1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 /* 20 * compact_control is used to track pages being migrated and the free pages 21 * they are being migrated to during memory compaction. The free_pfn starts 22 * at the end of a zone and migrate_pfn begins at the start. Movable pages 23 * are moved to the end of a zone during a compaction run and the run 24 * completes when free_pfn <= migrate_pfn 25 */ 26 struct compact_control { 27 struct list_head freepages; /* List of free pages to migrate to */ 28 struct list_head migratepages; /* List of pages being migrated */ 29 unsigned long nr_freepages; /* Number of isolated free pages */ 30 unsigned long nr_migratepages; /* Number of pages to migrate */ 31 unsigned long free_pfn; /* isolate_freepages search base */ 32 unsigned long migrate_pfn; /* isolate_migratepages search base */ 33 34 /* Account for isolated anon and file pages */ 35 unsigned long nr_anon; 36 unsigned long nr_file; 37 38 unsigned int order; /* order a direct compactor needs */ 39 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 40 struct zone *zone; 41 }; 42 43 static unsigned long release_freepages(struct list_head *freelist) 44 { 45 struct page *page, *next; 46 unsigned long count = 0; 47 48 list_for_each_entry_safe(page, next, freelist, lru) { 49 list_del(&page->lru); 50 __free_page(page); 51 count++; 52 } 53 54 return count; 55 } 56 57 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 58 static unsigned long isolate_freepages_block(struct zone *zone, 59 unsigned long blockpfn, 60 struct list_head *freelist) 61 { 62 unsigned long zone_end_pfn, end_pfn; 63 int total_isolated = 0; 64 struct page *cursor; 65 66 /* Get the last PFN we should scan for free pages at */ 67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 69 70 /* Find the first usable PFN in the block to initialse page cursor */ 71 for (; blockpfn < end_pfn; blockpfn++) { 72 if (pfn_valid_within(blockpfn)) 73 break; 74 } 75 cursor = pfn_to_page(blockpfn); 76 77 /* Isolate free pages. This assumes the block is valid */ 78 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 79 int isolated, i; 80 struct page *page = cursor; 81 82 if (!pfn_valid_within(blockpfn)) 83 continue; 84 85 if (!PageBuddy(page)) 86 continue; 87 88 /* Found a free page, break it into order-0 pages */ 89 isolated = split_free_page(page); 90 total_isolated += isolated; 91 for (i = 0; i < isolated; i++) { 92 list_add(&page->lru, freelist); 93 page++; 94 } 95 96 /* If a page was split, advance to the end of it */ 97 if (isolated) { 98 blockpfn += isolated - 1; 99 cursor += isolated - 1; 100 } 101 } 102 103 return total_isolated; 104 } 105 106 /* Returns true if the page is within a block suitable for migration to */ 107 static bool suitable_migration_target(struct page *page) 108 { 109 110 int migratetype = get_pageblock_migratetype(page); 111 112 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 113 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 114 return false; 115 116 /* If the page is a large free page, then allow migration */ 117 if (PageBuddy(page) && page_order(page) >= pageblock_order) 118 return true; 119 120 /* If the block is MIGRATE_MOVABLE, allow migration */ 121 if (migratetype == MIGRATE_MOVABLE) 122 return true; 123 124 /* Otherwise skip the block */ 125 return false; 126 } 127 128 /* 129 * Based on information in the current compact_control, find blocks 130 * suitable for isolating free pages from and then isolate them. 131 */ 132 static void isolate_freepages(struct zone *zone, 133 struct compact_control *cc) 134 { 135 struct page *page; 136 unsigned long high_pfn, low_pfn, pfn; 137 unsigned long flags; 138 int nr_freepages = cc->nr_freepages; 139 struct list_head *freelist = &cc->freepages; 140 141 pfn = cc->free_pfn; 142 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 143 high_pfn = low_pfn; 144 145 /* 146 * Isolate free pages until enough are available to migrate the 147 * pages on cc->migratepages. We stop searching if the migrate 148 * and free page scanners meet or enough free pages are isolated. 149 */ 150 spin_lock_irqsave(&zone->lock, flags); 151 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 152 pfn -= pageblock_nr_pages) { 153 unsigned long isolated; 154 155 if (!pfn_valid(pfn)) 156 continue; 157 158 /* 159 * Check for overlapping nodes/zones. It's possible on some 160 * configurations to have a setup like 161 * node0 node1 node0 162 * i.e. it's possible that all pages within a zones range of 163 * pages do not belong to a single zone. 164 */ 165 page = pfn_to_page(pfn); 166 if (page_zone(page) != zone) 167 continue; 168 169 /* Check the block is suitable for migration */ 170 if (!suitable_migration_target(page)) 171 continue; 172 173 /* Found a block suitable for isolating free pages from */ 174 isolated = isolate_freepages_block(zone, pfn, freelist); 175 nr_freepages += isolated; 176 177 /* 178 * Record the highest PFN we isolated pages from. When next 179 * looking for free pages, the search will restart here as 180 * page migration may have returned some pages to the allocator 181 */ 182 if (isolated) 183 high_pfn = max(high_pfn, pfn); 184 } 185 spin_unlock_irqrestore(&zone->lock, flags); 186 187 /* split_free_page does not map the pages */ 188 list_for_each_entry(page, freelist, lru) { 189 arch_alloc_page(page, 0); 190 kernel_map_pages(page, 1, 1); 191 } 192 193 cc->free_pfn = high_pfn; 194 cc->nr_freepages = nr_freepages; 195 } 196 197 /* Update the number of anon and file isolated pages in the zone */ 198 static void acct_isolated(struct zone *zone, struct compact_control *cc) 199 { 200 struct page *page; 201 unsigned int count[NR_LRU_LISTS] = { 0, }; 202 203 list_for_each_entry(page, &cc->migratepages, lru) { 204 int lru = page_lru_base_type(page); 205 count[lru]++; 206 } 207 208 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 209 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 210 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon); 211 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file); 212 } 213 214 /* Similar to reclaim, but different enough that they don't share logic */ 215 static bool too_many_isolated(struct zone *zone) 216 { 217 unsigned long active, inactive, isolated; 218 219 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 220 zone_page_state(zone, NR_INACTIVE_ANON); 221 active = zone_page_state(zone, NR_ACTIVE_FILE) + 222 zone_page_state(zone, NR_ACTIVE_ANON); 223 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 224 zone_page_state(zone, NR_ISOLATED_ANON); 225 226 return isolated > (inactive + active) / 2; 227 } 228 229 /* 230 * Isolate all pages that can be migrated from the block pointed to by 231 * the migrate scanner within compact_control. 232 */ 233 static unsigned long isolate_migratepages(struct zone *zone, 234 struct compact_control *cc) 235 { 236 unsigned long low_pfn, end_pfn; 237 struct list_head *migratelist = &cc->migratepages; 238 239 /* Do not scan outside zone boundaries */ 240 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 241 242 /* Only scan within a pageblock boundary */ 243 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 244 245 /* Do not cross the free scanner or scan within a memory hole */ 246 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 247 cc->migrate_pfn = end_pfn; 248 return 0; 249 } 250 251 /* 252 * Ensure that there are not too many pages isolated from the LRU 253 * list by either parallel reclaimers or compaction. If there are, 254 * delay for some time until fewer pages are isolated 255 */ 256 while (unlikely(too_many_isolated(zone))) { 257 congestion_wait(BLK_RW_ASYNC, HZ/10); 258 259 if (fatal_signal_pending(current)) 260 return 0; 261 } 262 263 /* Time to isolate some pages for migration */ 264 spin_lock_irq(&zone->lru_lock); 265 for (; low_pfn < end_pfn; low_pfn++) { 266 struct page *page; 267 if (!pfn_valid_within(low_pfn)) 268 continue; 269 270 /* Get the page and skip if free */ 271 page = pfn_to_page(low_pfn); 272 if (PageBuddy(page)) 273 continue; 274 275 /* Try isolate the page */ 276 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0) 277 continue; 278 279 /* Successfully isolated */ 280 del_page_from_lru_list(zone, page, page_lru(page)); 281 list_add(&page->lru, migratelist); 282 cc->nr_migratepages++; 283 284 /* Avoid isolating too much */ 285 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 286 break; 287 } 288 289 acct_isolated(zone, cc); 290 291 spin_unlock_irq(&zone->lru_lock); 292 cc->migrate_pfn = low_pfn; 293 294 return cc->nr_migratepages; 295 } 296 297 /* 298 * This is a migrate-callback that "allocates" freepages by taking pages 299 * from the isolated freelists in the block we are migrating to. 300 */ 301 static struct page *compaction_alloc(struct page *migratepage, 302 unsigned long data, 303 int **result) 304 { 305 struct compact_control *cc = (struct compact_control *)data; 306 struct page *freepage; 307 308 /* Isolate free pages if necessary */ 309 if (list_empty(&cc->freepages)) { 310 isolate_freepages(cc->zone, cc); 311 312 if (list_empty(&cc->freepages)) 313 return NULL; 314 } 315 316 freepage = list_entry(cc->freepages.next, struct page, lru); 317 list_del(&freepage->lru); 318 cc->nr_freepages--; 319 320 return freepage; 321 } 322 323 /* 324 * We cannot control nr_migratepages and nr_freepages fully when migration is 325 * running as migrate_pages() has no knowledge of compact_control. When 326 * migration is complete, we count the number of pages on the lists by hand. 327 */ 328 static void update_nr_listpages(struct compact_control *cc) 329 { 330 int nr_migratepages = 0; 331 int nr_freepages = 0; 332 struct page *page; 333 334 list_for_each_entry(page, &cc->migratepages, lru) 335 nr_migratepages++; 336 list_for_each_entry(page, &cc->freepages, lru) 337 nr_freepages++; 338 339 cc->nr_migratepages = nr_migratepages; 340 cc->nr_freepages = nr_freepages; 341 } 342 343 static int compact_finished(struct zone *zone, 344 struct compact_control *cc) 345 { 346 unsigned int order; 347 unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order); 348 349 if (fatal_signal_pending(current)) 350 return COMPACT_PARTIAL; 351 352 /* Compaction run completes if the migrate and free scanner meet */ 353 if (cc->free_pfn <= cc->migrate_pfn) 354 return COMPACT_COMPLETE; 355 356 /* Compaction run is not finished if the watermark is not met */ 357 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 358 return COMPACT_CONTINUE; 359 360 if (cc->order == -1) 361 return COMPACT_CONTINUE; 362 363 /* Direct compactor: Is a suitable page free? */ 364 for (order = cc->order; order < MAX_ORDER; order++) { 365 /* Job done if page is free of the right migratetype */ 366 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 367 return COMPACT_PARTIAL; 368 369 /* Job done if allocation would set block type */ 370 if (order >= pageblock_order && zone->free_area[order].nr_free) 371 return COMPACT_PARTIAL; 372 } 373 374 return COMPACT_CONTINUE; 375 } 376 377 static int compact_zone(struct zone *zone, struct compact_control *cc) 378 { 379 int ret; 380 381 /* Setup to move all movable pages to the end of the zone */ 382 cc->migrate_pfn = zone->zone_start_pfn; 383 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 384 cc->free_pfn &= ~(pageblock_nr_pages-1); 385 386 migrate_prep_local(); 387 388 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 389 unsigned long nr_migrate, nr_remaining; 390 391 if (!isolate_migratepages(zone, cc)) 392 continue; 393 394 nr_migrate = cc->nr_migratepages; 395 migrate_pages(&cc->migratepages, compaction_alloc, 396 (unsigned long)cc, 0); 397 update_nr_listpages(cc); 398 nr_remaining = cc->nr_migratepages; 399 400 count_vm_event(COMPACTBLOCKS); 401 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 402 if (nr_remaining) 403 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 404 405 /* Release LRU pages not migrated */ 406 if (!list_empty(&cc->migratepages)) { 407 putback_lru_pages(&cc->migratepages); 408 cc->nr_migratepages = 0; 409 } 410 411 } 412 413 /* Release free pages and check accounting */ 414 cc->nr_freepages -= release_freepages(&cc->freepages); 415 VM_BUG_ON(cc->nr_freepages != 0); 416 417 return ret; 418 } 419 420 static unsigned long compact_zone_order(struct zone *zone, 421 int order, gfp_t gfp_mask) 422 { 423 struct compact_control cc = { 424 .nr_freepages = 0, 425 .nr_migratepages = 0, 426 .order = order, 427 .migratetype = allocflags_to_migratetype(gfp_mask), 428 .zone = zone, 429 }; 430 INIT_LIST_HEAD(&cc.freepages); 431 INIT_LIST_HEAD(&cc.migratepages); 432 433 return compact_zone(zone, &cc); 434 } 435 436 int sysctl_extfrag_threshold = 500; 437 438 /** 439 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 440 * @zonelist: The zonelist used for the current allocation 441 * @order: The order of the current allocation 442 * @gfp_mask: The GFP mask of the current allocation 443 * @nodemask: The allowed nodes to allocate from 444 * 445 * This is the main entry point for direct page compaction. 446 */ 447 unsigned long try_to_compact_pages(struct zonelist *zonelist, 448 int order, gfp_t gfp_mask, nodemask_t *nodemask) 449 { 450 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 451 int may_enter_fs = gfp_mask & __GFP_FS; 452 int may_perform_io = gfp_mask & __GFP_IO; 453 unsigned long watermark; 454 struct zoneref *z; 455 struct zone *zone; 456 int rc = COMPACT_SKIPPED; 457 458 /* 459 * Check whether it is worth even starting compaction. The order check is 460 * made because an assumption is made that the page allocator can satisfy 461 * the "cheaper" orders without taking special steps 462 */ 463 if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io) 464 return rc; 465 466 count_vm_event(COMPACTSTALL); 467 468 /* Compact each zone in the list */ 469 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 470 nodemask) { 471 int fragindex; 472 int status; 473 474 /* 475 * Watermarks for order-0 must be met for compaction. Note 476 * the 2UL. This is because during migration, copies of 477 * pages need to be allocated and for a short time, the 478 * footprint is higher 479 */ 480 watermark = low_wmark_pages(zone) + (2UL << order); 481 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 482 continue; 483 484 /* 485 * fragmentation index determines if allocation failures are 486 * due to low memory or external fragmentation 487 * 488 * index of -1 implies allocations might succeed depending 489 * on watermarks 490 * index towards 0 implies failure is due to lack of memory 491 * index towards 1000 implies failure is due to fragmentation 492 * 493 * Only compact if a failure would be due to fragmentation. 494 */ 495 fragindex = fragmentation_index(zone, order); 496 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 497 continue; 498 499 if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) { 500 rc = COMPACT_PARTIAL; 501 break; 502 } 503 504 status = compact_zone_order(zone, order, gfp_mask); 505 rc = max(status, rc); 506 507 if (zone_watermark_ok(zone, order, watermark, 0, 0)) 508 break; 509 } 510 511 return rc; 512 } 513 514 515 /* Compact all zones within a node */ 516 static int compact_node(int nid) 517 { 518 int zoneid; 519 pg_data_t *pgdat; 520 struct zone *zone; 521 522 if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) 523 return -EINVAL; 524 pgdat = NODE_DATA(nid); 525 526 /* Flush pending updates to the LRU lists */ 527 lru_add_drain_all(); 528 529 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 530 struct compact_control cc = { 531 .nr_freepages = 0, 532 .nr_migratepages = 0, 533 .order = -1, 534 }; 535 536 zone = &pgdat->node_zones[zoneid]; 537 if (!populated_zone(zone)) 538 continue; 539 540 cc.zone = zone; 541 INIT_LIST_HEAD(&cc.freepages); 542 INIT_LIST_HEAD(&cc.migratepages); 543 544 compact_zone(zone, &cc); 545 546 VM_BUG_ON(!list_empty(&cc.freepages)); 547 VM_BUG_ON(!list_empty(&cc.migratepages)); 548 } 549 550 return 0; 551 } 552 553 /* Compact all nodes in the system */ 554 static int compact_nodes(void) 555 { 556 int nid; 557 558 for_each_online_node(nid) 559 compact_node(nid); 560 561 return COMPACT_COMPLETE; 562 } 563 564 /* The written value is actually unused, all memory is compacted */ 565 int sysctl_compact_memory; 566 567 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 568 int sysctl_compaction_handler(struct ctl_table *table, int write, 569 void __user *buffer, size_t *length, loff_t *ppos) 570 { 571 if (write) 572 return compact_nodes(); 573 574 return 0; 575 } 576 577 int sysctl_extfrag_handler(struct ctl_table *table, int write, 578 void __user *buffer, size_t *length, loff_t *ppos) 579 { 580 proc_dointvec_minmax(table, write, buffer, length, ppos); 581 582 return 0; 583 } 584 585 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 586 ssize_t sysfs_compact_node(struct sys_device *dev, 587 struct sysdev_attribute *attr, 588 const char *buf, size_t count) 589 { 590 compact_node(dev->id); 591 592 return count; 593 } 594 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 595 596 int compaction_register_node(struct node *node) 597 { 598 return sysdev_create_file(&node->sysdev, &attr_compact); 599 } 600 601 void compaction_unregister_node(struct node *node) 602 { 603 return sysdev_remove_file(&node->sysdev, &attr_compact); 604 } 605 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 606