1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/page-isolation.h> 19 #include <linux/kasan.h> 20 #include <linux/kthread.h> 21 #include <linux/freezer.h> 22 #include <linux/page_owner.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 49 50 static unsigned long release_freepages(struct list_head *freelist) 51 { 52 struct page *page, *next; 53 unsigned long high_pfn = 0; 54 55 list_for_each_entry_safe(page, next, freelist, lru) { 56 unsigned long pfn = page_to_pfn(page); 57 list_del(&page->lru); 58 __free_page(page); 59 if (pfn > high_pfn) 60 high_pfn = pfn; 61 } 62 63 return high_pfn; 64 } 65 66 static void map_pages(struct list_head *list) 67 { 68 unsigned int i, order, nr_pages; 69 struct page *page, *next; 70 LIST_HEAD(tmp_list); 71 72 list_for_each_entry_safe(page, next, list, lru) { 73 list_del(&page->lru); 74 75 order = page_private(page); 76 nr_pages = 1 << order; 77 78 post_alloc_hook(page, order, __GFP_MOVABLE); 79 if (order) 80 split_page(page, order); 81 82 for (i = 0; i < nr_pages; i++) { 83 list_add(&page->lru, &tmp_list); 84 page++; 85 } 86 } 87 88 list_splice(&tmp_list, list); 89 } 90 91 static inline bool migrate_async_suitable(int migratetype) 92 { 93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 94 } 95 96 #ifdef CONFIG_COMPACTION 97 98 int PageMovable(struct page *page) 99 { 100 struct address_space *mapping; 101 102 VM_BUG_ON_PAGE(!PageLocked(page), page); 103 if (!__PageMovable(page)) 104 return 0; 105 106 mapping = page_mapping(page); 107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 108 return 1; 109 110 return 0; 111 } 112 EXPORT_SYMBOL(PageMovable); 113 114 void __SetPageMovable(struct page *page, struct address_space *mapping) 115 { 116 VM_BUG_ON_PAGE(!PageLocked(page), page); 117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 119 } 120 EXPORT_SYMBOL(__SetPageMovable); 121 122 void __ClearPageMovable(struct page *page) 123 { 124 VM_BUG_ON_PAGE(!PageLocked(page), page); 125 VM_BUG_ON_PAGE(!PageMovable(page), page); 126 /* 127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 128 * flag so that VM can catch up released page by driver after isolation. 129 * With it, VM migration doesn't try to put it back. 130 */ 131 page->mapping = (void *)((unsigned long)page->mapping & 132 PAGE_MAPPING_MOVABLE); 133 } 134 EXPORT_SYMBOL(__ClearPageMovable); 135 136 /* Do not skip compaction more than 64 times */ 137 #define COMPACT_MAX_DEFER_SHIFT 6 138 139 /* 140 * Compaction is deferred when compaction fails to result in a page 141 * allocation success. 1 << compact_defer_limit compactions are skipped up 142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 143 */ 144 void defer_compaction(struct zone *zone, int order) 145 { 146 zone->compact_considered = 0; 147 zone->compact_defer_shift++; 148 149 if (order < zone->compact_order_failed) 150 zone->compact_order_failed = order; 151 152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 154 155 trace_mm_compaction_defer_compaction(zone, order); 156 } 157 158 /* Returns true if compaction should be skipped this time */ 159 bool compaction_deferred(struct zone *zone, int order) 160 { 161 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 162 163 if (order < zone->compact_order_failed) 164 return false; 165 166 /* Avoid possible overflow */ 167 if (++zone->compact_considered > defer_limit) 168 zone->compact_considered = defer_limit; 169 170 if (zone->compact_considered >= defer_limit) 171 return false; 172 173 trace_mm_compaction_deferred(zone, order); 174 175 return true; 176 } 177 178 /* 179 * Update defer tracking counters after successful compaction of given order, 180 * which means an allocation either succeeded (alloc_success == true) or is 181 * expected to succeed. 182 */ 183 void compaction_defer_reset(struct zone *zone, int order, 184 bool alloc_success) 185 { 186 if (alloc_success) { 187 zone->compact_considered = 0; 188 zone->compact_defer_shift = 0; 189 } 190 if (order >= zone->compact_order_failed) 191 zone->compact_order_failed = order + 1; 192 193 trace_mm_compaction_defer_reset(zone, order); 194 } 195 196 /* Returns true if restarting compaction after many failures */ 197 bool compaction_restarting(struct zone *zone, int order) 198 { 199 if (order < zone->compact_order_failed) 200 return false; 201 202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 203 zone->compact_considered >= 1UL << zone->compact_defer_shift; 204 } 205 206 /* Returns true if the pageblock should be scanned for pages to isolate. */ 207 static inline bool isolation_suitable(struct compact_control *cc, 208 struct page *page) 209 { 210 if (cc->ignore_skip_hint) 211 return true; 212 213 return !get_pageblock_skip(page); 214 } 215 216 static void reset_cached_positions(struct zone *zone) 217 { 218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 220 zone->compact_cached_free_pfn = 221 pageblock_start_pfn(zone_end_pfn(zone) - 1); 222 } 223 224 /* 225 * This function is called to clear all cached information on pageblocks that 226 * should be skipped for page isolation when the migrate and free page scanner 227 * meet. 228 */ 229 static void __reset_isolation_suitable(struct zone *zone) 230 { 231 unsigned long start_pfn = zone->zone_start_pfn; 232 unsigned long end_pfn = zone_end_pfn(zone); 233 unsigned long pfn; 234 235 zone->compact_blockskip_flush = false; 236 237 /* Walk the zone and mark every pageblock as suitable for isolation */ 238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 239 struct page *page; 240 241 cond_resched(); 242 243 if (!pfn_valid(pfn)) 244 continue; 245 246 page = pfn_to_page(pfn); 247 if (zone != page_zone(page)) 248 continue; 249 250 clear_pageblock_skip(page); 251 } 252 253 reset_cached_positions(zone); 254 } 255 256 void reset_isolation_suitable(pg_data_t *pgdat) 257 { 258 int zoneid; 259 260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 261 struct zone *zone = &pgdat->node_zones[zoneid]; 262 if (!populated_zone(zone)) 263 continue; 264 265 /* Only flush if a full compaction finished recently */ 266 if (zone->compact_blockskip_flush) 267 __reset_isolation_suitable(zone); 268 } 269 } 270 271 /* 272 * If no pages were isolated then mark this pageblock to be skipped in the 273 * future. The information is later cleared by __reset_isolation_suitable(). 274 */ 275 static void update_pageblock_skip(struct compact_control *cc, 276 struct page *page, unsigned long nr_isolated, 277 bool migrate_scanner) 278 { 279 struct zone *zone = cc->zone; 280 unsigned long pfn; 281 282 if (cc->ignore_skip_hint) 283 return; 284 285 if (!page) 286 return; 287 288 if (nr_isolated) 289 return; 290 291 set_pageblock_skip(page); 292 293 pfn = page_to_pfn(page); 294 295 /* Update where async and sync compaction should restart */ 296 if (migrate_scanner) { 297 if (pfn > zone->compact_cached_migrate_pfn[0]) 298 zone->compact_cached_migrate_pfn[0] = pfn; 299 if (cc->mode != MIGRATE_ASYNC && 300 pfn > zone->compact_cached_migrate_pfn[1]) 301 zone->compact_cached_migrate_pfn[1] = pfn; 302 } else { 303 if (pfn < zone->compact_cached_free_pfn) 304 zone->compact_cached_free_pfn = pfn; 305 } 306 } 307 #else 308 static inline bool isolation_suitable(struct compact_control *cc, 309 struct page *page) 310 { 311 return true; 312 } 313 314 static void update_pageblock_skip(struct compact_control *cc, 315 struct page *page, unsigned long nr_isolated, 316 bool migrate_scanner) 317 { 318 } 319 #endif /* CONFIG_COMPACTION */ 320 321 /* 322 * Compaction requires the taking of some coarse locks that are potentially 323 * very heavily contended. For async compaction, back out if the lock cannot 324 * be taken immediately. For sync compaction, spin on the lock if needed. 325 * 326 * Returns true if the lock is held 327 * Returns false if the lock is not held and compaction should abort 328 */ 329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 330 struct compact_control *cc) 331 { 332 if (cc->mode == MIGRATE_ASYNC) { 333 if (!spin_trylock_irqsave(lock, *flags)) { 334 cc->contended = true; 335 return false; 336 } 337 } else { 338 spin_lock_irqsave(lock, *flags); 339 } 340 341 return true; 342 } 343 344 /* 345 * Compaction requires the taking of some coarse locks that are potentially 346 * very heavily contended. The lock should be periodically unlocked to avoid 347 * having disabled IRQs for a long time, even when there is nobody waiting on 348 * the lock. It might also be that allowing the IRQs will result in 349 * need_resched() becoming true. If scheduling is needed, async compaction 350 * aborts. Sync compaction schedules. 351 * Either compaction type will also abort if a fatal signal is pending. 352 * In either case if the lock was locked, it is dropped and not regained. 353 * 354 * Returns true if compaction should abort due to fatal signal pending, or 355 * async compaction due to need_resched() 356 * Returns false when compaction can continue (sync compaction might have 357 * scheduled) 358 */ 359 static bool compact_unlock_should_abort(spinlock_t *lock, 360 unsigned long flags, bool *locked, struct compact_control *cc) 361 { 362 if (*locked) { 363 spin_unlock_irqrestore(lock, flags); 364 *locked = false; 365 } 366 367 if (fatal_signal_pending(current)) { 368 cc->contended = true; 369 return true; 370 } 371 372 if (need_resched()) { 373 if (cc->mode == MIGRATE_ASYNC) { 374 cc->contended = true; 375 return true; 376 } 377 cond_resched(); 378 } 379 380 return false; 381 } 382 383 /* 384 * Aside from avoiding lock contention, compaction also periodically checks 385 * need_resched() and either schedules in sync compaction or aborts async 386 * compaction. This is similar to what compact_unlock_should_abort() does, but 387 * is used where no lock is concerned. 388 * 389 * Returns false when no scheduling was needed, or sync compaction scheduled. 390 * Returns true when async compaction should abort. 391 */ 392 static inline bool compact_should_abort(struct compact_control *cc) 393 { 394 /* async compaction aborts if contended */ 395 if (need_resched()) { 396 if (cc->mode == MIGRATE_ASYNC) { 397 cc->contended = true; 398 return true; 399 } 400 401 cond_resched(); 402 } 403 404 return false; 405 } 406 407 /* 408 * Isolate free pages onto a private freelist. If @strict is true, will abort 409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 410 * (even though it may still end up isolating some pages). 411 */ 412 static unsigned long isolate_freepages_block(struct compact_control *cc, 413 unsigned long *start_pfn, 414 unsigned long end_pfn, 415 struct list_head *freelist, 416 bool strict) 417 { 418 int nr_scanned = 0, total_isolated = 0; 419 struct page *cursor, *valid_page = NULL; 420 unsigned long flags = 0; 421 bool locked = false; 422 unsigned long blockpfn = *start_pfn; 423 unsigned int order; 424 425 cursor = pfn_to_page(blockpfn); 426 427 /* Isolate free pages. */ 428 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 429 int isolated; 430 struct page *page = cursor; 431 432 /* 433 * Periodically drop the lock (if held) regardless of its 434 * contention, to give chance to IRQs. Abort if fatal signal 435 * pending or async compaction detects need_resched() 436 */ 437 if (!(blockpfn % SWAP_CLUSTER_MAX) 438 && compact_unlock_should_abort(&cc->zone->lock, flags, 439 &locked, cc)) 440 break; 441 442 nr_scanned++; 443 if (!pfn_valid_within(blockpfn)) 444 goto isolate_fail; 445 446 if (!valid_page) 447 valid_page = page; 448 449 /* 450 * For compound pages such as THP and hugetlbfs, we can save 451 * potentially a lot of iterations if we skip them at once. 452 * The check is racy, but we can consider only valid values 453 * and the only danger is skipping too much. 454 */ 455 if (PageCompound(page)) { 456 unsigned int comp_order = compound_order(page); 457 458 if (likely(comp_order < MAX_ORDER)) { 459 blockpfn += (1UL << comp_order) - 1; 460 cursor += (1UL << comp_order) - 1; 461 } 462 463 goto isolate_fail; 464 } 465 466 if (!PageBuddy(page)) 467 goto isolate_fail; 468 469 /* 470 * If we already hold the lock, we can skip some rechecking. 471 * Note that if we hold the lock now, checked_pageblock was 472 * already set in some previous iteration (or strict is true), 473 * so it is correct to skip the suitable migration target 474 * recheck as well. 475 */ 476 if (!locked) { 477 /* 478 * The zone lock must be held to isolate freepages. 479 * Unfortunately this is a very coarse lock and can be 480 * heavily contended if there are parallel allocations 481 * or parallel compactions. For async compaction do not 482 * spin on the lock and we acquire the lock as late as 483 * possible. 484 */ 485 locked = compact_trylock_irqsave(&cc->zone->lock, 486 &flags, cc); 487 if (!locked) 488 break; 489 490 /* Recheck this is a buddy page under lock */ 491 if (!PageBuddy(page)) 492 goto isolate_fail; 493 } 494 495 /* Found a free page, will break it into order-0 pages */ 496 order = page_order(page); 497 isolated = __isolate_free_page(page, order); 498 if (!isolated) 499 break; 500 set_page_private(page, order); 501 502 total_isolated += isolated; 503 cc->nr_freepages += isolated; 504 list_add_tail(&page->lru, freelist); 505 506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 507 blockpfn += isolated; 508 break; 509 } 510 /* Advance to the end of split page */ 511 blockpfn += isolated - 1; 512 cursor += isolated - 1; 513 continue; 514 515 isolate_fail: 516 if (strict) 517 break; 518 else 519 continue; 520 521 } 522 523 if (locked) 524 spin_unlock_irqrestore(&cc->zone->lock, flags); 525 526 /* 527 * There is a tiny chance that we have read bogus compound_order(), 528 * so be careful to not go outside of the pageblock. 529 */ 530 if (unlikely(blockpfn > end_pfn)) 531 blockpfn = end_pfn; 532 533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 534 nr_scanned, total_isolated); 535 536 /* Record how far we have got within the block */ 537 *start_pfn = blockpfn; 538 539 /* 540 * If strict isolation is requested by CMA then check that all the 541 * pages requested were isolated. If there were any failures, 0 is 542 * returned and CMA will fail. 543 */ 544 if (strict && blockpfn < end_pfn) 545 total_isolated = 0; 546 547 /* Update the pageblock-skip if the whole pageblock was scanned */ 548 if (blockpfn == end_pfn) 549 update_pageblock_skip(cc, valid_page, total_isolated, false); 550 551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 552 if (total_isolated) 553 count_compact_events(COMPACTISOLATED, total_isolated); 554 return total_isolated; 555 } 556 557 /** 558 * isolate_freepages_range() - isolate free pages. 559 * @start_pfn: The first PFN to start isolating. 560 * @end_pfn: The one-past-last PFN. 561 * 562 * Non-free pages, invalid PFNs, or zone boundaries within the 563 * [start_pfn, end_pfn) range are considered errors, cause function to 564 * undo its actions and return zero. 565 * 566 * Otherwise, function returns one-past-the-last PFN of isolated page 567 * (which may be greater then end_pfn if end fell in a middle of 568 * a free page). 569 */ 570 unsigned long 571 isolate_freepages_range(struct compact_control *cc, 572 unsigned long start_pfn, unsigned long end_pfn) 573 { 574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 575 LIST_HEAD(freelist); 576 577 pfn = start_pfn; 578 block_start_pfn = pageblock_start_pfn(pfn); 579 if (block_start_pfn < cc->zone->zone_start_pfn) 580 block_start_pfn = cc->zone->zone_start_pfn; 581 block_end_pfn = pageblock_end_pfn(pfn); 582 583 for (; pfn < end_pfn; pfn += isolated, 584 block_start_pfn = block_end_pfn, 585 block_end_pfn += pageblock_nr_pages) { 586 /* Protect pfn from changing by isolate_freepages_block */ 587 unsigned long isolate_start_pfn = pfn; 588 589 block_end_pfn = min(block_end_pfn, end_pfn); 590 591 /* 592 * pfn could pass the block_end_pfn if isolated freepage 593 * is more than pageblock order. In this case, we adjust 594 * scanning range to right one. 595 */ 596 if (pfn >= block_end_pfn) { 597 block_start_pfn = pageblock_start_pfn(pfn); 598 block_end_pfn = pageblock_end_pfn(pfn); 599 block_end_pfn = min(block_end_pfn, end_pfn); 600 } 601 602 if (!pageblock_pfn_to_page(block_start_pfn, 603 block_end_pfn, cc->zone)) 604 break; 605 606 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 607 block_end_pfn, &freelist, true); 608 609 /* 610 * In strict mode, isolate_freepages_block() returns 0 if 611 * there are any holes in the block (ie. invalid PFNs or 612 * non-free pages). 613 */ 614 if (!isolated) 615 break; 616 617 /* 618 * If we managed to isolate pages, it is always (1 << n) * 619 * pageblock_nr_pages for some non-negative n. (Max order 620 * page may span two pageblocks). 621 */ 622 } 623 624 /* __isolate_free_page() does not map the pages */ 625 map_pages(&freelist); 626 627 if (pfn < end_pfn) { 628 /* Loop terminated early, cleanup. */ 629 release_freepages(&freelist); 630 return 0; 631 } 632 633 /* We don't use freelists for anything. */ 634 return pfn; 635 } 636 637 /* Update the number of anon and file isolated pages in the zone */ 638 static void acct_isolated(struct zone *zone, struct compact_control *cc) 639 { 640 struct page *page; 641 unsigned int count[2] = { 0, }; 642 643 if (list_empty(&cc->migratepages)) 644 return; 645 646 list_for_each_entry(page, &cc->migratepages, lru) 647 count[!!page_is_file_cache(page)]++; 648 649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]); 650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]); 651 } 652 653 /* Similar to reclaim, but different enough that they don't share logic */ 654 static bool too_many_isolated(struct zone *zone) 655 { 656 unsigned long active, inactive, isolated; 657 658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 664 665 return isolated > (inactive + active) / 2; 666 } 667 668 /** 669 * isolate_migratepages_block() - isolate all migrate-able pages within 670 * a single pageblock 671 * @cc: Compaction control structure. 672 * @low_pfn: The first PFN to isolate 673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 674 * @isolate_mode: Isolation mode to be used. 675 * 676 * Isolate all pages that can be migrated from the range specified by 677 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 678 * Returns zero if there is a fatal signal pending, otherwise PFN of the 679 * first page that was not scanned (which may be both less, equal to or more 680 * than end_pfn). 681 * 682 * The pages are isolated on cc->migratepages list (not required to be empty), 683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 684 * is neither read nor updated. 685 */ 686 static unsigned long 687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 688 unsigned long end_pfn, isolate_mode_t isolate_mode) 689 { 690 struct zone *zone = cc->zone; 691 unsigned long nr_scanned = 0, nr_isolated = 0; 692 struct lruvec *lruvec; 693 unsigned long flags = 0; 694 bool locked = false; 695 struct page *page = NULL, *valid_page = NULL; 696 unsigned long start_pfn = low_pfn; 697 bool skip_on_failure = false; 698 unsigned long next_skip_pfn = 0; 699 700 /* 701 * Ensure that there are not too many pages isolated from the LRU 702 * list by either parallel reclaimers or compaction. If there are, 703 * delay for some time until fewer pages are isolated 704 */ 705 while (unlikely(too_many_isolated(zone))) { 706 /* async migration should just abort */ 707 if (cc->mode == MIGRATE_ASYNC) 708 return 0; 709 710 congestion_wait(BLK_RW_ASYNC, HZ/10); 711 712 if (fatal_signal_pending(current)) 713 return 0; 714 } 715 716 if (compact_should_abort(cc)) 717 return 0; 718 719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 720 skip_on_failure = true; 721 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 722 } 723 724 /* Time to isolate some pages for migration */ 725 for (; low_pfn < end_pfn; low_pfn++) { 726 727 if (skip_on_failure && low_pfn >= next_skip_pfn) { 728 /* 729 * We have isolated all migration candidates in the 730 * previous order-aligned block, and did not skip it due 731 * to failure. We should migrate the pages now and 732 * hopefully succeed compaction. 733 */ 734 if (nr_isolated) 735 break; 736 737 /* 738 * We failed to isolate in the previous order-aligned 739 * block. Set the new boundary to the end of the 740 * current block. Note we can't simply increase 741 * next_skip_pfn by 1 << order, as low_pfn might have 742 * been incremented by a higher number due to skipping 743 * a compound or a high-order buddy page in the 744 * previous loop iteration. 745 */ 746 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 747 } 748 749 /* 750 * Periodically drop the lock (if held) regardless of its 751 * contention, to give chance to IRQs. Abort async compaction 752 * if contended. 753 */ 754 if (!(low_pfn % SWAP_CLUSTER_MAX) 755 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 756 &locked, cc)) 757 break; 758 759 if (!pfn_valid_within(low_pfn)) 760 goto isolate_fail; 761 nr_scanned++; 762 763 page = pfn_to_page(low_pfn); 764 765 if (!valid_page) 766 valid_page = page; 767 768 /* 769 * Skip if free. We read page order here without zone lock 770 * which is generally unsafe, but the race window is small and 771 * the worst thing that can happen is that we skip some 772 * potential isolation targets. 773 */ 774 if (PageBuddy(page)) { 775 unsigned long freepage_order = page_order_unsafe(page); 776 777 /* 778 * Without lock, we cannot be sure that what we got is 779 * a valid page order. Consider only values in the 780 * valid order range to prevent low_pfn overflow. 781 */ 782 if (freepage_order > 0 && freepage_order < MAX_ORDER) 783 low_pfn += (1UL << freepage_order) - 1; 784 continue; 785 } 786 787 /* 788 * Regardless of being on LRU, compound pages such as THP and 789 * hugetlbfs are not to be compacted. We can potentially save 790 * a lot of iterations if we skip them at once. The check is 791 * racy, but we can consider only valid values and the only 792 * danger is skipping too much. 793 */ 794 if (PageCompound(page)) { 795 unsigned int comp_order = compound_order(page); 796 797 if (likely(comp_order < MAX_ORDER)) 798 low_pfn += (1UL << comp_order) - 1; 799 800 goto isolate_fail; 801 } 802 803 /* 804 * Check may be lockless but that's ok as we recheck later. 805 * It's possible to migrate LRU and non-lru movable pages. 806 * Skip any other type of page 807 */ 808 if (!PageLRU(page)) { 809 /* 810 * __PageMovable can return false positive so we need 811 * to verify it under page_lock. 812 */ 813 if (unlikely(__PageMovable(page)) && 814 !PageIsolated(page)) { 815 if (locked) { 816 spin_unlock_irqrestore(zone_lru_lock(zone), 817 flags); 818 locked = false; 819 } 820 821 if (isolate_movable_page(page, isolate_mode)) 822 goto isolate_success; 823 } 824 825 goto isolate_fail; 826 } 827 828 /* 829 * Migration will fail if an anonymous page is pinned in memory, 830 * so avoid taking lru_lock and isolating it unnecessarily in an 831 * admittedly racy check. 832 */ 833 if (!page_mapping(page) && 834 page_count(page) > page_mapcount(page)) 835 goto isolate_fail; 836 837 /* If we already hold the lock, we can skip some rechecking */ 838 if (!locked) { 839 locked = compact_trylock_irqsave(zone_lru_lock(zone), 840 &flags, cc); 841 if (!locked) 842 break; 843 844 /* Recheck PageLRU and PageCompound under lock */ 845 if (!PageLRU(page)) 846 goto isolate_fail; 847 848 /* 849 * Page become compound since the non-locked check, 850 * and it's on LRU. It can only be a THP so the order 851 * is safe to read and it's 0 for tail pages. 852 */ 853 if (unlikely(PageCompound(page))) { 854 low_pfn += (1UL << compound_order(page)) - 1; 855 goto isolate_fail; 856 } 857 } 858 859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 860 861 /* Try isolate the page */ 862 if (__isolate_lru_page(page, isolate_mode) != 0) 863 goto isolate_fail; 864 865 VM_BUG_ON_PAGE(PageCompound(page), page); 866 867 /* Successfully isolated */ 868 del_page_from_lru_list(page, lruvec, page_lru(page)); 869 870 isolate_success: 871 list_add(&page->lru, &cc->migratepages); 872 cc->nr_migratepages++; 873 nr_isolated++; 874 875 /* 876 * Record where we could have freed pages by migration and not 877 * yet flushed them to buddy allocator. 878 * - this is the lowest page that was isolated and likely be 879 * then freed by migration. 880 */ 881 if (!cc->last_migrated_pfn) 882 cc->last_migrated_pfn = low_pfn; 883 884 /* Avoid isolating too much */ 885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 886 ++low_pfn; 887 break; 888 } 889 890 continue; 891 isolate_fail: 892 if (!skip_on_failure) 893 continue; 894 895 /* 896 * We have isolated some pages, but then failed. Release them 897 * instead of migrating, as we cannot form the cc->order buddy 898 * page anyway. 899 */ 900 if (nr_isolated) { 901 if (locked) { 902 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 903 locked = false; 904 } 905 acct_isolated(zone, cc); 906 putback_movable_pages(&cc->migratepages); 907 cc->nr_migratepages = 0; 908 cc->last_migrated_pfn = 0; 909 nr_isolated = 0; 910 } 911 912 if (low_pfn < next_skip_pfn) { 913 low_pfn = next_skip_pfn - 1; 914 /* 915 * The check near the loop beginning would have updated 916 * next_skip_pfn too, but this is a bit simpler. 917 */ 918 next_skip_pfn += 1UL << cc->order; 919 } 920 } 921 922 /* 923 * The PageBuddy() check could have potentially brought us outside 924 * the range to be scanned. 925 */ 926 if (unlikely(low_pfn > end_pfn)) 927 low_pfn = end_pfn; 928 929 if (locked) 930 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 931 932 /* 933 * Update the pageblock-skip information and cached scanner pfn, 934 * if the whole pageblock was scanned without isolating any page. 935 */ 936 if (low_pfn == end_pfn) 937 update_pageblock_skip(cc, valid_page, nr_isolated, true); 938 939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 940 nr_scanned, nr_isolated); 941 942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 943 if (nr_isolated) 944 count_compact_events(COMPACTISOLATED, nr_isolated); 945 946 return low_pfn; 947 } 948 949 /** 950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 951 * @cc: Compaction control structure. 952 * @start_pfn: The first PFN to start isolating. 953 * @end_pfn: The one-past-last PFN. 954 * 955 * Returns zero if isolation fails fatally due to e.g. pending signal. 956 * Otherwise, function returns one-past-the-last PFN of isolated page 957 * (which may be greater than end_pfn if end fell in a middle of a THP page). 958 */ 959 unsigned long 960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 961 unsigned long end_pfn) 962 { 963 unsigned long pfn, block_start_pfn, block_end_pfn; 964 965 /* Scan block by block. First and last block may be incomplete */ 966 pfn = start_pfn; 967 block_start_pfn = pageblock_start_pfn(pfn); 968 if (block_start_pfn < cc->zone->zone_start_pfn) 969 block_start_pfn = cc->zone->zone_start_pfn; 970 block_end_pfn = pageblock_end_pfn(pfn); 971 972 for (; pfn < end_pfn; pfn = block_end_pfn, 973 block_start_pfn = block_end_pfn, 974 block_end_pfn += pageblock_nr_pages) { 975 976 block_end_pfn = min(block_end_pfn, end_pfn); 977 978 if (!pageblock_pfn_to_page(block_start_pfn, 979 block_end_pfn, cc->zone)) 980 continue; 981 982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 983 ISOLATE_UNEVICTABLE); 984 985 if (!pfn) 986 break; 987 988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 989 break; 990 } 991 acct_isolated(cc->zone, cc); 992 993 return pfn; 994 } 995 996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 997 #ifdef CONFIG_COMPACTION 998 999 /* Returns true if the page is within a block suitable for migration to */ 1000 static bool suitable_migration_target(struct page *page) 1001 { 1002 /* If the page is a large free page, then disallow migration */ 1003 if (PageBuddy(page)) { 1004 /* 1005 * We are checking page_order without zone->lock taken. But 1006 * the only small danger is that we skip a potentially suitable 1007 * pageblock, so it's not worth to check order for valid range. 1008 */ 1009 if (page_order_unsafe(page) >= pageblock_order) 1010 return false; 1011 } 1012 1013 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1014 if (migrate_async_suitable(get_pageblock_migratetype(page))) 1015 return true; 1016 1017 /* Otherwise skip the block */ 1018 return false; 1019 } 1020 1021 /* 1022 * Test whether the free scanner has reached the same or lower pageblock than 1023 * the migration scanner, and compaction should thus terminate. 1024 */ 1025 static inline bool compact_scanners_met(struct compact_control *cc) 1026 { 1027 return (cc->free_pfn >> pageblock_order) 1028 <= (cc->migrate_pfn >> pageblock_order); 1029 } 1030 1031 /* 1032 * Based on information in the current compact_control, find blocks 1033 * suitable for isolating free pages from and then isolate them. 1034 */ 1035 static void isolate_freepages(struct compact_control *cc) 1036 { 1037 struct zone *zone = cc->zone; 1038 struct page *page; 1039 unsigned long block_start_pfn; /* start of current pageblock */ 1040 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1041 unsigned long block_end_pfn; /* end of current pageblock */ 1042 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1043 struct list_head *freelist = &cc->freepages; 1044 1045 /* 1046 * Initialise the free scanner. The starting point is where we last 1047 * successfully isolated from, zone-cached value, or the end of the 1048 * zone when isolating for the first time. For looping we also need 1049 * this pfn aligned down to the pageblock boundary, because we do 1050 * block_start_pfn -= pageblock_nr_pages in the for loop. 1051 * For ending point, take care when isolating in last pageblock of a 1052 * a zone which ends in the middle of a pageblock. 1053 * The low boundary is the end of the pageblock the migration scanner 1054 * is using. 1055 */ 1056 isolate_start_pfn = cc->free_pfn; 1057 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1058 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1059 zone_end_pfn(zone)); 1060 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1061 1062 /* 1063 * Isolate free pages until enough are available to migrate the 1064 * pages on cc->migratepages. We stop searching if the migrate 1065 * and free page scanners meet or enough free pages are isolated. 1066 */ 1067 for (; block_start_pfn >= low_pfn; 1068 block_end_pfn = block_start_pfn, 1069 block_start_pfn -= pageblock_nr_pages, 1070 isolate_start_pfn = block_start_pfn) { 1071 /* 1072 * This can iterate a massively long zone without finding any 1073 * suitable migration targets, so periodically check if we need 1074 * to schedule, or even abort async compaction. 1075 */ 1076 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1077 && compact_should_abort(cc)) 1078 break; 1079 1080 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1081 zone); 1082 if (!page) 1083 continue; 1084 1085 /* Check the block is suitable for migration */ 1086 if (!suitable_migration_target(page)) 1087 continue; 1088 1089 /* If isolation recently failed, do not retry */ 1090 if (!isolation_suitable(cc, page)) 1091 continue; 1092 1093 /* Found a block suitable for isolating free pages from. */ 1094 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1095 freelist, false); 1096 1097 /* 1098 * If we isolated enough freepages, or aborted due to lock 1099 * contention, terminate. 1100 */ 1101 if ((cc->nr_freepages >= cc->nr_migratepages) 1102 || cc->contended) { 1103 if (isolate_start_pfn >= block_end_pfn) { 1104 /* 1105 * Restart at previous pageblock if more 1106 * freepages can be isolated next time. 1107 */ 1108 isolate_start_pfn = 1109 block_start_pfn - pageblock_nr_pages; 1110 } 1111 break; 1112 } else if (isolate_start_pfn < block_end_pfn) { 1113 /* 1114 * If isolation failed early, do not continue 1115 * needlessly. 1116 */ 1117 break; 1118 } 1119 } 1120 1121 /* __isolate_free_page() does not map the pages */ 1122 map_pages(freelist); 1123 1124 /* 1125 * Record where the free scanner will restart next time. Either we 1126 * broke from the loop and set isolate_start_pfn based on the last 1127 * call to isolate_freepages_block(), or we met the migration scanner 1128 * and the loop terminated due to isolate_start_pfn < low_pfn 1129 */ 1130 cc->free_pfn = isolate_start_pfn; 1131 } 1132 1133 /* 1134 * This is a migrate-callback that "allocates" freepages by taking pages 1135 * from the isolated freelists in the block we are migrating to. 1136 */ 1137 static struct page *compaction_alloc(struct page *migratepage, 1138 unsigned long data, 1139 int **result) 1140 { 1141 struct compact_control *cc = (struct compact_control *)data; 1142 struct page *freepage; 1143 1144 /* 1145 * Isolate free pages if necessary, and if we are not aborting due to 1146 * contention. 1147 */ 1148 if (list_empty(&cc->freepages)) { 1149 if (!cc->contended) 1150 isolate_freepages(cc); 1151 1152 if (list_empty(&cc->freepages)) 1153 return NULL; 1154 } 1155 1156 freepage = list_entry(cc->freepages.next, struct page, lru); 1157 list_del(&freepage->lru); 1158 cc->nr_freepages--; 1159 1160 return freepage; 1161 } 1162 1163 /* 1164 * This is a migrate-callback that "frees" freepages back to the isolated 1165 * freelist. All pages on the freelist are from the same zone, so there is no 1166 * special handling needed for NUMA. 1167 */ 1168 static void compaction_free(struct page *page, unsigned long data) 1169 { 1170 struct compact_control *cc = (struct compact_control *)data; 1171 1172 list_add(&page->lru, &cc->freepages); 1173 cc->nr_freepages++; 1174 } 1175 1176 /* possible outcome of isolate_migratepages */ 1177 typedef enum { 1178 ISOLATE_ABORT, /* Abort compaction now */ 1179 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1180 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1181 } isolate_migrate_t; 1182 1183 /* 1184 * Allow userspace to control policy on scanning the unevictable LRU for 1185 * compactable pages. 1186 */ 1187 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1188 1189 /* 1190 * Isolate all pages that can be migrated from the first suitable block, 1191 * starting at the block pointed to by the migrate scanner pfn within 1192 * compact_control. 1193 */ 1194 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1195 struct compact_control *cc) 1196 { 1197 unsigned long block_start_pfn; 1198 unsigned long block_end_pfn; 1199 unsigned long low_pfn; 1200 struct page *page; 1201 const isolate_mode_t isolate_mode = 1202 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1203 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1204 1205 /* 1206 * Start at where we last stopped, or beginning of the zone as 1207 * initialized by compact_zone() 1208 */ 1209 low_pfn = cc->migrate_pfn; 1210 block_start_pfn = pageblock_start_pfn(low_pfn); 1211 if (block_start_pfn < zone->zone_start_pfn) 1212 block_start_pfn = zone->zone_start_pfn; 1213 1214 /* Only scan within a pageblock boundary */ 1215 block_end_pfn = pageblock_end_pfn(low_pfn); 1216 1217 /* 1218 * Iterate over whole pageblocks until we find the first suitable. 1219 * Do not cross the free scanner. 1220 */ 1221 for (; block_end_pfn <= cc->free_pfn; 1222 low_pfn = block_end_pfn, 1223 block_start_pfn = block_end_pfn, 1224 block_end_pfn += pageblock_nr_pages) { 1225 1226 /* 1227 * This can potentially iterate a massively long zone with 1228 * many pageblocks unsuitable, so periodically check if we 1229 * need to schedule, or even abort async compaction. 1230 */ 1231 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1232 && compact_should_abort(cc)) 1233 break; 1234 1235 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1236 zone); 1237 if (!page) 1238 continue; 1239 1240 /* If isolation recently failed, do not retry */ 1241 if (!isolation_suitable(cc, page)) 1242 continue; 1243 1244 /* 1245 * For async compaction, also only scan in MOVABLE blocks. 1246 * Async compaction is optimistic to see if the minimum amount 1247 * of work satisfies the allocation. 1248 */ 1249 if (cc->mode == MIGRATE_ASYNC && 1250 !migrate_async_suitable(get_pageblock_migratetype(page))) 1251 continue; 1252 1253 /* Perform the isolation */ 1254 low_pfn = isolate_migratepages_block(cc, low_pfn, 1255 block_end_pfn, isolate_mode); 1256 1257 if (!low_pfn || cc->contended) { 1258 acct_isolated(zone, cc); 1259 return ISOLATE_ABORT; 1260 } 1261 1262 /* 1263 * Either we isolated something and proceed with migration. Or 1264 * we failed and compact_zone should decide if we should 1265 * continue or not. 1266 */ 1267 break; 1268 } 1269 1270 acct_isolated(zone, cc); 1271 /* Record where migration scanner will be restarted. */ 1272 cc->migrate_pfn = low_pfn; 1273 1274 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1275 } 1276 1277 /* 1278 * order == -1 is expected when compacting via 1279 * /proc/sys/vm/compact_memory 1280 */ 1281 static inline bool is_via_compact_memory(int order) 1282 { 1283 return order == -1; 1284 } 1285 1286 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, 1287 const int migratetype) 1288 { 1289 unsigned int order; 1290 unsigned long watermark; 1291 1292 if (cc->contended || fatal_signal_pending(current)) 1293 return COMPACT_CONTENDED; 1294 1295 /* Compaction run completes if the migrate and free scanner meet */ 1296 if (compact_scanners_met(cc)) { 1297 /* Let the next compaction start anew. */ 1298 reset_cached_positions(zone); 1299 1300 /* 1301 * Mark that the PG_migrate_skip information should be cleared 1302 * by kswapd when it goes to sleep. kcompactd does not set the 1303 * flag itself as the decision to be clear should be directly 1304 * based on an allocation request. 1305 */ 1306 if (cc->direct_compaction) 1307 zone->compact_blockskip_flush = true; 1308 1309 if (cc->whole_zone) 1310 return COMPACT_COMPLETE; 1311 else 1312 return COMPACT_PARTIAL_SKIPPED; 1313 } 1314 1315 if (is_via_compact_memory(cc->order)) 1316 return COMPACT_CONTINUE; 1317 1318 /* Compaction run is not finished if the watermark is not met */ 1319 watermark = low_wmark_pages(zone); 1320 1321 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1322 cc->alloc_flags)) 1323 return COMPACT_CONTINUE; 1324 1325 /* Direct compactor: Is a suitable page free? */ 1326 for (order = cc->order; order < MAX_ORDER; order++) { 1327 struct free_area *area = &zone->free_area[order]; 1328 bool can_steal; 1329 1330 /* Job done if page is free of the right migratetype */ 1331 if (!list_empty(&area->free_list[migratetype])) 1332 return COMPACT_PARTIAL; 1333 1334 #ifdef CONFIG_CMA 1335 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1336 if (migratetype == MIGRATE_MOVABLE && 1337 !list_empty(&area->free_list[MIGRATE_CMA])) 1338 return COMPACT_PARTIAL; 1339 #endif 1340 /* 1341 * Job done if allocation would steal freepages from 1342 * other migratetype buddy lists. 1343 */ 1344 if (find_suitable_fallback(area, order, migratetype, 1345 true, &can_steal) != -1) 1346 return COMPACT_PARTIAL; 1347 } 1348 1349 return COMPACT_NO_SUITABLE_PAGE; 1350 } 1351 1352 static enum compact_result compact_finished(struct zone *zone, 1353 struct compact_control *cc, 1354 const int migratetype) 1355 { 1356 int ret; 1357 1358 ret = __compact_finished(zone, cc, migratetype); 1359 trace_mm_compaction_finished(zone, cc->order, ret); 1360 if (ret == COMPACT_NO_SUITABLE_PAGE) 1361 ret = COMPACT_CONTINUE; 1362 1363 return ret; 1364 } 1365 1366 /* 1367 * compaction_suitable: Is this suitable to run compaction on this zone now? 1368 * Returns 1369 * COMPACT_SKIPPED - If there are too few free pages for compaction 1370 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1371 * COMPACT_CONTINUE - If compaction should run now 1372 */ 1373 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1374 unsigned int alloc_flags, 1375 int classzone_idx, 1376 unsigned long wmark_target) 1377 { 1378 int fragindex; 1379 unsigned long watermark; 1380 1381 if (is_via_compact_memory(order)) 1382 return COMPACT_CONTINUE; 1383 1384 watermark = low_wmark_pages(zone); 1385 /* 1386 * If watermarks for high-order allocation are already met, there 1387 * should be no need for compaction at all. 1388 */ 1389 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1390 alloc_flags)) 1391 return COMPACT_PARTIAL; 1392 1393 /* 1394 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1395 * This is because during migration, copies of pages need to be 1396 * allocated and for a short time, the footprint is higher 1397 */ 1398 watermark += (2UL << order); 1399 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1400 alloc_flags, wmark_target)) 1401 return COMPACT_SKIPPED; 1402 1403 /* 1404 * fragmentation index determines if allocation failures are due to 1405 * low memory or external fragmentation 1406 * 1407 * index of -1000 would imply allocations might succeed depending on 1408 * watermarks, but we already failed the high-order watermark check 1409 * index towards 0 implies failure is due to lack of memory 1410 * index towards 1000 implies failure is due to fragmentation 1411 * 1412 * Only compact if a failure would be due to fragmentation. 1413 */ 1414 fragindex = fragmentation_index(zone, order); 1415 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1416 return COMPACT_NOT_SUITABLE_ZONE; 1417 1418 return COMPACT_CONTINUE; 1419 } 1420 1421 enum compact_result compaction_suitable(struct zone *zone, int order, 1422 unsigned int alloc_flags, 1423 int classzone_idx) 1424 { 1425 enum compact_result ret; 1426 1427 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1428 zone_page_state(zone, NR_FREE_PAGES)); 1429 trace_mm_compaction_suitable(zone, order, ret); 1430 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1431 ret = COMPACT_SKIPPED; 1432 1433 return ret; 1434 } 1435 1436 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1437 int alloc_flags) 1438 { 1439 struct zone *zone; 1440 struct zoneref *z; 1441 1442 /* 1443 * Make sure at least one zone would pass __compaction_suitable if we continue 1444 * retrying the reclaim. 1445 */ 1446 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1447 ac->nodemask) { 1448 unsigned long available; 1449 enum compact_result compact_result; 1450 1451 /* 1452 * Do not consider all the reclaimable memory because we do not 1453 * want to trash just for a single high order allocation which 1454 * is even not guaranteed to appear even if __compaction_suitable 1455 * is happy about the watermark check. 1456 */ 1457 available = zone_reclaimable_pages(zone) / order; 1458 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1459 compact_result = __compaction_suitable(zone, order, alloc_flags, 1460 ac_classzone_idx(ac), available); 1461 if (compact_result != COMPACT_SKIPPED && 1462 compact_result != COMPACT_NOT_SUITABLE_ZONE) 1463 return true; 1464 } 1465 1466 return false; 1467 } 1468 1469 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1470 { 1471 enum compact_result ret; 1472 unsigned long start_pfn = zone->zone_start_pfn; 1473 unsigned long end_pfn = zone_end_pfn(zone); 1474 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1475 const bool sync = cc->mode != MIGRATE_ASYNC; 1476 1477 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1478 cc->classzone_idx); 1479 /* Compaction is likely to fail */ 1480 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED) 1481 return ret; 1482 1483 /* huh, compaction_suitable is returning something unexpected */ 1484 VM_BUG_ON(ret != COMPACT_CONTINUE); 1485 1486 /* 1487 * Clear pageblock skip if there were failures recently and compaction 1488 * is about to be retried after being deferred. 1489 */ 1490 if (compaction_restarting(zone, cc->order)) 1491 __reset_isolation_suitable(zone); 1492 1493 /* 1494 * Setup to move all movable pages to the end of the zone. Used cached 1495 * information on where the scanners should start but check that it 1496 * is initialised by ensuring the values are within zone boundaries. 1497 */ 1498 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1499 cc->free_pfn = zone->compact_cached_free_pfn; 1500 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1501 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1502 zone->compact_cached_free_pfn = cc->free_pfn; 1503 } 1504 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1505 cc->migrate_pfn = start_pfn; 1506 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1507 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1508 } 1509 1510 if (cc->migrate_pfn == start_pfn) 1511 cc->whole_zone = true; 1512 1513 cc->last_migrated_pfn = 0; 1514 1515 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1516 cc->free_pfn, end_pfn, sync); 1517 1518 migrate_prep_local(); 1519 1520 while ((ret = compact_finished(zone, cc, migratetype)) == 1521 COMPACT_CONTINUE) { 1522 int err; 1523 1524 switch (isolate_migratepages(zone, cc)) { 1525 case ISOLATE_ABORT: 1526 ret = COMPACT_CONTENDED; 1527 putback_movable_pages(&cc->migratepages); 1528 cc->nr_migratepages = 0; 1529 goto out; 1530 case ISOLATE_NONE: 1531 /* 1532 * We haven't isolated and migrated anything, but 1533 * there might still be unflushed migrations from 1534 * previous cc->order aligned block. 1535 */ 1536 goto check_drain; 1537 case ISOLATE_SUCCESS: 1538 ; 1539 } 1540 1541 err = migrate_pages(&cc->migratepages, compaction_alloc, 1542 compaction_free, (unsigned long)cc, cc->mode, 1543 MR_COMPACTION); 1544 1545 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1546 &cc->migratepages); 1547 1548 /* All pages were either migrated or will be released */ 1549 cc->nr_migratepages = 0; 1550 if (err) { 1551 putback_movable_pages(&cc->migratepages); 1552 /* 1553 * migrate_pages() may return -ENOMEM when scanners meet 1554 * and we want compact_finished() to detect it 1555 */ 1556 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1557 ret = COMPACT_CONTENDED; 1558 goto out; 1559 } 1560 /* 1561 * We failed to migrate at least one page in the current 1562 * order-aligned block, so skip the rest of it. 1563 */ 1564 if (cc->direct_compaction && 1565 (cc->mode == MIGRATE_ASYNC)) { 1566 cc->migrate_pfn = block_end_pfn( 1567 cc->migrate_pfn - 1, cc->order); 1568 /* Draining pcplists is useless in this case */ 1569 cc->last_migrated_pfn = 0; 1570 1571 } 1572 } 1573 1574 check_drain: 1575 /* 1576 * Has the migration scanner moved away from the previous 1577 * cc->order aligned block where we migrated from? If yes, 1578 * flush the pages that were freed, so that they can merge and 1579 * compact_finished() can detect immediately if allocation 1580 * would succeed. 1581 */ 1582 if (cc->order > 0 && cc->last_migrated_pfn) { 1583 int cpu; 1584 unsigned long current_block_start = 1585 block_start_pfn(cc->migrate_pfn, cc->order); 1586 1587 if (cc->last_migrated_pfn < current_block_start) { 1588 cpu = get_cpu(); 1589 lru_add_drain_cpu(cpu); 1590 drain_local_pages(zone); 1591 put_cpu(); 1592 /* No more flushing until we migrate again */ 1593 cc->last_migrated_pfn = 0; 1594 } 1595 } 1596 1597 } 1598 1599 out: 1600 /* 1601 * Release free pages and update where the free scanner should restart, 1602 * so we don't leave any returned pages behind in the next attempt. 1603 */ 1604 if (cc->nr_freepages > 0) { 1605 unsigned long free_pfn = release_freepages(&cc->freepages); 1606 1607 cc->nr_freepages = 0; 1608 VM_BUG_ON(free_pfn == 0); 1609 /* The cached pfn is always the first in a pageblock */ 1610 free_pfn = pageblock_start_pfn(free_pfn); 1611 /* 1612 * Only go back, not forward. The cached pfn might have been 1613 * already reset to zone end in compact_finished() 1614 */ 1615 if (free_pfn > zone->compact_cached_free_pfn) 1616 zone->compact_cached_free_pfn = free_pfn; 1617 } 1618 1619 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1620 cc->free_pfn, end_pfn, sync, ret); 1621 1622 return ret; 1623 } 1624 1625 static enum compact_result compact_zone_order(struct zone *zone, int order, 1626 gfp_t gfp_mask, enum compact_priority prio, 1627 unsigned int alloc_flags, int classzone_idx) 1628 { 1629 enum compact_result ret; 1630 struct compact_control cc = { 1631 .nr_freepages = 0, 1632 .nr_migratepages = 0, 1633 .order = order, 1634 .gfp_mask = gfp_mask, 1635 .zone = zone, 1636 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1637 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1638 .alloc_flags = alloc_flags, 1639 .classzone_idx = classzone_idx, 1640 .direct_compaction = true, 1641 }; 1642 INIT_LIST_HEAD(&cc.freepages); 1643 INIT_LIST_HEAD(&cc.migratepages); 1644 1645 ret = compact_zone(zone, &cc); 1646 1647 VM_BUG_ON(!list_empty(&cc.freepages)); 1648 VM_BUG_ON(!list_empty(&cc.migratepages)); 1649 1650 return ret; 1651 } 1652 1653 int sysctl_extfrag_threshold = 500; 1654 1655 /** 1656 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1657 * @gfp_mask: The GFP mask of the current allocation 1658 * @order: The order of the current allocation 1659 * @alloc_flags: The allocation flags of the current allocation 1660 * @ac: The context of current allocation 1661 * @mode: The migration mode for async, sync light, or sync migration 1662 * 1663 * This is the main entry point for direct page compaction. 1664 */ 1665 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1666 unsigned int alloc_flags, const struct alloc_context *ac, 1667 enum compact_priority prio) 1668 { 1669 int may_enter_fs = gfp_mask & __GFP_FS; 1670 int may_perform_io = gfp_mask & __GFP_IO; 1671 struct zoneref *z; 1672 struct zone *zone; 1673 enum compact_result rc = COMPACT_SKIPPED; 1674 1675 /* Check if the GFP flags allow compaction */ 1676 if (!may_enter_fs || !may_perform_io) 1677 return COMPACT_SKIPPED; 1678 1679 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1680 1681 /* Compact each zone in the list */ 1682 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1683 ac->nodemask) { 1684 enum compact_result status; 1685 1686 if (compaction_deferred(zone, order)) { 1687 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1688 continue; 1689 } 1690 1691 status = compact_zone_order(zone, order, gfp_mask, prio, 1692 alloc_flags, ac_classzone_idx(ac)); 1693 rc = max(status, rc); 1694 1695 /* If a normal allocation would succeed, stop compacting */ 1696 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1697 ac_classzone_idx(ac), alloc_flags)) { 1698 /* 1699 * We think the allocation will succeed in this zone, 1700 * but it is not certain, hence the false. The caller 1701 * will repeat this with true if allocation indeed 1702 * succeeds in this zone. 1703 */ 1704 compaction_defer_reset(zone, order, false); 1705 1706 break; 1707 } 1708 1709 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1710 status == COMPACT_PARTIAL_SKIPPED)) 1711 /* 1712 * We think that allocation won't succeed in this zone 1713 * so we defer compaction there. If it ends up 1714 * succeeding after all, it will be reset. 1715 */ 1716 defer_compaction(zone, order); 1717 1718 /* 1719 * We might have stopped compacting due to need_resched() in 1720 * async compaction, or due to a fatal signal detected. In that 1721 * case do not try further zones 1722 */ 1723 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1724 || fatal_signal_pending(current)) 1725 break; 1726 } 1727 1728 return rc; 1729 } 1730 1731 1732 /* Compact all zones within a node */ 1733 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1734 { 1735 int zoneid; 1736 struct zone *zone; 1737 1738 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1739 1740 zone = &pgdat->node_zones[zoneid]; 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 cc->nr_freepages = 0; 1745 cc->nr_migratepages = 0; 1746 cc->zone = zone; 1747 INIT_LIST_HEAD(&cc->freepages); 1748 INIT_LIST_HEAD(&cc->migratepages); 1749 1750 /* 1751 * When called via /proc/sys/vm/compact_memory 1752 * this makes sure we compact the whole zone regardless of 1753 * cached scanner positions. 1754 */ 1755 if (is_via_compact_memory(cc->order)) 1756 __reset_isolation_suitable(zone); 1757 1758 if (is_via_compact_memory(cc->order) || 1759 !compaction_deferred(zone, cc->order)) 1760 compact_zone(zone, cc); 1761 1762 VM_BUG_ON(!list_empty(&cc->freepages)); 1763 VM_BUG_ON(!list_empty(&cc->migratepages)); 1764 1765 if (is_via_compact_memory(cc->order)) 1766 continue; 1767 1768 if (zone_watermark_ok(zone, cc->order, 1769 low_wmark_pages(zone), 0, 0)) 1770 compaction_defer_reset(zone, cc->order, false); 1771 } 1772 } 1773 1774 void compact_pgdat(pg_data_t *pgdat, int order) 1775 { 1776 struct compact_control cc = { 1777 .order = order, 1778 .mode = MIGRATE_ASYNC, 1779 }; 1780 1781 if (!order) 1782 return; 1783 1784 __compact_pgdat(pgdat, &cc); 1785 } 1786 1787 static void compact_node(int nid) 1788 { 1789 struct compact_control cc = { 1790 .order = -1, 1791 .mode = MIGRATE_SYNC, 1792 .ignore_skip_hint = true, 1793 }; 1794 1795 __compact_pgdat(NODE_DATA(nid), &cc); 1796 } 1797 1798 /* Compact all nodes in the system */ 1799 static void compact_nodes(void) 1800 { 1801 int nid; 1802 1803 /* Flush pending updates to the LRU lists */ 1804 lru_add_drain_all(); 1805 1806 for_each_online_node(nid) 1807 compact_node(nid); 1808 } 1809 1810 /* The written value is actually unused, all memory is compacted */ 1811 int sysctl_compact_memory; 1812 1813 /* 1814 * This is the entry point for compacting all nodes via 1815 * /proc/sys/vm/compact_memory 1816 */ 1817 int sysctl_compaction_handler(struct ctl_table *table, int write, 1818 void __user *buffer, size_t *length, loff_t *ppos) 1819 { 1820 if (write) 1821 compact_nodes(); 1822 1823 return 0; 1824 } 1825 1826 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1827 void __user *buffer, size_t *length, loff_t *ppos) 1828 { 1829 proc_dointvec_minmax(table, write, buffer, length, ppos); 1830 1831 return 0; 1832 } 1833 1834 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1835 static ssize_t sysfs_compact_node(struct device *dev, 1836 struct device_attribute *attr, 1837 const char *buf, size_t count) 1838 { 1839 int nid = dev->id; 1840 1841 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1842 /* Flush pending updates to the LRU lists */ 1843 lru_add_drain_all(); 1844 1845 compact_node(nid); 1846 } 1847 1848 return count; 1849 } 1850 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1851 1852 int compaction_register_node(struct node *node) 1853 { 1854 return device_create_file(&node->dev, &dev_attr_compact); 1855 } 1856 1857 void compaction_unregister_node(struct node *node) 1858 { 1859 return device_remove_file(&node->dev, &dev_attr_compact); 1860 } 1861 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1862 1863 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1864 { 1865 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1866 } 1867 1868 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1869 { 1870 int zoneid; 1871 struct zone *zone; 1872 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1873 1874 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1875 zone = &pgdat->node_zones[zoneid]; 1876 1877 if (!populated_zone(zone)) 1878 continue; 1879 1880 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1881 classzone_idx) == COMPACT_CONTINUE) 1882 return true; 1883 } 1884 1885 return false; 1886 } 1887 1888 static void kcompactd_do_work(pg_data_t *pgdat) 1889 { 1890 /* 1891 * With no special task, compact all zones so that a page of requested 1892 * order is allocatable. 1893 */ 1894 int zoneid; 1895 struct zone *zone; 1896 struct compact_control cc = { 1897 .order = pgdat->kcompactd_max_order, 1898 .classzone_idx = pgdat->kcompactd_classzone_idx, 1899 .mode = MIGRATE_SYNC_LIGHT, 1900 .ignore_skip_hint = true, 1901 1902 }; 1903 bool success = false; 1904 1905 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1906 cc.classzone_idx); 1907 count_vm_event(KCOMPACTD_WAKE); 1908 1909 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1910 int status; 1911 1912 zone = &pgdat->node_zones[zoneid]; 1913 if (!populated_zone(zone)) 1914 continue; 1915 1916 if (compaction_deferred(zone, cc.order)) 1917 continue; 1918 1919 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1920 COMPACT_CONTINUE) 1921 continue; 1922 1923 cc.nr_freepages = 0; 1924 cc.nr_migratepages = 0; 1925 cc.zone = zone; 1926 INIT_LIST_HEAD(&cc.freepages); 1927 INIT_LIST_HEAD(&cc.migratepages); 1928 1929 if (kthread_should_stop()) 1930 return; 1931 status = compact_zone(zone, &cc); 1932 1933 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone), 1934 cc.classzone_idx, 0)) { 1935 success = true; 1936 compaction_defer_reset(zone, cc.order, false); 1937 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1938 /* 1939 * We use sync migration mode here, so we defer like 1940 * sync direct compaction does. 1941 */ 1942 defer_compaction(zone, cc.order); 1943 } 1944 1945 VM_BUG_ON(!list_empty(&cc.freepages)); 1946 VM_BUG_ON(!list_empty(&cc.migratepages)); 1947 } 1948 1949 /* 1950 * Regardless of success, we are done until woken up next. But remember 1951 * the requested order/classzone_idx in case it was higher/tighter than 1952 * our current ones 1953 */ 1954 if (pgdat->kcompactd_max_order <= cc.order) 1955 pgdat->kcompactd_max_order = 0; 1956 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1957 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1958 } 1959 1960 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1961 { 1962 if (!order) 1963 return; 1964 1965 if (pgdat->kcompactd_max_order < order) 1966 pgdat->kcompactd_max_order = order; 1967 1968 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1969 pgdat->kcompactd_classzone_idx = classzone_idx; 1970 1971 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1972 return; 1973 1974 if (!kcompactd_node_suitable(pgdat)) 1975 return; 1976 1977 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1978 classzone_idx); 1979 wake_up_interruptible(&pgdat->kcompactd_wait); 1980 } 1981 1982 /* 1983 * The background compaction daemon, started as a kernel thread 1984 * from the init process. 1985 */ 1986 static int kcompactd(void *p) 1987 { 1988 pg_data_t *pgdat = (pg_data_t*)p; 1989 struct task_struct *tsk = current; 1990 1991 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1992 1993 if (!cpumask_empty(cpumask)) 1994 set_cpus_allowed_ptr(tsk, cpumask); 1995 1996 set_freezable(); 1997 1998 pgdat->kcompactd_max_order = 0; 1999 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2000 2001 while (!kthread_should_stop()) { 2002 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2003 wait_event_freezable(pgdat->kcompactd_wait, 2004 kcompactd_work_requested(pgdat)); 2005 2006 kcompactd_do_work(pgdat); 2007 } 2008 2009 return 0; 2010 } 2011 2012 /* 2013 * This kcompactd start function will be called by init and node-hot-add. 2014 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2015 */ 2016 int kcompactd_run(int nid) 2017 { 2018 pg_data_t *pgdat = NODE_DATA(nid); 2019 int ret = 0; 2020 2021 if (pgdat->kcompactd) 2022 return 0; 2023 2024 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2025 if (IS_ERR(pgdat->kcompactd)) { 2026 pr_err("Failed to start kcompactd on node %d\n", nid); 2027 ret = PTR_ERR(pgdat->kcompactd); 2028 pgdat->kcompactd = NULL; 2029 } 2030 return ret; 2031 } 2032 2033 /* 2034 * Called by memory hotplug when all memory in a node is offlined. Caller must 2035 * hold mem_hotplug_begin/end(). 2036 */ 2037 void kcompactd_stop(int nid) 2038 { 2039 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2040 2041 if (kcompactd) { 2042 kthread_stop(kcompactd); 2043 NODE_DATA(nid)->kcompactd = NULL; 2044 } 2045 } 2046 2047 /* 2048 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2049 * not required for correctness. So if the last cpu in a node goes 2050 * away, we get changed to run anywhere: as the first one comes back, 2051 * restore their cpu bindings. 2052 */ 2053 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 2054 void *hcpu) 2055 { 2056 int nid; 2057 2058 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2059 for_each_node_state(nid, N_MEMORY) { 2060 pg_data_t *pgdat = NODE_DATA(nid); 2061 const struct cpumask *mask; 2062 2063 mask = cpumask_of_node(pgdat->node_id); 2064 2065 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2066 /* One of our CPUs online: restore mask */ 2067 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2068 } 2069 } 2070 return NOTIFY_OK; 2071 } 2072 2073 static int __init kcompactd_init(void) 2074 { 2075 int nid; 2076 2077 for_each_node_state(nid, N_MEMORY) 2078 kcompactd_run(nid); 2079 hotcpu_notifier(cpu_callback, 0); 2080 return 0; 2081 } 2082 subsys_initcall(kcompactd_init) 2083 2084 #endif /* CONFIG_COMPACTION */ 2085