1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include "internal.h" 20 21 #ifdef CONFIG_COMPACTION 22 static inline void count_compact_event(enum vm_event_item item) 23 { 24 count_vm_event(item); 25 } 26 27 static inline void count_compact_events(enum vm_event_item item, long delta) 28 { 29 count_vm_events(item, delta); 30 } 31 #else 32 #define count_compact_event(item) do { } while (0) 33 #define count_compact_events(item, delta) do { } while (0) 34 #endif 35 36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/compaction.h> 40 41 static unsigned long release_freepages(struct list_head *freelist) 42 { 43 struct page *page, *next; 44 unsigned long count = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 list_del(&page->lru); 48 __free_page(page); 49 count++; 50 } 51 52 return count; 53 } 54 55 static void map_pages(struct list_head *list) 56 { 57 struct page *page; 58 59 list_for_each_entry(page, list, lru) { 60 arch_alloc_page(page, 0); 61 kernel_map_pages(page, 1, 1); 62 } 63 } 64 65 static inline bool migrate_async_suitable(int migratetype) 66 { 67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 68 } 69 70 #ifdef CONFIG_COMPACTION 71 /* Returns true if the pageblock should be scanned for pages to isolate. */ 72 static inline bool isolation_suitable(struct compact_control *cc, 73 struct page *page) 74 { 75 if (cc->ignore_skip_hint) 76 return true; 77 78 return !get_pageblock_skip(page); 79 } 80 81 /* 82 * This function is called to clear all cached information on pageblocks that 83 * should be skipped for page isolation when the migrate and free page scanner 84 * meet. 85 */ 86 static void __reset_isolation_suitable(struct zone *zone) 87 { 88 unsigned long start_pfn = zone->zone_start_pfn; 89 unsigned long end_pfn = zone_end_pfn(zone); 90 unsigned long pfn; 91 92 zone->compact_cached_migrate_pfn = start_pfn; 93 zone->compact_cached_free_pfn = end_pfn; 94 zone->compact_blockskip_flush = false; 95 96 /* Walk the zone and mark every pageblock as suitable for isolation */ 97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 98 struct page *page; 99 100 cond_resched(); 101 102 if (!pfn_valid(pfn)) 103 continue; 104 105 page = pfn_to_page(pfn); 106 if (zone != page_zone(page)) 107 continue; 108 109 clear_pageblock_skip(page); 110 } 111 } 112 113 void reset_isolation_suitable(pg_data_t *pgdat) 114 { 115 int zoneid; 116 117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 118 struct zone *zone = &pgdat->node_zones[zoneid]; 119 if (!populated_zone(zone)) 120 continue; 121 122 /* Only flush if a full compaction finished recently */ 123 if (zone->compact_blockskip_flush) 124 __reset_isolation_suitable(zone); 125 } 126 } 127 128 /* 129 * If no pages were isolated then mark this pageblock to be skipped in the 130 * future. The information is later cleared by __reset_isolation_suitable(). 131 */ 132 static void update_pageblock_skip(struct compact_control *cc, 133 struct page *page, unsigned long nr_isolated, 134 bool migrate_scanner) 135 { 136 struct zone *zone = cc->zone; 137 if (!page) 138 return; 139 140 if (!nr_isolated) { 141 unsigned long pfn = page_to_pfn(page); 142 set_pageblock_skip(page); 143 144 /* Update where compaction should restart */ 145 if (migrate_scanner) { 146 if (!cc->finished_update_migrate && 147 pfn > zone->compact_cached_migrate_pfn) 148 zone->compact_cached_migrate_pfn = pfn; 149 } else { 150 if (!cc->finished_update_free && 151 pfn < zone->compact_cached_free_pfn) 152 zone->compact_cached_free_pfn = pfn; 153 } 154 } 155 } 156 #else 157 static inline bool isolation_suitable(struct compact_control *cc, 158 struct page *page) 159 { 160 return true; 161 } 162 163 static void update_pageblock_skip(struct compact_control *cc, 164 struct page *page, unsigned long nr_isolated, 165 bool migrate_scanner) 166 { 167 } 168 #endif /* CONFIG_COMPACTION */ 169 170 static inline bool should_release_lock(spinlock_t *lock) 171 { 172 return need_resched() || spin_is_contended(lock); 173 } 174 175 /* 176 * Compaction requires the taking of some coarse locks that are potentially 177 * very heavily contended. Check if the process needs to be scheduled or 178 * if the lock is contended. For async compaction, back out in the event 179 * if contention is severe. For sync compaction, schedule. 180 * 181 * Returns true if the lock is held. 182 * Returns false if the lock is released and compaction should abort 183 */ 184 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 185 bool locked, struct compact_control *cc) 186 { 187 if (should_release_lock(lock)) { 188 if (locked) { 189 spin_unlock_irqrestore(lock, *flags); 190 locked = false; 191 } 192 193 /* async aborts if taking too long or contended */ 194 if (!cc->sync) { 195 cc->contended = true; 196 return false; 197 } 198 199 cond_resched(); 200 } 201 202 if (!locked) 203 spin_lock_irqsave(lock, *flags); 204 return true; 205 } 206 207 static inline bool compact_trylock_irqsave(spinlock_t *lock, 208 unsigned long *flags, struct compact_control *cc) 209 { 210 return compact_checklock_irqsave(lock, flags, false, cc); 211 } 212 213 /* Returns true if the page is within a block suitable for migration to */ 214 static bool suitable_migration_target(struct page *page) 215 { 216 int migratetype = get_pageblock_migratetype(page); 217 218 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 219 if (migratetype == MIGRATE_RESERVE) 220 return false; 221 222 if (is_migrate_isolate(migratetype)) 223 return false; 224 225 /* If the page is a large free page, then allow migration */ 226 if (PageBuddy(page) && page_order(page) >= pageblock_order) 227 return true; 228 229 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 230 if (migrate_async_suitable(migratetype)) 231 return true; 232 233 /* Otherwise skip the block */ 234 return false; 235 } 236 237 /* 238 * Isolate free pages onto a private freelist. If @strict is true, will abort 239 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 240 * (even though it may still end up isolating some pages). 241 */ 242 static unsigned long isolate_freepages_block(struct compact_control *cc, 243 unsigned long blockpfn, 244 unsigned long end_pfn, 245 struct list_head *freelist, 246 bool strict) 247 { 248 int nr_scanned = 0, total_isolated = 0; 249 struct page *cursor, *valid_page = NULL; 250 unsigned long nr_strict_required = end_pfn - blockpfn; 251 unsigned long flags; 252 bool locked = false; 253 254 cursor = pfn_to_page(blockpfn); 255 256 /* Isolate free pages. */ 257 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 258 int isolated, i; 259 struct page *page = cursor; 260 261 nr_scanned++; 262 if (!pfn_valid_within(blockpfn)) 263 continue; 264 if (!valid_page) 265 valid_page = page; 266 if (!PageBuddy(page)) 267 continue; 268 269 /* 270 * The zone lock must be held to isolate freepages. 271 * Unfortunately this is a very coarse lock and can be 272 * heavily contended if there are parallel allocations 273 * or parallel compactions. For async compaction do not 274 * spin on the lock and we acquire the lock as late as 275 * possible. 276 */ 277 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 278 locked, cc); 279 if (!locked) 280 break; 281 282 /* Recheck this is a suitable migration target under lock */ 283 if (!strict && !suitable_migration_target(page)) 284 break; 285 286 /* Recheck this is a buddy page under lock */ 287 if (!PageBuddy(page)) 288 continue; 289 290 /* Found a free page, break it into order-0 pages */ 291 isolated = split_free_page(page); 292 if (!isolated && strict) 293 break; 294 total_isolated += isolated; 295 for (i = 0; i < isolated; i++) { 296 list_add(&page->lru, freelist); 297 page++; 298 } 299 300 /* If a page was split, advance to the end of it */ 301 if (isolated) { 302 blockpfn += isolated - 1; 303 cursor += isolated - 1; 304 } 305 } 306 307 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 308 309 /* 310 * If strict isolation is requested by CMA then check that all the 311 * pages requested were isolated. If there were any failures, 0 is 312 * returned and CMA will fail. 313 */ 314 if (strict && nr_strict_required > total_isolated) 315 total_isolated = 0; 316 317 if (locked) 318 spin_unlock_irqrestore(&cc->zone->lock, flags); 319 320 /* Update the pageblock-skip if the whole pageblock was scanned */ 321 if (blockpfn == end_pfn) 322 update_pageblock_skip(cc, valid_page, total_isolated, false); 323 324 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 325 if (total_isolated) 326 count_compact_events(COMPACTISOLATED, total_isolated); 327 return total_isolated; 328 } 329 330 /** 331 * isolate_freepages_range() - isolate free pages. 332 * @start_pfn: The first PFN to start isolating. 333 * @end_pfn: The one-past-last PFN. 334 * 335 * Non-free pages, invalid PFNs, or zone boundaries within the 336 * [start_pfn, end_pfn) range are considered errors, cause function to 337 * undo its actions and return zero. 338 * 339 * Otherwise, function returns one-past-the-last PFN of isolated page 340 * (which may be greater then end_pfn if end fell in a middle of 341 * a free page). 342 */ 343 unsigned long 344 isolate_freepages_range(struct compact_control *cc, 345 unsigned long start_pfn, unsigned long end_pfn) 346 { 347 unsigned long isolated, pfn, block_end_pfn; 348 LIST_HEAD(freelist); 349 350 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 351 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 352 break; 353 354 /* 355 * On subsequent iterations ALIGN() is actually not needed, 356 * but we keep it that we not to complicate the code. 357 */ 358 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 359 block_end_pfn = min(block_end_pfn, end_pfn); 360 361 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 362 &freelist, true); 363 364 /* 365 * In strict mode, isolate_freepages_block() returns 0 if 366 * there are any holes in the block (ie. invalid PFNs or 367 * non-free pages). 368 */ 369 if (!isolated) 370 break; 371 372 /* 373 * If we managed to isolate pages, it is always (1 << n) * 374 * pageblock_nr_pages for some non-negative n. (Max order 375 * page may span two pageblocks). 376 */ 377 } 378 379 /* split_free_page does not map the pages */ 380 map_pages(&freelist); 381 382 if (pfn < end_pfn) { 383 /* Loop terminated early, cleanup. */ 384 release_freepages(&freelist); 385 return 0; 386 } 387 388 /* We don't use freelists for anything. */ 389 return pfn; 390 } 391 392 /* Update the number of anon and file isolated pages in the zone */ 393 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 394 { 395 struct page *page; 396 unsigned int count[2] = { 0, }; 397 398 list_for_each_entry(page, &cc->migratepages, lru) 399 count[!!page_is_file_cache(page)]++; 400 401 /* If locked we can use the interrupt unsafe versions */ 402 if (locked) { 403 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 404 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 405 } else { 406 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 407 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 408 } 409 } 410 411 /* Similar to reclaim, but different enough that they don't share logic */ 412 static bool too_many_isolated(struct zone *zone) 413 { 414 unsigned long active, inactive, isolated; 415 416 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 417 zone_page_state(zone, NR_INACTIVE_ANON); 418 active = zone_page_state(zone, NR_ACTIVE_FILE) + 419 zone_page_state(zone, NR_ACTIVE_ANON); 420 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 421 zone_page_state(zone, NR_ISOLATED_ANON); 422 423 return isolated > (inactive + active) / 2; 424 } 425 426 /** 427 * isolate_migratepages_range() - isolate all migrate-able pages in range. 428 * @zone: Zone pages are in. 429 * @cc: Compaction control structure. 430 * @low_pfn: The first PFN of the range. 431 * @end_pfn: The one-past-the-last PFN of the range. 432 * @unevictable: true if it allows to isolate unevictable pages 433 * 434 * Isolate all pages that can be migrated from the range specified by 435 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 436 * pending), otherwise PFN of the first page that was not scanned 437 * (which may be both less, equal to or more then end_pfn). 438 * 439 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 440 * zero. 441 * 442 * Apart from cc->migratepages and cc->nr_migratetypes this function 443 * does not modify any cc's fields, in particular it does not modify 444 * (or read for that matter) cc->migrate_pfn. 445 */ 446 unsigned long 447 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 448 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 449 { 450 unsigned long last_pageblock_nr = 0, pageblock_nr; 451 unsigned long nr_scanned = 0, nr_isolated = 0; 452 struct list_head *migratelist = &cc->migratepages; 453 isolate_mode_t mode = 0; 454 struct lruvec *lruvec; 455 unsigned long flags; 456 bool locked = false; 457 struct page *page = NULL, *valid_page = NULL; 458 459 /* 460 * Ensure that there are not too many pages isolated from the LRU 461 * list by either parallel reclaimers or compaction. If there are, 462 * delay for some time until fewer pages are isolated 463 */ 464 while (unlikely(too_many_isolated(zone))) { 465 /* async migration should just abort */ 466 if (!cc->sync) 467 return 0; 468 469 congestion_wait(BLK_RW_ASYNC, HZ/10); 470 471 if (fatal_signal_pending(current)) 472 return 0; 473 } 474 475 /* Time to isolate some pages for migration */ 476 cond_resched(); 477 for (; low_pfn < end_pfn; low_pfn++) { 478 /* give a chance to irqs before checking need_resched() */ 479 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 480 if (should_release_lock(&zone->lru_lock)) { 481 spin_unlock_irqrestore(&zone->lru_lock, flags); 482 locked = false; 483 } 484 } 485 486 /* 487 * migrate_pfn does not necessarily start aligned to a 488 * pageblock. Ensure that pfn_valid is called when moving 489 * into a new MAX_ORDER_NR_PAGES range in case of large 490 * memory holes within the zone 491 */ 492 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 493 if (!pfn_valid(low_pfn)) { 494 low_pfn += MAX_ORDER_NR_PAGES - 1; 495 continue; 496 } 497 } 498 499 if (!pfn_valid_within(low_pfn)) 500 continue; 501 nr_scanned++; 502 503 /* 504 * Get the page and ensure the page is within the same zone. 505 * See the comment in isolate_freepages about overlapping 506 * nodes. It is deliberate that the new zone lock is not taken 507 * as memory compaction should not move pages between nodes. 508 */ 509 page = pfn_to_page(low_pfn); 510 if (page_zone(page) != zone) 511 continue; 512 513 if (!valid_page) 514 valid_page = page; 515 516 /* If isolation recently failed, do not retry */ 517 pageblock_nr = low_pfn >> pageblock_order; 518 if (!isolation_suitable(cc, page)) 519 goto next_pageblock; 520 521 /* Skip if free */ 522 if (PageBuddy(page)) 523 continue; 524 525 /* 526 * For async migration, also only scan in MOVABLE blocks. Async 527 * migration is optimistic to see if the minimum amount of work 528 * satisfies the allocation 529 */ 530 if (!cc->sync && last_pageblock_nr != pageblock_nr && 531 !migrate_async_suitable(get_pageblock_migratetype(page))) { 532 cc->finished_update_migrate = true; 533 goto next_pageblock; 534 } 535 536 /* 537 * Check may be lockless but that's ok as we recheck later. 538 * It's possible to migrate LRU pages and balloon pages 539 * Skip any other type of page 540 */ 541 if (!PageLRU(page)) { 542 if (unlikely(balloon_page_movable(page))) { 543 if (locked && balloon_page_isolate(page)) { 544 /* Successfully isolated */ 545 cc->finished_update_migrate = true; 546 list_add(&page->lru, migratelist); 547 cc->nr_migratepages++; 548 nr_isolated++; 549 goto check_compact_cluster; 550 } 551 } 552 continue; 553 } 554 555 /* 556 * PageLRU is set. lru_lock normally excludes isolation 557 * splitting and collapsing (collapsing has already happened 558 * if PageLRU is set) but the lock is not necessarily taken 559 * here and it is wasteful to take it just to check transhuge. 560 * Check TransHuge without lock and skip the whole pageblock if 561 * it's either a transhuge or hugetlbfs page, as calling 562 * compound_order() without preventing THP from splitting the 563 * page underneath us may return surprising results. 564 */ 565 if (PageTransHuge(page)) { 566 if (!locked) 567 goto next_pageblock; 568 low_pfn += (1 << compound_order(page)) - 1; 569 continue; 570 } 571 572 /* Check if it is ok to still hold the lock */ 573 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 574 locked, cc); 575 if (!locked || fatal_signal_pending(current)) 576 break; 577 578 /* Recheck PageLRU and PageTransHuge under lock */ 579 if (!PageLRU(page)) 580 continue; 581 if (PageTransHuge(page)) { 582 low_pfn += (1 << compound_order(page)) - 1; 583 continue; 584 } 585 586 if (!cc->sync) 587 mode |= ISOLATE_ASYNC_MIGRATE; 588 589 if (unevictable) 590 mode |= ISOLATE_UNEVICTABLE; 591 592 lruvec = mem_cgroup_page_lruvec(page, zone); 593 594 /* Try isolate the page */ 595 if (__isolate_lru_page(page, mode) != 0) 596 continue; 597 598 VM_BUG_ON(PageTransCompound(page)); 599 600 /* Successfully isolated */ 601 cc->finished_update_migrate = true; 602 del_page_from_lru_list(page, lruvec, page_lru(page)); 603 list_add(&page->lru, migratelist); 604 cc->nr_migratepages++; 605 nr_isolated++; 606 607 check_compact_cluster: 608 /* Avoid isolating too much */ 609 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 610 ++low_pfn; 611 break; 612 } 613 614 continue; 615 616 next_pageblock: 617 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; 618 last_pageblock_nr = pageblock_nr; 619 } 620 621 acct_isolated(zone, locked, cc); 622 623 if (locked) 624 spin_unlock_irqrestore(&zone->lru_lock, flags); 625 626 /* Update the pageblock-skip if the whole pageblock was scanned */ 627 if (low_pfn == end_pfn) 628 update_pageblock_skip(cc, valid_page, nr_isolated, true); 629 630 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 631 632 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 633 if (nr_isolated) 634 count_compact_events(COMPACTISOLATED, nr_isolated); 635 636 return low_pfn; 637 } 638 639 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 640 #ifdef CONFIG_COMPACTION 641 /* 642 * Based on information in the current compact_control, find blocks 643 * suitable for isolating free pages from and then isolate them. 644 */ 645 static void isolate_freepages(struct zone *zone, 646 struct compact_control *cc) 647 { 648 struct page *page; 649 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; 650 int nr_freepages = cc->nr_freepages; 651 struct list_head *freelist = &cc->freepages; 652 653 /* 654 * Initialise the free scanner. The starting point is where we last 655 * scanned from (or the end of the zone if starting). The low point 656 * is the end of the pageblock the migration scanner is using. 657 */ 658 pfn = cc->free_pfn; 659 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 660 661 /* 662 * Take care that if the migration scanner is at the end of the zone 663 * that the free scanner does not accidentally move to the next zone 664 * in the next isolation cycle. 665 */ 666 high_pfn = min(low_pfn, pfn); 667 668 z_end_pfn = zone_end_pfn(zone); 669 670 /* 671 * Isolate free pages until enough are available to migrate the 672 * pages on cc->migratepages. We stop searching if the migrate 673 * and free page scanners meet or enough free pages are isolated. 674 */ 675 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 676 pfn -= pageblock_nr_pages) { 677 unsigned long isolated; 678 679 /* 680 * This can iterate a massively long zone without finding any 681 * suitable migration targets, so periodically check if we need 682 * to schedule. 683 */ 684 cond_resched(); 685 686 if (!pfn_valid(pfn)) 687 continue; 688 689 /* 690 * Check for overlapping nodes/zones. It's possible on some 691 * configurations to have a setup like 692 * node0 node1 node0 693 * i.e. it's possible that all pages within a zones range of 694 * pages do not belong to a single zone. 695 */ 696 page = pfn_to_page(pfn); 697 if (page_zone(page) != zone) 698 continue; 699 700 /* Check the block is suitable for migration */ 701 if (!suitable_migration_target(page)) 702 continue; 703 704 /* If isolation recently failed, do not retry */ 705 if (!isolation_suitable(cc, page)) 706 continue; 707 708 /* Found a block suitable for isolating free pages from */ 709 isolated = 0; 710 711 /* 712 * As pfn may not start aligned, pfn+pageblock_nr_page 713 * may cross a MAX_ORDER_NR_PAGES boundary and miss 714 * a pfn_valid check. Ensure isolate_freepages_block() 715 * only scans within a pageblock 716 */ 717 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 718 end_pfn = min(end_pfn, z_end_pfn); 719 isolated = isolate_freepages_block(cc, pfn, end_pfn, 720 freelist, false); 721 nr_freepages += isolated; 722 723 /* 724 * Record the highest PFN we isolated pages from. When next 725 * looking for free pages, the search will restart here as 726 * page migration may have returned some pages to the allocator 727 */ 728 if (isolated) { 729 cc->finished_update_free = true; 730 high_pfn = max(high_pfn, pfn); 731 } 732 } 733 734 /* split_free_page does not map the pages */ 735 map_pages(freelist); 736 737 cc->free_pfn = high_pfn; 738 cc->nr_freepages = nr_freepages; 739 } 740 741 /* 742 * This is a migrate-callback that "allocates" freepages by taking pages 743 * from the isolated freelists in the block we are migrating to. 744 */ 745 static struct page *compaction_alloc(struct page *migratepage, 746 unsigned long data, 747 int **result) 748 { 749 struct compact_control *cc = (struct compact_control *)data; 750 struct page *freepage; 751 752 /* Isolate free pages if necessary */ 753 if (list_empty(&cc->freepages)) { 754 isolate_freepages(cc->zone, cc); 755 756 if (list_empty(&cc->freepages)) 757 return NULL; 758 } 759 760 freepage = list_entry(cc->freepages.next, struct page, lru); 761 list_del(&freepage->lru); 762 cc->nr_freepages--; 763 764 return freepage; 765 } 766 767 /* 768 * We cannot control nr_migratepages and nr_freepages fully when migration is 769 * running as migrate_pages() has no knowledge of compact_control. When 770 * migration is complete, we count the number of pages on the lists by hand. 771 */ 772 static void update_nr_listpages(struct compact_control *cc) 773 { 774 int nr_migratepages = 0; 775 int nr_freepages = 0; 776 struct page *page; 777 778 list_for_each_entry(page, &cc->migratepages, lru) 779 nr_migratepages++; 780 list_for_each_entry(page, &cc->freepages, lru) 781 nr_freepages++; 782 783 cc->nr_migratepages = nr_migratepages; 784 cc->nr_freepages = nr_freepages; 785 } 786 787 /* possible outcome of isolate_migratepages */ 788 typedef enum { 789 ISOLATE_ABORT, /* Abort compaction now */ 790 ISOLATE_NONE, /* No pages isolated, continue scanning */ 791 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 792 } isolate_migrate_t; 793 794 /* 795 * Isolate all pages that can be migrated from the block pointed to by 796 * the migrate scanner within compact_control. 797 */ 798 static isolate_migrate_t isolate_migratepages(struct zone *zone, 799 struct compact_control *cc) 800 { 801 unsigned long low_pfn, end_pfn; 802 803 /* Do not scan outside zone boundaries */ 804 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 805 806 /* Only scan within a pageblock boundary */ 807 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 808 809 /* Do not cross the free scanner or scan within a memory hole */ 810 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 811 cc->migrate_pfn = end_pfn; 812 return ISOLATE_NONE; 813 } 814 815 /* Perform the isolation */ 816 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 817 if (!low_pfn || cc->contended) 818 return ISOLATE_ABORT; 819 820 cc->migrate_pfn = low_pfn; 821 822 return ISOLATE_SUCCESS; 823 } 824 825 static int compact_finished(struct zone *zone, 826 struct compact_control *cc) 827 { 828 unsigned int order; 829 unsigned long watermark; 830 831 if (fatal_signal_pending(current)) 832 return COMPACT_PARTIAL; 833 834 /* Compaction run completes if the migrate and free scanner meet */ 835 if (cc->free_pfn <= cc->migrate_pfn) { 836 /* 837 * Mark that the PG_migrate_skip information should be cleared 838 * by kswapd when it goes to sleep. kswapd does not set the 839 * flag itself as the decision to be clear should be directly 840 * based on an allocation request. 841 */ 842 if (!current_is_kswapd()) 843 zone->compact_blockskip_flush = true; 844 845 return COMPACT_COMPLETE; 846 } 847 848 /* 849 * order == -1 is expected when compacting via 850 * /proc/sys/vm/compact_memory 851 */ 852 if (cc->order == -1) 853 return COMPACT_CONTINUE; 854 855 /* Compaction run is not finished if the watermark is not met */ 856 watermark = low_wmark_pages(zone); 857 watermark += (1 << cc->order); 858 859 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 860 return COMPACT_CONTINUE; 861 862 /* Direct compactor: Is a suitable page free? */ 863 for (order = cc->order; order < MAX_ORDER; order++) { 864 struct free_area *area = &zone->free_area[order]; 865 866 /* Job done if page is free of the right migratetype */ 867 if (!list_empty(&area->free_list[cc->migratetype])) 868 return COMPACT_PARTIAL; 869 870 /* Job done if allocation would set block type */ 871 if (cc->order >= pageblock_order && area->nr_free) 872 return COMPACT_PARTIAL; 873 } 874 875 return COMPACT_CONTINUE; 876 } 877 878 /* 879 * compaction_suitable: Is this suitable to run compaction on this zone now? 880 * Returns 881 * COMPACT_SKIPPED - If there are too few free pages for compaction 882 * COMPACT_PARTIAL - If the allocation would succeed without compaction 883 * COMPACT_CONTINUE - If compaction should run now 884 */ 885 unsigned long compaction_suitable(struct zone *zone, int order) 886 { 887 int fragindex; 888 unsigned long watermark; 889 890 /* 891 * order == -1 is expected when compacting via 892 * /proc/sys/vm/compact_memory 893 */ 894 if (order == -1) 895 return COMPACT_CONTINUE; 896 897 /* 898 * Watermarks for order-0 must be met for compaction. Note the 2UL. 899 * This is because during migration, copies of pages need to be 900 * allocated and for a short time, the footprint is higher 901 */ 902 watermark = low_wmark_pages(zone) + (2UL << order); 903 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 904 return COMPACT_SKIPPED; 905 906 /* 907 * fragmentation index determines if allocation failures are due to 908 * low memory or external fragmentation 909 * 910 * index of -1000 implies allocations might succeed depending on 911 * watermarks 912 * index towards 0 implies failure is due to lack of memory 913 * index towards 1000 implies failure is due to fragmentation 914 * 915 * Only compact if a failure would be due to fragmentation. 916 */ 917 fragindex = fragmentation_index(zone, order); 918 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 919 return COMPACT_SKIPPED; 920 921 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 922 0, 0)) 923 return COMPACT_PARTIAL; 924 925 return COMPACT_CONTINUE; 926 } 927 928 static int compact_zone(struct zone *zone, struct compact_control *cc) 929 { 930 int ret; 931 unsigned long start_pfn = zone->zone_start_pfn; 932 unsigned long end_pfn = zone_end_pfn(zone); 933 934 ret = compaction_suitable(zone, cc->order); 935 switch (ret) { 936 case COMPACT_PARTIAL: 937 case COMPACT_SKIPPED: 938 /* Compaction is likely to fail */ 939 return ret; 940 case COMPACT_CONTINUE: 941 /* Fall through to compaction */ 942 ; 943 } 944 945 /* 946 * Setup to move all movable pages to the end of the zone. Used cached 947 * information on where the scanners should start but check that it 948 * is initialised by ensuring the values are within zone boundaries. 949 */ 950 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 951 cc->free_pfn = zone->compact_cached_free_pfn; 952 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 953 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 954 zone->compact_cached_free_pfn = cc->free_pfn; 955 } 956 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 957 cc->migrate_pfn = start_pfn; 958 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 959 } 960 961 /* 962 * Clear pageblock skip if there were failures recently and compaction 963 * is about to be retried after being deferred. kswapd does not do 964 * this reset as it'll reset the cached information when going to sleep. 965 */ 966 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 967 __reset_isolation_suitable(zone); 968 969 migrate_prep_local(); 970 971 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 972 unsigned long nr_migrate, nr_remaining; 973 int err; 974 975 switch (isolate_migratepages(zone, cc)) { 976 case ISOLATE_ABORT: 977 ret = COMPACT_PARTIAL; 978 putback_movable_pages(&cc->migratepages); 979 cc->nr_migratepages = 0; 980 goto out; 981 case ISOLATE_NONE: 982 continue; 983 case ISOLATE_SUCCESS: 984 ; 985 } 986 987 nr_migrate = cc->nr_migratepages; 988 err = migrate_pages(&cc->migratepages, compaction_alloc, 989 (unsigned long)cc, 990 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 991 MR_COMPACTION); 992 update_nr_listpages(cc); 993 nr_remaining = cc->nr_migratepages; 994 995 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 996 nr_remaining); 997 998 /* Release isolated pages not migrated */ 999 if (err) { 1000 putback_movable_pages(&cc->migratepages); 1001 cc->nr_migratepages = 0; 1002 if (err == -ENOMEM) { 1003 ret = COMPACT_PARTIAL; 1004 goto out; 1005 } 1006 } 1007 } 1008 1009 out: 1010 /* Release free pages and check accounting */ 1011 cc->nr_freepages -= release_freepages(&cc->freepages); 1012 VM_BUG_ON(cc->nr_freepages != 0); 1013 1014 return ret; 1015 } 1016 1017 static unsigned long compact_zone_order(struct zone *zone, 1018 int order, gfp_t gfp_mask, 1019 bool sync, bool *contended) 1020 { 1021 unsigned long ret; 1022 struct compact_control cc = { 1023 .nr_freepages = 0, 1024 .nr_migratepages = 0, 1025 .order = order, 1026 .migratetype = allocflags_to_migratetype(gfp_mask), 1027 .zone = zone, 1028 .sync = sync, 1029 }; 1030 INIT_LIST_HEAD(&cc.freepages); 1031 INIT_LIST_HEAD(&cc.migratepages); 1032 1033 ret = compact_zone(zone, &cc); 1034 1035 VM_BUG_ON(!list_empty(&cc.freepages)); 1036 VM_BUG_ON(!list_empty(&cc.migratepages)); 1037 1038 *contended = cc.contended; 1039 return ret; 1040 } 1041 1042 int sysctl_extfrag_threshold = 500; 1043 1044 /** 1045 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1046 * @zonelist: The zonelist used for the current allocation 1047 * @order: The order of the current allocation 1048 * @gfp_mask: The GFP mask of the current allocation 1049 * @nodemask: The allowed nodes to allocate from 1050 * @sync: Whether migration is synchronous or not 1051 * @contended: Return value that is true if compaction was aborted due to lock contention 1052 * @page: Optionally capture a free page of the requested order during compaction 1053 * 1054 * This is the main entry point for direct page compaction. 1055 */ 1056 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1057 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1058 bool sync, bool *contended) 1059 { 1060 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1061 int may_enter_fs = gfp_mask & __GFP_FS; 1062 int may_perform_io = gfp_mask & __GFP_IO; 1063 struct zoneref *z; 1064 struct zone *zone; 1065 int rc = COMPACT_SKIPPED; 1066 int alloc_flags = 0; 1067 1068 /* Check if the GFP flags allow compaction */ 1069 if (!order || !may_enter_fs || !may_perform_io) 1070 return rc; 1071 1072 count_compact_event(COMPACTSTALL); 1073 1074 #ifdef CONFIG_CMA 1075 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1076 alloc_flags |= ALLOC_CMA; 1077 #endif 1078 /* Compact each zone in the list */ 1079 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1080 nodemask) { 1081 int status; 1082 1083 status = compact_zone_order(zone, order, gfp_mask, sync, 1084 contended); 1085 rc = max(status, rc); 1086 1087 /* If a normal allocation would succeed, stop compacting */ 1088 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1089 alloc_flags)) 1090 break; 1091 } 1092 1093 return rc; 1094 } 1095 1096 1097 /* Compact all zones within a node */ 1098 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1099 { 1100 int zoneid; 1101 struct zone *zone; 1102 1103 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1104 1105 zone = &pgdat->node_zones[zoneid]; 1106 if (!populated_zone(zone)) 1107 continue; 1108 1109 cc->nr_freepages = 0; 1110 cc->nr_migratepages = 0; 1111 cc->zone = zone; 1112 INIT_LIST_HEAD(&cc->freepages); 1113 INIT_LIST_HEAD(&cc->migratepages); 1114 1115 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1116 compact_zone(zone, cc); 1117 1118 if (cc->order > 0) { 1119 int ok = zone_watermark_ok(zone, cc->order, 1120 low_wmark_pages(zone), 0, 0); 1121 if (ok && cc->order >= zone->compact_order_failed) 1122 zone->compact_order_failed = cc->order + 1; 1123 /* Currently async compaction is never deferred. */ 1124 else if (!ok && cc->sync) 1125 defer_compaction(zone, cc->order); 1126 } 1127 1128 VM_BUG_ON(!list_empty(&cc->freepages)); 1129 VM_BUG_ON(!list_empty(&cc->migratepages)); 1130 } 1131 } 1132 1133 void compact_pgdat(pg_data_t *pgdat, int order) 1134 { 1135 struct compact_control cc = { 1136 .order = order, 1137 .sync = false, 1138 }; 1139 1140 if (!order) 1141 return; 1142 1143 __compact_pgdat(pgdat, &cc); 1144 } 1145 1146 static void compact_node(int nid) 1147 { 1148 struct compact_control cc = { 1149 .order = -1, 1150 .sync = true, 1151 }; 1152 1153 __compact_pgdat(NODE_DATA(nid), &cc); 1154 } 1155 1156 /* Compact all nodes in the system */ 1157 static void compact_nodes(void) 1158 { 1159 int nid; 1160 1161 /* Flush pending updates to the LRU lists */ 1162 lru_add_drain_all(); 1163 1164 for_each_online_node(nid) 1165 compact_node(nid); 1166 } 1167 1168 /* The written value is actually unused, all memory is compacted */ 1169 int sysctl_compact_memory; 1170 1171 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1172 int sysctl_compaction_handler(struct ctl_table *table, int write, 1173 void __user *buffer, size_t *length, loff_t *ppos) 1174 { 1175 if (write) 1176 compact_nodes(); 1177 1178 return 0; 1179 } 1180 1181 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1182 void __user *buffer, size_t *length, loff_t *ppos) 1183 { 1184 proc_dointvec_minmax(table, write, buffer, length, ppos); 1185 1186 return 0; 1187 } 1188 1189 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1190 ssize_t sysfs_compact_node(struct device *dev, 1191 struct device_attribute *attr, 1192 const char *buf, size_t count) 1193 { 1194 int nid = dev->id; 1195 1196 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1197 /* Flush pending updates to the LRU lists */ 1198 lru_add_drain_all(); 1199 1200 compact_node(nid); 1201 } 1202 1203 return count; 1204 } 1205 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1206 1207 int compaction_register_node(struct node *node) 1208 { 1209 return device_create_file(&node->dev, &dev_attr_compact); 1210 } 1211 1212 void compaction_unregister_node(struct node *node) 1213 { 1214 return device_remove_file(&node->dev, &dev_attr_compact); 1215 } 1216 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1217 1218 #endif /* CONFIG_COMPACTION */ 1219