xref: /openbmc/linux/mm/compaction.c (revision c7cbb022)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	/* Account for isolated anon and file pages */
39 	unsigned long nr_anon;
40 	unsigned long nr_file;
41 
42 	unsigned int order;		/* order a direct compactor needs */
43 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
44 	struct zone *zone;
45 };
46 
47 static unsigned long release_freepages(struct list_head *freelist)
48 {
49 	struct page *page, *next;
50 	unsigned long count = 0;
51 
52 	list_for_each_entry_safe(page, next, freelist, lru) {
53 		list_del(&page->lru);
54 		__free_page(page);
55 		count++;
56 	}
57 
58 	return count;
59 }
60 
61 /* Isolate free pages onto a private freelist. Must hold zone->lock */
62 static unsigned long isolate_freepages_block(struct zone *zone,
63 				unsigned long blockpfn,
64 				struct list_head *freelist)
65 {
66 	unsigned long zone_end_pfn, end_pfn;
67 	int nr_scanned = 0, total_isolated = 0;
68 	struct page *cursor;
69 
70 	/* Get the last PFN we should scan for free pages at */
71 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
72 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
73 
74 	/* Find the first usable PFN in the block to initialse page cursor */
75 	for (; blockpfn < end_pfn; blockpfn++) {
76 		if (pfn_valid_within(blockpfn))
77 			break;
78 	}
79 	cursor = pfn_to_page(blockpfn);
80 
81 	/* Isolate free pages. This assumes the block is valid */
82 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
83 		int isolated, i;
84 		struct page *page = cursor;
85 
86 		if (!pfn_valid_within(blockpfn))
87 			continue;
88 		nr_scanned++;
89 
90 		if (!PageBuddy(page))
91 			continue;
92 
93 		/* Found a free page, break it into order-0 pages */
94 		isolated = split_free_page(page);
95 		total_isolated += isolated;
96 		for (i = 0; i < isolated; i++) {
97 			list_add(&page->lru, freelist);
98 			page++;
99 		}
100 
101 		/* If a page was split, advance to the end of it */
102 		if (isolated) {
103 			blockpfn += isolated - 1;
104 			cursor += isolated - 1;
105 		}
106 	}
107 
108 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109 	return total_isolated;
110 }
111 
112 /* Returns true if the page is within a block suitable for migration to */
113 static bool suitable_migration_target(struct page *page)
114 {
115 
116 	int migratetype = get_pageblock_migratetype(page);
117 
118 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120 		return false;
121 
122 	/* If the page is a large free page, then allow migration */
123 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
124 		return true;
125 
126 	/* If the block is MIGRATE_MOVABLE, allow migration */
127 	if (migratetype == MIGRATE_MOVABLE)
128 		return true;
129 
130 	/* Otherwise skip the block */
131 	return false;
132 }
133 
134 /*
135  * Based on information in the current compact_control, find blocks
136  * suitable for isolating free pages from and then isolate them.
137  */
138 static void isolate_freepages(struct zone *zone,
139 				struct compact_control *cc)
140 {
141 	struct page *page;
142 	unsigned long high_pfn, low_pfn, pfn;
143 	unsigned long flags;
144 	int nr_freepages = cc->nr_freepages;
145 	struct list_head *freelist = &cc->freepages;
146 
147 	/*
148 	 * Initialise the free scanner. The starting point is where we last
149 	 * scanned from (or the end of the zone if starting). The low point
150 	 * is the end of the pageblock the migration scanner is using.
151 	 */
152 	pfn = cc->free_pfn;
153 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
154 
155 	/*
156 	 * Take care that if the migration scanner is at the end of the zone
157 	 * that the free scanner does not accidentally move to the next zone
158 	 * in the next isolation cycle.
159 	 */
160 	high_pfn = min(low_pfn, pfn);
161 
162 	/*
163 	 * Isolate free pages until enough are available to migrate the
164 	 * pages on cc->migratepages. We stop searching if the migrate
165 	 * and free page scanners meet or enough free pages are isolated.
166 	 */
167 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
168 					pfn -= pageblock_nr_pages) {
169 		unsigned long isolated;
170 
171 		if (!pfn_valid(pfn))
172 			continue;
173 
174 		/*
175 		 * Check for overlapping nodes/zones. It's possible on some
176 		 * configurations to have a setup like
177 		 * node0 node1 node0
178 		 * i.e. it's possible that all pages within a zones range of
179 		 * pages do not belong to a single zone.
180 		 */
181 		page = pfn_to_page(pfn);
182 		if (page_zone(page) != zone)
183 			continue;
184 
185 		/* Check the block is suitable for migration */
186 		if (!suitable_migration_target(page))
187 			continue;
188 
189 		/*
190 		 * Found a block suitable for isolating free pages from. Now
191 		 * we disabled interrupts, double check things are ok and
192 		 * isolate the pages. This is to minimise the time IRQs
193 		 * are disabled
194 		 */
195 		isolated = 0;
196 		spin_lock_irqsave(&zone->lock, flags);
197 		if (suitable_migration_target(page)) {
198 			isolated = isolate_freepages_block(zone, pfn, freelist);
199 			nr_freepages += isolated;
200 		}
201 		spin_unlock_irqrestore(&zone->lock, flags);
202 
203 		/*
204 		 * Record the highest PFN we isolated pages from. When next
205 		 * looking for free pages, the search will restart here as
206 		 * page migration may have returned some pages to the allocator
207 		 */
208 		if (isolated)
209 			high_pfn = max(high_pfn, pfn);
210 	}
211 
212 	/* split_free_page does not map the pages */
213 	list_for_each_entry(page, freelist, lru) {
214 		arch_alloc_page(page, 0);
215 		kernel_map_pages(page, 1, 1);
216 	}
217 
218 	cc->free_pfn = high_pfn;
219 	cc->nr_freepages = nr_freepages;
220 }
221 
222 /* Update the number of anon and file isolated pages in the zone */
223 static void acct_isolated(struct zone *zone, struct compact_control *cc)
224 {
225 	struct page *page;
226 	unsigned int count[NR_LRU_LISTS] = { 0, };
227 
228 	list_for_each_entry(page, &cc->migratepages, lru) {
229 		int lru = page_lru_base_type(page);
230 		count[lru]++;
231 	}
232 
233 	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
234 	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
235 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
236 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
237 }
238 
239 /* Similar to reclaim, but different enough that they don't share logic */
240 static bool too_many_isolated(struct zone *zone)
241 {
242 	unsigned long active, inactive, isolated;
243 
244 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
245 					zone_page_state(zone, NR_INACTIVE_ANON);
246 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
247 					zone_page_state(zone, NR_ACTIVE_ANON);
248 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
249 					zone_page_state(zone, NR_ISOLATED_ANON);
250 
251 	return isolated > (inactive + active) / 2;
252 }
253 
254 /* possible outcome of isolate_migratepages */
255 typedef enum {
256 	ISOLATE_ABORT,		/* Abort compaction now */
257 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
258 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
259 } isolate_migrate_t;
260 
261 /*
262  * Isolate all pages that can be migrated from the block pointed to by
263  * the migrate scanner within compact_control.
264  */
265 static isolate_migrate_t isolate_migratepages(struct zone *zone,
266 					struct compact_control *cc)
267 {
268 	unsigned long low_pfn, end_pfn;
269 	unsigned long last_pageblock_nr = 0, pageblock_nr;
270 	unsigned long nr_scanned = 0, nr_isolated = 0;
271 	struct list_head *migratelist = &cc->migratepages;
272 
273 	/* Do not scan outside zone boundaries */
274 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
275 
276 	/* Only scan within a pageblock boundary */
277 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
278 
279 	/* Do not cross the free scanner or scan within a memory hole */
280 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
281 		cc->migrate_pfn = end_pfn;
282 		return ISOLATE_NONE;
283 	}
284 
285 	/*
286 	 * Ensure that there are not too many pages isolated from the LRU
287 	 * list by either parallel reclaimers or compaction. If there are,
288 	 * delay for some time until fewer pages are isolated
289 	 */
290 	while (unlikely(too_many_isolated(zone))) {
291 		/* async migration should just abort */
292 		if (!cc->sync)
293 			return ISOLATE_ABORT;
294 
295 		congestion_wait(BLK_RW_ASYNC, HZ/10);
296 
297 		if (fatal_signal_pending(current))
298 			return ISOLATE_ABORT;
299 	}
300 
301 	/* Time to isolate some pages for migration */
302 	cond_resched();
303 	spin_lock_irq(&zone->lru_lock);
304 	for (; low_pfn < end_pfn; low_pfn++) {
305 		struct page *page;
306 		bool locked = true;
307 
308 		/* give a chance to irqs before checking need_resched() */
309 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
310 			spin_unlock_irq(&zone->lru_lock);
311 			locked = false;
312 		}
313 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
314 			if (locked)
315 				spin_unlock_irq(&zone->lru_lock);
316 			cond_resched();
317 			spin_lock_irq(&zone->lru_lock);
318 			if (fatal_signal_pending(current))
319 				break;
320 		} else if (!locked)
321 			spin_lock_irq(&zone->lru_lock);
322 
323 		if (!pfn_valid_within(low_pfn))
324 			continue;
325 		nr_scanned++;
326 
327 		/* Get the page and skip if free */
328 		page = pfn_to_page(low_pfn);
329 		if (PageBuddy(page))
330 			continue;
331 
332 		/*
333 		 * For async migration, also only scan in MOVABLE blocks. Async
334 		 * migration is optimistic to see if the minimum amount of work
335 		 * satisfies the allocation
336 		 */
337 		pageblock_nr = low_pfn >> pageblock_order;
338 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
339 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
340 			low_pfn += pageblock_nr_pages;
341 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
342 			last_pageblock_nr = pageblock_nr;
343 			continue;
344 		}
345 
346 		if (!PageLRU(page))
347 			continue;
348 
349 		/*
350 		 * PageLRU is set, and lru_lock excludes isolation,
351 		 * splitting and collapsing (collapsing has already
352 		 * happened if PageLRU is set).
353 		 */
354 		if (PageTransHuge(page)) {
355 			low_pfn += (1 << compound_order(page)) - 1;
356 			continue;
357 		}
358 
359 		/* Try isolate the page */
360 		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
361 			continue;
362 
363 		VM_BUG_ON(PageTransCompound(page));
364 
365 		/* Successfully isolated */
366 		del_page_from_lru_list(zone, page, page_lru(page));
367 		list_add(&page->lru, migratelist);
368 		cc->nr_migratepages++;
369 		nr_isolated++;
370 
371 		/* Avoid isolating too much */
372 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
373 			break;
374 	}
375 
376 	acct_isolated(zone, cc);
377 
378 	spin_unlock_irq(&zone->lru_lock);
379 	cc->migrate_pfn = low_pfn;
380 
381 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
382 
383 	return ISOLATE_SUCCESS;
384 }
385 
386 /*
387  * This is a migrate-callback that "allocates" freepages by taking pages
388  * from the isolated freelists in the block we are migrating to.
389  */
390 static struct page *compaction_alloc(struct page *migratepage,
391 					unsigned long data,
392 					int **result)
393 {
394 	struct compact_control *cc = (struct compact_control *)data;
395 	struct page *freepage;
396 
397 	/* Isolate free pages if necessary */
398 	if (list_empty(&cc->freepages)) {
399 		isolate_freepages(cc->zone, cc);
400 
401 		if (list_empty(&cc->freepages))
402 			return NULL;
403 	}
404 
405 	freepage = list_entry(cc->freepages.next, struct page, lru);
406 	list_del(&freepage->lru);
407 	cc->nr_freepages--;
408 
409 	return freepage;
410 }
411 
412 /*
413  * We cannot control nr_migratepages and nr_freepages fully when migration is
414  * running as migrate_pages() has no knowledge of compact_control. When
415  * migration is complete, we count the number of pages on the lists by hand.
416  */
417 static void update_nr_listpages(struct compact_control *cc)
418 {
419 	int nr_migratepages = 0;
420 	int nr_freepages = 0;
421 	struct page *page;
422 
423 	list_for_each_entry(page, &cc->migratepages, lru)
424 		nr_migratepages++;
425 	list_for_each_entry(page, &cc->freepages, lru)
426 		nr_freepages++;
427 
428 	cc->nr_migratepages = nr_migratepages;
429 	cc->nr_freepages = nr_freepages;
430 }
431 
432 static int compact_finished(struct zone *zone,
433 			    struct compact_control *cc)
434 {
435 	unsigned int order;
436 	unsigned long watermark;
437 
438 	if (fatal_signal_pending(current))
439 		return COMPACT_PARTIAL;
440 
441 	/* Compaction run completes if the migrate and free scanner meet */
442 	if (cc->free_pfn <= cc->migrate_pfn)
443 		return COMPACT_COMPLETE;
444 
445 	/*
446 	 * order == -1 is expected when compacting via
447 	 * /proc/sys/vm/compact_memory
448 	 */
449 	if (cc->order == -1)
450 		return COMPACT_CONTINUE;
451 
452 	/* Compaction run is not finished if the watermark is not met */
453 	watermark = low_wmark_pages(zone);
454 	watermark += (1 << cc->order);
455 
456 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
457 		return COMPACT_CONTINUE;
458 
459 	/* Direct compactor: Is a suitable page free? */
460 	for (order = cc->order; order < MAX_ORDER; order++) {
461 		/* Job done if page is free of the right migratetype */
462 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
463 			return COMPACT_PARTIAL;
464 
465 		/* Job done if allocation would set block type */
466 		if (order >= pageblock_order && zone->free_area[order].nr_free)
467 			return COMPACT_PARTIAL;
468 	}
469 
470 	return COMPACT_CONTINUE;
471 }
472 
473 /*
474  * compaction_suitable: Is this suitable to run compaction on this zone now?
475  * Returns
476  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
477  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
478  *   COMPACT_CONTINUE - If compaction should run now
479  */
480 unsigned long compaction_suitable(struct zone *zone, int order)
481 {
482 	int fragindex;
483 	unsigned long watermark;
484 
485 	/*
486 	 * order == -1 is expected when compacting via
487 	 * /proc/sys/vm/compact_memory
488 	 */
489 	if (order == -1)
490 		return COMPACT_CONTINUE;
491 
492 	/*
493 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
494 	 * This is because during migration, copies of pages need to be
495 	 * allocated and for a short time, the footprint is higher
496 	 */
497 	watermark = low_wmark_pages(zone) + (2UL << order);
498 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
499 		return COMPACT_SKIPPED;
500 
501 	/*
502 	 * fragmentation index determines if allocation failures are due to
503 	 * low memory or external fragmentation
504 	 *
505 	 * index of -1000 implies allocations might succeed depending on
506 	 * watermarks
507 	 * index towards 0 implies failure is due to lack of memory
508 	 * index towards 1000 implies failure is due to fragmentation
509 	 *
510 	 * Only compact if a failure would be due to fragmentation.
511 	 */
512 	fragindex = fragmentation_index(zone, order);
513 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
514 		return COMPACT_SKIPPED;
515 
516 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
517 	    0, 0))
518 		return COMPACT_PARTIAL;
519 
520 	return COMPACT_CONTINUE;
521 }
522 
523 static int compact_zone(struct zone *zone, struct compact_control *cc)
524 {
525 	int ret;
526 
527 	ret = compaction_suitable(zone, cc->order);
528 	switch (ret) {
529 	case COMPACT_PARTIAL:
530 	case COMPACT_SKIPPED:
531 		/* Compaction is likely to fail */
532 		return ret;
533 	case COMPACT_CONTINUE:
534 		/* Fall through to compaction */
535 		;
536 	}
537 
538 	/* Setup to move all movable pages to the end of the zone */
539 	cc->migrate_pfn = zone->zone_start_pfn;
540 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
541 	cc->free_pfn &= ~(pageblock_nr_pages-1);
542 
543 	migrate_prep_local();
544 
545 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
546 		unsigned long nr_migrate, nr_remaining;
547 		int err;
548 
549 		switch (isolate_migratepages(zone, cc)) {
550 		case ISOLATE_ABORT:
551 			ret = COMPACT_PARTIAL;
552 			goto out;
553 		case ISOLATE_NONE:
554 			continue;
555 		case ISOLATE_SUCCESS:
556 			;
557 		}
558 
559 		nr_migrate = cc->nr_migratepages;
560 		err = migrate_pages(&cc->migratepages, compaction_alloc,
561 				(unsigned long)cc, false,
562 				cc->sync);
563 		update_nr_listpages(cc);
564 		nr_remaining = cc->nr_migratepages;
565 
566 		count_vm_event(COMPACTBLOCKS);
567 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
568 		if (nr_remaining)
569 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
570 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
571 						nr_remaining);
572 
573 		/* Release LRU pages not migrated */
574 		if (err) {
575 			putback_lru_pages(&cc->migratepages);
576 			cc->nr_migratepages = 0;
577 		}
578 
579 	}
580 
581 out:
582 	/* Release free pages and check accounting */
583 	cc->nr_freepages -= release_freepages(&cc->freepages);
584 	VM_BUG_ON(cc->nr_freepages != 0);
585 
586 	return ret;
587 }
588 
589 unsigned long compact_zone_order(struct zone *zone,
590 				 int order, gfp_t gfp_mask,
591 				 bool sync)
592 {
593 	struct compact_control cc = {
594 		.nr_freepages = 0,
595 		.nr_migratepages = 0,
596 		.order = order,
597 		.migratetype = allocflags_to_migratetype(gfp_mask),
598 		.zone = zone,
599 		.sync = sync,
600 	};
601 	INIT_LIST_HEAD(&cc.freepages);
602 	INIT_LIST_HEAD(&cc.migratepages);
603 
604 	return compact_zone(zone, &cc);
605 }
606 
607 int sysctl_extfrag_threshold = 500;
608 
609 /**
610  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
611  * @zonelist: The zonelist used for the current allocation
612  * @order: The order of the current allocation
613  * @gfp_mask: The GFP mask of the current allocation
614  * @nodemask: The allowed nodes to allocate from
615  * @sync: Whether migration is synchronous or not
616  *
617  * This is the main entry point for direct page compaction.
618  */
619 unsigned long try_to_compact_pages(struct zonelist *zonelist,
620 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
621 			bool sync)
622 {
623 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
624 	int may_enter_fs = gfp_mask & __GFP_FS;
625 	int may_perform_io = gfp_mask & __GFP_IO;
626 	struct zoneref *z;
627 	struct zone *zone;
628 	int rc = COMPACT_SKIPPED;
629 
630 	/*
631 	 * Check whether it is worth even starting compaction. The order check is
632 	 * made because an assumption is made that the page allocator can satisfy
633 	 * the "cheaper" orders without taking special steps
634 	 */
635 	if (!order || !may_enter_fs || !may_perform_io)
636 		return rc;
637 
638 	count_vm_event(COMPACTSTALL);
639 
640 	/* Compact each zone in the list */
641 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
642 								nodemask) {
643 		int status;
644 
645 		status = compact_zone_order(zone, order, gfp_mask, sync);
646 		rc = max(status, rc);
647 
648 		/* If a normal allocation would succeed, stop compacting */
649 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
650 			break;
651 	}
652 
653 	return rc;
654 }
655 
656 
657 /* Compact all zones within a node */
658 static int compact_node(int nid)
659 {
660 	int zoneid;
661 	pg_data_t *pgdat;
662 	struct zone *zone;
663 
664 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
665 		return -EINVAL;
666 	pgdat = NODE_DATA(nid);
667 
668 	/* Flush pending updates to the LRU lists */
669 	lru_add_drain_all();
670 
671 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
672 		struct compact_control cc = {
673 			.nr_freepages = 0,
674 			.nr_migratepages = 0,
675 			.order = -1,
676 		};
677 
678 		zone = &pgdat->node_zones[zoneid];
679 		if (!populated_zone(zone))
680 			continue;
681 
682 		cc.zone = zone;
683 		INIT_LIST_HEAD(&cc.freepages);
684 		INIT_LIST_HEAD(&cc.migratepages);
685 
686 		compact_zone(zone, &cc);
687 
688 		VM_BUG_ON(!list_empty(&cc.freepages));
689 		VM_BUG_ON(!list_empty(&cc.migratepages));
690 	}
691 
692 	return 0;
693 }
694 
695 /* Compact all nodes in the system */
696 static int compact_nodes(void)
697 {
698 	int nid;
699 
700 	for_each_online_node(nid)
701 		compact_node(nid);
702 
703 	return COMPACT_COMPLETE;
704 }
705 
706 /* The written value is actually unused, all memory is compacted */
707 int sysctl_compact_memory;
708 
709 /* This is the entry point for compacting all nodes via /proc/sys/vm */
710 int sysctl_compaction_handler(struct ctl_table *table, int write,
711 			void __user *buffer, size_t *length, loff_t *ppos)
712 {
713 	if (write)
714 		return compact_nodes();
715 
716 	return 0;
717 }
718 
719 int sysctl_extfrag_handler(struct ctl_table *table, int write,
720 			void __user *buffer, size_t *length, loff_t *ppos)
721 {
722 	proc_dointvec_minmax(table, write, buffer, length, ppos);
723 
724 	return 0;
725 }
726 
727 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
728 ssize_t sysfs_compact_node(struct sys_device *dev,
729 			struct sysdev_attribute *attr,
730 			const char *buf, size_t count)
731 {
732 	compact_node(dev->id);
733 
734 	return count;
735 }
736 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
737 
738 int compaction_register_node(struct node *node)
739 {
740 	return sysdev_create_file(&node->sysdev, &attr_compact);
741 }
742 
743 void compaction_unregister_node(struct node *node)
744 {
745 	return sysdev_remove_file(&node->sysdev, &attr_compact);
746 }
747 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
748