1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/compaction.h> 23 24 static unsigned long release_freepages(struct list_head *freelist) 25 { 26 struct page *page, *next; 27 unsigned long count = 0; 28 29 list_for_each_entry_safe(page, next, freelist, lru) { 30 list_del(&page->lru); 31 __free_page(page); 32 count++; 33 } 34 35 return count; 36 } 37 38 static void map_pages(struct list_head *list) 39 { 40 struct page *page; 41 42 list_for_each_entry(page, list, lru) { 43 arch_alloc_page(page, 0); 44 kernel_map_pages(page, 1, 1); 45 } 46 } 47 48 static inline bool migrate_async_suitable(int migratetype) 49 { 50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 51 } 52 53 /* 54 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 55 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 56 * pages inside of the pageblock (even though it may still end up isolating 57 * some pages). 58 */ 59 static unsigned long isolate_freepages_block(unsigned long blockpfn, 60 unsigned long end_pfn, 61 struct list_head *freelist, 62 bool strict) 63 { 64 int nr_scanned = 0, total_isolated = 0; 65 struct page *cursor; 66 67 cursor = pfn_to_page(blockpfn); 68 69 /* Isolate free pages. This assumes the block is valid */ 70 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 71 int isolated, i; 72 struct page *page = cursor; 73 74 if (!pfn_valid_within(blockpfn)) { 75 if (strict) 76 return 0; 77 continue; 78 } 79 nr_scanned++; 80 81 if (!PageBuddy(page)) { 82 if (strict) 83 return 0; 84 continue; 85 } 86 87 /* Found a free page, break it into order-0 pages */ 88 isolated = split_free_page(page); 89 if (!isolated && strict) 90 return 0; 91 total_isolated += isolated; 92 for (i = 0; i < isolated; i++) { 93 list_add(&page->lru, freelist); 94 page++; 95 } 96 97 /* If a page was split, advance to the end of it */ 98 if (isolated) { 99 blockpfn += isolated - 1; 100 cursor += isolated - 1; 101 } 102 } 103 104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 105 return total_isolated; 106 } 107 108 /** 109 * isolate_freepages_range() - isolate free pages. 110 * @start_pfn: The first PFN to start isolating. 111 * @end_pfn: The one-past-last PFN. 112 * 113 * Non-free pages, invalid PFNs, or zone boundaries within the 114 * [start_pfn, end_pfn) range are considered errors, cause function to 115 * undo its actions and return zero. 116 * 117 * Otherwise, function returns one-past-the-last PFN of isolated page 118 * (which may be greater then end_pfn if end fell in a middle of 119 * a free page). 120 */ 121 unsigned long 122 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn) 123 { 124 unsigned long isolated, pfn, block_end_pfn, flags; 125 struct zone *zone = NULL; 126 LIST_HEAD(freelist); 127 128 if (pfn_valid(start_pfn)) 129 zone = page_zone(pfn_to_page(start_pfn)); 130 131 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 132 if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn))) 133 break; 134 135 /* 136 * On subsequent iterations ALIGN() is actually not needed, 137 * but we keep it that we not to complicate the code. 138 */ 139 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 140 block_end_pfn = min(block_end_pfn, end_pfn); 141 142 spin_lock_irqsave(&zone->lock, flags); 143 isolated = isolate_freepages_block(pfn, block_end_pfn, 144 &freelist, true); 145 spin_unlock_irqrestore(&zone->lock, flags); 146 147 /* 148 * In strict mode, isolate_freepages_block() returns 0 if 149 * there are any holes in the block (ie. invalid PFNs or 150 * non-free pages). 151 */ 152 if (!isolated) 153 break; 154 155 /* 156 * If we managed to isolate pages, it is always (1 << n) * 157 * pageblock_nr_pages for some non-negative n. (Max order 158 * page may span two pageblocks). 159 */ 160 } 161 162 /* split_free_page does not map the pages */ 163 map_pages(&freelist); 164 165 if (pfn < end_pfn) { 166 /* Loop terminated early, cleanup. */ 167 release_freepages(&freelist); 168 return 0; 169 } 170 171 /* We don't use freelists for anything. */ 172 return pfn; 173 } 174 175 /* Update the number of anon and file isolated pages in the zone */ 176 static void acct_isolated(struct zone *zone, struct compact_control *cc) 177 { 178 struct page *page; 179 unsigned int count[2] = { 0, }; 180 181 list_for_each_entry(page, &cc->migratepages, lru) 182 count[!!page_is_file_cache(page)]++; 183 184 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 185 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 186 } 187 188 /* Similar to reclaim, but different enough that they don't share logic */ 189 static bool too_many_isolated(struct zone *zone) 190 { 191 unsigned long active, inactive, isolated; 192 193 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 194 zone_page_state(zone, NR_INACTIVE_ANON); 195 active = zone_page_state(zone, NR_ACTIVE_FILE) + 196 zone_page_state(zone, NR_ACTIVE_ANON); 197 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 198 zone_page_state(zone, NR_ISOLATED_ANON); 199 200 return isolated > (inactive + active) / 2; 201 } 202 203 /** 204 * isolate_migratepages_range() - isolate all migrate-able pages in range. 205 * @zone: Zone pages are in. 206 * @cc: Compaction control structure. 207 * @low_pfn: The first PFN of the range. 208 * @end_pfn: The one-past-the-last PFN of the range. 209 * 210 * Isolate all pages that can be migrated from the range specified by 211 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 212 * pending), otherwise PFN of the first page that was not scanned 213 * (which may be both less, equal to or more then end_pfn). 214 * 215 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 216 * zero. 217 * 218 * Apart from cc->migratepages and cc->nr_migratetypes this function 219 * does not modify any cc's fields, in particular it does not modify 220 * (or read for that matter) cc->migrate_pfn. 221 */ 222 unsigned long 223 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 224 unsigned long low_pfn, unsigned long end_pfn) 225 { 226 unsigned long last_pageblock_nr = 0, pageblock_nr; 227 unsigned long nr_scanned = 0, nr_isolated = 0; 228 struct list_head *migratelist = &cc->migratepages; 229 isolate_mode_t mode = 0; 230 struct lruvec *lruvec; 231 232 /* 233 * Ensure that there are not too many pages isolated from the LRU 234 * list by either parallel reclaimers or compaction. If there are, 235 * delay for some time until fewer pages are isolated 236 */ 237 while (unlikely(too_many_isolated(zone))) { 238 /* async migration should just abort */ 239 if (!cc->sync) 240 return 0; 241 242 congestion_wait(BLK_RW_ASYNC, HZ/10); 243 244 if (fatal_signal_pending(current)) 245 return 0; 246 } 247 248 /* Time to isolate some pages for migration */ 249 cond_resched(); 250 spin_lock_irq(&zone->lru_lock); 251 for (; low_pfn < end_pfn; low_pfn++) { 252 struct page *page; 253 bool locked = true; 254 255 /* give a chance to irqs before checking need_resched() */ 256 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 257 spin_unlock_irq(&zone->lru_lock); 258 locked = false; 259 } 260 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 261 if (locked) 262 spin_unlock_irq(&zone->lru_lock); 263 cond_resched(); 264 spin_lock_irq(&zone->lru_lock); 265 if (fatal_signal_pending(current)) 266 break; 267 } else if (!locked) 268 spin_lock_irq(&zone->lru_lock); 269 270 /* 271 * migrate_pfn does not necessarily start aligned to a 272 * pageblock. Ensure that pfn_valid is called when moving 273 * into a new MAX_ORDER_NR_PAGES range in case of large 274 * memory holes within the zone 275 */ 276 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 277 if (!pfn_valid(low_pfn)) { 278 low_pfn += MAX_ORDER_NR_PAGES - 1; 279 continue; 280 } 281 } 282 283 if (!pfn_valid_within(low_pfn)) 284 continue; 285 nr_scanned++; 286 287 /* 288 * Get the page and ensure the page is within the same zone. 289 * See the comment in isolate_freepages about overlapping 290 * nodes. It is deliberate that the new zone lock is not taken 291 * as memory compaction should not move pages between nodes. 292 */ 293 page = pfn_to_page(low_pfn); 294 if (page_zone(page) != zone) 295 continue; 296 297 /* Skip if free */ 298 if (PageBuddy(page)) 299 continue; 300 301 /* 302 * For async migration, also only scan in MOVABLE blocks. Async 303 * migration is optimistic to see if the minimum amount of work 304 * satisfies the allocation 305 */ 306 pageblock_nr = low_pfn >> pageblock_order; 307 if (!cc->sync && last_pageblock_nr != pageblock_nr && 308 !migrate_async_suitable(get_pageblock_migratetype(page))) { 309 low_pfn += pageblock_nr_pages; 310 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 311 last_pageblock_nr = pageblock_nr; 312 continue; 313 } 314 315 if (!PageLRU(page)) 316 continue; 317 318 /* 319 * PageLRU is set, and lru_lock excludes isolation, 320 * splitting and collapsing (collapsing has already 321 * happened if PageLRU is set). 322 */ 323 if (PageTransHuge(page)) { 324 low_pfn += (1 << compound_order(page)) - 1; 325 continue; 326 } 327 328 if (!cc->sync) 329 mode |= ISOLATE_ASYNC_MIGRATE; 330 331 lruvec = mem_cgroup_page_lruvec(page, zone); 332 333 /* Try isolate the page */ 334 if (__isolate_lru_page(page, mode) != 0) 335 continue; 336 337 VM_BUG_ON(PageTransCompound(page)); 338 339 /* Successfully isolated */ 340 del_page_from_lru_list(page, lruvec, page_lru(page)); 341 list_add(&page->lru, migratelist); 342 cc->nr_migratepages++; 343 nr_isolated++; 344 345 /* Avoid isolating too much */ 346 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 347 ++low_pfn; 348 break; 349 } 350 } 351 352 acct_isolated(zone, cc); 353 354 spin_unlock_irq(&zone->lru_lock); 355 356 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 357 358 return low_pfn; 359 } 360 361 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 362 #ifdef CONFIG_COMPACTION 363 364 /* Returns true if the page is within a block suitable for migration to */ 365 static bool suitable_migration_target(struct page *page) 366 { 367 368 int migratetype = get_pageblock_migratetype(page); 369 370 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 371 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 372 return false; 373 374 /* If the page is a large free page, then allow migration */ 375 if (PageBuddy(page) && page_order(page) >= pageblock_order) 376 return true; 377 378 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 379 if (migrate_async_suitable(migratetype)) 380 return true; 381 382 /* Otherwise skip the block */ 383 return false; 384 } 385 386 /* 387 * Based on information in the current compact_control, find blocks 388 * suitable for isolating free pages from and then isolate them. 389 */ 390 static void isolate_freepages(struct zone *zone, 391 struct compact_control *cc) 392 { 393 struct page *page; 394 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn; 395 unsigned long flags; 396 int nr_freepages = cc->nr_freepages; 397 struct list_head *freelist = &cc->freepages; 398 399 /* 400 * Initialise the free scanner. The starting point is where we last 401 * scanned from (or the end of the zone if starting). The low point 402 * is the end of the pageblock the migration scanner is using. 403 */ 404 pfn = cc->free_pfn; 405 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 406 407 /* 408 * Take care that if the migration scanner is at the end of the zone 409 * that the free scanner does not accidentally move to the next zone 410 * in the next isolation cycle. 411 */ 412 high_pfn = min(low_pfn, pfn); 413 414 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 415 416 /* 417 * Isolate free pages until enough are available to migrate the 418 * pages on cc->migratepages. We stop searching if the migrate 419 * and free page scanners meet or enough free pages are isolated. 420 */ 421 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 422 pfn -= pageblock_nr_pages) { 423 unsigned long isolated; 424 425 if (!pfn_valid(pfn)) 426 continue; 427 428 /* 429 * Check for overlapping nodes/zones. It's possible on some 430 * configurations to have a setup like 431 * node0 node1 node0 432 * i.e. it's possible that all pages within a zones range of 433 * pages do not belong to a single zone. 434 */ 435 page = pfn_to_page(pfn); 436 if (page_zone(page) != zone) 437 continue; 438 439 /* Check the block is suitable for migration */ 440 if (!suitable_migration_target(page)) 441 continue; 442 443 /* 444 * Found a block suitable for isolating free pages from. Now 445 * we disabled interrupts, double check things are ok and 446 * isolate the pages. This is to minimise the time IRQs 447 * are disabled 448 */ 449 isolated = 0; 450 spin_lock_irqsave(&zone->lock, flags); 451 if (suitable_migration_target(page)) { 452 end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn); 453 isolated = isolate_freepages_block(pfn, end_pfn, 454 freelist, false); 455 nr_freepages += isolated; 456 } 457 spin_unlock_irqrestore(&zone->lock, flags); 458 459 /* 460 * Record the highest PFN we isolated pages from. When next 461 * looking for free pages, the search will restart here as 462 * page migration may have returned some pages to the allocator 463 */ 464 if (isolated) 465 high_pfn = max(high_pfn, pfn); 466 } 467 468 /* split_free_page does not map the pages */ 469 map_pages(freelist); 470 471 cc->free_pfn = high_pfn; 472 cc->nr_freepages = nr_freepages; 473 } 474 475 /* 476 * This is a migrate-callback that "allocates" freepages by taking pages 477 * from the isolated freelists in the block we are migrating to. 478 */ 479 static struct page *compaction_alloc(struct page *migratepage, 480 unsigned long data, 481 int **result) 482 { 483 struct compact_control *cc = (struct compact_control *)data; 484 struct page *freepage; 485 486 /* Isolate free pages if necessary */ 487 if (list_empty(&cc->freepages)) { 488 isolate_freepages(cc->zone, cc); 489 490 if (list_empty(&cc->freepages)) 491 return NULL; 492 } 493 494 freepage = list_entry(cc->freepages.next, struct page, lru); 495 list_del(&freepage->lru); 496 cc->nr_freepages--; 497 498 return freepage; 499 } 500 501 /* 502 * We cannot control nr_migratepages and nr_freepages fully when migration is 503 * running as migrate_pages() has no knowledge of compact_control. When 504 * migration is complete, we count the number of pages on the lists by hand. 505 */ 506 static void update_nr_listpages(struct compact_control *cc) 507 { 508 int nr_migratepages = 0; 509 int nr_freepages = 0; 510 struct page *page; 511 512 list_for_each_entry(page, &cc->migratepages, lru) 513 nr_migratepages++; 514 list_for_each_entry(page, &cc->freepages, lru) 515 nr_freepages++; 516 517 cc->nr_migratepages = nr_migratepages; 518 cc->nr_freepages = nr_freepages; 519 } 520 521 /* possible outcome of isolate_migratepages */ 522 typedef enum { 523 ISOLATE_ABORT, /* Abort compaction now */ 524 ISOLATE_NONE, /* No pages isolated, continue scanning */ 525 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 526 } isolate_migrate_t; 527 528 /* 529 * Isolate all pages that can be migrated from the block pointed to by 530 * the migrate scanner within compact_control. 531 */ 532 static isolate_migrate_t isolate_migratepages(struct zone *zone, 533 struct compact_control *cc) 534 { 535 unsigned long low_pfn, end_pfn; 536 537 /* Do not scan outside zone boundaries */ 538 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 539 540 /* Only scan within a pageblock boundary */ 541 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 542 543 /* Do not cross the free scanner or scan within a memory hole */ 544 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 545 cc->migrate_pfn = end_pfn; 546 return ISOLATE_NONE; 547 } 548 549 /* Perform the isolation */ 550 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn); 551 if (!low_pfn) 552 return ISOLATE_ABORT; 553 554 cc->migrate_pfn = low_pfn; 555 556 return ISOLATE_SUCCESS; 557 } 558 559 static int compact_finished(struct zone *zone, 560 struct compact_control *cc) 561 { 562 unsigned int order; 563 unsigned long watermark; 564 565 if (fatal_signal_pending(current)) 566 return COMPACT_PARTIAL; 567 568 /* Compaction run completes if the migrate and free scanner meet */ 569 if (cc->free_pfn <= cc->migrate_pfn) 570 return COMPACT_COMPLETE; 571 572 /* 573 * order == -1 is expected when compacting via 574 * /proc/sys/vm/compact_memory 575 */ 576 if (cc->order == -1) 577 return COMPACT_CONTINUE; 578 579 /* Compaction run is not finished if the watermark is not met */ 580 watermark = low_wmark_pages(zone); 581 watermark += (1 << cc->order); 582 583 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 584 return COMPACT_CONTINUE; 585 586 /* Direct compactor: Is a suitable page free? */ 587 for (order = cc->order; order < MAX_ORDER; order++) { 588 /* Job done if page is free of the right migratetype */ 589 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 590 return COMPACT_PARTIAL; 591 592 /* Job done if allocation would set block type */ 593 if (order >= pageblock_order && zone->free_area[order].nr_free) 594 return COMPACT_PARTIAL; 595 } 596 597 return COMPACT_CONTINUE; 598 } 599 600 /* 601 * compaction_suitable: Is this suitable to run compaction on this zone now? 602 * Returns 603 * COMPACT_SKIPPED - If there are too few free pages for compaction 604 * COMPACT_PARTIAL - If the allocation would succeed without compaction 605 * COMPACT_CONTINUE - If compaction should run now 606 */ 607 unsigned long compaction_suitable(struct zone *zone, int order) 608 { 609 int fragindex; 610 unsigned long watermark; 611 612 /* 613 * order == -1 is expected when compacting via 614 * /proc/sys/vm/compact_memory 615 */ 616 if (order == -1) 617 return COMPACT_CONTINUE; 618 619 /* 620 * Watermarks for order-0 must be met for compaction. Note the 2UL. 621 * This is because during migration, copies of pages need to be 622 * allocated and for a short time, the footprint is higher 623 */ 624 watermark = low_wmark_pages(zone) + (2UL << order); 625 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 626 return COMPACT_SKIPPED; 627 628 /* 629 * fragmentation index determines if allocation failures are due to 630 * low memory or external fragmentation 631 * 632 * index of -1000 implies allocations might succeed depending on 633 * watermarks 634 * index towards 0 implies failure is due to lack of memory 635 * index towards 1000 implies failure is due to fragmentation 636 * 637 * Only compact if a failure would be due to fragmentation. 638 */ 639 fragindex = fragmentation_index(zone, order); 640 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 641 return COMPACT_SKIPPED; 642 643 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 644 0, 0)) 645 return COMPACT_PARTIAL; 646 647 return COMPACT_CONTINUE; 648 } 649 650 static int compact_zone(struct zone *zone, struct compact_control *cc) 651 { 652 int ret; 653 654 ret = compaction_suitable(zone, cc->order); 655 switch (ret) { 656 case COMPACT_PARTIAL: 657 case COMPACT_SKIPPED: 658 /* Compaction is likely to fail */ 659 return ret; 660 case COMPACT_CONTINUE: 661 /* Fall through to compaction */ 662 ; 663 } 664 665 /* Setup to move all movable pages to the end of the zone */ 666 cc->migrate_pfn = zone->zone_start_pfn; 667 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 668 cc->free_pfn &= ~(pageblock_nr_pages-1); 669 670 migrate_prep_local(); 671 672 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 673 unsigned long nr_migrate, nr_remaining; 674 int err; 675 676 switch (isolate_migratepages(zone, cc)) { 677 case ISOLATE_ABORT: 678 ret = COMPACT_PARTIAL; 679 goto out; 680 case ISOLATE_NONE: 681 continue; 682 case ISOLATE_SUCCESS: 683 ; 684 } 685 686 nr_migrate = cc->nr_migratepages; 687 err = migrate_pages(&cc->migratepages, compaction_alloc, 688 (unsigned long)cc, false, 689 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC); 690 update_nr_listpages(cc); 691 nr_remaining = cc->nr_migratepages; 692 693 count_vm_event(COMPACTBLOCKS); 694 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 695 if (nr_remaining) 696 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 697 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 698 nr_remaining); 699 700 /* Release LRU pages not migrated */ 701 if (err) { 702 putback_lru_pages(&cc->migratepages); 703 cc->nr_migratepages = 0; 704 if (err == -ENOMEM) { 705 ret = COMPACT_PARTIAL; 706 goto out; 707 } 708 } 709 } 710 711 out: 712 /* Release free pages and check accounting */ 713 cc->nr_freepages -= release_freepages(&cc->freepages); 714 VM_BUG_ON(cc->nr_freepages != 0); 715 716 return ret; 717 } 718 719 static unsigned long compact_zone_order(struct zone *zone, 720 int order, gfp_t gfp_mask, 721 bool sync) 722 { 723 struct compact_control cc = { 724 .nr_freepages = 0, 725 .nr_migratepages = 0, 726 .order = order, 727 .migratetype = allocflags_to_migratetype(gfp_mask), 728 .zone = zone, 729 .sync = sync, 730 }; 731 INIT_LIST_HEAD(&cc.freepages); 732 INIT_LIST_HEAD(&cc.migratepages); 733 734 return compact_zone(zone, &cc); 735 } 736 737 int sysctl_extfrag_threshold = 500; 738 739 /** 740 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 741 * @zonelist: The zonelist used for the current allocation 742 * @order: The order of the current allocation 743 * @gfp_mask: The GFP mask of the current allocation 744 * @nodemask: The allowed nodes to allocate from 745 * @sync: Whether migration is synchronous or not 746 * 747 * This is the main entry point for direct page compaction. 748 */ 749 unsigned long try_to_compact_pages(struct zonelist *zonelist, 750 int order, gfp_t gfp_mask, nodemask_t *nodemask, 751 bool sync) 752 { 753 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 754 int may_enter_fs = gfp_mask & __GFP_FS; 755 int may_perform_io = gfp_mask & __GFP_IO; 756 struct zoneref *z; 757 struct zone *zone; 758 int rc = COMPACT_SKIPPED; 759 760 /* 761 * Check whether it is worth even starting compaction. The order check is 762 * made because an assumption is made that the page allocator can satisfy 763 * the "cheaper" orders without taking special steps 764 */ 765 if (!order || !may_enter_fs || !may_perform_io) 766 return rc; 767 768 count_vm_event(COMPACTSTALL); 769 770 /* Compact each zone in the list */ 771 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 772 nodemask) { 773 int status; 774 775 status = compact_zone_order(zone, order, gfp_mask, sync); 776 rc = max(status, rc); 777 778 /* If a normal allocation would succeed, stop compacting */ 779 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 780 break; 781 } 782 783 return rc; 784 } 785 786 787 /* Compact all zones within a node */ 788 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 789 { 790 int zoneid; 791 struct zone *zone; 792 793 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 794 795 zone = &pgdat->node_zones[zoneid]; 796 if (!populated_zone(zone)) 797 continue; 798 799 cc->nr_freepages = 0; 800 cc->nr_migratepages = 0; 801 cc->zone = zone; 802 INIT_LIST_HEAD(&cc->freepages); 803 INIT_LIST_HEAD(&cc->migratepages); 804 805 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 806 compact_zone(zone, cc); 807 808 if (cc->order > 0) { 809 int ok = zone_watermark_ok(zone, cc->order, 810 low_wmark_pages(zone), 0, 0); 811 if (ok && cc->order > zone->compact_order_failed) 812 zone->compact_order_failed = cc->order + 1; 813 /* Currently async compaction is never deferred. */ 814 else if (!ok && cc->sync) 815 defer_compaction(zone, cc->order); 816 } 817 818 VM_BUG_ON(!list_empty(&cc->freepages)); 819 VM_BUG_ON(!list_empty(&cc->migratepages)); 820 } 821 822 return 0; 823 } 824 825 int compact_pgdat(pg_data_t *pgdat, int order) 826 { 827 struct compact_control cc = { 828 .order = order, 829 .sync = false, 830 }; 831 832 return __compact_pgdat(pgdat, &cc); 833 } 834 835 static int compact_node(int nid) 836 { 837 struct compact_control cc = { 838 .order = -1, 839 .sync = true, 840 }; 841 842 return __compact_pgdat(NODE_DATA(nid), &cc); 843 } 844 845 /* Compact all nodes in the system */ 846 static int compact_nodes(void) 847 { 848 int nid; 849 850 /* Flush pending updates to the LRU lists */ 851 lru_add_drain_all(); 852 853 for_each_online_node(nid) 854 compact_node(nid); 855 856 return COMPACT_COMPLETE; 857 } 858 859 /* The written value is actually unused, all memory is compacted */ 860 int sysctl_compact_memory; 861 862 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 863 int sysctl_compaction_handler(struct ctl_table *table, int write, 864 void __user *buffer, size_t *length, loff_t *ppos) 865 { 866 if (write) 867 return compact_nodes(); 868 869 return 0; 870 } 871 872 int sysctl_extfrag_handler(struct ctl_table *table, int write, 873 void __user *buffer, size_t *length, loff_t *ppos) 874 { 875 proc_dointvec_minmax(table, write, buffer, length, ppos); 876 877 return 0; 878 } 879 880 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 881 ssize_t sysfs_compact_node(struct device *dev, 882 struct device_attribute *attr, 883 const char *buf, size_t count) 884 { 885 int nid = dev->id; 886 887 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 888 /* Flush pending updates to the LRU lists */ 889 lru_add_drain_all(); 890 891 compact_node(nid); 892 } 893 894 return count; 895 } 896 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 897 898 int compaction_register_node(struct node *node) 899 { 900 return device_create_file(&node->dev, &dev_attr_compact); 901 } 902 903 void compaction_unregister_node(struct node *node) 904 { 905 return device_remove_file(&node->dev, &dev_attr_compact); 906 } 907 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 908 909 #endif /* CONFIG_COMPACTION */ 910