1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *end_page; 246 unsigned long block_pfn; 247 248 if (!page) 249 return false; 250 if (zone != page_zone(page)) 251 return false; 252 if (pageblock_skip_persistent(page)) 253 return false; 254 255 /* 256 * If skip is already cleared do no further checking once the 257 * restart points have been set. 258 */ 259 if (check_source && check_target && !get_pageblock_skip(page)) 260 return true; 261 262 /* 263 * If clearing skip for the target scanner, do not select a 264 * non-movable pageblock as the starting point. 265 */ 266 if (!check_source && check_target && 267 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 268 return false; 269 270 /* 271 * Only clear the hint if a sample indicates there is either a 272 * free page or an LRU page in the block. One or other condition 273 * is necessary for the block to be a migration source/target. 274 */ 275 block_pfn = pageblock_start_pfn(pfn); 276 pfn = max(block_pfn, zone->zone_start_pfn); 277 page = pfn_to_page(pfn); 278 if (zone != page_zone(page)) 279 return false; 280 pfn = block_pfn + pageblock_nr_pages; 281 pfn = min(pfn, zone_end_pfn(zone)); 282 end_page = pfn_to_page(pfn); 283 284 do { 285 if (pfn_valid_within(pfn)) { 286 if (check_source && PageLRU(page)) { 287 clear_pageblock_skip(page); 288 return true; 289 } 290 291 if (check_target && PageBuddy(page)) { 292 clear_pageblock_skip(page); 293 return true; 294 } 295 } 296 297 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 298 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 299 } while (page < end_page); 300 301 return false; 302 } 303 304 /* 305 * This function is called to clear all cached information on pageblocks that 306 * should be skipped for page isolation when the migrate and free page scanner 307 * meet. 308 */ 309 static void __reset_isolation_suitable(struct zone *zone) 310 { 311 unsigned long migrate_pfn = zone->zone_start_pfn; 312 unsigned long free_pfn = zone_end_pfn(zone); 313 unsigned long reset_migrate = free_pfn; 314 unsigned long reset_free = migrate_pfn; 315 bool source_set = false; 316 bool free_set = false; 317 318 if (!zone->compact_blockskip_flush) 319 return; 320 321 zone->compact_blockskip_flush = false; 322 323 /* 324 * Walk the zone and update pageblock skip information. Source looks 325 * for PageLRU while target looks for PageBuddy. When the scanner 326 * is found, both PageBuddy and PageLRU are checked as the pageblock 327 * is suitable as both source and target. 328 */ 329 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 330 free_pfn -= pageblock_nr_pages) { 331 cond_resched(); 332 333 /* Update the migrate PFN */ 334 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 335 migrate_pfn < reset_migrate) { 336 source_set = true; 337 reset_migrate = migrate_pfn; 338 zone->compact_init_migrate_pfn = reset_migrate; 339 zone->compact_cached_migrate_pfn[0] = reset_migrate; 340 zone->compact_cached_migrate_pfn[1] = reset_migrate; 341 } 342 343 /* Update the free PFN */ 344 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 345 free_pfn > reset_free) { 346 free_set = true; 347 reset_free = free_pfn; 348 zone->compact_init_free_pfn = reset_free; 349 zone->compact_cached_free_pfn = reset_free; 350 } 351 } 352 353 /* Leave no distance if no suitable block was reset */ 354 if (reset_migrate >= reset_free) { 355 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 356 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 357 zone->compact_cached_free_pfn = free_pfn; 358 } 359 } 360 361 void reset_isolation_suitable(pg_data_t *pgdat) 362 { 363 int zoneid; 364 365 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 366 struct zone *zone = &pgdat->node_zones[zoneid]; 367 if (!populated_zone(zone)) 368 continue; 369 370 /* Only flush if a full compaction finished recently */ 371 if (zone->compact_blockskip_flush) 372 __reset_isolation_suitable(zone); 373 } 374 } 375 376 /* 377 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 378 * locks are not required for read/writers. Returns true if it was already set. 379 */ 380 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 381 unsigned long pfn) 382 { 383 bool skip; 384 385 /* Do no update if skip hint is being ignored */ 386 if (cc->ignore_skip_hint) 387 return false; 388 389 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 390 return false; 391 392 skip = get_pageblock_skip(page); 393 if (!skip && !cc->no_set_skip_hint) 394 set_pageblock_skip(page); 395 396 return skip; 397 } 398 399 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 400 { 401 struct zone *zone = cc->zone; 402 403 pfn = pageblock_end_pfn(pfn); 404 405 /* Set for isolation rather than compaction */ 406 if (cc->no_set_skip_hint) 407 return; 408 409 if (pfn > zone->compact_cached_migrate_pfn[0]) 410 zone->compact_cached_migrate_pfn[0] = pfn; 411 if (cc->mode != MIGRATE_ASYNC && 412 pfn > zone->compact_cached_migrate_pfn[1]) 413 zone->compact_cached_migrate_pfn[1] = pfn; 414 } 415 416 /* 417 * If no pages were isolated then mark this pageblock to be skipped in the 418 * future. The information is later cleared by __reset_isolation_suitable(). 419 */ 420 static void update_pageblock_skip(struct compact_control *cc, 421 struct page *page, unsigned long pfn) 422 { 423 struct zone *zone = cc->zone; 424 425 if (cc->no_set_skip_hint) 426 return; 427 428 if (!page) 429 return; 430 431 set_pageblock_skip(page); 432 433 /* Update where async and sync compaction should restart */ 434 if (pfn < zone->compact_cached_free_pfn) 435 zone->compact_cached_free_pfn = pfn; 436 } 437 #else 438 static inline bool isolation_suitable(struct compact_control *cc, 439 struct page *page) 440 { 441 return true; 442 } 443 444 static inline bool pageblock_skip_persistent(struct page *page) 445 { 446 return false; 447 } 448 449 static inline void update_pageblock_skip(struct compact_control *cc, 450 struct page *page, unsigned long pfn) 451 { 452 } 453 454 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 455 { 456 } 457 458 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 459 unsigned long pfn) 460 { 461 return false; 462 } 463 #endif /* CONFIG_COMPACTION */ 464 465 /* 466 * Compaction requires the taking of some coarse locks that are potentially 467 * very heavily contended. For async compaction, trylock and record if the 468 * lock is contended. The lock will still be acquired but compaction will 469 * abort when the current block is finished regardless of success rate. 470 * Sync compaction acquires the lock. 471 * 472 * Always returns true which makes it easier to track lock state in callers. 473 */ 474 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 475 struct compact_control *cc) 476 { 477 /* Track if the lock is contended in async mode */ 478 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 479 if (spin_trylock_irqsave(lock, *flags)) 480 return true; 481 482 cc->contended = true; 483 } 484 485 spin_lock_irqsave(lock, *flags); 486 return true; 487 } 488 489 /* 490 * Compaction requires the taking of some coarse locks that are potentially 491 * very heavily contended. The lock should be periodically unlocked to avoid 492 * having disabled IRQs for a long time, even when there is nobody waiting on 493 * the lock. It might also be that allowing the IRQs will result in 494 * need_resched() becoming true. If scheduling is needed, async compaction 495 * aborts. Sync compaction schedules. 496 * Either compaction type will also abort if a fatal signal is pending. 497 * In either case if the lock was locked, it is dropped and not regained. 498 * 499 * Returns true if compaction should abort due to fatal signal pending, or 500 * async compaction due to need_resched() 501 * Returns false when compaction can continue (sync compaction might have 502 * scheduled) 503 */ 504 static bool compact_unlock_should_abort(spinlock_t *lock, 505 unsigned long flags, bool *locked, struct compact_control *cc) 506 { 507 if (*locked) { 508 spin_unlock_irqrestore(lock, flags); 509 *locked = false; 510 } 511 512 if (fatal_signal_pending(current)) { 513 cc->contended = true; 514 return true; 515 } 516 517 cond_resched(); 518 519 return false; 520 } 521 522 /* 523 * Isolate free pages onto a private freelist. If @strict is true, will abort 524 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 525 * (even though it may still end up isolating some pages). 526 */ 527 static unsigned long isolate_freepages_block(struct compact_control *cc, 528 unsigned long *start_pfn, 529 unsigned long end_pfn, 530 struct list_head *freelist, 531 unsigned int stride, 532 bool strict) 533 { 534 int nr_scanned = 0, total_isolated = 0; 535 struct page *cursor; 536 unsigned long flags = 0; 537 bool locked = false; 538 unsigned long blockpfn = *start_pfn; 539 unsigned int order; 540 541 /* Strict mode is for isolation, speed is secondary */ 542 if (strict) 543 stride = 1; 544 545 cursor = pfn_to_page(blockpfn); 546 547 /* Isolate free pages. */ 548 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 549 int isolated; 550 struct page *page = cursor; 551 552 /* 553 * Periodically drop the lock (if held) regardless of its 554 * contention, to give chance to IRQs. Abort if fatal signal 555 * pending or async compaction detects need_resched() 556 */ 557 if (!(blockpfn % SWAP_CLUSTER_MAX) 558 && compact_unlock_should_abort(&cc->zone->lock, flags, 559 &locked, cc)) 560 break; 561 562 nr_scanned++; 563 if (!pfn_valid_within(blockpfn)) 564 goto isolate_fail; 565 566 /* 567 * For compound pages such as THP and hugetlbfs, we can save 568 * potentially a lot of iterations if we skip them at once. 569 * The check is racy, but we can consider only valid values 570 * and the only danger is skipping too much. 571 */ 572 if (PageCompound(page)) { 573 const unsigned int order = compound_order(page); 574 575 if (likely(order < MAX_ORDER)) { 576 blockpfn += (1UL << order) - 1; 577 cursor += (1UL << order) - 1; 578 } 579 goto isolate_fail; 580 } 581 582 if (!PageBuddy(page)) 583 goto isolate_fail; 584 585 /* 586 * If we already hold the lock, we can skip some rechecking. 587 * Note that if we hold the lock now, checked_pageblock was 588 * already set in some previous iteration (or strict is true), 589 * so it is correct to skip the suitable migration target 590 * recheck as well. 591 */ 592 if (!locked) { 593 locked = compact_lock_irqsave(&cc->zone->lock, 594 &flags, cc); 595 596 /* Recheck this is a buddy page under lock */ 597 if (!PageBuddy(page)) 598 goto isolate_fail; 599 } 600 601 /* Found a free page, will break it into order-0 pages */ 602 order = page_order(page); 603 isolated = __isolate_free_page(page, order); 604 if (!isolated) 605 break; 606 set_page_private(page, order); 607 608 total_isolated += isolated; 609 cc->nr_freepages += isolated; 610 list_add_tail(&page->lru, freelist); 611 612 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 613 blockpfn += isolated; 614 break; 615 } 616 /* Advance to the end of split page */ 617 blockpfn += isolated - 1; 618 cursor += isolated - 1; 619 continue; 620 621 isolate_fail: 622 if (strict) 623 break; 624 else 625 continue; 626 627 } 628 629 if (locked) 630 spin_unlock_irqrestore(&cc->zone->lock, flags); 631 632 /* 633 * There is a tiny chance that we have read bogus compound_order(), 634 * so be careful to not go outside of the pageblock. 635 */ 636 if (unlikely(blockpfn > end_pfn)) 637 blockpfn = end_pfn; 638 639 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 640 nr_scanned, total_isolated); 641 642 /* Record how far we have got within the block */ 643 *start_pfn = blockpfn; 644 645 /* 646 * If strict isolation is requested by CMA then check that all the 647 * pages requested were isolated. If there were any failures, 0 is 648 * returned and CMA will fail. 649 */ 650 if (strict && blockpfn < end_pfn) 651 total_isolated = 0; 652 653 cc->total_free_scanned += nr_scanned; 654 if (total_isolated) 655 count_compact_events(COMPACTISOLATED, total_isolated); 656 return total_isolated; 657 } 658 659 /** 660 * isolate_freepages_range() - isolate free pages. 661 * @cc: Compaction control structure. 662 * @start_pfn: The first PFN to start isolating. 663 * @end_pfn: The one-past-last PFN. 664 * 665 * Non-free pages, invalid PFNs, or zone boundaries within the 666 * [start_pfn, end_pfn) range are considered errors, cause function to 667 * undo its actions and return zero. 668 * 669 * Otherwise, function returns one-past-the-last PFN of isolated page 670 * (which may be greater then end_pfn if end fell in a middle of 671 * a free page). 672 */ 673 unsigned long 674 isolate_freepages_range(struct compact_control *cc, 675 unsigned long start_pfn, unsigned long end_pfn) 676 { 677 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 678 LIST_HEAD(freelist); 679 680 pfn = start_pfn; 681 block_start_pfn = pageblock_start_pfn(pfn); 682 if (block_start_pfn < cc->zone->zone_start_pfn) 683 block_start_pfn = cc->zone->zone_start_pfn; 684 block_end_pfn = pageblock_end_pfn(pfn); 685 686 for (; pfn < end_pfn; pfn += isolated, 687 block_start_pfn = block_end_pfn, 688 block_end_pfn += pageblock_nr_pages) { 689 /* Protect pfn from changing by isolate_freepages_block */ 690 unsigned long isolate_start_pfn = pfn; 691 692 block_end_pfn = min(block_end_pfn, end_pfn); 693 694 /* 695 * pfn could pass the block_end_pfn if isolated freepage 696 * is more than pageblock order. In this case, we adjust 697 * scanning range to right one. 698 */ 699 if (pfn >= block_end_pfn) { 700 block_start_pfn = pageblock_start_pfn(pfn); 701 block_end_pfn = pageblock_end_pfn(pfn); 702 block_end_pfn = min(block_end_pfn, end_pfn); 703 } 704 705 if (!pageblock_pfn_to_page(block_start_pfn, 706 block_end_pfn, cc->zone)) 707 break; 708 709 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 710 block_end_pfn, &freelist, 0, true); 711 712 /* 713 * In strict mode, isolate_freepages_block() returns 0 if 714 * there are any holes in the block (ie. invalid PFNs or 715 * non-free pages). 716 */ 717 if (!isolated) 718 break; 719 720 /* 721 * If we managed to isolate pages, it is always (1 << n) * 722 * pageblock_nr_pages for some non-negative n. (Max order 723 * page may span two pageblocks). 724 */ 725 } 726 727 /* __isolate_free_page() does not map the pages */ 728 split_map_pages(&freelist); 729 730 if (pfn < end_pfn) { 731 /* Loop terminated early, cleanup. */ 732 release_freepages(&freelist); 733 return 0; 734 } 735 736 /* We don't use freelists for anything. */ 737 return pfn; 738 } 739 740 /* Similar to reclaim, but different enough that they don't share logic */ 741 static bool too_many_isolated(pg_data_t *pgdat) 742 { 743 unsigned long active, inactive, isolated; 744 745 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 746 node_page_state(pgdat, NR_INACTIVE_ANON); 747 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 748 node_page_state(pgdat, NR_ACTIVE_ANON); 749 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 750 node_page_state(pgdat, NR_ISOLATED_ANON); 751 752 return isolated > (inactive + active) / 2; 753 } 754 755 /** 756 * isolate_migratepages_block() - isolate all migrate-able pages within 757 * a single pageblock 758 * @cc: Compaction control structure. 759 * @low_pfn: The first PFN to isolate 760 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 761 * @isolate_mode: Isolation mode to be used. 762 * 763 * Isolate all pages that can be migrated from the range specified by 764 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 765 * Returns zero if there is a fatal signal pending, otherwise PFN of the 766 * first page that was not scanned (which may be both less, equal to or more 767 * than end_pfn). 768 * 769 * The pages are isolated on cc->migratepages list (not required to be empty), 770 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 771 * is neither read nor updated. 772 */ 773 static unsigned long 774 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 775 unsigned long end_pfn, isolate_mode_t isolate_mode) 776 { 777 pg_data_t *pgdat = cc->zone->zone_pgdat; 778 unsigned long nr_scanned = 0, nr_isolated = 0; 779 struct lruvec *lruvec; 780 unsigned long flags = 0; 781 bool locked = false; 782 struct page *page = NULL, *valid_page = NULL; 783 unsigned long start_pfn = low_pfn; 784 bool skip_on_failure = false; 785 unsigned long next_skip_pfn = 0; 786 bool skip_updated = false; 787 788 /* 789 * Ensure that there are not too many pages isolated from the LRU 790 * list by either parallel reclaimers or compaction. If there are, 791 * delay for some time until fewer pages are isolated 792 */ 793 while (unlikely(too_many_isolated(pgdat))) { 794 /* async migration should just abort */ 795 if (cc->mode == MIGRATE_ASYNC) 796 return 0; 797 798 congestion_wait(BLK_RW_ASYNC, HZ/10); 799 800 if (fatal_signal_pending(current)) 801 return 0; 802 } 803 804 cond_resched(); 805 806 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 807 skip_on_failure = true; 808 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 809 } 810 811 /* Time to isolate some pages for migration */ 812 for (; low_pfn < end_pfn; low_pfn++) { 813 814 if (skip_on_failure && low_pfn >= next_skip_pfn) { 815 /* 816 * We have isolated all migration candidates in the 817 * previous order-aligned block, and did not skip it due 818 * to failure. We should migrate the pages now and 819 * hopefully succeed compaction. 820 */ 821 if (nr_isolated) 822 break; 823 824 /* 825 * We failed to isolate in the previous order-aligned 826 * block. Set the new boundary to the end of the 827 * current block. Note we can't simply increase 828 * next_skip_pfn by 1 << order, as low_pfn might have 829 * been incremented by a higher number due to skipping 830 * a compound or a high-order buddy page in the 831 * previous loop iteration. 832 */ 833 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 834 } 835 836 /* 837 * Periodically drop the lock (if held) regardless of its 838 * contention, to give chance to IRQs. Abort async compaction 839 * if contended. 840 */ 841 if (!(low_pfn % SWAP_CLUSTER_MAX) 842 && compact_unlock_should_abort(&pgdat->lru_lock, 843 flags, &locked, cc)) 844 break; 845 846 if (!pfn_valid_within(low_pfn)) 847 goto isolate_fail; 848 nr_scanned++; 849 850 page = pfn_to_page(low_pfn); 851 852 /* 853 * Check if the pageblock has already been marked skipped. 854 * Only the aligned PFN is checked as the caller isolates 855 * COMPACT_CLUSTER_MAX at a time so the second call must 856 * not falsely conclude that the block should be skipped. 857 */ 858 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 859 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 860 low_pfn = end_pfn; 861 goto isolate_abort; 862 } 863 valid_page = page; 864 } 865 866 /* 867 * Skip if free. We read page order here without zone lock 868 * which is generally unsafe, but the race window is small and 869 * the worst thing that can happen is that we skip some 870 * potential isolation targets. 871 */ 872 if (PageBuddy(page)) { 873 unsigned long freepage_order = page_order_unsafe(page); 874 875 /* 876 * Without lock, we cannot be sure that what we got is 877 * a valid page order. Consider only values in the 878 * valid order range to prevent low_pfn overflow. 879 */ 880 if (freepage_order > 0 && freepage_order < MAX_ORDER) 881 low_pfn += (1UL << freepage_order) - 1; 882 continue; 883 } 884 885 /* 886 * Regardless of being on LRU, compound pages such as THP and 887 * hugetlbfs are not to be compacted. We can potentially save 888 * a lot of iterations if we skip them at once. The check is 889 * racy, but we can consider only valid values and the only 890 * danger is skipping too much. 891 */ 892 if (PageCompound(page)) { 893 const unsigned int order = compound_order(page); 894 895 if (likely(order < MAX_ORDER)) 896 low_pfn += (1UL << order) - 1; 897 goto isolate_fail; 898 } 899 900 /* 901 * Check may be lockless but that's ok as we recheck later. 902 * It's possible to migrate LRU and non-lru movable pages. 903 * Skip any other type of page 904 */ 905 if (!PageLRU(page)) { 906 /* 907 * __PageMovable can return false positive so we need 908 * to verify it under page_lock. 909 */ 910 if (unlikely(__PageMovable(page)) && 911 !PageIsolated(page)) { 912 if (locked) { 913 spin_unlock_irqrestore(&pgdat->lru_lock, 914 flags); 915 locked = false; 916 } 917 918 if (!isolate_movable_page(page, isolate_mode)) 919 goto isolate_success; 920 } 921 922 goto isolate_fail; 923 } 924 925 /* 926 * Migration will fail if an anonymous page is pinned in memory, 927 * so avoid taking lru_lock and isolating it unnecessarily in an 928 * admittedly racy check. 929 */ 930 if (!page_mapping(page) && 931 page_count(page) > page_mapcount(page)) 932 goto isolate_fail; 933 934 /* 935 * Only allow to migrate anonymous pages in GFP_NOFS context 936 * because those do not depend on fs locks. 937 */ 938 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 939 goto isolate_fail; 940 941 /* If we already hold the lock, we can skip some rechecking */ 942 if (!locked) { 943 locked = compact_lock_irqsave(&pgdat->lru_lock, 944 &flags, cc); 945 946 /* Try get exclusive access under lock */ 947 if (!skip_updated) { 948 skip_updated = true; 949 if (test_and_set_skip(cc, page, low_pfn)) 950 goto isolate_abort; 951 } 952 953 /* Recheck PageLRU and PageCompound under lock */ 954 if (!PageLRU(page)) 955 goto isolate_fail; 956 957 /* 958 * Page become compound since the non-locked check, 959 * and it's on LRU. It can only be a THP so the order 960 * is safe to read and it's 0 for tail pages. 961 */ 962 if (unlikely(PageCompound(page))) { 963 low_pfn += (1UL << compound_order(page)) - 1; 964 goto isolate_fail; 965 } 966 } 967 968 lruvec = mem_cgroup_page_lruvec(page, pgdat); 969 970 /* Try isolate the page */ 971 if (__isolate_lru_page(page, isolate_mode) != 0) 972 goto isolate_fail; 973 974 VM_BUG_ON_PAGE(PageCompound(page), page); 975 976 /* Successfully isolated */ 977 del_page_from_lru_list(page, lruvec, page_lru(page)); 978 inc_node_page_state(page, 979 NR_ISOLATED_ANON + page_is_file_cache(page)); 980 981 isolate_success: 982 list_add(&page->lru, &cc->migratepages); 983 cc->nr_migratepages++; 984 nr_isolated++; 985 986 /* 987 * Avoid isolating too much unless this block is being 988 * rescanned (e.g. dirty/writeback pages, parallel allocation) 989 * or a lock is contended. For contention, isolate quickly to 990 * potentially remove one source of contention. 991 */ 992 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 993 !cc->rescan && !cc->contended) { 994 ++low_pfn; 995 break; 996 } 997 998 continue; 999 isolate_fail: 1000 if (!skip_on_failure) 1001 continue; 1002 1003 /* 1004 * We have isolated some pages, but then failed. Release them 1005 * instead of migrating, as we cannot form the cc->order buddy 1006 * page anyway. 1007 */ 1008 if (nr_isolated) { 1009 if (locked) { 1010 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1011 locked = false; 1012 } 1013 putback_movable_pages(&cc->migratepages); 1014 cc->nr_migratepages = 0; 1015 nr_isolated = 0; 1016 } 1017 1018 if (low_pfn < next_skip_pfn) { 1019 low_pfn = next_skip_pfn - 1; 1020 /* 1021 * The check near the loop beginning would have updated 1022 * next_skip_pfn too, but this is a bit simpler. 1023 */ 1024 next_skip_pfn += 1UL << cc->order; 1025 } 1026 } 1027 1028 /* 1029 * The PageBuddy() check could have potentially brought us outside 1030 * the range to be scanned. 1031 */ 1032 if (unlikely(low_pfn > end_pfn)) 1033 low_pfn = end_pfn; 1034 1035 isolate_abort: 1036 if (locked) 1037 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1038 1039 /* 1040 * Updated the cached scanner pfn once the pageblock has been scanned 1041 * Pages will either be migrated in which case there is no point 1042 * scanning in the near future or migration failed in which case the 1043 * failure reason may persist. The block is marked for skipping if 1044 * there were no pages isolated in the block or if the block is 1045 * rescanned twice in a row. 1046 */ 1047 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1048 if (valid_page && !skip_updated) 1049 set_pageblock_skip(valid_page); 1050 update_cached_migrate(cc, low_pfn); 1051 } 1052 1053 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1054 nr_scanned, nr_isolated); 1055 1056 cc->total_migrate_scanned += nr_scanned; 1057 if (nr_isolated) 1058 count_compact_events(COMPACTISOLATED, nr_isolated); 1059 1060 return low_pfn; 1061 } 1062 1063 /** 1064 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1065 * @cc: Compaction control structure. 1066 * @start_pfn: The first PFN to start isolating. 1067 * @end_pfn: The one-past-last PFN. 1068 * 1069 * Returns zero if isolation fails fatally due to e.g. pending signal. 1070 * Otherwise, function returns one-past-the-last PFN of isolated page 1071 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1072 */ 1073 unsigned long 1074 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1075 unsigned long end_pfn) 1076 { 1077 unsigned long pfn, block_start_pfn, block_end_pfn; 1078 1079 /* Scan block by block. First and last block may be incomplete */ 1080 pfn = start_pfn; 1081 block_start_pfn = pageblock_start_pfn(pfn); 1082 if (block_start_pfn < cc->zone->zone_start_pfn) 1083 block_start_pfn = cc->zone->zone_start_pfn; 1084 block_end_pfn = pageblock_end_pfn(pfn); 1085 1086 for (; pfn < end_pfn; pfn = block_end_pfn, 1087 block_start_pfn = block_end_pfn, 1088 block_end_pfn += pageblock_nr_pages) { 1089 1090 block_end_pfn = min(block_end_pfn, end_pfn); 1091 1092 if (!pageblock_pfn_to_page(block_start_pfn, 1093 block_end_pfn, cc->zone)) 1094 continue; 1095 1096 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1097 ISOLATE_UNEVICTABLE); 1098 1099 if (!pfn) 1100 break; 1101 1102 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1103 break; 1104 } 1105 1106 return pfn; 1107 } 1108 1109 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1110 #ifdef CONFIG_COMPACTION 1111 1112 static bool suitable_migration_source(struct compact_control *cc, 1113 struct page *page) 1114 { 1115 int block_mt; 1116 1117 if (pageblock_skip_persistent(page)) 1118 return false; 1119 1120 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1121 return true; 1122 1123 block_mt = get_pageblock_migratetype(page); 1124 1125 if (cc->migratetype == MIGRATE_MOVABLE) 1126 return is_migrate_movable(block_mt); 1127 else 1128 return block_mt == cc->migratetype; 1129 } 1130 1131 /* Returns true if the page is within a block suitable for migration to */ 1132 static bool suitable_migration_target(struct compact_control *cc, 1133 struct page *page) 1134 { 1135 /* If the page is a large free page, then disallow migration */ 1136 if (PageBuddy(page)) { 1137 /* 1138 * We are checking page_order without zone->lock taken. But 1139 * the only small danger is that we skip a potentially suitable 1140 * pageblock, so it's not worth to check order for valid range. 1141 */ 1142 if (page_order_unsafe(page) >= pageblock_order) 1143 return false; 1144 } 1145 1146 if (cc->ignore_block_suitable) 1147 return true; 1148 1149 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1150 if (is_migrate_movable(get_pageblock_migratetype(page))) 1151 return true; 1152 1153 /* Otherwise skip the block */ 1154 return false; 1155 } 1156 1157 static inline unsigned int 1158 freelist_scan_limit(struct compact_control *cc) 1159 { 1160 return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1; 1161 } 1162 1163 /* 1164 * Test whether the free scanner has reached the same or lower pageblock than 1165 * the migration scanner, and compaction should thus terminate. 1166 */ 1167 static inline bool compact_scanners_met(struct compact_control *cc) 1168 { 1169 return (cc->free_pfn >> pageblock_order) 1170 <= (cc->migrate_pfn >> pageblock_order); 1171 } 1172 1173 /* 1174 * Used when scanning for a suitable migration target which scans freelists 1175 * in reverse. Reorders the list such as the unscanned pages are scanned 1176 * first on the next iteration of the free scanner 1177 */ 1178 static void 1179 move_freelist_head(struct list_head *freelist, struct page *freepage) 1180 { 1181 LIST_HEAD(sublist); 1182 1183 if (!list_is_last(freelist, &freepage->lru)) { 1184 list_cut_before(&sublist, freelist, &freepage->lru); 1185 if (!list_empty(&sublist)) 1186 list_splice_tail(&sublist, freelist); 1187 } 1188 } 1189 1190 /* 1191 * Similar to move_freelist_head except used by the migration scanner 1192 * when scanning forward. It's possible for these list operations to 1193 * move against each other if they search the free list exactly in 1194 * lockstep. 1195 */ 1196 static void 1197 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1198 { 1199 LIST_HEAD(sublist); 1200 1201 if (!list_is_first(freelist, &freepage->lru)) { 1202 list_cut_position(&sublist, freelist, &freepage->lru); 1203 if (!list_empty(&sublist)) 1204 list_splice_tail(&sublist, freelist); 1205 } 1206 } 1207 1208 static void 1209 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1210 { 1211 unsigned long start_pfn, end_pfn; 1212 struct page *page = pfn_to_page(pfn); 1213 1214 /* Do not search around if there are enough pages already */ 1215 if (cc->nr_freepages >= cc->nr_migratepages) 1216 return; 1217 1218 /* Minimise scanning during async compaction */ 1219 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1220 return; 1221 1222 /* Pageblock boundaries */ 1223 start_pfn = pageblock_start_pfn(pfn); 1224 end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone)); 1225 1226 /* Scan before */ 1227 if (start_pfn != pfn) { 1228 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1229 if (cc->nr_freepages >= cc->nr_migratepages) 1230 return; 1231 } 1232 1233 /* Scan after */ 1234 start_pfn = pfn + nr_isolated; 1235 if (start_pfn != end_pfn) 1236 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1237 1238 /* Skip this pageblock in the future as it's full or nearly full */ 1239 if (cc->nr_freepages < cc->nr_migratepages) 1240 set_pageblock_skip(page); 1241 } 1242 1243 /* Search orders in round-robin fashion */ 1244 static int next_search_order(struct compact_control *cc, int order) 1245 { 1246 order--; 1247 if (order < 0) 1248 order = cc->order - 1; 1249 1250 /* Search wrapped around? */ 1251 if (order == cc->search_order) { 1252 cc->search_order--; 1253 if (cc->search_order < 0) 1254 cc->search_order = cc->order - 1; 1255 return -1; 1256 } 1257 1258 return order; 1259 } 1260 1261 static unsigned long 1262 fast_isolate_freepages(struct compact_control *cc) 1263 { 1264 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1265 unsigned int nr_scanned = 0; 1266 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1267 unsigned long nr_isolated = 0; 1268 unsigned long distance; 1269 struct page *page = NULL; 1270 bool scan_start = false; 1271 int order; 1272 1273 /* Full compaction passes in a negative order */ 1274 if (cc->order <= 0) 1275 return cc->free_pfn; 1276 1277 /* 1278 * If starting the scan, use a deeper search and use the highest 1279 * PFN found if a suitable one is not found. 1280 */ 1281 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1282 limit = pageblock_nr_pages >> 1; 1283 scan_start = true; 1284 } 1285 1286 /* 1287 * Preferred point is in the top quarter of the scan space but take 1288 * a pfn from the top half if the search is problematic. 1289 */ 1290 distance = (cc->free_pfn - cc->migrate_pfn); 1291 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1292 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1293 1294 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1295 low_pfn = min_pfn; 1296 1297 /* 1298 * Search starts from the last successful isolation order or the next 1299 * order to search after a previous failure 1300 */ 1301 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1302 1303 for (order = cc->search_order; 1304 !page && order >= 0; 1305 order = next_search_order(cc, order)) { 1306 struct free_area *area = &cc->zone->free_area[order]; 1307 struct list_head *freelist; 1308 struct page *freepage; 1309 unsigned long flags; 1310 unsigned int order_scanned = 0; 1311 1312 if (!area->nr_free) 1313 continue; 1314 1315 spin_lock_irqsave(&cc->zone->lock, flags); 1316 freelist = &area->free_list[MIGRATE_MOVABLE]; 1317 list_for_each_entry_reverse(freepage, freelist, lru) { 1318 unsigned long pfn; 1319 1320 order_scanned++; 1321 nr_scanned++; 1322 pfn = page_to_pfn(freepage); 1323 1324 if (pfn >= highest) 1325 highest = pageblock_start_pfn(pfn); 1326 1327 if (pfn >= low_pfn) { 1328 cc->fast_search_fail = 0; 1329 cc->search_order = order; 1330 page = freepage; 1331 break; 1332 } 1333 1334 if (pfn >= min_pfn && pfn > high_pfn) { 1335 high_pfn = pfn; 1336 1337 /* Shorten the scan if a candidate is found */ 1338 limit >>= 1; 1339 } 1340 1341 if (order_scanned >= limit) 1342 break; 1343 } 1344 1345 /* Use a minimum pfn if a preferred one was not found */ 1346 if (!page && high_pfn) { 1347 page = pfn_to_page(high_pfn); 1348 1349 /* Update freepage for the list reorder below */ 1350 freepage = page; 1351 } 1352 1353 /* Reorder to so a future search skips recent pages */ 1354 move_freelist_head(freelist, freepage); 1355 1356 /* Isolate the page if available */ 1357 if (page) { 1358 if (__isolate_free_page(page, order)) { 1359 set_page_private(page, order); 1360 nr_isolated = 1 << order; 1361 cc->nr_freepages += nr_isolated; 1362 list_add_tail(&page->lru, &cc->freepages); 1363 count_compact_events(COMPACTISOLATED, nr_isolated); 1364 } else { 1365 /* If isolation fails, abort the search */ 1366 order = -1; 1367 page = NULL; 1368 } 1369 } 1370 1371 spin_unlock_irqrestore(&cc->zone->lock, flags); 1372 1373 /* 1374 * Smaller scan on next order so the total scan ig related 1375 * to freelist_scan_limit. 1376 */ 1377 if (order_scanned >= limit) 1378 limit = min(1U, limit >> 1); 1379 } 1380 1381 if (!page) { 1382 cc->fast_search_fail++; 1383 if (scan_start) { 1384 /* 1385 * Use the highest PFN found above min. If one was 1386 * not found, be pessemistic for direct compaction 1387 * and use the min mark. 1388 */ 1389 if (highest) { 1390 page = pfn_to_page(highest); 1391 cc->free_pfn = highest; 1392 } else { 1393 if (cc->direct_compaction) { 1394 page = pfn_to_page(min_pfn); 1395 cc->free_pfn = min_pfn; 1396 } 1397 } 1398 } 1399 } 1400 1401 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1402 highest -= pageblock_nr_pages; 1403 cc->zone->compact_cached_free_pfn = highest; 1404 } 1405 1406 cc->total_free_scanned += nr_scanned; 1407 if (!page) 1408 return cc->free_pfn; 1409 1410 low_pfn = page_to_pfn(page); 1411 fast_isolate_around(cc, low_pfn, nr_isolated); 1412 return low_pfn; 1413 } 1414 1415 /* 1416 * Based on information in the current compact_control, find blocks 1417 * suitable for isolating free pages from and then isolate them. 1418 */ 1419 static void isolate_freepages(struct compact_control *cc) 1420 { 1421 struct zone *zone = cc->zone; 1422 struct page *page; 1423 unsigned long block_start_pfn; /* start of current pageblock */ 1424 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1425 unsigned long block_end_pfn; /* end of current pageblock */ 1426 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1427 struct list_head *freelist = &cc->freepages; 1428 unsigned int stride; 1429 1430 /* Try a small search of the free lists for a candidate */ 1431 isolate_start_pfn = fast_isolate_freepages(cc); 1432 if (cc->nr_freepages) 1433 goto splitmap; 1434 1435 /* 1436 * Initialise the free scanner. The starting point is where we last 1437 * successfully isolated from, zone-cached value, or the end of the 1438 * zone when isolating for the first time. For looping we also need 1439 * this pfn aligned down to the pageblock boundary, because we do 1440 * block_start_pfn -= pageblock_nr_pages in the for loop. 1441 * For ending point, take care when isolating in last pageblock of a 1442 * a zone which ends in the middle of a pageblock. 1443 * The low boundary is the end of the pageblock the migration scanner 1444 * is using. 1445 */ 1446 isolate_start_pfn = cc->free_pfn; 1447 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1448 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1449 zone_end_pfn(zone)); 1450 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1451 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1452 1453 /* 1454 * Isolate free pages until enough are available to migrate the 1455 * pages on cc->migratepages. We stop searching if the migrate 1456 * and free page scanners meet or enough free pages are isolated. 1457 */ 1458 for (; block_start_pfn >= low_pfn; 1459 block_end_pfn = block_start_pfn, 1460 block_start_pfn -= pageblock_nr_pages, 1461 isolate_start_pfn = block_start_pfn) { 1462 unsigned long nr_isolated; 1463 1464 /* 1465 * This can iterate a massively long zone without finding any 1466 * suitable migration targets, so periodically check resched. 1467 */ 1468 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1469 cond_resched(); 1470 1471 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1472 zone); 1473 if (!page) 1474 continue; 1475 1476 /* Check the block is suitable for migration */ 1477 if (!suitable_migration_target(cc, page)) 1478 continue; 1479 1480 /* If isolation recently failed, do not retry */ 1481 if (!isolation_suitable(cc, page)) 1482 continue; 1483 1484 /* Found a block suitable for isolating free pages from. */ 1485 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1486 block_end_pfn, freelist, stride, false); 1487 1488 /* Update the skip hint if the full pageblock was scanned */ 1489 if (isolate_start_pfn == block_end_pfn) 1490 update_pageblock_skip(cc, page, block_start_pfn); 1491 1492 /* Are enough freepages isolated? */ 1493 if (cc->nr_freepages >= cc->nr_migratepages) { 1494 if (isolate_start_pfn >= block_end_pfn) { 1495 /* 1496 * Restart at previous pageblock if more 1497 * freepages can be isolated next time. 1498 */ 1499 isolate_start_pfn = 1500 block_start_pfn - pageblock_nr_pages; 1501 } 1502 break; 1503 } else if (isolate_start_pfn < block_end_pfn) { 1504 /* 1505 * If isolation failed early, do not continue 1506 * needlessly. 1507 */ 1508 break; 1509 } 1510 1511 /* Adjust stride depending on isolation */ 1512 if (nr_isolated) { 1513 stride = 1; 1514 continue; 1515 } 1516 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1517 } 1518 1519 /* 1520 * Record where the free scanner will restart next time. Either we 1521 * broke from the loop and set isolate_start_pfn based on the last 1522 * call to isolate_freepages_block(), or we met the migration scanner 1523 * and the loop terminated due to isolate_start_pfn < low_pfn 1524 */ 1525 cc->free_pfn = isolate_start_pfn; 1526 1527 splitmap: 1528 /* __isolate_free_page() does not map the pages */ 1529 split_map_pages(freelist); 1530 } 1531 1532 /* 1533 * This is a migrate-callback that "allocates" freepages by taking pages 1534 * from the isolated freelists in the block we are migrating to. 1535 */ 1536 static struct page *compaction_alloc(struct page *migratepage, 1537 unsigned long data) 1538 { 1539 struct compact_control *cc = (struct compact_control *)data; 1540 struct page *freepage; 1541 1542 if (list_empty(&cc->freepages)) { 1543 isolate_freepages(cc); 1544 1545 if (list_empty(&cc->freepages)) 1546 return NULL; 1547 } 1548 1549 freepage = list_entry(cc->freepages.next, struct page, lru); 1550 list_del(&freepage->lru); 1551 cc->nr_freepages--; 1552 1553 return freepage; 1554 } 1555 1556 /* 1557 * This is a migrate-callback that "frees" freepages back to the isolated 1558 * freelist. All pages on the freelist are from the same zone, so there is no 1559 * special handling needed for NUMA. 1560 */ 1561 static void compaction_free(struct page *page, unsigned long data) 1562 { 1563 struct compact_control *cc = (struct compact_control *)data; 1564 1565 list_add(&page->lru, &cc->freepages); 1566 cc->nr_freepages++; 1567 } 1568 1569 /* possible outcome of isolate_migratepages */ 1570 typedef enum { 1571 ISOLATE_ABORT, /* Abort compaction now */ 1572 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1573 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1574 } isolate_migrate_t; 1575 1576 /* 1577 * Allow userspace to control policy on scanning the unevictable LRU for 1578 * compactable pages. 1579 */ 1580 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1581 1582 static inline void 1583 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1584 { 1585 if (cc->fast_start_pfn == ULONG_MAX) 1586 return; 1587 1588 if (!cc->fast_start_pfn) 1589 cc->fast_start_pfn = pfn; 1590 1591 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1592 } 1593 1594 static inline unsigned long 1595 reinit_migrate_pfn(struct compact_control *cc) 1596 { 1597 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1598 return cc->migrate_pfn; 1599 1600 cc->migrate_pfn = cc->fast_start_pfn; 1601 cc->fast_start_pfn = ULONG_MAX; 1602 1603 return cc->migrate_pfn; 1604 } 1605 1606 /* 1607 * Briefly search the free lists for a migration source that already has 1608 * some free pages to reduce the number of pages that need migration 1609 * before a pageblock is free. 1610 */ 1611 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1612 { 1613 unsigned int limit = freelist_scan_limit(cc); 1614 unsigned int nr_scanned = 0; 1615 unsigned long distance; 1616 unsigned long pfn = cc->migrate_pfn; 1617 unsigned long high_pfn; 1618 int order; 1619 1620 /* Skip hints are relied on to avoid repeats on the fast search */ 1621 if (cc->ignore_skip_hint) 1622 return pfn; 1623 1624 /* 1625 * If the migrate_pfn is not at the start of a zone or the start 1626 * of a pageblock then assume this is a continuation of a previous 1627 * scan restarted due to COMPACT_CLUSTER_MAX. 1628 */ 1629 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1630 return pfn; 1631 1632 /* 1633 * For smaller orders, just linearly scan as the number of pages 1634 * to migrate should be relatively small and does not necessarily 1635 * justify freeing up a large block for a small allocation. 1636 */ 1637 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1638 return pfn; 1639 1640 /* 1641 * Only allow kcompactd and direct requests for movable pages to 1642 * quickly clear out a MOVABLE pageblock for allocation. This 1643 * reduces the risk that a large movable pageblock is freed for 1644 * an unmovable/reclaimable small allocation. 1645 */ 1646 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1647 return pfn; 1648 1649 /* 1650 * When starting the migration scanner, pick any pageblock within the 1651 * first half of the search space. Otherwise try and pick a pageblock 1652 * within the first eighth to reduce the chances that a migration 1653 * target later becomes a source. 1654 */ 1655 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1656 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1657 distance >>= 2; 1658 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1659 1660 for (order = cc->order - 1; 1661 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1662 order--) { 1663 struct free_area *area = &cc->zone->free_area[order]; 1664 struct list_head *freelist; 1665 unsigned long flags; 1666 struct page *freepage; 1667 1668 if (!area->nr_free) 1669 continue; 1670 1671 spin_lock_irqsave(&cc->zone->lock, flags); 1672 freelist = &area->free_list[MIGRATE_MOVABLE]; 1673 list_for_each_entry(freepage, freelist, lru) { 1674 unsigned long free_pfn; 1675 1676 nr_scanned++; 1677 free_pfn = page_to_pfn(freepage); 1678 if (free_pfn < high_pfn) { 1679 /* 1680 * Avoid if skipped recently. Ideally it would 1681 * move to the tail but even safe iteration of 1682 * the list assumes an entry is deleted, not 1683 * reordered. 1684 */ 1685 if (get_pageblock_skip(freepage)) { 1686 if (list_is_last(freelist, &freepage->lru)) 1687 break; 1688 1689 continue; 1690 } 1691 1692 /* Reorder to so a future search skips recent pages */ 1693 move_freelist_tail(freelist, freepage); 1694 1695 update_fast_start_pfn(cc, free_pfn); 1696 pfn = pageblock_start_pfn(free_pfn); 1697 cc->fast_search_fail = 0; 1698 set_pageblock_skip(freepage); 1699 break; 1700 } 1701 1702 if (nr_scanned >= limit) { 1703 cc->fast_search_fail++; 1704 move_freelist_tail(freelist, freepage); 1705 break; 1706 } 1707 } 1708 spin_unlock_irqrestore(&cc->zone->lock, flags); 1709 } 1710 1711 cc->total_migrate_scanned += nr_scanned; 1712 1713 /* 1714 * If fast scanning failed then use a cached entry for a page block 1715 * that had free pages as the basis for starting a linear scan. 1716 */ 1717 if (pfn == cc->migrate_pfn) 1718 pfn = reinit_migrate_pfn(cc); 1719 1720 return pfn; 1721 } 1722 1723 /* 1724 * Isolate all pages that can be migrated from the first suitable block, 1725 * starting at the block pointed to by the migrate scanner pfn within 1726 * compact_control. 1727 */ 1728 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1729 struct compact_control *cc) 1730 { 1731 unsigned long block_start_pfn; 1732 unsigned long block_end_pfn; 1733 unsigned long low_pfn; 1734 struct page *page; 1735 const isolate_mode_t isolate_mode = 1736 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1737 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1738 bool fast_find_block; 1739 1740 /* 1741 * Start at where we last stopped, or beginning of the zone as 1742 * initialized by compact_zone(). The first failure will use 1743 * the lowest PFN as the starting point for linear scanning. 1744 */ 1745 low_pfn = fast_find_migrateblock(cc); 1746 block_start_pfn = pageblock_start_pfn(low_pfn); 1747 if (block_start_pfn < zone->zone_start_pfn) 1748 block_start_pfn = zone->zone_start_pfn; 1749 1750 /* 1751 * fast_find_migrateblock marks a pageblock skipped so to avoid 1752 * the isolation_suitable check below, check whether the fast 1753 * search was successful. 1754 */ 1755 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1756 1757 /* Only scan within a pageblock boundary */ 1758 block_end_pfn = pageblock_end_pfn(low_pfn); 1759 1760 /* 1761 * Iterate over whole pageblocks until we find the first suitable. 1762 * Do not cross the free scanner. 1763 */ 1764 for (; block_end_pfn <= cc->free_pfn; 1765 fast_find_block = false, 1766 low_pfn = block_end_pfn, 1767 block_start_pfn = block_end_pfn, 1768 block_end_pfn += pageblock_nr_pages) { 1769 1770 /* 1771 * This can potentially iterate a massively long zone with 1772 * many pageblocks unsuitable, so periodically check if we 1773 * need to schedule. 1774 */ 1775 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1776 cond_resched(); 1777 1778 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1779 zone); 1780 if (!page) 1781 continue; 1782 1783 /* 1784 * If isolation recently failed, do not retry. Only check the 1785 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1786 * to be visited multiple times. Assume skip was checked 1787 * before making it "skip" so other compaction instances do 1788 * not scan the same block. 1789 */ 1790 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1791 !fast_find_block && !isolation_suitable(cc, page)) 1792 continue; 1793 1794 /* 1795 * For async compaction, also only scan in MOVABLE blocks 1796 * without huge pages. Async compaction is optimistic to see 1797 * if the minimum amount of work satisfies the allocation. 1798 * The cached PFN is updated as it's possible that all 1799 * remaining blocks between source and target are unsuitable 1800 * and the compaction scanners fail to meet. 1801 */ 1802 if (!suitable_migration_source(cc, page)) { 1803 update_cached_migrate(cc, block_end_pfn); 1804 continue; 1805 } 1806 1807 /* Perform the isolation */ 1808 low_pfn = isolate_migratepages_block(cc, low_pfn, 1809 block_end_pfn, isolate_mode); 1810 1811 if (!low_pfn) 1812 return ISOLATE_ABORT; 1813 1814 /* 1815 * Either we isolated something and proceed with migration. Or 1816 * we failed and compact_zone should decide if we should 1817 * continue or not. 1818 */ 1819 break; 1820 } 1821 1822 /* Record where migration scanner will be restarted. */ 1823 cc->migrate_pfn = low_pfn; 1824 1825 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1826 } 1827 1828 /* 1829 * order == -1 is expected when compacting via 1830 * /proc/sys/vm/compact_memory 1831 */ 1832 static inline bool is_via_compact_memory(int order) 1833 { 1834 return order == -1; 1835 } 1836 1837 static enum compact_result __compact_finished(struct compact_control *cc) 1838 { 1839 unsigned int order; 1840 const int migratetype = cc->migratetype; 1841 int ret; 1842 1843 /* Compaction run completes if the migrate and free scanner meet */ 1844 if (compact_scanners_met(cc)) { 1845 /* Let the next compaction start anew. */ 1846 reset_cached_positions(cc->zone); 1847 1848 /* 1849 * Mark that the PG_migrate_skip information should be cleared 1850 * by kswapd when it goes to sleep. kcompactd does not set the 1851 * flag itself as the decision to be clear should be directly 1852 * based on an allocation request. 1853 */ 1854 if (cc->direct_compaction) 1855 cc->zone->compact_blockskip_flush = true; 1856 1857 if (cc->whole_zone) 1858 return COMPACT_COMPLETE; 1859 else 1860 return COMPACT_PARTIAL_SKIPPED; 1861 } 1862 1863 if (is_via_compact_memory(cc->order)) 1864 return COMPACT_CONTINUE; 1865 1866 /* 1867 * Always finish scanning a pageblock to reduce the possibility of 1868 * fallbacks in the future. This is particularly important when 1869 * migration source is unmovable/reclaimable but it's not worth 1870 * special casing. 1871 */ 1872 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1873 return COMPACT_CONTINUE; 1874 1875 /* Direct compactor: Is a suitable page free? */ 1876 ret = COMPACT_NO_SUITABLE_PAGE; 1877 for (order = cc->order; order < MAX_ORDER; order++) { 1878 struct free_area *area = &cc->zone->free_area[order]; 1879 bool can_steal; 1880 1881 /* Job done if page is free of the right migratetype */ 1882 if (!list_empty(&area->free_list[migratetype])) 1883 return COMPACT_SUCCESS; 1884 1885 #ifdef CONFIG_CMA 1886 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1887 if (migratetype == MIGRATE_MOVABLE && 1888 !list_empty(&area->free_list[MIGRATE_CMA])) 1889 return COMPACT_SUCCESS; 1890 #endif 1891 /* 1892 * Job done if allocation would steal freepages from 1893 * other migratetype buddy lists. 1894 */ 1895 if (find_suitable_fallback(area, order, migratetype, 1896 true, &can_steal) != -1) { 1897 1898 /* movable pages are OK in any pageblock */ 1899 if (migratetype == MIGRATE_MOVABLE) 1900 return COMPACT_SUCCESS; 1901 1902 /* 1903 * We are stealing for a non-movable allocation. Make 1904 * sure we finish compacting the current pageblock 1905 * first so it is as free as possible and we won't 1906 * have to steal another one soon. This only applies 1907 * to sync compaction, as async compaction operates 1908 * on pageblocks of the same migratetype. 1909 */ 1910 if (cc->mode == MIGRATE_ASYNC || 1911 IS_ALIGNED(cc->migrate_pfn, 1912 pageblock_nr_pages)) { 1913 return COMPACT_SUCCESS; 1914 } 1915 1916 ret = COMPACT_CONTINUE; 1917 break; 1918 } 1919 } 1920 1921 if (cc->contended || fatal_signal_pending(current)) 1922 ret = COMPACT_CONTENDED; 1923 1924 return ret; 1925 } 1926 1927 static enum compact_result compact_finished(struct compact_control *cc) 1928 { 1929 int ret; 1930 1931 ret = __compact_finished(cc); 1932 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1933 if (ret == COMPACT_NO_SUITABLE_PAGE) 1934 ret = COMPACT_CONTINUE; 1935 1936 return ret; 1937 } 1938 1939 /* 1940 * compaction_suitable: Is this suitable to run compaction on this zone now? 1941 * Returns 1942 * COMPACT_SKIPPED - If there are too few free pages for compaction 1943 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1944 * COMPACT_CONTINUE - If compaction should run now 1945 */ 1946 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1947 unsigned int alloc_flags, 1948 int classzone_idx, 1949 unsigned long wmark_target) 1950 { 1951 unsigned long watermark; 1952 1953 if (is_via_compact_memory(order)) 1954 return COMPACT_CONTINUE; 1955 1956 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1957 /* 1958 * If watermarks for high-order allocation are already met, there 1959 * should be no need for compaction at all. 1960 */ 1961 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1962 alloc_flags)) 1963 return COMPACT_SUCCESS; 1964 1965 /* 1966 * Watermarks for order-0 must be met for compaction to be able to 1967 * isolate free pages for migration targets. This means that the 1968 * watermark and alloc_flags have to match, or be more pessimistic than 1969 * the check in __isolate_free_page(). We don't use the direct 1970 * compactor's alloc_flags, as they are not relevant for freepage 1971 * isolation. We however do use the direct compactor's classzone_idx to 1972 * skip over zones where lowmem reserves would prevent allocation even 1973 * if compaction succeeds. 1974 * For costly orders, we require low watermark instead of min for 1975 * compaction to proceed to increase its chances. 1976 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1977 * suitable migration targets 1978 */ 1979 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1980 low_wmark_pages(zone) : min_wmark_pages(zone); 1981 watermark += compact_gap(order); 1982 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1983 ALLOC_CMA, wmark_target)) 1984 return COMPACT_SKIPPED; 1985 1986 return COMPACT_CONTINUE; 1987 } 1988 1989 enum compact_result compaction_suitable(struct zone *zone, int order, 1990 unsigned int alloc_flags, 1991 int classzone_idx) 1992 { 1993 enum compact_result ret; 1994 int fragindex; 1995 1996 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1997 zone_page_state(zone, NR_FREE_PAGES)); 1998 /* 1999 * fragmentation index determines if allocation failures are due to 2000 * low memory or external fragmentation 2001 * 2002 * index of -1000 would imply allocations might succeed depending on 2003 * watermarks, but we already failed the high-order watermark check 2004 * index towards 0 implies failure is due to lack of memory 2005 * index towards 1000 implies failure is due to fragmentation 2006 * 2007 * Only compact if a failure would be due to fragmentation. Also 2008 * ignore fragindex for non-costly orders where the alternative to 2009 * a successful reclaim/compaction is OOM. Fragindex and the 2010 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2011 * excessive compaction for costly orders, but it should not be at the 2012 * expense of system stability. 2013 */ 2014 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2015 fragindex = fragmentation_index(zone, order); 2016 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2017 ret = COMPACT_NOT_SUITABLE_ZONE; 2018 } 2019 2020 trace_mm_compaction_suitable(zone, order, ret); 2021 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2022 ret = COMPACT_SKIPPED; 2023 2024 return ret; 2025 } 2026 2027 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2028 int alloc_flags) 2029 { 2030 struct zone *zone; 2031 struct zoneref *z; 2032 2033 /* 2034 * Make sure at least one zone would pass __compaction_suitable if we continue 2035 * retrying the reclaim. 2036 */ 2037 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2038 ac->nodemask) { 2039 unsigned long available; 2040 enum compact_result compact_result; 2041 2042 /* 2043 * Do not consider all the reclaimable memory because we do not 2044 * want to trash just for a single high order allocation which 2045 * is even not guaranteed to appear even if __compaction_suitable 2046 * is happy about the watermark check. 2047 */ 2048 available = zone_reclaimable_pages(zone) / order; 2049 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2050 compact_result = __compaction_suitable(zone, order, alloc_flags, 2051 ac_classzone_idx(ac), available); 2052 if (compact_result != COMPACT_SKIPPED) 2053 return true; 2054 } 2055 2056 return false; 2057 } 2058 2059 static enum compact_result 2060 compact_zone(struct compact_control *cc, struct capture_control *capc) 2061 { 2062 enum compact_result ret; 2063 unsigned long start_pfn = cc->zone->zone_start_pfn; 2064 unsigned long end_pfn = zone_end_pfn(cc->zone); 2065 unsigned long last_migrated_pfn; 2066 const bool sync = cc->mode != MIGRATE_ASYNC; 2067 bool update_cached; 2068 2069 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2070 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2071 cc->classzone_idx); 2072 /* Compaction is likely to fail */ 2073 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2074 return ret; 2075 2076 /* huh, compaction_suitable is returning something unexpected */ 2077 VM_BUG_ON(ret != COMPACT_CONTINUE); 2078 2079 /* 2080 * Clear pageblock skip if there were failures recently and compaction 2081 * is about to be retried after being deferred. 2082 */ 2083 if (compaction_restarting(cc->zone, cc->order)) 2084 __reset_isolation_suitable(cc->zone); 2085 2086 /* 2087 * Setup to move all movable pages to the end of the zone. Used cached 2088 * information on where the scanners should start (unless we explicitly 2089 * want to compact the whole zone), but check that it is initialised 2090 * by ensuring the values are within zone boundaries. 2091 */ 2092 cc->fast_start_pfn = 0; 2093 if (cc->whole_zone) { 2094 cc->migrate_pfn = start_pfn; 2095 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2096 } else { 2097 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2098 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2099 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2100 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2101 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2102 } 2103 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2104 cc->migrate_pfn = start_pfn; 2105 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2106 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2107 } 2108 2109 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2110 cc->whole_zone = true; 2111 } 2112 2113 last_migrated_pfn = 0; 2114 2115 /* 2116 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2117 * the basis that some migrations will fail in ASYNC mode. However, 2118 * if the cached PFNs match and pageblocks are skipped due to having 2119 * no isolation candidates, then the sync state does not matter. 2120 * Until a pageblock with isolation candidates is found, keep the 2121 * cached PFNs in sync to avoid revisiting the same blocks. 2122 */ 2123 update_cached = !sync && 2124 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2125 2126 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2127 cc->free_pfn, end_pfn, sync); 2128 2129 migrate_prep_local(); 2130 2131 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2132 int err; 2133 unsigned long start_pfn = cc->migrate_pfn; 2134 2135 /* 2136 * Avoid multiple rescans which can happen if a page cannot be 2137 * isolated (dirty/writeback in async mode) or if the migrated 2138 * pages are being allocated before the pageblock is cleared. 2139 * The first rescan will capture the entire pageblock for 2140 * migration. If it fails, it'll be marked skip and scanning 2141 * will proceed as normal. 2142 */ 2143 cc->rescan = false; 2144 if (pageblock_start_pfn(last_migrated_pfn) == 2145 pageblock_start_pfn(start_pfn)) { 2146 cc->rescan = true; 2147 } 2148 2149 switch (isolate_migratepages(cc->zone, cc)) { 2150 case ISOLATE_ABORT: 2151 ret = COMPACT_CONTENDED; 2152 putback_movable_pages(&cc->migratepages); 2153 cc->nr_migratepages = 0; 2154 last_migrated_pfn = 0; 2155 goto out; 2156 case ISOLATE_NONE: 2157 if (update_cached) { 2158 cc->zone->compact_cached_migrate_pfn[1] = 2159 cc->zone->compact_cached_migrate_pfn[0]; 2160 } 2161 2162 /* 2163 * We haven't isolated and migrated anything, but 2164 * there might still be unflushed migrations from 2165 * previous cc->order aligned block. 2166 */ 2167 goto check_drain; 2168 case ISOLATE_SUCCESS: 2169 update_cached = false; 2170 last_migrated_pfn = start_pfn; 2171 ; 2172 } 2173 2174 err = migrate_pages(&cc->migratepages, compaction_alloc, 2175 compaction_free, (unsigned long)cc, cc->mode, 2176 MR_COMPACTION); 2177 2178 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2179 &cc->migratepages); 2180 2181 /* All pages were either migrated or will be released */ 2182 cc->nr_migratepages = 0; 2183 if (err) { 2184 putback_movable_pages(&cc->migratepages); 2185 /* 2186 * migrate_pages() may return -ENOMEM when scanners meet 2187 * and we want compact_finished() to detect it 2188 */ 2189 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2190 ret = COMPACT_CONTENDED; 2191 goto out; 2192 } 2193 /* 2194 * We failed to migrate at least one page in the current 2195 * order-aligned block, so skip the rest of it. 2196 */ 2197 if (cc->direct_compaction && 2198 (cc->mode == MIGRATE_ASYNC)) { 2199 cc->migrate_pfn = block_end_pfn( 2200 cc->migrate_pfn - 1, cc->order); 2201 /* Draining pcplists is useless in this case */ 2202 last_migrated_pfn = 0; 2203 } 2204 } 2205 2206 check_drain: 2207 /* 2208 * Has the migration scanner moved away from the previous 2209 * cc->order aligned block where we migrated from? If yes, 2210 * flush the pages that were freed, so that they can merge and 2211 * compact_finished() can detect immediately if allocation 2212 * would succeed. 2213 */ 2214 if (cc->order > 0 && last_migrated_pfn) { 2215 int cpu; 2216 unsigned long current_block_start = 2217 block_start_pfn(cc->migrate_pfn, cc->order); 2218 2219 if (last_migrated_pfn < current_block_start) { 2220 cpu = get_cpu(); 2221 lru_add_drain_cpu(cpu); 2222 drain_local_pages(cc->zone); 2223 put_cpu(); 2224 /* No more flushing until we migrate again */ 2225 last_migrated_pfn = 0; 2226 } 2227 } 2228 2229 /* Stop if a page has been captured */ 2230 if (capc && capc->page) { 2231 ret = COMPACT_SUCCESS; 2232 break; 2233 } 2234 } 2235 2236 out: 2237 /* 2238 * Release free pages and update where the free scanner should restart, 2239 * so we don't leave any returned pages behind in the next attempt. 2240 */ 2241 if (cc->nr_freepages > 0) { 2242 unsigned long free_pfn = release_freepages(&cc->freepages); 2243 2244 cc->nr_freepages = 0; 2245 VM_BUG_ON(free_pfn == 0); 2246 /* The cached pfn is always the first in a pageblock */ 2247 free_pfn = pageblock_start_pfn(free_pfn); 2248 /* 2249 * Only go back, not forward. The cached pfn might have been 2250 * already reset to zone end in compact_finished() 2251 */ 2252 if (free_pfn > cc->zone->compact_cached_free_pfn) 2253 cc->zone->compact_cached_free_pfn = free_pfn; 2254 } 2255 2256 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2257 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2258 2259 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2260 cc->free_pfn, end_pfn, sync, ret); 2261 2262 return ret; 2263 } 2264 2265 static enum compact_result compact_zone_order(struct zone *zone, int order, 2266 gfp_t gfp_mask, enum compact_priority prio, 2267 unsigned int alloc_flags, int classzone_idx, 2268 struct page **capture) 2269 { 2270 enum compact_result ret; 2271 struct compact_control cc = { 2272 .nr_freepages = 0, 2273 .nr_migratepages = 0, 2274 .total_migrate_scanned = 0, 2275 .total_free_scanned = 0, 2276 .order = order, 2277 .search_order = order, 2278 .gfp_mask = gfp_mask, 2279 .zone = zone, 2280 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2281 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2282 .alloc_flags = alloc_flags, 2283 .classzone_idx = classzone_idx, 2284 .direct_compaction = true, 2285 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2286 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2287 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2288 }; 2289 struct capture_control capc = { 2290 .cc = &cc, 2291 .page = NULL, 2292 }; 2293 2294 if (capture) 2295 current->capture_control = &capc; 2296 INIT_LIST_HEAD(&cc.freepages); 2297 INIT_LIST_HEAD(&cc.migratepages); 2298 2299 ret = compact_zone(&cc, &capc); 2300 2301 VM_BUG_ON(!list_empty(&cc.freepages)); 2302 VM_BUG_ON(!list_empty(&cc.migratepages)); 2303 2304 *capture = capc.page; 2305 current->capture_control = NULL; 2306 2307 return ret; 2308 } 2309 2310 int sysctl_extfrag_threshold = 500; 2311 2312 /** 2313 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2314 * @gfp_mask: The GFP mask of the current allocation 2315 * @order: The order of the current allocation 2316 * @alloc_flags: The allocation flags of the current allocation 2317 * @ac: The context of current allocation 2318 * @prio: Determines how hard direct compaction should try to succeed 2319 * 2320 * This is the main entry point for direct page compaction. 2321 */ 2322 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2323 unsigned int alloc_flags, const struct alloc_context *ac, 2324 enum compact_priority prio, struct page **capture) 2325 { 2326 int may_perform_io = gfp_mask & __GFP_IO; 2327 struct zoneref *z; 2328 struct zone *zone; 2329 enum compact_result rc = COMPACT_SKIPPED; 2330 2331 /* 2332 * Check if the GFP flags allow compaction - GFP_NOIO is really 2333 * tricky context because the migration might require IO 2334 */ 2335 if (!may_perform_io) 2336 return COMPACT_SKIPPED; 2337 2338 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2339 2340 /* Compact each zone in the list */ 2341 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2342 ac->nodemask) { 2343 enum compact_result status; 2344 2345 if (prio > MIN_COMPACT_PRIORITY 2346 && compaction_deferred(zone, order)) { 2347 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2348 continue; 2349 } 2350 2351 status = compact_zone_order(zone, order, gfp_mask, prio, 2352 alloc_flags, ac_classzone_idx(ac), capture); 2353 rc = max(status, rc); 2354 2355 /* The allocation should succeed, stop compacting */ 2356 if (status == COMPACT_SUCCESS) { 2357 /* 2358 * We think the allocation will succeed in this zone, 2359 * but it is not certain, hence the false. The caller 2360 * will repeat this with true if allocation indeed 2361 * succeeds in this zone. 2362 */ 2363 compaction_defer_reset(zone, order, false); 2364 2365 break; 2366 } 2367 2368 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2369 status == COMPACT_PARTIAL_SKIPPED)) 2370 /* 2371 * We think that allocation won't succeed in this zone 2372 * so we defer compaction there. If it ends up 2373 * succeeding after all, it will be reset. 2374 */ 2375 defer_compaction(zone, order); 2376 2377 /* 2378 * We might have stopped compacting due to need_resched() in 2379 * async compaction, or due to a fatal signal detected. In that 2380 * case do not try further zones 2381 */ 2382 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2383 || fatal_signal_pending(current)) 2384 break; 2385 } 2386 2387 return rc; 2388 } 2389 2390 2391 /* Compact all zones within a node */ 2392 static void compact_node(int nid) 2393 { 2394 pg_data_t *pgdat = NODE_DATA(nid); 2395 int zoneid; 2396 struct zone *zone; 2397 struct compact_control cc = { 2398 .order = -1, 2399 .total_migrate_scanned = 0, 2400 .total_free_scanned = 0, 2401 .mode = MIGRATE_SYNC, 2402 .ignore_skip_hint = true, 2403 .whole_zone = true, 2404 .gfp_mask = GFP_KERNEL, 2405 }; 2406 2407 2408 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2409 2410 zone = &pgdat->node_zones[zoneid]; 2411 if (!populated_zone(zone)) 2412 continue; 2413 2414 cc.nr_freepages = 0; 2415 cc.nr_migratepages = 0; 2416 cc.zone = zone; 2417 INIT_LIST_HEAD(&cc.freepages); 2418 INIT_LIST_HEAD(&cc.migratepages); 2419 2420 compact_zone(&cc, NULL); 2421 2422 VM_BUG_ON(!list_empty(&cc.freepages)); 2423 VM_BUG_ON(!list_empty(&cc.migratepages)); 2424 } 2425 } 2426 2427 /* Compact all nodes in the system */ 2428 static void compact_nodes(void) 2429 { 2430 int nid; 2431 2432 /* Flush pending updates to the LRU lists */ 2433 lru_add_drain_all(); 2434 2435 for_each_online_node(nid) 2436 compact_node(nid); 2437 } 2438 2439 /* The written value is actually unused, all memory is compacted */ 2440 int sysctl_compact_memory; 2441 2442 /* 2443 * This is the entry point for compacting all nodes via 2444 * /proc/sys/vm/compact_memory 2445 */ 2446 int sysctl_compaction_handler(struct ctl_table *table, int write, 2447 void __user *buffer, size_t *length, loff_t *ppos) 2448 { 2449 if (write) 2450 compact_nodes(); 2451 2452 return 0; 2453 } 2454 2455 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2456 static ssize_t sysfs_compact_node(struct device *dev, 2457 struct device_attribute *attr, 2458 const char *buf, size_t count) 2459 { 2460 int nid = dev->id; 2461 2462 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2463 /* Flush pending updates to the LRU lists */ 2464 lru_add_drain_all(); 2465 2466 compact_node(nid); 2467 } 2468 2469 return count; 2470 } 2471 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2472 2473 int compaction_register_node(struct node *node) 2474 { 2475 return device_create_file(&node->dev, &dev_attr_compact); 2476 } 2477 2478 void compaction_unregister_node(struct node *node) 2479 { 2480 return device_remove_file(&node->dev, &dev_attr_compact); 2481 } 2482 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2483 2484 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2485 { 2486 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2487 } 2488 2489 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2490 { 2491 int zoneid; 2492 struct zone *zone; 2493 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2494 2495 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2496 zone = &pgdat->node_zones[zoneid]; 2497 2498 if (!populated_zone(zone)) 2499 continue; 2500 2501 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2502 classzone_idx) == COMPACT_CONTINUE) 2503 return true; 2504 } 2505 2506 return false; 2507 } 2508 2509 static void kcompactd_do_work(pg_data_t *pgdat) 2510 { 2511 /* 2512 * With no special task, compact all zones so that a page of requested 2513 * order is allocatable. 2514 */ 2515 int zoneid; 2516 struct zone *zone; 2517 struct compact_control cc = { 2518 .order = pgdat->kcompactd_max_order, 2519 .search_order = pgdat->kcompactd_max_order, 2520 .total_migrate_scanned = 0, 2521 .total_free_scanned = 0, 2522 .classzone_idx = pgdat->kcompactd_classzone_idx, 2523 .mode = MIGRATE_SYNC_LIGHT, 2524 .ignore_skip_hint = false, 2525 .gfp_mask = GFP_KERNEL, 2526 }; 2527 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2528 cc.classzone_idx); 2529 count_compact_event(KCOMPACTD_WAKE); 2530 2531 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2532 int status; 2533 2534 zone = &pgdat->node_zones[zoneid]; 2535 if (!populated_zone(zone)) 2536 continue; 2537 2538 if (compaction_deferred(zone, cc.order)) 2539 continue; 2540 2541 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2542 COMPACT_CONTINUE) 2543 continue; 2544 2545 cc.nr_freepages = 0; 2546 cc.nr_migratepages = 0; 2547 cc.total_migrate_scanned = 0; 2548 cc.total_free_scanned = 0; 2549 cc.zone = zone; 2550 INIT_LIST_HEAD(&cc.freepages); 2551 INIT_LIST_HEAD(&cc.migratepages); 2552 2553 if (kthread_should_stop()) 2554 return; 2555 status = compact_zone(&cc, NULL); 2556 2557 if (status == COMPACT_SUCCESS) { 2558 compaction_defer_reset(zone, cc.order, false); 2559 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2560 /* 2561 * Buddy pages may become stranded on pcps that could 2562 * otherwise coalesce on the zone's free area for 2563 * order >= cc.order. This is ratelimited by the 2564 * upcoming deferral. 2565 */ 2566 drain_all_pages(zone); 2567 2568 /* 2569 * We use sync migration mode here, so we defer like 2570 * sync direct compaction does. 2571 */ 2572 defer_compaction(zone, cc.order); 2573 } 2574 2575 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2576 cc.total_migrate_scanned); 2577 count_compact_events(KCOMPACTD_FREE_SCANNED, 2578 cc.total_free_scanned); 2579 2580 VM_BUG_ON(!list_empty(&cc.freepages)); 2581 VM_BUG_ON(!list_empty(&cc.migratepages)); 2582 } 2583 2584 /* 2585 * Regardless of success, we are done until woken up next. But remember 2586 * the requested order/classzone_idx in case it was higher/tighter than 2587 * our current ones 2588 */ 2589 if (pgdat->kcompactd_max_order <= cc.order) 2590 pgdat->kcompactd_max_order = 0; 2591 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2592 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2593 } 2594 2595 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2596 { 2597 if (!order) 2598 return; 2599 2600 if (pgdat->kcompactd_max_order < order) 2601 pgdat->kcompactd_max_order = order; 2602 2603 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2604 pgdat->kcompactd_classzone_idx = classzone_idx; 2605 2606 /* 2607 * Pairs with implicit barrier in wait_event_freezable() 2608 * such that wakeups are not missed. 2609 */ 2610 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2611 return; 2612 2613 if (!kcompactd_node_suitable(pgdat)) 2614 return; 2615 2616 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2617 classzone_idx); 2618 wake_up_interruptible(&pgdat->kcompactd_wait); 2619 } 2620 2621 /* 2622 * The background compaction daemon, started as a kernel thread 2623 * from the init process. 2624 */ 2625 static int kcompactd(void *p) 2626 { 2627 pg_data_t *pgdat = (pg_data_t*)p; 2628 struct task_struct *tsk = current; 2629 2630 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2631 2632 if (!cpumask_empty(cpumask)) 2633 set_cpus_allowed_ptr(tsk, cpumask); 2634 2635 set_freezable(); 2636 2637 pgdat->kcompactd_max_order = 0; 2638 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2639 2640 while (!kthread_should_stop()) { 2641 unsigned long pflags; 2642 2643 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2644 wait_event_freezable(pgdat->kcompactd_wait, 2645 kcompactd_work_requested(pgdat)); 2646 2647 psi_memstall_enter(&pflags); 2648 kcompactd_do_work(pgdat); 2649 psi_memstall_leave(&pflags); 2650 } 2651 2652 return 0; 2653 } 2654 2655 /* 2656 * This kcompactd start function will be called by init and node-hot-add. 2657 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2658 */ 2659 int kcompactd_run(int nid) 2660 { 2661 pg_data_t *pgdat = NODE_DATA(nid); 2662 int ret = 0; 2663 2664 if (pgdat->kcompactd) 2665 return 0; 2666 2667 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2668 if (IS_ERR(pgdat->kcompactd)) { 2669 pr_err("Failed to start kcompactd on node %d\n", nid); 2670 ret = PTR_ERR(pgdat->kcompactd); 2671 pgdat->kcompactd = NULL; 2672 } 2673 return ret; 2674 } 2675 2676 /* 2677 * Called by memory hotplug when all memory in a node is offlined. Caller must 2678 * hold mem_hotplug_begin/end(). 2679 */ 2680 void kcompactd_stop(int nid) 2681 { 2682 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2683 2684 if (kcompactd) { 2685 kthread_stop(kcompactd); 2686 NODE_DATA(nid)->kcompactd = NULL; 2687 } 2688 } 2689 2690 /* 2691 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2692 * not required for correctness. So if the last cpu in a node goes 2693 * away, we get changed to run anywhere: as the first one comes back, 2694 * restore their cpu bindings. 2695 */ 2696 static int kcompactd_cpu_online(unsigned int cpu) 2697 { 2698 int nid; 2699 2700 for_each_node_state(nid, N_MEMORY) { 2701 pg_data_t *pgdat = NODE_DATA(nid); 2702 const struct cpumask *mask; 2703 2704 mask = cpumask_of_node(pgdat->node_id); 2705 2706 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2707 /* One of our CPUs online: restore mask */ 2708 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2709 } 2710 return 0; 2711 } 2712 2713 static int __init kcompactd_init(void) 2714 { 2715 int nid; 2716 int ret; 2717 2718 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2719 "mm/compaction:online", 2720 kcompactd_cpu_online, NULL); 2721 if (ret < 0) { 2722 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2723 return ret; 2724 } 2725 2726 for_each_node_state(nid, N_MEMORY) 2727 kcompactd_run(nid); 2728 return 0; 2729 } 2730 subsys_initcall(kcompactd_init) 2731 2732 #endif /* CONFIG_COMPACTION */ 2733