xref: /openbmc/linux/mm/compaction.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 /*
20  * compact_control is used to track pages being migrated and the free pages
21  * they are being migrated to during memory compaction. The free_pfn starts
22  * at the end of a zone and migrate_pfn begins at the start. Movable pages
23  * are moved to the end of a zone during a compaction run and the run
24  * completes when free_pfn <= migrate_pfn
25  */
26 struct compact_control {
27 	struct list_head freepages;	/* List of free pages to migrate to */
28 	struct list_head migratepages;	/* List of pages being migrated */
29 	unsigned long nr_freepages;	/* Number of isolated free pages */
30 	unsigned long nr_migratepages;	/* Number of pages to migrate */
31 	unsigned long free_pfn;		/* isolate_freepages search base */
32 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
33 
34 	/* Account for isolated anon and file pages */
35 	unsigned long nr_anon;
36 	unsigned long nr_file;
37 
38 	unsigned int order;		/* order a direct compactor needs */
39 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 	struct zone *zone;
41 };
42 
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 	struct page *page, *next;
46 	unsigned long count = 0;
47 
48 	list_for_each_entry_safe(page, next, freelist, lru) {
49 		list_del(&page->lru);
50 		__free_page(page);
51 		count++;
52 	}
53 
54 	return count;
55 }
56 
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 				unsigned long blockpfn,
60 				struct list_head *freelist)
61 {
62 	unsigned long zone_end_pfn, end_pfn;
63 	int total_isolated = 0;
64 	struct page *cursor;
65 
66 	/* Get the last PFN we should scan for free pages at */
67 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69 
70 	/* Find the first usable PFN in the block to initialse page cursor */
71 	for (; blockpfn < end_pfn; blockpfn++) {
72 		if (pfn_valid_within(blockpfn))
73 			break;
74 	}
75 	cursor = pfn_to_page(blockpfn);
76 
77 	/* Isolate free pages. This assumes the block is valid */
78 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 		int isolated, i;
80 		struct page *page = cursor;
81 
82 		if (!pfn_valid_within(blockpfn))
83 			continue;
84 
85 		if (!PageBuddy(page))
86 			continue;
87 
88 		/* Found a free page, break it into order-0 pages */
89 		isolated = split_free_page(page);
90 		total_isolated += isolated;
91 		for (i = 0; i < isolated; i++) {
92 			list_add(&page->lru, freelist);
93 			page++;
94 		}
95 
96 		/* If a page was split, advance to the end of it */
97 		if (isolated) {
98 			blockpfn += isolated - 1;
99 			cursor += isolated - 1;
100 		}
101 	}
102 
103 	return total_isolated;
104 }
105 
106 /* Returns true if the page is within a block suitable for migration to */
107 static bool suitable_migration_target(struct page *page)
108 {
109 
110 	int migratetype = get_pageblock_migratetype(page);
111 
112 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
113 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
114 		return false;
115 
116 	/* If the page is a large free page, then allow migration */
117 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
118 		return true;
119 
120 	/* If the block is MIGRATE_MOVABLE, allow migration */
121 	if (migratetype == MIGRATE_MOVABLE)
122 		return true;
123 
124 	/* Otherwise skip the block */
125 	return false;
126 }
127 
128 /*
129  * Based on information in the current compact_control, find blocks
130  * suitable for isolating free pages from and then isolate them.
131  */
132 static void isolate_freepages(struct zone *zone,
133 				struct compact_control *cc)
134 {
135 	struct page *page;
136 	unsigned long high_pfn, low_pfn, pfn;
137 	unsigned long flags;
138 	int nr_freepages = cc->nr_freepages;
139 	struct list_head *freelist = &cc->freepages;
140 
141 	pfn = cc->free_pfn;
142 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
143 	high_pfn = low_pfn;
144 
145 	/*
146 	 * Isolate free pages until enough are available to migrate the
147 	 * pages on cc->migratepages. We stop searching if the migrate
148 	 * and free page scanners meet or enough free pages are isolated.
149 	 */
150 	spin_lock_irqsave(&zone->lock, flags);
151 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
152 					pfn -= pageblock_nr_pages) {
153 		unsigned long isolated;
154 
155 		if (!pfn_valid(pfn))
156 			continue;
157 
158 		/*
159 		 * Check for overlapping nodes/zones. It's possible on some
160 		 * configurations to have a setup like
161 		 * node0 node1 node0
162 		 * i.e. it's possible that all pages within a zones range of
163 		 * pages do not belong to a single zone.
164 		 */
165 		page = pfn_to_page(pfn);
166 		if (page_zone(page) != zone)
167 			continue;
168 
169 		/* Check the block is suitable for migration */
170 		if (!suitable_migration_target(page))
171 			continue;
172 
173 		/* Found a block suitable for isolating free pages from */
174 		isolated = isolate_freepages_block(zone, pfn, freelist);
175 		nr_freepages += isolated;
176 
177 		/*
178 		 * Record the highest PFN we isolated pages from. When next
179 		 * looking for free pages, the search will restart here as
180 		 * page migration may have returned some pages to the allocator
181 		 */
182 		if (isolated)
183 			high_pfn = max(high_pfn, pfn);
184 	}
185 	spin_unlock_irqrestore(&zone->lock, flags);
186 
187 	/* split_free_page does not map the pages */
188 	list_for_each_entry(page, freelist, lru) {
189 		arch_alloc_page(page, 0);
190 		kernel_map_pages(page, 1, 1);
191 	}
192 
193 	cc->free_pfn = high_pfn;
194 	cc->nr_freepages = nr_freepages;
195 }
196 
197 /* Update the number of anon and file isolated pages in the zone */
198 static void acct_isolated(struct zone *zone, struct compact_control *cc)
199 {
200 	struct page *page;
201 	unsigned int count[NR_LRU_LISTS] = { 0, };
202 
203 	list_for_each_entry(page, &cc->migratepages, lru) {
204 		int lru = page_lru_base_type(page);
205 		count[lru]++;
206 	}
207 
208 	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
209 	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
210 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
211 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
212 }
213 
214 /* Similar to reclaim, but different enough that they don't share logic */
215 static bool too_many_isolated(struct zone *zone)
216 {
217 	unsigned long active, inactive, isolated;
218 
219 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
220 					zone_page_state(zone, NR_INACTIVE_ANON);
221 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
222 					zone_page_state(zone, NR_ACTIVE_ANON);
223 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
224 					zone_page_state(zone, NR_ISOLATED_ANON);
225 
226 	return isolated > (inactive + active) / 2;
227 }
228 
229 /*
230  * Isolate all pages that can be migrated from the block pointed to by
231  * the migrate scanner within compact_control.
232  */
233 static unsigned long isolate_migratepages(struct zone *zone,
234 					struct compact_control *cc)
235 {
236 	unsigned long low_pfn, end_pfn;
237 	struct list_head *migratelist = &cc->migratepages;
238 
239 	/* Do not scan outside zone boundaries */
240 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
241 
242 	/* Only scan within a pageblock boundary */
243 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
244 
245 	/* Do not cross the free scanner or scan within a memory hole */
246 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
247 		cc->migrate_pfn = end_pfn;
248 		return 0;
249 	}
250 
251 	/*
252 	 * Ensure that there are not too many pages isolated from the LRU
253 	 * list by either parallel reclaimers or compaction. If there are,
254 	 * delay for some time until fewer pages are isolated
255 	 */
256 	while (unlikely(too_many_isolated(zone))) {
257 		congestion_wait(BLK_RW_ASYNC, HZ/10);
258 
259 		if (fatal_signal_pending(current))
260 			return 0;
261 	}
262 
263 	/* Time to isolate some pages for migration */
264 	spin_lock_irq(&zone->lru_lock);
265 	for (; low_pfn < end_pfn; low_pfn++) {
266 		struct page *page;
267 		if (!pfn_valid_within(low_pfn))
268 			continue;
269 
270 		/* Get the page and skip if free */
271 		page = pfn_to_page(low_pfn);
272 		if (PageBuddy(page))
273 			continue;
274 
275 		/* Try isolate the page */
276 		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
277 			continue;
278 
279 		/* Successfully isolated */
280 		del_page_from_lru_list(zone, page, page_lru(page));
281 		list_add(&page->lru, migratelist);
282 		cc->nr_migratepages++;
283 
284 		/* Avoid isolating too much */
285 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
286 			break;
287 	}
288 
289 	acct_isolated(zone, cc);
290 
291 	spin_unlock_irq(&zone->lru_lock);
292 	cc->migrate_pfn = low_pfn;
293 
294 	return cc->nr_migratepages;
295 }
296 
297 /*
298  * This is a migrate-callback that "allocates" freepages by taking pages
299  * from the isolated freelists in the block we are migrating to.
300  */
301 static struct page *compaction_alloc(struct page *migratepage,
302 					unsigned long data,
303 					int **result)
304 {
305 	struct compact_control *cc = (struct compact_control *)data;
306 	struct page *freepage;
307 
308 	/* Isolate free pages if necessary */
309 	if (list_empty(&cc->freepages)) {
310 		isolate_freepages(cc->zone, cc);
311 
312 		if (list_empty(&cc->freepages))
313 			return NULL;
314 	}
315 
316 	freepage = list_entry(cc->freepages.next, struct page, lru);
317 	list_del(&freepage->lru);
318 	cc->nr_freepages--;
319 
320 	return freepage;
321 }
322 
323 /*
324  * We cannot control nr_migratepages and nr_freepages fully when migration is
325  * running as migrate_pages() has no knowledge of compact_control. When
326  * migration is complete, we count the number of pages on the lists by hand.
327  */
328 static void update_nr_listpages(struct compact_control *cc)
329 {
330 	int nr_migratepages = 0;
331 	int nr_freepages = 0;
332 	struct page *page;
333 
334 	list_for_each_entry(page, &cc->migratepages, lru)
335 		nr_migratepages++;
336 	list_for_each_entry(page, &cc->freepages, lru)
337 		nr_freepages++;
338 
339 	cc->nr_migratepages = nr_migratepages;
340 	cc->nr_freepages = nr_freepages;
341 }
342 
343 static int compact_finished(struct zone *zone,
344 						struct compact_control *cc)
345 {
346 	unsigned int order;
347 	unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
348 
349 	if (fatal_signal_pending(current))
350 		return COMPACT_PARTIAL;
351 
352 	/* Compaction run completes if the migrate and free scanner meet */
353 	if (cc->free_pfn <= cc->migrate_pfn)
354 		return COMPACT_COMPLETE;
355 
356 	/* Compaction run is not finished if the watermark is not met */
357 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
358 		return COMPACT_CONTINUE;
359 
360 	if (cc->order == -1)
361 		return COMPACT_CONTINUE;
362 
363 	/* Direct compactor: Is a suitable page free? */
364 	for (order = cc->order; order < MAX_ORDER; order++) {
365 		/* Job done if page is free of the right migratetype */
366 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
367 			return COMPACT_PARTIAL;
368 
369 		/* Job done if allocation would set block type */
370 		if (order >= pageblock_order && zone->free_area[order].nr_free)
371 			return COMPACT_PARTIAL;
372 	}
373 
374 	return COMPACT_CONTINUE;
375 }
376 
377 static int compact_zone(struct zone *zone, struct compact_control *cc)
378 {
379 	int ret;
380 
381 	/* Setup to move all movable pages to the end of the zone */
382 	cc->migrate_pfn = zone->zone_start_pfn;
383 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
384 	cc->free_pfn &= ~(pageblock_nr_pages-1);
385 
386 	migrate_prep_local();
387 
388 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
389 		unsigned long nr_migrate, nr_remaining;
390 
391 		if (!isolate_migratepages(zone, cc))
392 			continue;
393 
394 		nr_migrate = cc->nr_migratepages;
395 		migrate_pages(&cc->migratepages, compaction_alloc,
396 						(unsigned long)cc, 0);
397 		update_nr_listpages(cc);
398 		nr_remaining = cc->nr_migratepages;
399 
400 		count_vm_event(COMPACTBLOCKS);
401 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
402 		if (nr_remaining)
403 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
404 
405 		/* Release LRU pages not migrated */
406 		if (!list_empty(&cc->migratepages)) {
407 			putback_lru_pages(&cc->migratepages);
408 			cc->nr_migratepages = 0;
409 		}
410 
411 	}
412 
413 	/* Release free pages and check accounting */
414 	cc->nr_freepages -= release_freepages(&cc->freepages);
415 	VM_BUG_ON(cc->nr_freepages != 0);
416 
417 	return ret;
418 }
419 
420 static unsigned long compact_zone_order(struct zone *zone,
421 						int order, gfp_t gfp_mask)
422 {
423 	struct compact_control cc = {
424 		.nr_freepages = 0,
425 		.nr_migratepages = 0,
426 		.order = order,
427 		.migratetype = allocflags_to_migratetype(gfp_mask),
428 		.zone = zone,
429 	};
430 	INIT_LIST_HEAD(&cc.freepages);
431 	INIT_LIST_HEAD(&cc.migratepages);
432 
433 	return compact_zone(zone, &cc);
434 }
435 
436 int sysctl_extfrag_threshold = 500;
437 
438 /**
439  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
440  * @zonelist: The zonelist used for the current allocation
441  * @order: The order of the current allocation
442  * @gfp_mask: The GFP mask of the current allocation
443  * @nodemask: The allowed nodes to allocate from
444  *
445  * This is the main entry point for direct page compaction.
446  */
447 unsigned long try_to_compact_pages(struct zonelist *zonelist,
448 			int order, gfp_t gfp_mask, nodemask_t *nodemask)
449 {
450 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
451 	int may_enter_fs = gfp_mask & __GFP_FS;
452 	int may_perform_io = gfp_mask & __GFP_IO;
453 	unsigned long watermark;
454 	struct zoneref *z;
455 	struct zone *zone;
456 	int rc = COMPACT_SKIPPED;
457 
458 	/*
459 	 * Check whether it is worth even starting compaction. The order check is
460 	 * made because an assumption is made that the page allocator can satisfy
461 	 * the "cheaper" orders without taking special steps
462 	 */
463 	if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
464 		return rc;
465 
466 	count_vm_event(COMPACTSTALL);
467 
468 	/* Compact each zone in the list */
469 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
470 								nodemask) {
471 		int fragindex;
472 		int status;
473 
474 		/*
475 		 * Watermarks for order-0 must be met for compaction. Note
476 		 * the 2UL. This is because during migration, copies of
477 		 * pages need to be allocated and for a short time, the
478 		 * footprint is higher
479 		 */
480 		watermark = low_wmark_pages(zone) + (2UL << order);
481 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
482 			continue;
483 
484 		/*
485 		 * fragmentation index determines if allocation failures are
486 		 * due to low memory or external fragmentation
487 		 *
488 		 * index of -1 implies allocations might succeed depending
489 		 * 	on watermarks
490 		 * index towards 0 implies failure is due to lack of memory
491 		 * index towards 1000 implies failure is due to fragmentation
492 		 *
493 		 * Only compact if a failure would be due to fragmentation.
494 		 */
495 		fragindex = fragmentation_index(zone, order);
496 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
497 			continue;
498 
499 		if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) {
500 			rc = COMPACT_PARTIAL;
501 			break;
502 		}
503 
504 		status = compact_zone_order(zone, order, gfp_mask);
505 		rc = max(status, rc);
506 
507 		if (zone_watermark_ok(zone, order, watermark, 0, 0))
508 			break;
509 	}
510 
511 	return rc;
512 }
513 
514 
515 /* Compact all zones within a node */
516 static int compact_node(int nid)
517 {
518 	int zoneid;
519 	pg_data_t *pgdat;
520 	struct zone *zone;
521 
522 	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
523 		return -EINVAL;
524 	pgdat = NODE_DATA(nid);
525 
526 	/* Flush pending updates to the LRU lists */
527 	lru_add_drain_all();
528 
529 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
530 		struct compact_control cc = {
531 			.nr_freepages = 0,
532 			.nr_migratepages = 0,
533 			.order = -1,
534 		};
535 
536 		zone = &pgdat->node_zones[zoneid];
537 		if (!populated_zone(zone))
538 			continue;
539 
540 		cc.zone = zone;
541 		INIT_LIST_HEAD(&cc.freepages);
542 		INIT_LIST_HEAD(&cc.migratepages);
543 
544 		compact_zone(zone, &cc);
545 
546 		VM_BUG_ON(!list_empty(&cc.freepages));
547 		VM_BUG_ON(!list_empty(&cc.migratepages));
548 	}
549 
550 	return 0;
551 }
552 
553 /* Compact all nodes in the system */
554 static int compact_nodes(void)
555 {
556 	int nid;
557 
558 	for_each_online_node(nid)
559 		compact_node(nid);
560 
561 	return COMPACT_COMPLETE;
562 }
563 
564 /* The written value is actually unused, all memory is compacted */
565 int sysctl_compact_memory;
566 
567 /* This is the entry point for compacting all nodes via /proc/sys/vm */
568 int sysctl_compaction_handler(struct ctl_table *table, int write,
569 			void __user *buffer, size_t *length, loff_t *ppos)
570 {
571 	if (write)
572 		return compact_nodes();
573 
574 	return 0;
575 }
576 
577 int sysctl_extfrag_handler(struct ctl_table *table, int write,
578 			void __user *buffer, size_t *length, loff_t *ppos)
579 {
580 	proc_dointvec_minmax(table, write, buffer, length, ppos);
581 
582 	return 0;
583 }
584 
585 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
586 ssize_t sysfs_compact_node(struct sys_device *dev,
587 			struct sysdev_attribute *attr,
588 			const char *buf, size_t count)
589 {
590 	compact_node(dev->id);
591 
592 	return count;
593 }
594 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
595 
596 int compaction_register_node(struct node *node)
597 {
598 	return sysdev_create_file(&node->sysdev, &attr_compact);
599 }
600 
601 void compaction_unregister_node(struct node *node)
602 {
603 	return sysdev_remove_file(&node->sysdev, &attr_compact);
604 }
605 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
606