free as possible and we won't 1915 * have to steal another one soon. This only applies 1916 * to sync compaction, as async compaction operates 1917 * on pageblocks of the same migratetype. 1918 */ 1919 if (cc->mode == MIGRATE_ASYNC || 1920 IS_ALIGNED(cc->migrate_pfn, 1921 pageblock_nr_pages)) { 1922 return COMPACT_SUCCESS; 1923 } 1924 1925 ret = COMPACT_CONTINUE; 1926 break; 1927 } 1928 } 1929 1930 if (cc->contended || fatal_signal_pending(current)) 1931 ret = COMPACT_CONTENDED; 1932 1933 return ret; 1934 } 1935 1936 static enum compact_result compact_finished(struct compact_control *cc) 1937 { 1938 int ret; 1939 1940 ret = __compact_finished(cc); 1941 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1942 if (ret == COMPACT_NO_SUITABLE_PAGE) 1943 ret = COMPACT_CONTINUE; 1944 1945 return ret; 1946 } 1947 1948 /* 1949 * compaction_suitable: Is this suitable to run compaction on this zone now? 1950 * Returns 1951 * COMPACT_SKIPPED - If there are too few free pages for compaction 1952 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1953 * COMPACT_CONTINUE - If compaction should run now 1954 */ 1955 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1956 unsigned int alloc_flags, 1957 int classzone_idx, 1958 unsigned long wmark_target) 1959 { 1960 unsigned long watermark; 1961 1962 if (is_via_compact_memory(order)) 1963 return COMPACT_CONTINUE; 1964 1965 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1966 /* 1967 * If watermarks for high-order allocation are already met, there 1968 * should be no need for compaction at all. 1969 */ 1970 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1971 alloc_flags)) 1972 return COMPACT_SUCCESS; 1973 1974 /* 1975 * Watermarks for order-0 must be met for compaction to be able to 1976 * isolate free pages for migration targets. This means that the 1977 * watermark and alloc_flags have to match, or be more pessimistic than 1978 * the check in __isolate_free_page(). We don't use the direct 1979 * compactor's alloc_flags, as they are not relevant for freepage 1980 * isolation. We however do use the direct compactor's classzone_idx to 1981 * skip over zones where lowmem reserves would prevent allocation even 1982 * if compaction succeeds. 1983 * For costly orders, we require low watermark instead of min for 1984 * compaction to proceed to increase its chances. 1985 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1986 * suitable migration targets 1987 */ 1988 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1989 low_wmark_pages(zone) : min_wmark_pages(zone); 1990 watermark += compact_gap(order); 1991 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1992 ALLOC_CMA, wmark_target)) 1993 return COMPACT_SKIPPED; 1994 1995 return COMPACT_CONTINUE; 1996 } 1997 1998 enum compact_result compaction_suitable(struct zone *zone, int order, 1999 unsigned int alloc_flags, 2000 int classzone_idx) 2001 { 2002 enum compact_result ret; 2003 int fragindex; 2004 2005 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2006 zone_page_state(zone, NR_FREE_PAGES)); 2007 /* 2008 * fragmentation index determines if allocation failures are due to 2009 * low memory or external fragmentation 2010 * 2011 * index of -1000 would imply allocations might succeed depending on 2012 * watermarks, but we already failed the high-order watermark check 2013 * index towards 0 implies failure is due to lack of memory 2014 * index towards 1000 implies failure is due to fragmentation 2015 * 2016 * Only compact if a failure would be due to fragmentation. Also 2017 * ignore fragindex for non-costly orders where the alternative to 2018 * a successful reclaim/compaction is OOM. Fragindex and the 2019 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2020 * excessive compaction for costly orders, but it should not be at the 2021 * expense of system stability. 2022 */ 2023 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2024 fragindex = fragmentation_index(zone, order); 2025 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2026 ret = COMPACT_NOT_SUITABLE_ZONE; 2027 } 2028 2029 trace_mm_compaction_suitable(zone, order, ret); 2030 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2031 ret = COMPACT_SKIPPED; 2032 2033 return ret; 2034 } 2035 2036 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2037 int alloc_flags) 2038 { 2039 struct zone *zone; 2040 struct zoneref *z; 2041 2042 /* 2043 * Make sure at least one zone would pass __compaction_suitable if we continue 2044 * retrying the reclaim. 2045 */ 2046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2047 ac->nodemask) { 2048 unsigned long available; 2049 enum compact_result compact_result; 2050 2051 /* 2052 * Do not consider all the reclaimable memory because we do not 2053 * want to trash just for a single high order allocation which 2054 * is even not guaranteed to appear even if __compaction_suitable 2055 * is happy about the watermark check. 2056 */ 2057 available = zone_reclaimable_pages(zone) / order; 2058 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2059 compact_result = __compaction_suitable(zone, order, alloc_flags, 2060 ac_classzone_idx(ac), available); 2061 if (compact_result != COMPACT_SKIPPED) 2062 return true; 2063 } 2064 2065 return false; 2066 } 2067 2068 static enum compact_result 2069 compact_zone(struct compact_control *cc, struct capture_control *capc) 2070 { 2071 enum compact_result ret; 2072 unsigned long start_pfn = cc->zone->zone_start_pfn; 2073 unsigned long end_pfn = zone_end_pfn(cc->zone); 2074 unsigned long last_migrated_pfn; 2075 const bool sync = cc->mode != MIGRATE_ASYNC; 2076 bool update_cached; 2077 2078 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2079 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2080 cc->classzone_idx); 2081 /* Compaction is likely to fail */ 2082 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2083 return ret; 2084 2085 /* huh, compaction_suitable is returning something unexpected */ 2086 VM_BUG_ON(ret != COMPACT_CONTINUE); 2087 2088 /* 2089 * Clear pageblock skip if there were failures recently and compaction 2090 * is about to be retried after being deferred. 2091 */ 2092 if (compaction_restarting(cc->zone, cc->order)) 2093 __reset_isolation_suitable(cc->zone); 2094 2095 /* 2096 * Setup to move all movable pages to the end of the zone. Used cached 2097 * information on where the scanners should start (unless we explicitly 2098 * want to compact the whole zone), but check that it is initialised 2099 * by ensuring the values are within zone boundaries. 2100 */ 2101 cc->fast_start_pfn = 0; 2102 if (cc->whole_zone) { 2103 cc->migrate_pfn = start_pfn; 2104 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2105 } else { 2106 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2107 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2108 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2109 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2110 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2111 } 2112 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2113 cc->migrate_pfn = start_pfn; 2114 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2115 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2116 } 2117 2118 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2119 cc->whole_zone = true; 2120 } 2121 2122 last_migrated_pfn = 0; 2123 2124 /* 2125 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2126 * the basis that some migrations will fail in ASYNC mode. However, 2127 * if the cached PFNs match and pageblocks are skipped due to having 2128 * no isolation candidates, then the sync state does not matter. 2129 * Until a pageblock with isolation candidates is found, keep the 2130 * cached PFNs in sync to avoid revisiting the same blocks. 2131 */ 2132 update_cached = !sync && 2133 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2134 2135 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2136 cc->free_pfn, end_pfn, sync); 2137 2138 migrate_prep_local(); 2139 2140 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2141 int err; 2142 unsigned long start_pfn = cc->migrate_pfn; 2143 2144 /* 2145 * Avoid multiple rescans which can happen if a page cannot be 2146 * isolated (dirty/writeback in async mode) or if the migrated 2147 * pages are being allocated before the pageblock is cleared. 2148 * The first rescan will capture the entire pageblock for 2149 * migration. If it fails, it'll be marked skip and scanning 2150 * will proceed as normal. 2151 */ 2152 cc->rescan = false; 2153 if (pageblock_start_pfn(last_migrated_pfn) == 2154 pageblock_start_pfn(start_pfn)) { 2155 cc->rescan = true; 2156 } 2157 2158 switch (isolate_migratepages(cc->zone, cc)) { 2159 case ISOLATE_ABORT: 2160 ret = COMPACT_CONTENDED; 2161 putback_movable_pages(&cc->migratepages); 2162 cc->nr_migratepages = 0; 2163 last_migrated_pfn = 0; 2164 goto out; 2165 case ISOLATE_NONE: 2166 if (update_cached) { 2167 cc->zone->compact_cached_migrate_pfn[1] = 2168 cc->zone->compact_cached_migrate_pfn[0]; 2169 } 2170 2171 /* 2172 * We haven't isolated and migrated anything, but 2173 * there might still be unflushed migrations from 2174 * previous cc->order aligned block. 2175 */ 2176 goto check_drain; 2177 case ISOLATE_SUCCESS: 2178 update_cached = false; 2179 last_migrated_pfn = start_pfn; 2180 ; 2181 } 2182 2183 err = migrate_pages(&cc->migratepages, compaction_alloc, 2184 compaction_free, (unsigned long)cc, cc->mode, 2185 MR_COMPACTION); 2186 2187 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2188 &cc->migratepages); 2189 2190 /* All pages were either migrated or will be released */ 2191 cc->nr_migratepages = 0; 2192 if (err) { 2193 putback_movable_pages(&cc->migratepages); 2194 /* 2195 * migrate_pages() may return -ENOMEM when scanners meet 2196 * and we want compact_finished() to detect it 2197 */ 2198 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2199 ret = COMPACT_CONTENDED; 2200 goto out; 2201 } 2202 /* 2203 * We failed to migrate at least one page in the current 2204 * order-aligned block, so skip the rest of it. 2205 */ 2206 if (cc->direct_compaction && 2207 (cc->mode == MIGRATE_ASYNC)) { 2208 cc->migrate_pfn = block_end_pfn( 2209 cc->migrate_pfn - 1, cc->order); 2210 /* Draining pcplists is useless in this case */ 2211 last_migrated_pfn = 0; 2212 } 2213 } 2214 2215 check_drain: 2216 /* 2217 * Has the migration scanner moved away from the previous 2218 * cc->order aligned block where we migrated from? If yes, 2219 * flush the pages that were freed, so that they can merge and 2220 * compact_finished() can detect immediately if allocation 2221 * would succeed. 2222 */ 2223 if (cc->order > 0 && last_migrated_pfn) { 2224 int cpu; 2225 unsigned long current_block_start = 2226 block_start_pfn(cc->migrate_pfn, cc->order); 2227 2228 if (last_migrated_pfn < current_block_start) { 2229 cpu = get_cpu(); 2230 lru_add_drain_cpu(cpu); 2231 drain_local_pages(cc->zone); 2232 put_cpu(); 2233 /* No more flushing until we migrate again */ 2234 last_migrated_pfn = 0; 2235 } 2236 } 2237 2238 /* Stop if a page has been captured */ 2239 if (capc && capc->page) { 2240 ret = COMPACT_SUCCESS; 2241 break; 2242 } 2243 } 2244 2245 out: 2246 /* 2247 * Release free pages and update where the free scanner should restart, 2248 * so we don't leave any returned pages behind in the next attempt. 2249 */ 2250 if (cc->nr_freepages > 0) { 2251 unsigned long free_pfn = release_freepages(&cc->freepages); 2252 2253 cc->nr_freepages = 0; 2254 VM_BUG_ON(free_pfn == 0); 2255 /* The cached pfn is always the first in a pageblock */ 2256 free_pfn = pageblock_start_pfn(free_pfn); 2257 /* 2258 * Only go back, not forward. The cached pfn might have been 2259 * already reset to zone end in compact_finished() 2260 */ 2261 if (free_pfn > cc->zone->compact_cached_free_pfn) 2262 cc->zone->compact_cached_free_pfn = free_pfn; 2263 } 2264 2265 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2266 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2267 2268 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2269 cc->free_pfn, end_pfn, sync, ret); 2270 2271 return ret; 2272 } 2273 2274 static enum compact_result compact_zone_order(struct zone *zone, int order, 2275 gfp_t gfp_mask, enum compact_priority prio, 2276 unsigned int alloc_flags, int classzone_idx, 2277 struct page **capture) 2278 { 2279 enum compact_result ret; 2280 struct compact_control cc = { 2281 .nr_freepages = 0, 2282 .nr_migratepages = 0, 2283 .total_migrate_scanned = 0, 2284 .total_free_scanned = 0, 2285 .order = order, 2286 .search_order = order, 2287 .gfp_mask = gfp_mask, 2288 .zone = zone, 2289 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2290 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2291 .alloc_flags = alloc_flags, 2292 .classzone_idx = classzone_idx, 2293 .direct_compaction = true, 2294 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2295 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2296 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2297 }; 2298 struct capture_control capc = { 2299 .cc = &cc, 2300 .page = NULL, 2301 }; 2302 2303 if (capture) 2304 current->capture_control = &capc; 2305 INIT_LIST_HEAD(&cc.freepages); 2306 INIT_LIST_HEAD(&cc.migratepages); 2307 2308 ret = compact_zone(&cc, &capc); 2309 2310 VM_BUG_ON(!list_empty(&cc.freepages)); 2311 VM_BUG_ON(!list_empty(&cc.migratepages)); 2312 2313 *capture = capc.page; 2314 current->capture_control = NULL; 2315 2316 return ret; 2317 } 2318 2319 int sysctl_extfrag_threshold = 500; 2320 2321 /** 2322 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2323 * @gfp_mask: The GFP mask of the current allocation 2324 * @order: The order of the current allocation 2325 * @alloc_flags: The allocation flags of the current allocation 2326 * @ac: The context of current allocation 2327 * @prio: Determines how hard direct compaction should try to succeed 2328 * 2329 * This is the main entry point for direct page compaction. 2330 */ 2331 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2332 unsigned int alloc_flags, const struct alloc_context *ac, 2333 enum compact_priority prio, struct page **capture) 2334 { 2335 int may_perform_io = gfp_mask & __GFP_IO; 2336 struct zoneref *z; 2337 struct zone *zone; 2338 enum compact_result rc = COMPACT_SKIPPED; 2339 2340 /* 2341 * Check if the GFP flags allow compaction - GFP_NOIO is really 2342 * tricky context because the migration might require IO 2343 */ 2344 if (!may_perform_io) 2345 return COMPACT_SKIPPED; 2346 2347 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2348 2349 /* Compact each zone in the list */ 2350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2351 ac->nodemask) { 2352 enum compact_result status; 2353 2354 if (prio > MIN_COMPACT_PRIORITY 2355 && compaction_deferred(zone, order)) { 2356 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2357 continue; 2358 } 2359 2360 status = compact_zone_order(zone, order, gfp_mask, prio, 2361 alloc_flags, ac_classzone_idx(ac), capture); 2362 rc = max(status, rc); 2363 2364 /* The allocation should succeed, stop compacting */ 2365 if (status == COMPACT_SUCCESS) { 2366 /* 2367 * We think the allocation will succeed in this zone, 2368 * but it is not certain, hence the false. The caller 2369 * will repeat this with true if allocation indeed 2370 * succeeds in this zone. 2371 */ 2372 compaction_defer_reset(zone, order, false); 2373 2374 break; 2375 } 2376 2377 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2378 status == COMPACT_PARTIAL_SKIPPED)) 2379 /* 2380 * We think that allocation won't succeed in this zone 2381 * so we defer compaction there. If it ends up 2382 * succeeding after all, it will be reset. 2383 */ 2384 defer_compaction(zone, order); 2385 2386 /* 2387 * We might have stopped compacting due to need_resched() in 2388 * async compaction, or due to a fatal signal detected. In that 2389 * case do not try further zones 2390 */ 2391 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2392 || fatal_signal_pending(current)) 2393 break; 2394 } 2395 2396 return rc; 2397 } 2398 2399 2400 /* Compact all zones within a node */ 2401 static void compact_node(int nid) 2402 { 2403 pg_data_t *pgdat = NODE_DATA(nid); 2404 int zoneid; 2405 struct zone *zone; 2406 struct compact_control cc = { 2407 .order = -1, 2408 .total_migrate_scanned = 0, 2409 .total_free_scanned = 0, 2410 .mode = MIGRATE_SYNC, 2411 .ignore_skip_hint = true, 2412 .whole_zone = true, 2413 .gfp_mask = GFP_KERNEL, 2414 }; 2415 2416 2417 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2418 2419 zone = &pgdat->node_zones[zoneid]; 2420 if (!populated_zone(zone)) 2421 continue; 2422 2423 cc.nr_freepages = 0; 2424 cc.nr_migratepages = 0; 2425 cc.zone = zone; 2426 INIT_LIST_HEAD(&cc.freepages); 2427 INIT_LIST_HEAD(&cc.migratepages); 2428 2429 compact_zone(&cc, NULL); 2430 2431 VM_BUG_ON(!list_empty(&cc.freepages)); 2432 VM_BUG_ON(!list_empty(&cc.migratepages)); 2433 } 2434 } 2435 2436 /* Compact all nodes in the system */ 2437 static void compact_nodes(void) 2438 { 2439 int nid; 2440 2441 /* Flush pending updates to the LRU lists */ 2442 lru_add_drain_all(); 2443 2444 for_each_online_node(nid) 2445 compact_node(nid); 2446 } 2447 2448 /* The written value is actually unused, all memory is compacted */ 2449 int sysctl_compact_memory; 2450 2451 /* 2452 * This is the entry point for compacting all nodes via 2453 * /proc/sys/vm/compact_memory 2454 */ 2455 int sysctl_compaction_handler(struct ctl_table *table, int write, 2456 void __user *buffer, size_t *length, loff_t *ppos) 2457 { 2458 if (write) 2459 compact_nodes(); 2460 2461 return 0; 2462 } 2463 2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2465 static ssize_t sysfs_compact_node(struct device *dev, 2466 struct device_attribute *attr, 2467 const char *buf, size_t count) 2468 { 2469 int nid = dev->id; 2470 2471 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2472 /* Flush pending updates to the LRU lists */ 2473 lru_add_drain_all(); 2474 2475 compact_node(nid); 2476 } 2477 2478 return count; 2479 } 2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2481 2482 int compaction_register_node(struct node *node) 2483 { 2484 return device_create_file(&node->dev, &dev_attr_compact); 2485 } 2486 2487 void compaction_unregister_node(struct node *node) 2488 { 2489 return device_remove_file(&node->dev, &dev_attr_compact); 2490 } 2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2492 2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2494 { 2495 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2496 } 2497 2498 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2499 { 2500 int zoneid; 2501 struct zone *zone; 2502 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2503 2504 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2505 zone = &pgdat->node_zones[zoneid]; 2506 2507 if (!populated_zone(zone)) 2508 continue; 2509 2510 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2511 classzone_idx) == COMPACT_CONTINUE) 2512 return true; 2513 } 2514 2515 return false; 2516 } 2517 2518 static void kcompactd_do_work(pg_data_t *pgdat) 2519 { 2520 /* 2521 * With no special task, compact all zones so that a page of requested 2522 * order is allocatable. 2523 */ 2524 int zoneid; 2525 struct zone *zone; 2526 struct compact_control cc = { 2527 .order = pgdat->kcompactd_max_order, 2528 .search_order = pgdat->kcompactd_max_order, 2529 .total_migrate_scanned = 0, 2530 .total_free_scanned = 0, 2531 .classzone_idx = pgdat->kcompactd_classzone_idx, 2532 .mode = MIGRATE_SYNC_LIGHT, 2533 .ignore_skip_hint = false, 2534 .gfp_mask = GFP_KERNEL, 2535 }; 2536 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2537 cc.classzone_idx); 2538 count_compact_event(KCOMPACTD_WAKE); 2539 2540 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2541 int status; 2542 2543 zone = &pgdat->node_zones[zoneid]; 2544 if (!populated_zone(zone)) 2545 continue; 2546 2547 if (compaction_deferred(zone, cc.order)) 2548 continue; 2549 2550 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2551 COMPACT_CONTINUE) 2552 continue; 2553 2554 cc.nr_freepages = 0; 2555 cc.nr_migratepages = 0; 2556 cc.total_migrate_scanned = 0; 2557 cc.total_free_scanned = 0; 2558 cc.zone = zone; 2559 INIT_LIST_HEAD(&cc.freepages); 2560 INIT_LIST_HEAD(&cc.migratepages); 2561 2562 if (kthread_should_stop()) 2563 return; 2564 status = compact_zone(&cc, NULL); 2565 2566 if (status == COMPACT_SUCCESS) { 2567 compaction_defer_reset(zone, cc.order, false); 2568 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2569 /* 2570 * Buddy pages may become stranded on pcps that could 2571 * otherwise coalesce on the zone's free area for 2572 * order >= cc.order. This is ratelimited by the 2573 * upcoming deferral. 2574 */ 2575 drain_all_pages(zone); 2576 2577 /* 2578 * We use sync migration mode here, so we defer like 2579 * sync direct compaction does. 2580 */ 2581 defer_compaction(zone, cc.order); 2582 } 2583 2584 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2585 cc.total_migrate_scanned); 2586 count_compact_events(KCOMPACTD_FREE_SCANNED, 2587 cc.total_free_scanned); 2588 2589 VM_BUG_ON(!list_empty(&cc.freepages)); 2590 VM_BUG_ON(!list_empty(&cc.migratepages)); 2591 } 2592 2593 /* 2594 * Regardless of success, we are done until woken up next. But remember 2595 * the requested order/classzone_idx in case it was higher/tighter than 2596 * our current ones 2597 */ 2598 if (pgdat->kcompactd_max_order <= cc.order) 2599 pgdat->kcompactd_max_order = 0; 2600 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2601 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2602 } 2603 2604 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2605 { 2606 if (!order) 2607 return; 2608 2609 if (pgdat->kcompactd_max_order < order) 2610 pgdat->kcompactd_max_order = order; 2611 2612 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2613 pgdat->kcompactd_classzone_idx = classzone_idx; 2614 2615 /* 2616 * Pairs with implicit barrier in wait_event_freezable() 2617 * such that wakeups are not missed. 2618 */ 2619 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2620 return; 2621 2622 if (!kcompactd_node_suitable(pgdat)) 2623 return; 2624 2625 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2626 classzone_idx); 2627 wake_up_interruptible(&pgdat->kcompactd_wait); 2628 } 2629 2630 /* 2631 * The background compaction daemon, started as a kernel thread 2632 * from the init process. 2633 */ 2634 static int kcompactd(void *p) 2635 { 2636 pg_data_t *pgdat = (pg_data_t*)p; 2637 struct task_struct *tsk = current; 2638 2639 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2640 2641 if (!cpumask_empty(cpumask)) 2642 set_cpus_allowed_ptr(tsk, cpumask); 2643 2644 set_freezable(); 2645 2646 pgdat->kcompactd_max_order = 0; 2647 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2648 2649 while (!kthread_should_stop()) { 2650 unsigned long pflags; 2651 2652 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2653 wait_event_freezable(pgdat->kcompactd_wait, 2654 kcompactd_work_requested(pgdat)); 2655 2656 psi_memstall_enter(&pflags); 2657 kcompactd_do_work(pgdat); 2658 psi_memstall_leave(&pflags); 2659 } 2660 2661 return 0; 2662 } 2663 2664 /* 2665 * This kcompactd start function will be called by init and node-hot-add. 2666 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2667 */ 2668 int kcompactd_run(int nid) 2669 { 2670 pg_data_t *pgdat = NODE_DATA(nid); 2671 int ret = 0; 2672 2673 if (pgdat->kcompactd) 2674 return 0; 2675 2676 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2677 if (IS_ERR(pgdat->kcompactd)) { 2678 pr_err("Failed to start kcompactd on node %d\n", nid); 2679 ret = PTR_ERR(pgdat->kcompactd); 2680 pgdat->kcompactd = NULL; 2681 } 2682 return ret; 2683 } 2684 2685 /* 2686 * Called by memory hotplug when all memory in a node is offlined. Caller must 2687 * hold mem_hotplug_begin/end(). 2688 */ 2689 void kcompactd_stop(int nid) 2690 { 2691 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2692 2693 if (kcompactd) { 2694 kthread_stop(kcompactd); 2695 NODE_DATA(nid)->kcompactd = NULL; 2696 } 2697 } 2698 2699 /* 2700 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2701 * not required for correctness. So if the last cpu in a node goes 2702 * away, we get changed to run anywhere: as the first one comes back, 2703 * restore their cpu bindings. 2704 */ 2705 static int kcompactd_cpu_online(unsigned int cpu) 2706 { 2707 int nid; 2708 2709 for_each_node_state(nid, N_MEMORY) { 2710 pg_data_t *pgdat = NODE_DATA(nid); 2711 const struct cpumask *mask; 2712 2713 mask = cpumask_of_node(pgdat->node_id); 2714 2715 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2716 /* One of our CPUs online: restore mask */ 2717 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2718 } 2719 return 0; 2720 } 2721 2722 static int __init kcompactd_init(void) 2723 { 2724 int nid; 2725 int ret; 2726 2727 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2728 "mm/compaction:online", 2729 kcompactd_cpu_online, NULL); 2730 if (ret < 0) { 2731 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2732 return ret; 2733 } 2734 2735 for_each_node_state(nid, N_MEMORY) 2736 kcompactd_run(nid); 2737 return 0; 2738 } 2739 subsys_initcall(kcompactd_init) 2740 2741 #endif /* CONFIG_COMPACTION */ 2742