xref: /openbmc/linux/mm/compaction.c (revision bc000245)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 					struct page *page)
74 {
75 	if (cc->ignore_skip_hint)
76 		return true;
77 
78 	return !get_pageblock_skip(page);
79 }
80 
81 /*
82  * This function is called to clear all cached information on pageblocks that
83  * should be skipped for page isolation when the migrate and free page scanner
84  * meet.
85  */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 	unsigned long start_pfn = zone->zone_start_pfn;
89 	unsigned long end_pfn = zone_end_pfn(zone);
90 	unsigned long pfn;
91 
92 	zone->compact_cached_migrate_pfn = start_pfn;
93 	zone->compact_cached_free_pfn = end_pfn;
94 	zone->compact_blockskip_flush = false;
95 
96 	/* Walk the zone and mark every pageblock as suitable for isolation */
97 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 		struct page *page;
99 
100 		cond_resched();
101 
102 		if (!pfn_valid(pfn))
103 			continue;
104 
105 		page = pfn_to_page(pfn);
106 		if (zone != page_zone(page))
107 			continue;
108 
109 		clear_pageblock_skip(page);
110 	}
111 }
112 
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 	int zoneid;
116 
117 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 		struct zone *zone = &pgdat->node_zones[zoneid];
119 		if (!populated_zone(zone))
120 			continue;
121 
122 		/* Only flush if a full compaction finished recently */
123 		if (zone->compact_blockskip_flush)
124 			__reset_isolation_suitable(zone);
125 	}
126 }
127 
128 /*
129  * If no pages were isolated then mark this pageblock to be skipped in the
130  * future. The information is later cleared by __reset_isolation_suitable().
131  */
132 static void update_pageblock_skip(struct compact_control *cc,
133 			struct page *page, unsigned long nr_isolated,
134 			bool migrate_scanner)
135 {
136 	struct zone *zone = cc->zone;
137 	if (!page)
138 		return;
139 
140 	if (!nr_isolated) {
141 		unsigned long pfn = page_to_pfn(page);
142 		set_pageblock_skip(page);
143 
144 		/* Update where compaction should restart */
145 		if (migrate_scanner) {
146 			if (!cc->finished_update_migrate &&
147 			    pfn > zone->compact_cached_migrate_pfn)
148 				zone->compact_cached_migrate_pfn = pfn;
149 		} else {
150 			if (!cc->finished_update_free &&
151 			    pfn < zone->compact_cached_free_pfn)
152 				zone->compact_cached_free_pfn = pfn;
153 		}
154 	}
155 }
156 #else
157 static inline bool isolation_suitable(struct compact_control *cc,
158 					struct page *page)
159 {
160 	return true;
161 }
162 
163 static void update_pageblock_skip(struct compact_control *cc,
164 			struct page *page, unsigned long nr_isolated,
165 			bool migrate_scanner)
166 {
167 }
168 #endif /* CONFIG_COMPACTION */
169 
170 static inline bool should_release_lock(spinlock_t *lock)
171 {
172 	return need_resched() || spin_is_contended(lock);
173 }
174 
175 /*
176  * Compaction requires the taking of some coarse locks that are potentially
177  * very heavily contended. Check if the process needs to be scheduled or
178  * if the lock is contended. For async compaction, back out in the event
179  * if contention is severe. For sync compaction, schedule.
180  *
181  * Returns true if the lock is held.
182  * Returns false if the lock is released and compaction should abort
183  */
184 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
185 				      bool locked, struct compact_control *cc)
186 {
187 	if (should_release_lock(lock)) {
188 		if (locked) {
189 			spin_unlock_irqrestore(lock, *flags);
190 			locked = false;
191 		}
192 
193 		/* async aborts if taking too long or contended */
194 		if (!cc->sync) {
195 			cc->contended = true;
196 			return false;
197 		}
198 
199 		cond_resched();
200 	}
201 
202 	if (!locked)
203 		spin_lock_irqsave(lock, *flags);
204 	return true;
205 }
206 
207 static inline bool compact_trylock_irqsave(spinlock_t *lock,
208 			unsigned long *flags, struct compact_control *cc)
209 {
210 	return compact_checklock_irqsave(lock, flags, false, cc);
211 }
212 
213 /* Returns true if the page is within a block suitable for migration to */
214 static bool suitable_migration_target(struct page *page)
215 {
216 	int migratetype = get_pageblock_migratetype(page);
217 
218 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
219 	if (migratetype == MIGRATE_RESERVE)
220 		return false;
221 
222 	if (is_migrate_isolate(migratetype))
223 		return false;
224 
225 	/* If the page is a large free page, then allow migration */
226 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
227 		return true;
228 
229 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
230 	if (migrate_async_suitable(migratetype))
231 		return true;
232 
233 	/* Otherwise skip the block */
234 	return false;
235 }
236 
237 /*
238  * Isolate free pages onto a private freelist. If @strict is true, will abort
239  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
240  * (even though it may still end up isolating some pages).
241  */
242 static unsigned long isolate_freepages_block(struct compact_control *cc,
243 				unsigned long blockpfn,
244 				unsigned long end_pfn,
245 				struct list_head *freelist,
246 				bool strict)
247 {
248 	int nr_scanned = 0, total_isolated = 0;
249 	struct page *cursor, *valid_page = NULL;
250 	unsigned long nr_strict_required = end_pfn - blockpfn;
251 	unsigned long flags;
252 	bool locked = false;
253 
254 	cursor = pfn_to_page(blockpfn);
255 
256 	/* Isolate free pages. */
257 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
258 		int isolated, i;
259 		struct page *page = cursor;
260 
261 		nr_scanned++;
262 		if (!pfn_valid_within(blockpfn))
263 			continue;
264 		if (!valid_page)
265 			valid_page = page;
266 		if (!PageBuddy(page))
267 			continue;
268 
269 		/*
270 		 * The zone lock must be held to isolate freepages.
271 		 * Unfortunately this is a very coarse lock and can be
272 		 * heavily contended if there are parallel allocations
273 		 * or parallel compactions. For async compaction do not
274 		 * spin on the lock and we acquire the lock as late as
275 		 * possible.
276 		 */
277 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
278 								locked, cc);
279 		if (!locked)
280 			break;
281 
282 		/* Recheck this is a suitable migration target under lock */
283 		if (!strict && !suitable_migration_target(page))
284 			break;
285 
286 		/* Recheck this is a buddy page under lock */
287 		if (!PageBuddy(page))
288 			continue;
289 
290 		/* Found a free page, break it into order-0 pages */
291 		isolated = split_free_page(page);
292 		if (!isolated && strict)
293 			break;
294 		total_isolated += isolated;
295 		for (i = 0; i < isolated; i++) {
296 			list_add(&page->lru, freelist);
297 			page++;
298 		}
299 
300 		/* If a page was split, advance to the end of it */
301 		if (isolated) {
302 			blockpfn += isolated - 1;
303 			cursor += isolated - 1;
304 		}
305 	}
306 
307 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
308 
309 	/*
310 	 * If strict isolation is requested by CMA then check that all the
311 	 * pages requested were isolated. If there were any failures, 0 is
312 	 * returned and CMA will fail.
313 	 */
314 	if (strict && nr_strict_required > total_isolated)
315 		total_isolated = 0;
316 
317 	if (locked)
318 		spin_unlock_irqrestore(&cc->zone->lock, flags);
319 
320 	/* Update the pageblock-skip if the whole pageblock was scanned */
321 	if (blockpfn == end_pfn)
322 		update_pageblock_skip(cc, valid_page, total_isolated, false);
323 
324 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
325 	if (total_isolated)
326 		count_compact_events(COMPACTISOLATED, total_isolated);
327 	return total_isolated;
328 }
329 
330 /**
331  * isolate_freepages_range() - isolate free pages.
332  * @start_pfn: The first PFN to start isolating.
333  * @end_pfn:   The one-past-last PFN.
334  *
335  * Non-free pages, invalid PFNs, or zone boundaries within the
336  * [start_pfn, end_pfn) range are considered errors, cause function to
337  * undo its actions and return zero.
338  *
339  * Otherwise, function returns one-past-the-last PFN of isolated page
340  * (which may be greater then end_pfn if end fell in a middle of
341  * a free page).
342  */
343 unsigned long
344 isolate_freepages_range(struct compact_control *cc,
345 			unsigned long start_pfn, unsigned long end_pfn)
346 {
347 	unsigned long isolated, pfn, block_end_pfn;
348 	LIST_HEAD(freelist);
349 
350 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
351 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
352 			break;
353 
354 		/*
355 		 * On subsequent iterations ALIGN() is actually not needed,
356 		 * but we keep it that we not to complicate the code.
357 		 */
358 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
359 		block_end_pfn = min(block_end_pfn, end_pfn);
360 
361 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
362 						   &freelist, true);
363 
364 		/*
365 		 * In strict mode, isolate_freepages_block() returns 0 if
366 		 * there are any holes in the block (ie. invalid PFNs or
367 		 * non-free pages).
368 		 */
369 		if (!isolated)
370 			break;
371 
372 		/*
373 		 * If we managed to isolate pages, it is always (1 << n) *
374 		 * pageblock_nr_pages for some non-negative n.  (Max order
375 		 * page may span two pageblocks).
376 		 */
377 	}
378 
379 	/* split_free_page does not map the pages */
380 	map_pages(&freelist);
381 
382 	if (pfn < end_pfn) {
383 		/* Loop terminated early, cleanup. */
384 		release_freepages(&freelist);
385 		return 0;
386 	}
387 
388 	/* We don't use freelists for anything. */
389 	return pfn;
390 }
391 
392 /* Update the number of anon and file isolated pages in the zone */
393 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
394 {
395 	struct page *page;
396 	unsigned int count[2] = { 0, };
397 
398 	list_for_each_entry(page, &cc->migratepages, lru)
399 		count[!!page_is_file_cache(page)]++;
400 
401 	/* If locked we can use the interrupt unsafe versions */
402 	if (locked) {
403 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
404 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
405 	} else {
406 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
407 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
408 	}
409 }
410 
411 /* Similar to reclaim, but different enough that they don't share logic */
412 static bool too_many_isolated(struct zone *zone)
413 {
414 	unsigned long active, inactive, isolated;
415 
416 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
417 					zone_page_state(zone, NR_INACTIVE_ANON);
418 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
419 					zone_page_state(zone, NR_ACTIVE_ANON);
420 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
421 					zone_page_state(zone, NR_ISOLATED_ANON);
422 
423 	return isolated > (inactive + active) / 2;
424 }
425 
426 /**
427  * isolate_migratepages_range() - isolate all migrate-able pages in range.
428  * @zone:	Zone pages are in.
429  * @cc:		Compaction control structure.
430  * @low_pfn:	The first PFN of the range.
431  * @end_pfn:	The one-past-the-last PFN of the range.
432  * @unevictable: true if it allows to isolate unevictable pages
433  *
434  * Isolate all pages that can be migrated from the range specified by
435  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
436  * pending), otherwise PFN of the first page that was not scanned
437  * (which may be both less, equal to or more then end_pfn).
438  *
439  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
440  * zero.
441  *
442  * Apart from cc->migratepages and cc->nr_migratetypes this function
443  * does not modify any cc's fields, in particular it does not modify
444  * (or read for that matter) cc->migrate_pfn.
445  */
446 unsigned long
447 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
448 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
449 {
450 	unsigned long last_pageblock_nr = 0, pageblock_nr;
451 	unsigned long nr_scanned = 0, nr_isolated = 0;
452 	struct list_head *migratelist = &cc->migratepages;
453 	isolate_mode_t mode = 0;
454 	struct lruvec *lruvec;
455 	unsigned long flags;
456 	bool locked = false;
457 	struct page *page = NULL, *valid_page = NULL;
458 
459 	/*
460 	 * Ensure that there are not too many pages isolated from the LRU
461 	 * list by either parallel reclaimers or compaction. If there are,
462 	 * delay for some time until fewer pages are isolated
463 	 */
464 	while (unlikely(too_many_isolated(zone))) {
465 		/* async migration should just abort */
466 		if (!cc->sync)
467 			return 0;
468 
469 		congestion_wait(BLK_RW_ASYNC, HZ/10);
470 
471 		if (fatal_signal_pending(current))
472 			return 0;
473 	}
474 
475 	/* Time to isolate some pages for migration */
476 	cond_resched();
477 	for (; low_pfn < end_pfn; low_pfn++) {
478 		/* give a chance to irqs before checking need_resched() */
479 		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
480 			if (should_release_lock(&zone->lru_lock)) {
481 				spin_unlock_irqrestore(&zone->lru_lock, flags);
482 				locked = false;
483 			}
484 		}
485 
486 		/*
487 		 * migrate_pfn does not necessarily start aligned to a
488 		 * pageblock. Ensure that pfn_valid is called when moving
489 		 * into a new MAX_ORDER_NR_PAGES range in case of large
490 		 * memory holes within the zone
491 		 */
492 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
493 			if (!pfn_valid(low_pfn)) {
494 				low_pfn += MAX_ORDER_NR_PAGES - 1;
495 				continue;
496 			}
497 		}
498 
499 		if (!pfn_valid_within(low_pfn))
500 			continue;
501 		nr_scanned++;
502 
503 		/*
504 		 * Get the page and ensure the page is within the same zone.
505 		 * See the comment in isolate_freepages about overlapping
506 		 * nodes. It is deliberate that the new zone lock is not taken
507 		 * as memory compaction should not move pages between nodes.
508 		 */
509 		page = pfn_to_page(low_pfn);
510 		if (page_zone(page) != zone)
511 			continue;
512 
513 		if (!valid_page)
514 			valid_page = page;
515 
516 		/* If isolation recently failed, do not retry */
517 		pageblock_nr = low_pfn >> pageblock_order;
518 		if (!isolation_suitable(cc, page))
519 			goto next_pageblock;
520 
521 		/* Skip if free */
522 		if (PageBuddy(page))
523 			continue;
524 
525 		/*
526 		 * For async migration, also only scan in MOVABLE blocks. Async
527 		 * migration is optimistic to see if the minimum amount of work
528 		 * satisfies the allocation
529 		 */
530 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
531 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
532 			cc->finished_update_migrate = true;
533 			goto next_pageblock;
534 		}
535 
536 		/*
537 		 * Check may be lockless but that's ok as we recheck later.
538 		 * It's possible to migrate LRU pages and balloon pages
539 		 * Skip any other type of page
540 		 */
541 		if (!PageLRU(page)) {
542 			if (unlikely(balloon_page_movable(page))) {
543 				if (locked && balloon_page_isolate(page)) {
544 					/* Successfully isolated */
545 					cc->finished_update_migrate = true;
546 					list_add(&page->lru, migratelist);
547 					cc->nr_migratepages++;
548 					nr_isolated++;
549 					goto check_compact_cluster;
550 				}
551 			}
552 			continue;
553 		}
554 
555 		/*
556 		 * PageLRU is set. lru_lock normally excludes isolation
557 		 * splitting and collapsing (collapsing has already happened
558 		 * if PageLRU is set) but the lock is not necessarily taken
559 		 * here and it is wasteful to take it just to check transhuge.
560 		 * Check TransHuge without lock and skip the whole pageblock if
561 		 * it's either a transhuge or hugetlbfs page, as calling
562 		 * compound_order() without preventing THP from splitting the
563 		 * page underneath us may return surprising results.
564 		 */
565 		if (PageTransHuge(page)) {
566 			if (!locked)
567 				goto next_pageblock;
568 			low_pfn += (1 << compound_order(page)) - 1;
569 			continue;
570 		}
571 
572 		/* Check if it is ok to still hold the lock */
573 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
574 								locked, cc);
575 		if (!locked || fatal_signal_pending(current))
576 			break;
577 
578 		/* Recheck PageLRU and PageTransHuge under lock */
579 		if (!PageLRU(page))
580 			continue;
581 		if (PageTransHuge(page)) {
582 			low_pfn += (1 << compound_order(page)) - 1;
583 			continue;
584 		}
585 
586 		if (!cc->sync)
587 			mode |= ISOLATE_ASYNC_MIGRATE;
588 
589 		if (unevictable)
590 			mode |= ISOLATE_UNEVICTABLE;
591 
592 		lruvec = mem_cgroup_page_lruvec(page, zone);
593 
594 		/* Try isolate the page */
595 		if (__isolate_lru_page(page, mode) != 0)
596 			continue;
597 
598 		VM_BUG_ON(PageTransCompound(page));
599 
600 		/* Successfully isolated */
601 		cc->finished_update_migrate = true;
602 		del_page_from_lru_list(page, lruvec, page_lru(page));
603 		list_add(&page->lru, migratelist);
604 		cc->nr_migratepages++;
605 		nr_isolated++;
606 
607 check_compact_cluster:
608 		/* Avoid isolating too much */
609 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
610 			++low_pfn;
611 			break;
612 		}
613 
614 		continue;
615 
616 next_pageblock:
617 		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
618 		last_pageblock_nr = pageblock_nr;
619 	}
620 
621 	acct_isolated(zone, locked, cc);
622 
623 	if (locked)
624 		spin_unlock_irqrestore(&zone->lru_lock, flags);
625 
626 	/* Update the pageblock-skip if the whole pageblock was scanned */
627 	if (low_pfn == end_pfn)
628 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
629 
630 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
631 
632 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
633 	if (nr_isolated)
634 		count_compact_events(COMPACTISOLATED, nr_isolated);
635 
636 	return low_pfn;
637 }
638 
639 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
640 #ifdef CONFIG_COMPACTION
641 /*
642  * Based on information in the current compact_control, find blocks
643  * suitable for isolating free pages from and then isolate them.
644  */
645 static void isolate_freepages(struct zone *zone,
646 				struct compact_control *cc)
647 {
648 	struct page *page;
649 	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
650 	int nr_freepages = cc->nr_freepages;
651 	struct list_head *freelist = &cc->freepages;
652 
653 	/*
654 	 * Initialise the free scanner. The starting point is where we last
655 	 * scanned from (or the end of the zone if starting). The low point
656 	 * is the end of the pageblock the migration scanner is using.
657 	 */
658 	pfn = cc->free_pfn;
659 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
660 
661 	/*
662 	 * Take care that if the migration scanner is at the end of the zone
663 	 * that the free scanner does not accidentally move to the next zone
664 	 * in the next isolation cycle.
665 	 */
666 	high_pfn = min(low_pfn, pfn);
667 
668 	z_end_pfn = zone_end_pfn(zone);
669 
670 	/*
671 	 * Isolate free pages until enough are available to migrate the
672 	 * pages on cc->migratepages. We stop searching if the migrate
673 	 * and free page scanners meet or enough free pages are isolated.
674 	 */
675 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
676 					pfn -= pageblock_nr_pages) {
677 		unsigned long isolated;
678 
679 		/*
680 		 * This can iterate a massively long zone without finding any
681 		 * suitable migration targets, so periodically check if we need
682 		 * to schedule.
683 		 */
684 		cond_resched();
685 
686 		if (!pfn_valid(pfn))
687 			continue;
688 
689 		/*
690 		 * Check for overlapping nodes/zones. It's possible on some
691 		 * configurations to have a setup like
692 		 * node0 node1 node0
693 		 * i.e. it's possible that all pages within a zones range of
694 		 * pages do not belong to a single zone.
695 		 */
696 		page = pfn_to_page(pfn);
697 		if (page_zone(page) != zone)
698 			continue;
699 
700 		/* Check the block is suitable for migration */
701 		if (!suitable_migration_target(page))
702 			continue;
703 
704 		/* If isolation recently failed, do not retry */
705 		if (!isolation_suitable(cc, page))
706 			continue;
707 
708 		/* Found a block suitable for isolating free pages from */
709 		isolated = 0;
710 
711 		/*
712 		 * As pfn may not start aligned, pfn+pageblock_nr_page
713 		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
714 		 * a pfn_valid check. Ensure isolate_freepages_block()
715 		 * only scans within a pageblock
716 		 */
717 		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
718 		end_pfn = min(end_pfn, z_end_pfn);
719 		isolated = isolate_freepages_block(cc, pfn, end_pfn,
720 						   freelist, false);
721 		nr_freepages += isolated;
722 
723 		/*
724 		 * Record the highest PFN we isolated pages from. When next
725 		 * looking for free pages, the search will restart here as
726 		 * page migration may have returned some pages to the allocator
727 		 */
728 		if (isolated) {
729 			cc->finished_update_free = true;
730 			high_pfn = max(high_pfn, pfn);
731 		}
732 	}
733 
734 	/* split_free_page does not map the pages */
735 	map_pages(freelist);
736 
737 	cc->free_pfn = high_pfn;
738 	cc->nr_freepages = nr_freepages;
739 }
740 
741 /*
742  * This is a migrate-callback that "allocates" freepages by taking pages
743  * from the isolated freelists in the block we are migrating to.
744  */
745 static struct page *compaction_alloc(struct page *migratepage,
746 					unsigned long data,
747 					int **result)
748 {
749 	struct compact_control *cc = (struct compact_control *)data;
750 	struct page *freepage;
751 
752 	/* Isolate free pages if necessary */
753 	if (list_empty(&cc->freepages)) {
754 		isolate_freepages(cc->zone, cc);
755 
756 		if (list_empty(&cc->freepages))
757 			return NULL;
758 	}
759 
760 	freepage = list_entry(cc->freepages.next, struct page, lru);
761 	list_del(&freepage->lru);
762 	cc->nr_freepages--;
763 
764 	return freepage;
765 }
766 
767 /*
768  * We cannot control nr_migratepages and nr_freepages fully when migration is
769  * running as migrate_pages() has no knowledge of compact_control. When
770  * migration is complete, we count the number of pages on the lists by hand.
771  */
772 static void update_nr_listpages(struct compact_control *cc)
773 {
774 	int nr_migratepages = 0;
775 	int nr_freepages = 0;
776 	struct page *page;
777 
778 	list_for_each_entry(page, &cc->migratepages, lru)
779 		nr_migratepages++;
780 	list_for_each_entry(page, &cc->freepages, lru)
781 		nr_freepages++;
782 
783 	cc->nr_migratepages = nr_migratepages;
784 	cc->nr_freepages = nr_freepages;
785 }
786 
787 /* possible outcome of isolate_migratepages */
788 typedef enum {
789 	ISOLATE_ABORT,		/* Abort compaction now */
790 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
791 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
792 } isolate_migrate_t;
793 
794 /*
795  * Isolate all pages that can be migrated from the block pointed to by
796  * the migrate scanner within compact_control.
797  */
798 static isolate_migrate_t isolate_migratepages(struct zone *zone,
799 					struct compact_control *cc)
800 {
801 	unsigned long low_pfn, end_pfn;
802 
803 	/* Do not scan outside zone boundaries */
804 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
805 
806 	/* Only scan within a pageblock boundary */
807 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
808 
809 	/* Do not cross the free scanner or scan within a memory hole */
810 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
811 		cc->migrate_pfn = end_pfn;
812 		return ISOLATE_NONE;
813 	}
814 
815 	/* Perform the isolation */
816 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
817 	if (!low_pfn || cc->contended)
818 		return ISOLATE_ABORT;
819 
820 	cc->migrate_pfn = low_pfn;
821 
822 	return ISOLATE_SUCCESS;
823 }
824 
825 static int compact_finished(struct zone *zone,
826 			    struct compact_control *cc)
827 {
828 	unsigned int order;
829 	unsigned long watermark;
830 
831 	if (fatal_signal_pending(current))
832 		return COMPACT_PARTIAL;
833 
834 	/* Compaction run completes if the migrate and free scanner meet */
835 	if (cc->free_pfn <= cc->migrate_pfn) {
836 		/*
837 		 * Mark that the PG_migrate_skip information should be cleared
838 		 * by kswapd when it goes to sleep. kswapd does not set the
839 		 * flag itself as the decision to be clear should be directly
840 		 * based on an allocation request.
841 		 */
842 		if (!current_is_kswapd())
843 			zone->compact_blockskip_flush = true;
844 
845 		return COMPACT_COMPLETE;
846 	}
847 
848 	/*
849 	 * order == -1 is expected when compacting via
850 	 * /proc/sys/vm/compact_memory
851 	 */
852 	if (cc->order == -1)
853 		return COMPACT_CONTINUE;
854 
855 	/* Compaction run is not finished if the watermark is not met */
856 	watermark = low_wmark_pages(zone);
857 	watermark += (1 << cc->order);
858 
859 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
860 		return COMPACT_CONTINUE;
861 
862 	/* Direct compactor: Is a suitable page free? */
863 	for (order = cc->order; order < MAX_ORDER; order++) {
864 		struct free_area *area = &zone->free_area[order];
865 
866 		/* Job done if page is free of the right migratetype */
867 		if (!list_empty(&area->free_list[cc->migratetype]))
868 			return COMPACT_PARTIAL;
869 
870 		/* Job done if allocation would set block type */
871 		if (cc->order >= pageblock_order && area->nr_free)
872 			return COMPACT_PARTIAL;
873 	}
874 
875 	return COMPACT_CONTINUE;
876 }
877 
878 /*
879  * compaction_suitable: Is this suitable to run compaction on this zone now?
880  * Returns
881  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
882  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
883  *   COMPACT_CONTINUE - If compaction should run now
884  */
885 unsigned long compaction_suitable(struct zone *zone, int order)
886 {
887 	int fragindex;
888 	unsigned long watermark;
889 
890 	/*
891 	 * order == -1 is expected when compacting via
892 	 * /proc/sys/vm/compact_memory
893 	 */
894 	if (order == -1)
895 		return COMPACT_CONTINUE;
896 
897 	/*
898 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
899 	 * This is because during migration, copies of pages need to be
900 	 * allocated and for a short time, the footprint is higher
901 	 */
902 	watermark = low_wmark_pages(zone) + (2UL << order);
903 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
904 		return COMPACT_SKIPPED;
905 
906 	/*
907 	 * fragmentation index determines if allocation failures are due to
908 	 * low memory or external fragmentation
909 	 *
910 	 * index of -1000 implies allocations might succeed depending on
911 	 * watermarks
912 	 * index towards 0 implies failure is due to lack of memory
913 	 * index towards 1000 implies failure is due to fragmentation
914 	 *
915 	 * Only compact if a failure would be due to fragmentation.
916 	 */
917 	fragindex = fragmentation_index(zone, order);
918 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
919 		return COMPACT_SKIPPED;
920 
921 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
922 	    0, 0))
923 		return COMPACT_PARTIAL;
924 
925 	return COMPACT_CONTINUE;
926 }
927 
928 static int compact_zone(struct zone *zone, struct compact_control *cc)
929 {
930 	int ret;
931 	unsigned long start_pfn = zone->zone_start_pfn;
932 	unsigned long end_pfn = zone_end_pfn(zone);
933 
934 	ret = compaction_suitable(zone, cc->order);
935 	switch (ret) {
936 	case COMPACT_PARTIAL:
937 	case COMPACT_SKIPPED:
938 		/* Compaction is likely to fail */
939 		return ret;
940 	case COMPACT_CONTINUE:
941 		/* Fall through to compaction */
942 		;
943 	}
944 
945 	/*
946 	 * Setup to move all movable pages to the end of the zone. Used cached
947 	 * information on where the scanners should start but check that it
948 	 * is initialised by ensuring the values are within zone boundaries.
949 	 */
950 	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
951 	cc->free_pfn = zone->compact_cached_free_pfn;
952 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
953 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
954 		zone->compact_cached_free_pfn = cc->free_pfn;
955 	}
956 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
957 		cc->migrate_pfn = start_pfn;
958 		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
959 	}
960 
961 	/*
962 	 * Clear pageblock skip if there were failures recently and compaction
963 	 * is about to be retried after being deferred. kswapd does not do
964 	 * this reset as it'll reset the cached information when going to sleep.
965 	 */
966 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
967 		__reset_isolation_suitable(zone);
968 
969 	migrate_prep_local();
970 
971 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
972 		unsigned long nr_migrate, nr_remaining;
973 		int err;
974 
975 		switch (isolate_migratepages(zone, cc)) {
976 		case ISOLATE_ABORT:
977 			ret = COMPACT_PARTIAL;
978 			putback_movable_pages(&cc->migratepages);
979 			cc->nr_migratepages = 0;
980 			goto out;
981 		case ISOLATE_NONE:
982 			continue;
983 		case ISOLATE_SUCCESS:
984 			;
985 		}
986 
987 		nr_migrate = cc->nr_migratepages;
988 		err = migrate_pages(&cc->migratepages, compaction_alloc,
989 				(unsigned long)cc,
990 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
991 				MR_COMPACTION);
992 		update_nr_listpages(cc);
993 		nr_remaining = cc->nr_migratepages;
994 
995 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
996 						nr_remaining);
997 
998 		/* Release isolated pages not migrated */
999 		if (err) {
1000 			putback_movable_pages(&cc->migratepages);
1001 			cc->nr_migratepages = 0;
1002 			if (err == -ENOMEM) {
1003 				ret = COMPACT_PARTIAL;
1004 				goto out;
1005 			}
1006 		}
1007 	}
1008 
1009 out:
1010 	/* Release free pages and check accounting */
1011 	cc->nr_freepages -= release_freepages(&cc->freepages);
1012 	VM_BUG_ON(cc->nr_freepages != 0);
1013 
1014 	return ret;
1015 }
1016 
1017 static unsigned long compact_zone_order(struct zone *zone,
1018 				 int order, gfp_t gfp_mask,
1019 				 bool sync, bool *contended)
1020 {
1021 	unsigned long ret;
1022 	struct compact_control cc = {
1023 		.nr_freepages = 0,
1024 		.nr_migratepages = 0,
1025 		.order = order,
1026 		.migratetype = allocflags_to_migratetype(gfp_mask),
1027 		.zone = zone,
1028 		.sync = sync,
1029 	};
1030 	INIT_LIST_HEAD(&cc.freepages);
1031 	INIT_LIST_HEAD(&cc.migratepages);
1032 
1033 	ret = compact_zone(zone, &cc);
1034 
1035 	VM_BUG_ON(!list_empty(&cc.freepages));
1036 	VM_BUG_ON(!list_empty(&cc.migratepages));
1037 
1038 	*contended = cc.contended;
1039 	return ret;
1040 }
1041 
1042 int sysctl_extfrag_threshold = 500;
1043 
1044 /**
1045  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1046  * @zonelist: The zonelist used for the current allocation
1047  * @order: The order of the current allocation
1048  * @gfp_mask: The GFP mask of the current allocation
1049  * @nodemask: The allowed nodes to allocate from
1050  * @sync: Whether migration is synchronous or not
1051  * @contended: Return value that is true if compaction was aborted due to lock contention
1052  * @page: Optionally capture a free page of the requested order during compaction
1053  *
1054  * This is the main entry point for direct page compaction.
1055  */
1056 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1057 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1058 			bool sync, bool *contended)
1059 {
1060 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1061 	int may_enter_fs = gfp_mask & __GFP_FS;
1062 	int may_perform_io = gfp_mask & __GFP_IO;
1063 	struct zoneref *z;
1064 	struct zone *zone;
1065 	int rc = COMPACT_SKIPPED;
1066 	int alloc_flags = 0;
1067 
1068 	/* Check if the GFP flags allow compaction */
1069 	if (!order || !may_enter_fs || !may_perform_io)
1070 		return rc;
1071 
1072 	count_compact_event(COMPACTSTALL);
1073 
1074 #ifdef CONFIG_CMA
1075 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1076 		alloc_flags |= ALLOC_CMA;
1077 #endif
1078 	/* Compact each zone in the list */
1079 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1080 								nodemask) {
1081 		int status;
1082 
1083 		status = compact_zone_order(zone, order, gfp_mask, sync,
1084 						contended);
1085 		rc = max(status, rc);
1086 
1087 		/* If a normal allocation would succeed, stop compacting */
1088 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1089 				      alloc_flags))
1090 			break;
1091 	}
1092 
1093 	return rc;
1094 }
1095 
1096 
1097 /* Compact all zones within a node */
1098 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1099 {
1100 	int zoneid;
1101 	struct zone *zone;
1102 
1103 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1104 
1105 		zone = &pgdat->node_zones[zoneid];
1106 		if (!populated_zone(zone))
1107 			continue;
1108 
1109 		cc->nr_freepages = 0;
1110 		cc->nr_migratepages = 0;
1111 		cc->zone = zone;
1112 		INIT_LIST_HEAD(&cc->freepages);
1113 		INIT_LIST_HEAD(&cc->migratepages);
1114 
1115 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1116 			compact_zone(zone, cc);
1117 
1118 		if (cc->order > 0) {
1119 			int ok = zone_watermark_ok(zone, cc->order,
1120 						low_wmark_pages(zone), 0, 0);
1121 			if (ok && cc->order >= zone->compact_order_failed)
1122 				zone->compact_order_failed = cc->order + 1;
1123 			/* Currently async compaction is never deferred. */
1124 			else if (!ok && cc->sync)
1125 				defer_compaction(zone, cc->order);
1126 		}
1127 
1128 		VM_BUG_ON(!list_empty(&cc->freepages));
1129 		VM_BUG_ON(!list_empty(&cc->migratepages));
1130 	}
1131 }
1132 
1133 void compact_pgdat(pg_data_t *pgdat, int order)
1134 {
1135 	struct compact_control cc = {
1136 		.order = order,
1137 		.sync = false,
1138 	};
1139 
1140 	if (!order)
1141 		return;
1142 
1143 	__compact_pgdat(pgdat, &cc);
1144 }
1145 
1146 static void compact_node(int nid)
1147 {
1148 	struct compact_control cc = {
1149 		.order = -1,
1150 		.sync = true,
1151 	};
1152 
1153 	__compact_pgdat(NODE_DATA(nid), &cc);
1154 }
1155 
1156 /* Compact all nodes in the system */
1157 static void compact_nodes(void)
1158 {
1159 	int nid;
1160 
1161 	/* Flush pending updates to the LRU lists */
1162 	lru_add_drain_all();
1163 
1164 	for_each_online_node(nid)
1165 		compact_node(nid);
1166 }
1167 
1168 /* The written value is actually unused, all memory is compacted */
1169 int sysctl_compact_memory;
1170 
1171 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1172 int sysctl_compaction_handler(struct ctl_table *table, int write,
1173 			void __user *buffer, size_t *length, loff_t *ppos)
1174 {
1175 	if (write)
1176 		compact_nodes();
1177 
1178 	return 0;
1179 }
1180 
1181 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1182 			void __user *buffer, size_t *length, loff_t *ppos)
1183 {
1184 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1185 
1186 	return 0;
1187 }
1188 
1189 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1190 ssize_t sysfs_compact_node(struct device *dev,
1191 			struct device_attribute *attr,
1192 			const char *buf, size_t count)
1193 {
1194 	int nid = dev->id;
1195 
1196 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1197 		/* Flush pending updates to the LRU lists */
1198 		lru_add_drain_all();
1199 
1200 		compact_node(nid);
1201 	}
1202 
1203 	return count;
1204 }
1205 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1206 
1207 int compaction_register_node(struct node *node)
1208 {
1209 	return device_create_file(&node->dev, &dev_attr_compact);
1210 }
1211 
1212 void compaction_unregister_node(struct node *node)
1213 {
1214 	return device_remove_file(&node->dev, &dev_attr_compact);
1215 }
1216 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1217 
1218 #endif /* CONFIG_COMPACTION */
1219