1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include <linux/kasan.h> 20 #include "internal.h" 21 22 #ifdef CONFIG_COMPACTION 23 static inline void count_compact_event(enum vm_event_item item) 24 { 25 count_vm_event(item); 26 } 27 28 static inline void count_compact_events(enum vm_event_item item, long delta) 29 { 30 count_vm_events(item, delta); 31 } 32 #else 33 #define count_compact_event(item) do { } while (0) 34 #define count_compact_events(item, delta) do { } while (0) 35 #endif 36 37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 38 #ifdef CONFIG_TRACEPOINTS 39 static const char *const compaction_status_string[] = { 40 "deferred", 41 "skipped", 42 "continue", 43 "partial", 44 "complete", 45 "no_suitable_page", 46 "not_suitable_zone", 47 }; 48 #endif 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void map_pages(struct list_head *list) 70 { 71 struct page *page; 72 73 list_for_each_entry(page, list, lru) { 74 arch_alloc_page(page, 0); 75 kernel_map_pages(page, 1, 1); 76 kasan_alloc_pages(page, 0); 77 } 78 } 79 80 static inline bool migrate_async_suitable(int migratetype) 81 { 82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 83 } 84 85 /* 86 * Check that the whole (or subset of) a pageblock given by the interval of 87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 88 * with the migration of free compaction scanner. The scanners then need to 89 * use only pfn_valid_within() check for arches that allow holes within 90 * pageblocks. 91 * 92 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 93 * 94 * It's possible on some configurations to have a setup like node0 node1 node0 95 * i.e. it's possible that all pages within a zones range of pages do not 96 * belong to a single zone. We assume that a border between node0 and node1 97 * can occur within a single pageblock, but not a node0 node1 node0 98 * interleaving within a single pageblock. It is therefore sufficient to check 99 * the first and last page of a pageblock and avoid checking each individual 100 * page in a pageblock. 101 */ 102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn, 103 unsigned long end_pfn, struct zone *zone) 104 { 105 struct page *start_page; 106 struct page *end_page; 107 108 /* end_pfn is one past the range we are checking */ 109 end_pfn--; 110 111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 112 return NULL; 113 114 start_page = pfn_to_page(start_pfn); 115 116 if (page_zone(start_page) != zone) 117 return NULL; 118 119 end_page = pfn_to_page(end_pfn); 120 121 /* This gives a shorter code than deriving page_zone(end_page) */ 122 if (page_zone_id(start_page) != page_zone_id(end_page)) 123 return NULL; 124 125 return start_page; 126 } 127 128 #ifdef CONFIG_COMPACTION 129 130 /* Do not skip compaction more than 64 times */ 131 #define COMPACT_MAX_DEFER_SHIFT 6 132 133 /* 134 * Compaction is deferred when compaction fails to result in a page 135 * allocation success. 1 << compact_defer_limit compactions are skipped up 136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 137 */ 138 void defer_compaction(struct zone *zone, int order) 139 { 140 zone->compact_considered = 0; 141 zone->compact_defer_shift++; 142 143 if (order < zone->compact_order_failed) 144 zone->compact_order_failed = order; 145 146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 148 149 trace_mm_compaction_defer_compaction(zone, order); 150 } 151 152 /* Returns true if compaction should be skipped this time */ 153 bool compaction_deferred(struct zone *zone, int order) 154 { 155 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 156 157 if (order < zone->compact_order_failed) 158 return false; 159 160 /* Avoid possible overflow */ 161 if (++zone->compact_considered > defer_limit) 162 zone->compact_considered = defer_limit; 163 164 if (zone->compact_considered >= defer_limit) 165 return false; 166 167 trace_mm_compaction_deferred(zone, order); 168 169 return true; 170 } 171 172 /* 173 * Update defer tracking counters after successful compaction of given order, 174 * which means an allocation either succeeded (alloc_success == true) or is 175 * expected to succeed. 176 */ 177 void compaction_defer_reset(struct zone *zone, int order, 178 bool alloc_success) 179 { 180 if (alloc_success) { 181 zone->compact_considered = 0; 182 zone->compact_defer_shift = 0; 183 } 184 if (order >= zone->compact_order_failed) 185 zone->compact_order_failed = order + 1; 186 187 trace_mm_compaction_defer_reset(zone, order); 188 } 189 190 /* Returns true if restarting compaction after many failures */ 191 bool compaction_restarting(struct zone *zone, int order) 192 { 193 if (order < zone->compact_order_failed) 194 return false; 195 196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 197 zone->compact_considered >= 1UL << zone->compact_defer_shift; 198 } 199 200 /* Returns true if the pageblock should be scanned for pages to isolate. */ 201 static inline bool isolation_suitable(struct compact_control *cc, 202 struct page *page) 203 { 204 if (cc->ignore_skip_hint) 205 return true; 206 207 return !get_pageblock_skip(page); 208 } 209 210 static void reset_cached_positions(struct zone *zone) 211 { 212 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 213 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 214 zone->compact_cached_free_pfn = zone_end_pfn(zone); 215 } 216 217 /* 218 * This function is called to clear all cached information on pageblocks that 219 * should be skipped for page isolation when the migrate and free page scanner 220 * meet. 221 */ 222 static void __reset_isolation_suitable(struct zone *zone) 223 { 224 unsigned long start_pfn = zone->zone_start_pfn; 225 unsigned long end_pfn = zone_end_pfn(zone); 226 unsigned long pfn; 227 228 zone->compact_blockskip_flush = false; 229 230 /* Walk the zone and mark every pageblock as suitable for isolation */ 231 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 232 struct page *page; 233 234 cond_resched(); 235 236 if (!pfn_valid(pfn)) 237 continue; 238 239 page = pfn_to_page(pfn); 240 if (zone != page_zone(page)) 241 continue; 242 243 clear_pageblock_skip(page); 244 } 245 246 reset_cached_positions(zone); 247 } 248 249 void reset_isolation_suitable(pg_data_t *pgdat) 250 { 251 int zoneid; 252 253 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 254 struct zone *zone = &pgdat->node_zones[zoneid]; 255 if (!populated_zone(zone)) 256 continue; 257 258 /* Only flush if a full compaction finished recently */ 259 if (zone->compact_blockskip_flush) 260 __reset_isolation_suitable(zone); 261 } 262 } 263 264 /* 265 * If no pages were isolated then mark this pageblock to be skipped in the 266 * future. The information is later cleared by __reset_isolation_suitable(). 267 */ 268 static void update_pageblock_skip(struct compact_control *cc, 269 struct page *page, unsigned long nr_isolated, 270 bool migrate_scanner) 271 { 272 struct zone *zone = cc->zone; 273 unsigned long pfn; 274 275 if (cc->ignore_skip_hint) 276 return; 277 278 if (!page) 279 return; 280 281 if (nr_isolated) 282 return; 283 284 set_pageblock_skip(page); 285 286 pfn = page_to_pfn(page); 287 288 /* Update where async and sync compaction should restart */ 289 if (migrate_scanner) { 290 if (pfn > zone->compact_cached_migrate_pfn[0]) 291 zone->compact_cached_migrate_pfn[0] = pfn; 292 if (cc->mode != MIGRATE_ASYNC && 293 pfn > zone->compact_cached_migrate_pfn[1]) 294 zone->compact_cached_migrate_pfn[1] = pfn; 295 } else { 296 if (pfn < zone->compact_cached_free_pfn) 297 zone->compact_cached_free_pfn = pfn; 298 } 299 } 300 #else 301 static inline bool isolation_suitable(struct compact_control *cc, 302 struct page *page) 303 { 304 return true; 305 } 306 307 static void update_pageblock_skip(struct compact_control *cc, 308 struct page *page, unsigned long nr_isolated, 309 bool migrate_scanner) 310 { 311 } 312 #endif /* CONFIG_COMPACTION */ 313 314 /* 315 * Compaction requires the taking of some coarse locks that are potentially 316 * very heavily contended. For async compaction, back out if the lock cannot 317 * be taken immediately. For sync compaction, spin on the lock if needed. 318 * 319 * Returns true if the lock is held 320 * Returns false if the lock is not held and compaction should abort 321 */ 322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 323 struct compact_control *cc) 324 { 325 if (cc->mode == MIGRATE_ASYNC) { 326 if (!spin_trylock_irqsave(lock, *flags)) { 327 cc->contended = COMPACT_CONTENDED_LOCK; 328 return false; 329 } 330 } else { 331 spin_lock_irqsave(lock, *flags); 332 } 333 334 return true; 335 } 336 337 /* 338 * Compaction requires the taking of some coarse locks that are potentially 339 * very heavily contended. The lock should be periodically unlocked to avoid 340 * having disabled IRQs for a long time, even when there is nobody waiting on 341 * the lock. It might also be that allowing the IRQs will result in 342 * need_resched() becoming true. If scheduling is needed, async compaction 343 * aborts. Sync compaction schedules. 344 * Either compaction type will also abort if a fatal signal is pending. 345 * In either case if the lock was locked, it is dropped and not regained. 346 * 347 * Returns true if compaction should abort due to fatal signal pending, or 348 * async compaction due to need_resched() 349 * Returns false when compaction can continue (sync compaction might have 350 * scheduled) 351 */ 352 static bool compact_unlock_should_abort(spinlock_t *lock, 353 unsigned long flags, bool *locked, struct compact_control *cc) 354 { 355 if (*locked) { 356 spin_unlock_irqrestore(lock, flags); 357 *locked = false; 358 } 359 360 if (fatal_signal_pending(current)) { 361 cc->contended = COMPACT_CONTENDED_SCHED; 362 return true; 363 } 364 365 if (need_resched()) { 366 if (cc->mode == MIGRATE_ASYNC) { 367 cc->contended = COMPACT_CONTENDED_SCHED; 368 return true; 369 } 370 cond_resched(); 371 } 372 373 return false; 374 } 375 376 /* 377 * Aside from avoiding lock contention, compaction also periodically checks 378 * need_resched() and either schedules in sync compaction or aborts async 379 * compaction. This is similar to what compact_unlock_should_abort() does, but 380 * is used where no lock is concerned. 381 * 382 * Returns false when no scheduling was needed, or sync compaction scheduled. 383 * Returns true when async compaction should abort. 384 */ 385 static inline bool compact_should_abort(struct compact_control *cc) 386 { 387 /* async compaction aborts if contended */ 388 if (need_resched()) { 389 if (cc->mode == MIGRATE_ASYNC) { 390 cc->contended = COMPACT_CONTENDED_SCHED; 391 return true; 392 } 393 394 cond_resched(); 395 } 396 397 return false; 398 } 399 400 /* 401 * Isolate free pages onto a private freelist. If @strict is true, will abort 402 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 403 * (even though it may still end up isolating some pages). 404 */ 405 static unsigned long isolate_freepages_block(struct compact_control *cc, 406 unsigned long *start_pfn, 407 unsigned long end_pfn, 408 struct list_head *freelist, 409 bool strict) 410 { 411 int nr_scanned = 0, total_isolated = 0; 412 struct page *cursor, *valid_page = NULL; 413 unsigned long flags = 0; 414 bool locked = false; 415 unsigned long blockpfn = *start_pfn; 416 417 cursor = pfn_to_page(blockpfn); 418 419 /* Isolate free pages. */ 420 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 421 int isolated, i; 422 struct page *page = cursor; 423 424 /* 425 * Periodically drop the lock (if held) regardless of its 426 * contention, to give chance to IRQs. Abort if fatal signal 427 * pending or async compaction detects need_resched() 428 */ 429 if (!(blockpfn % SWAP_CLUSTER_MAX) 430 && compact_unlock_should_abort(&cc->zone->lock, flags, 431 &locked, cc)) 432 break; 433 434 nr_scanned++; 435 if (!pfn_valid_within(blockpfn)) 436 goto isolate_fail; 437 438 if (!valid_page) 439 valid_page = page; 440 441 /* 442 * For compound pages such as THP and hugetlbfs, we can save 443 * potentially a lot of iterations if we skip them at once. 444 * The check is racy, but we can consider only valid values 445 * and the only danger is skipping too much. 446 */ 447 if (PageCompound(page)) { 448 unsigned int comp_order = compound_order(page); 449 450 if (likely(comp_order < MAX_ORDER)) { 451 blockpfn += (1UL << comp_order) - 1; 452 cursor += (1UL << comp_order) - 1; 453 } 454 455 goto isolate_fail; 456 } 457 458 if (!PageBuddy(page)) 459 goto isolate_fail; 460 461 /* 462 * If we already hold the lock, we can skip some rechecking. 463 * Note that if we hold the lock now, checked_pageblock was 464 * already set in some previous iteration (or strict is true), 465 * so it is correct to skip the suitable migration target 466 * recheck as well. 467 */ 468 if (!locked) { 469 /* 470 * The zone lock must be held to isolate freepages. 471 * Unfortunately this is a very coarse lock and can be 472 * heavily contended if there are parallel allocations 473 * or parallel compactions. For async compaction do not 474 * spin on the lock and we acquire the lock as late as 475 * possible. 476 */ 477 locked = compact_trylock_irqsave(&cc->zone->lock, 478 &flags, cc); 479 if (!locked) 480 break; 481 482 /* Recheck this is a buddy page under lock */ 483 if (!PageBuddy(page)) 484 goto isolate_fail; 485 } 486 487 /* Found a free page, break it into order-0 pages */ 488 isolated = split_free_page(page); 489 total_isolated += isolated; 490 for (i = 0; i < isolated; i++) { 491 list_add(&page->lru, freelist); 492 page++; 493 } 494 495 /* If a page was split, advance to the end of it */ 496 if (isolated) { 497 cc->nr_freepages += isolated; 498 if (!strict && 499 cc->nr_migratepages <= cc->nr_freepages) { 500 blockpfn += isolated; 501 break; 502 } 503 504 blockpfn += isolated - 1; 505 cursor += isolated - 1; 506 continue; 507 } 508 509 isolate_fail: 510 if (strict) 511 break; 512 else 513 continue; 514 515 } 516 517 /* 518 * There is a tiny chance that we have read bogus compound_order(), 519 * so be careful to not go outside of the pageblock. 520 */ 521 if (unlikely(blockpfn > end_pfn)) 522 blockpfn = end_pfn; 523 524 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 525 nr_scanned, total_isolated); 526 527 /* Record how far we have got within the block */ 528 *start_pfn = blockpfn; 529 530 /* 531 * If strict isolation is requested by CMA then check that all the 532 * pages requested were isolated. If there were any failures, 0 is 533 * returned and CMA will fail. 534 */ 535 if (strict && blockpfn < end_pfn) 536 total_isolated = 0; 537 538 if (locked) 539 spin_unlock_irqrestore(&cc->zone->lock, flags); 540 541 /* Update the pageblock-skip if the whole pageblock was scanned */ 542 if (blockpfn == end_pfn) 543 update_pageblock_skip(cc, valid_page, total_isolated, false); 544 545 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 546 if (total_isolated) 547 count_compact_events(COMPACTISOLATED, total_isolated); 548 return total_isolated; 549 } 550 551 /** 552 * isolate_freepages_range() - isolate free pages. 553 * @start_pfn: The first PFN to start isolating. 554 * @end_pfn: The one-past-last PFN. 555 * 556 * Non-free pages, invalid PFNs, or zone boundaries within the 557 * [start_pfn, end_pfn) range are considered errors, cause function to 558 * undo its actions and return zero. 559 * 560 * Otherwise, function returns one-past-the-last PFN of isolated page 561 * (which may be greater then end_pfn if end fell in a middle of 562 * a free page). 563 */ 564 unsigned long 565 isolate_freepages_range(struct compact_control *cc, 566 unsigned long start_pfn, unsigned long end_pfn) 567 { 568 unsigned long isolated, pfn, block_end_pfn; 569 LIST_HEAD(freelist); 570 571 pfn = start_pfn; 572 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 573 574 for (; pfn < end_pfn; pfn += isolated, 575 block_end_pfn += pageblock_nr_pages) { 576 /* Protect pfn from changing by isolate_freepages_block */ 577 unsigned long isolate_start_pfn = pfn; 578 579 block_end_pfn = min(block_end_pfn, end_pfn); 580 581 /* 582 * pfn could pass the block_end_pfn if isolated freepage 583 * is more than pageblock order. In this case, we adjust 584 * scanning range to right one. 585 */ 586 if (pfn >= block_end_pfn) { 587 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 588 block_end_pfn = min(block_end_pfn, end_pfn); 589 } 590 591 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) 592 break; 593 594 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 595 block_end_pfn, &freelist, true); 596 597 /* 598 * In strict mode, isolate_freepages_block() returns 0 if 599 * there are any holes in the block (ie. invalid PFNs or 600 * non-free pages). 601 */ 602 if (!isolated) 603 break; 604 605 /* 606 * If we managed to isolate pages, it is always (1 << n) * 607 * pageblock_nr_pages for some non-negative n. (Max order 608 * page may span two pageblocks). 609 */ 610 } 611 612 /* split_free_page does not map the pages */ 613 map_pages(&freelist); 614 615 if (pfn < end_pfn) { 616 /* Loop terminated early, cleanup. */ 617 release_freepages(&freelist); 618 return 0; 619 } 620 621 /* We don't use freelists for anything. */ 622 return pfn; 623 } 624 625 /* Update the number of anon and file isolated pages in the zone */ 626 static void acct_isolated(struct zone *zone, struct compact_control *cc) 627 { 628 struct page *page; 629 unsigned int count[2] = { 0, }; 630 631 if (list_empty(&cc->migratepages)) 632 return; 633 634 list_for_each_entry(page, &cc->migratepages, lru) 635 count[!!page_is_file_cache(page)]++; 636 637 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 638 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 639 } 640 641 /* Similar to reclaim, but different enough that they don't share logic */ 642 static bool too_many_isolated(struct zone *zone) 643 { 644 unsigned long active, inactive, isolated; 645 646 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 647 zone_page_state(zone, NR_INACTIVE_ANON); 648 active = zone_page_state(zone, NR_ACTIVE_FILE) + 649 zone_page_state(zone, NR_ACTIVE_ANON); 650 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 651 zone_page_state(zone, NR_ISOLATED_ANON); 652 653 return isolated > (inactive + active) / 2; 654 } 655 656 /** 657 * isolate_migratepages_block() - isolate all migrate-able pages within 658 * a single pageblock 659 * @cc: Compaction control structure. 660 * @low_pfn: The first PFN to isolate 661 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 662 * @isolate_mode: Isolation mode to be used. 663 * 664 * Isolate all pages that can be migrated from the range specified by 665 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 666 * Returns zero if there is a fatal signal pending, otherwise PFN of the 667 * first page that was not scanned (which may be both less, equal to or more 668 * than end_pfn). 669 * 670 * The pages are isolated on cc->migratepages list (not required to be empty), 671 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 672 * is neither read nor updated. 673 */ 674 static unsigned long 675 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 676 unsigned long end_pfn, isolate_mode_t isolate_mode) 677 { 678 struct zone *zone = cc->zone; 679 unsigned long nr_scanned = 0, nr_isolated = 0; 680 struct list_head *migratelist = &cc->migratepages; 681 struct lruvec *lruvec; 682 unsigned long flags = 0; 683 bool locked = false; 684 struct page *page = NULL, *valid_page = NULL; 685 unsigned long start_pfn = low_pfn; 686 687 /* 688 * Ensure that there are not too many pages isolated from the LRU 689 * list by either parallel reclaimers or compaction. If there are, 690 * delay for some time until fewer pages are isolated 691 */ 692 while (unlikely(too_many_isolated(zone))) { 693 /* async migration should just abort */ 694 if (cc->mode == MIGRATE_ASYNC) 695 return 0; 696 697 congestion_wait(BLK_RW_ASYNC, HZ/10); 698 699 if (fatal_signal_pending(current)) 700 return 0; 701 } 702 703 if (compact_should_abort(cc)) 704 return 0; 705 706 /* Time to isolate some pages for migration */ 707 for (; low_pfn < end_pfn; low_pfn++) { 708 bool is_lru; 709 710 /* 711 * Periodically drop the lock (if held) regardless of its 712 * contention, to give chance to IRQs. Abort async compaction 713 * if contended. 714 */ 715 if (!(low_pfn % SWAP_CLUSTER_MAX) 716 && compact_unlock_should_abort(&zone->lru_lock, flags, 717 &locked, cc)) 718 break; 719 720 if (!pfn_valid_within(low_pfn)) 721 continue; 722 nr_scanned++; 723 724 page = pfn_to_page(low_pfn); 725 726 if (!valid_page) 727 valid_page = page; 728 729 /* 730 * Skip if free. We read page order here without zone lock 731 * which is generally unsafe, but the race window is small and 732 * the worst thing that can happen is that we skip some 733 * potential isolation targets. 734 */ 735 if (PageBuddy(page)) { 736 unsigned long freepage_order = page_order_unsafe(page); 737 738 /* 739 * Without lock, we cannot be sure that what we got is 740 * a valid page order. Consider only values in the 741 * valid order range to prevent low_pfn overflow. 742 */ 743 if (freepage_order > 0 && freepage_order < MAX_ORDER) 744 low_pfn += (1UL << freepage_order) - 1; 745 continue; 746 } 747 748 /* 749 * Check may be lockless but that's ok as we recheck later. 750 * It's possible to migrate LRU pages and balloon pages 751 * Skip any other type of page 752 */ 753 is_lru = PageLRU(page); 754 if (!is_lru) { 755 if (unlikely(balloon_page_movable(page))) { 756 if (balloon_page_isolate(page)) { 757 /* Successfully isolated */ 758 goto isolate_success; 759 } 760 } 761 } 762 763 /* 764 * Regardless of being on LRU, compound pages such as THP and 765 * hugetlbfs are not to be compacted. We can potentially save 766 * a lot of iterations if we skip them at once. The check is 767 * racy, but we can consider only valid values and the only 768 * danger is skipping too much. 769 */ 770 if (PageCompound(page)) { 771 unsigned int comp_order = compound_order(page); 772 773 if (likely(comp_order < MAX_ORDER)) 774 low_pfn += (1UL << comp_order) - 1; 775 776 continue; 777 } 778 779 if (!is_lru) 780 continue; 781 782 /* 783 * Migration will fail if an anonymous page is pinned in memory, 784 * so avoid taking lru_lock and isolating it unnecessarily in an 785 * admittedly racy check. 786 */ 787 if (!page_mapping(page) && 788 page_count(page) > page_mapcount(page)) 789 continue; 790 791 /* If we already hold the lock, we can skip some rechecking */ 792 if (!locked) { 793 locked = compact_trylock_irqsave(&zone->lru_lock, 794 &flags, cc); 795 if (!locked) 796 break; 797 798 /* Recheck PageLRU and PageCompound under lock */ 799 if (!PageLRU(page)) 800 continue; 801 802 /* 803 * Page become compound since the non-locked check, 804 * and it's on LRU. It can only be a THP so the order 805 * is safe to read and it's 0 for tail pages. 806 */ 807 if (unlikely(PageCompound(page))) { 808 low_pfn += (1UL << compound_order(page)) - 1; 809 continue; 810 } 811 } 812 813 lruvec = mem_cgroup_page_lruvec(page, zone); 814 815 /* Try isolate the page */ 816 if (__isolate_lru_page(page, isolate_mode) != 0) 817 continue; 818 819 VM_BUG_ON_PAGE(PageCompound(page), page); 820 821 /* Successfully isolated */ 822 del_page_from_lru_list(page, lruvec, page_lru(page)); 823 824 isolate_success: 825 list_add(&page->lru, migratelist); 826 cc->nr_migratepages++; 827 nr_isolated++; 828 829 /* Avoid isolating too much */ 830 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 831 ++low_pfn; 832 break; 833 } 834 } 835 836 /* 837 * The PageBuddy() check could have potentially brought us outside 838 * the range to be scanned. 839 */ 840 if (unlikely(low_pfn > end_pfn)) 841 low_pfn = end_pfn; 842 843 if (locked) 844 spin_unlock_irqrestore(&zone->lru_lock, flags); 845 846 /* 847 * Update the pageblock-skip information and cached scanner pfn, 848 * if the whole pageblock was scanned without isolating any page. 849 */ 850 if (low_pfn == end_pfn) 851 update_pageblock_skip(cc, valid_page, nr_isolated, true); 852 853 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 854 nr_scanned, nr_isolated); 855 856 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 857 if (nr_isolated) 858 count_compact_events(COMPACTISOLATED, nr_isolated); 859 860 return low_pfn; 861 } 862 863 /** 864 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 865 * @cc: Compaction control structure. 866 * @start_pfn: The first PFN to start isolating. 867 * @end_pfn: The one-past-last PFN. 868 * 869 * Returns zero if isolation fails fatally due to e.g. pending signal. 870 * Otherwise, function returns one-past-the-last PFN of isolated page 871 * (which may be greater than end_pfn if end fell in a middle of a THP page). 872 */ 873 unsigned long 874 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 875 unsigned long end_pfn) 876 { 877 unsigned long pfn, block_end_pfn; 878 879 /* Scan block by block. First and last block may be incomplete */ 880 pfn = start_pfn; 881 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 882 883 for (; pfn < end_pfn; pfn = block_end_pfn, 884 block_end_pfn += pageblock_nr_pages) { 885 886 block_end_pfn = min(block_end_pfn, end_pfn); 887 888 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) 889 continue; 890 891 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 892 ISOLATE_UNEVICTABLE); 893 894 /* 895 * In case of fatal failure, release everything that might 896 * have been isolated in the previous iteration, and signal 897 * the failure back to caller. 898 */ 899 if (!pfn) { 900 putback_movable_pages(&cc->migratepages); 901 cc->nr_migratepages = 0; 902 break; 903 } 904 905 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 906 break; 907 } 908 acct_isolated(cc->zone, cc); 909 910 return pfn; 911 } 912 913 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 914 #ifdef CONFIG_COMPACTION 915 916 /* Returns true if the page is within a block suitable for migration to */ 917 static bool suitable_migration_target(struct page *page) 918 { 919 /* If the page is a large free page, then disallow migration */ 920 if (PageBuddy(page)) { 921 /* 922 * We are checking page_order without zone->lock taken. But 923 * the only small danger is that we skip a potentially suitable 924 * pageblock, so it's not worth to check order for valid range. 925 */ 926 if (page_order_unsafe(page) >= pageblock_order) 927 return false; 928 } 929 930 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 931 if (migrate_async_suitable(get_pageblock_migratetype(page))) 932 return true; 933 934 /* Otherwise skip the block */ 935 return false; 936 } 937 938 /* 939 * Test whether the free scanner has reached the same or lower pageblock than 940 * the migration scanner, and compaction should thus terminate. 941 */ 942 static inline bool compact_scanners_met(struct compact_control *cc) 943 { 944 return (cc->free_pfn >> pageblock_order) 945 <= (cc->migrate_pfn >> pageblock_order); 946 } 947 948 /* 949 * Based on information in the current compact_control, find blocks 950 * suitable for isolating free pages from and then isolate them. 951 */ 952 static void isolate_freepages(struct compact_control *cc) 953 { 954 struct zone *zone = cc->zone; 955 struct page *page; 956 unsigned long block_start_pfn; /* start of current pageblock */ 957 unsigned long isolate_start_pfn; /* exact pfn we start at */ 958 unsigned long block_end_pfn; /* end of current pageblock */ 959 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 960 struct list_head *freelist = &cc->freepages; 961 962 /* 963 * Initialise the free scanner. The starting point is where we last 964 * successfully isolated from, zone-cached value, or the end of the 965 * zone when isolating for the first time. For looping we also need 966 * this pfn aligned down to the pageblock boundary, because we do 967 * block_start_pfn -= pageblock_nr_pages in the for loop. 968 * For ending point, take care when isolating in last pageblock of a 969 * a zone which ends in the middle of a pageblock. 970 * The low boundary is the end of the pageblock the migration scanner 971 * is using. 972 */ 973 isolate_start_pfn = cc->free_pfn; 974 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); 975 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 976 zone_end_pfn(zone)); 977 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 978 979 /* 980 * Isolate free pages until enough are available to migrate the 981 * pages on cc->migratepages. We stop searching if the migrate 982 * and free page scanners meet or enough free pages are isolated. 983 */ 984 for (; block_start_pfn >= low_pfn; 985 block_end_pfn = block_start_pfn, 986 block_start_pfn -= pageblock_nr_pages, 987 isolate_start_pfn = block_start_pfn) { 988 989 /* 990 * This can iterate a massively long zone without finding any 991 * suitable migration targets, so periodically check if we need 992 * to schedule, or even abort async compaction. 993 */ 994 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 995 && compact_should_abort(cc)) 996 break; 997 998 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 999 zone); 1000 if (!page) 1001 continue; 1002 1003 /* Check the block is suitable for migration */ 1004 if (!suitable_migration_target(page)) 1005 continue; 1006 1007 /* If isolation recently failed, do not retry */ 1008 if (!isolation_suitable(cc, page)) 1009 continue; 1010 1011 /* Found a block suitable for isolating free pages from. */ 1012 isolate_freepages_block(cc, &isolate_start_pfn, 1013 block_end_pfn, freelist, false); 1014 1015 /* 1016 * If we isolated enough freepages, or aborted due to async 1017 * compaction being contended, terminate the loop. 1018 * Remember where the free scanner should restart next time, 1019 * which is where isolate_freepages_block() left off. 1020 * But if it scanned the whole pageblock, isolate_start_pfn 1021 * now points at block_end_pfn, which is the start of the next 1022 * pageblock. 1023 * In that case we will however want to restart at the start 1024 * of the previous pageblock. 1025 */ 1026 if ((cc->nr_freepages >= cc->nr_migratepages) 1027 || cc->contended) { 1028 if (isolate_start_pfn >= block_end_pfn) 1029 isolate_start_pfn = 1030 block_start_pfn - pageblock_nr_pages; 1031 break; 1032 } else { 1033 /* 1034 * isolate_freepages_block() should not terminate 1035 * prematurely unless contended, or isolated enough 1036 */ 1037 VM_BUG_ON(isolate_start_pfn < block_end_pfn); 1038 } 1039 } 1040 1041 /* split_free_page does not map the pages */ 1042 map_pages(freelist); 1043 1044 /* 1045 * Record where the free scanner will restart next time. Either we 1046 * broke from the loop and set isolate_start_pfn based on the last 1047 * call to isolate_freepages_block(), or we met the migration scanner 1048 * and the loop terminated due to isolate_start_pfn < low_pfn 1049 */ 1050 cc->free_pfn = isolate_start_pfn; 1051 } 1052 1053 /* 1054 * This is a migrate-callback that "allocates" freepages by taking pages 1055 * from the isolated freelists in the block we are migrating to. 1056 */ 1057 static struct page *compaction_alloc(struct page *migratepage, 1058 unsigned long data, 1059 int **result) 1060 { 1061 struct compact_control *cc = (struct compact_control *)data; 1062 struct page *freepage; 1063 1064 /* 1065 * Isolate free pages if necessary, and if we are not aborting due to 1066 * contention. 1067 */ 1068 if (list_empty(&cc->freepages)) { 1069 if (!cc->contended) 1070 isolate_freepages(cc); 1071 1072 if (list_empty(&cc->freepages)) 1073 return NULL; 1074 } 1075 1076 freepage = list_entry(cc->freepages.next, struct page, lru); 1077 list_del(&freepage->lru); 1078 cc->nr_freepages--; 1079 1080 return freepage; 1081 } 1082 1083 /* 1084 * This is a migrate-callback that "frees" freepages back to the isolated 1085 * freelist. All pages on the freelist are from the same zone, so there is no 1086 * special handling needed for NUMA. 1087 */ 1088 static void compaction_free(struct page *page, unsigned long data) 1089 { 1090 struct compact_control *cc = (struct compact_control *)data; 1091 1092 list_add(&page->lru, &cc->freepages); 1093 cc->nr_freepages++; 1094 } 1095 1096 /* possible outcome of isolate_migratepages */ 1097 typedef enum { 1098 ISOLATE_ABORT, /* Abort compaction now */ 1099 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1100 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1101 } isolate_migrate_t; 1102 1103 /* 1104 * Allow userspace to control policy on scanning the unevictable LRU for 1105 * compactable pages. 1106 */ 1107 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1108 1109 /* 1110 * Isolate all pages that can be migrated from the first suitable block, 1111 * starting at the block pointed to by the migrate scanner pfn within 1112 * compact_control. 1113 */ 1114 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1115 struct compact_control *cc) 1116 { 1117 unsigned long low_pfn, end_pfn; 1118 unsigned long isolate_start_pfn; 1119 struct page *page; 1120 const isolate_mode_t isolate_mode = 1121 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1122 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1123 1124 /* 1125 * Start at where we last stopped, or beginning of the zone as 1126 * initialized by compact_zone() 1127 */ 1128 low_pfn = cc->migrate_pfn; 1129 1130 /* Only scan within a pageblock boundary */ 1131 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 1132 1133 /* 1134 * Iterate over whole pageblocks until we find the first suitable. 1135 * Do not cross the free scanner. 1136 */ 1137 for (; end_pfn <= cc->free_pfn; 1138 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) { 1139 1140 /* 1141 * This can potentially iterate a massively long zone with 1142 * many pageblocks unsuitable, so periodically check if we 1143 * need to schedule, or even abort async compaction. 1144 */ 1145 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1146 && compact_should_abort(cc)) 1147 break; 1148 1149 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone); 1150 if (!page) 1151 continue; 1152 1153 /* If isolation recently failed, do not retry */ 1154 if (!isolation_suitable(cc, page)) 1155 continue; 1156 1157 /* 1158 * For async compaction, also only scan in MOVABLE blocks. 1159 * Async compaction is optimistic to see if the minimum amount 1160 * of work satisfies the allocation. 1161 */ 1162 if (cc->mode == MIGRATE_ASYNC && 1163 !migrate_async_suitable(get_pageblock_migratetype(page))) 1164 continue; 1165 1166 /* Perform the isolation */ 1167 isolate_start_pfn = low_pfn; 1168 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn, 1169 isolate_mode); 1170 1171 if (!low_pfn || cc->contended) { 1172 acct_isolated(zone, cc); 1173 return ISOLATE_ABORT; 1174 } 1175 1176 /* 1177 * Record where we could have freed pages by migration and not 1178 * yet flushed them to buddy allocator. 1179 * - this is the lowest page that could have been isolated and 1180 * then freed by migration. 1181 */ 1182 if (cc->nr_migratepages && !cc->last_migrated_pfn) 1183 cc->last_migrated_pfn = isolate_start_pfn; 1184 1185 /* 1186 * Either we isolated something and proceed with migration. Or 1187 * we failed and compact_zone should decide if we should 1188 * continue or not. 1189 */ 1190 break; 1191 } 1192 1193 acct_isolated(zone, cc); 1194 /* Record where migration scanner will be restarted. */ 1195 cc->migrate_pfn = low_pfn; 1196 1197 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1198 } 1199 1200 static int __compact_finished(struct zone *zone, struct compact_control *cc, 1201 const int migratetype) 1202 { 1203 unsigned int order; 1204 unsigned long watermark; 1205 1206 if (cc->contended || fatal_signal_pending(current)) 1207 return COMPACT_PARTIAL; 1208 1209 /* Compaction run completes if the migrate and free scanner meet */ 1210 if (compact_scanners_met(cc)) { 1211 /* Let the next compaction start anew. */ 1212 reset_cached_positions(zone); 1213 1214 /* 1215 * Mark that the PG_migrate_skip information should be cleared 1216 * by kswapd when it goes to sleep. kswapd does not set the 1217 * flag itself as the decision to be clear should be directly 1218 * based on an allocation request. 1219 */ 1220 if (!current_is_kswapd()) 1221 zone->compact_blockskip_flush = true; 1222 1223 return COMPACT_COMPLETE; 1224 } 1225 1226 /* 1227 * order == -1 is expected when compacting via 1228 * /proc/sys/vm/compact_memory 1229 */ 1230 if (cc->order == -1) 1231 return COMPACT_CONTINUE; 1232 1233 /* Compaction run is not finished if the watermark is not met */ 1234 watermark = low_wmark_pages(zone); 1235 1236 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1237 cc->alloc_flags)) 1238 return COMPACT_CONTINUE; 1239 1240 /* Direct compactor: Is a suitable page free? */ 1241 for (order = cc->order; order < MAX_ORDER; order++) { 1242 struct free_area *area = &zone->free_area[order]; 1243 bool can_steal; 1244 1245 /* Job done if page is free of the right migratetype */ 1246 if (!list_empty(&area->free_list[migratetype])) 1247 return COMPACT_PARTIAL; 1248 1249 #ifdef CONFIG_CMA 1250 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1251 if (migratetype == MIGRATE_MOVABLE && 1252 !list_empty(&area->free_list[MIGRATE_CMA])) 1253 return COMPACT_PARTIAL; 1254 #endif 1255 /* 1256 * Job done if allocation would steal freepages from 1257 * other migratetype buddy lists. 1258 */ 1259 if (find_suitable_fallback(area, order, migratetype, 1260 true, &can_steal) != -1) 1261 return COMPACT_PARTIAL; 1262 } 1263 1264 return COMPACT_NO_SUITABLE_PAGE; 1265 } 1266 1267 static int compact_finished(struct zone *zone, struct compact_control *cc, 1268 const int migratetype) 1269 { 1270 int ret; 1271 1272 ret = __compact_finished(zone, cc, migratetype); 1273 trace_mm_compaction_finished(zone, cc->order, ret); 1274 if (ret == COMPACT_NO_SUITABLE_PAGE) 1275 ret = COMPACT_CONTINUE; 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * compaction_suitable: Is this suitable to run compaction on this zone now? 1282 * Returns 1283 * COMPACT_SKIPPED - If there are too few free pages for compaction 1284 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1285 * COMPACT_CONTINUE - If compaction should run now 1286 */ 1287 static unsigned long __compaction_suitable(struct zone *zone, int order, 1288 int alloc_flags, int classzone_idx) 1289 { 1290 int fragindex; 1291 unsigned long watermark; 1292 1293 /* 1294 * order == -1 is expected when compacting via 1295 * /proc/sys/vm/compact_memory 1296 */ 1297 if (order == -1) 1298 return COMPACT_CONTINUE; 1299 1300 watermark = low_wmark_pages(zone); 1301 /* 1302 * If watermarks for high-order allocation are already met, there 1303 * should be no need for compaction at all. 1304 */ 1305 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1306 alloc_flags)) 1307 return COMPACT_PARTIAL; 1308 1309 /* 1310 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1311 * This is because during migration, copies of pages need to be 1312 * allocated and for a short time, the footprint is higher 1313 */ 1314 watermark += (2UL << order); 1315 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags)) 1316 return COMPACT_SKIPPED; 1317 1318 /* 1319 * fragmentation index determines if allocation failures are due to 1320 * low memory or external fragmentation 1321 * 1322 * index of -1000 would imply allocations might succeed depending on 1323 * watermarks, but we already failed the high-order watermark check 1324 * index towards 0 implies failure is due to lack of memory 1325 * index towards 1000 implies failure is due to fragmentation 1326 * 1327 * Only compact if a failure would be due to fragmentation. 1328 */ 1329 fragindex = fragmentation_index(zone, order); 1330 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1331 return COMPACT_NOT_SUITABLE_ZONE; 1332 1333 return COMPACT_CONTINUE; 1334 } 1335 1336 unsigned long compaction_suitable(struct zone *zone, int order, 1337 int alloc_flags, int classzone_idx) 1338 { 1339 unsigned long ret; 1340 1341 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx); 1342 trace_mm_compaction_suitable(zone, order, ret); 1343 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1344 ret = COMPACT_SKIPPED; 1345 1346 return ret; 1347 } 1348 1349 static int compact_zone(struct zone *zone, struct compact_control *cc) 1350 { 1351 int ret; 1352 unsigned long start_pfn = zone->zone_start_pfn; 1353 unsigned long end_pfn = zone_end_pfn(zone); 1354 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1355 const bool sync = cc->mode != MIGRATE_ASYNC; 1356 1357 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1358 cc->classzone_idx); 1359 switch (ret) { 1360 case COMPACT_PARTIAL: 1361 case COMPACT_SKIPPED: 1362 /* Compaction is likely to fail */ 1363 return ret; 1364 case COMPACT_CONTINUE: 1365 /* Fall through to compaction */ 1366 ; 1367 } 1368 1369 /* 1370 * Clear pageblock skip if there were failures recently and compaction 1371 * is about to be retried after being deferred. kswapd does not do 1372 * this reset as it'll reset the cached information when going to sleep. 1373 */ 1374 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 1375 __reset_isolation_suitable(zone); 1376 1377 /* 1378 * Setup to move all movable pages to the end of the zone. Used cached 1379 * information on where the scanners should start but check that it 1380 * is initialised by ensuring the values are within zone boundaries. 1381 */ 1382 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1383 cc->free_pfn = zone->compact_cached_free_pfn; 1384 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 1385 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 1386 zone->compact_cached_free_pfn = cc->free_pfn; 1387 } 1388 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 1389 cc->migrate_pfn = start_pfn; 1390 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1391 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1392 } 1393 cc->last_migrated_pfn = 0; 1394 1395 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1396 cc->free_pfn, end_pfn, sync); 1397 1398 migrate_prep_local(); 1399 1400 while ((ret = compact_finished(zone, cc, migratetype)) == 1401 COMPACT_CONTINUE) { 1402 int err; 1403 1404 switch (isolate_migratepages(zone, cc)) { 1405 case ISOLATE_ABORT: 1406 ret = COMPACT_PARTIAL; 1407 putback_movable_pages(&cc->migratepages); 1408 cc->nr_migratepages = 0; 1409 goto out; 1410 case ISOLATE_NONE: 1411 /* 1412 * We haven't isolated and migrated anything, but 1413 * there might still be unflushed migrations from 1414 * previous cc->order aligned block. 1415 */ 1416 goto check_drain; 1417 case ISOLATE_SUCCESS: 1418 ; 1419 } 1420 1421 err = migrate_pages(&cc->migratepages, compaction_alloc, 1422 compaction_free, (unsigned long)cc, cc->mode, 1423 MR_COMPACTION); 1424 1425 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1426 &cc->migratepages); 1427 1428 /* All pages were either migrated or will be released */ 1429 cc->nr_migratepages = 0; 1430 if (err) { 1431 putback_movable_pages(&cc->migratepages); 1432 /* 1433 * migrate_pages() may return -ENOMEM when scanners meet 1434 * and we want compact_finished() to detect it 1435 */ 1436 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1437 ret = COMPACT_PARTIAL; 1438 goto out; 1439 } 1440 } 1441 1442 check_drain: 1443 /* 1444 * Has the migration scanner moved away from the previous 1445 * cc->order aligned block where we migrated from? If yes, 1446 * flush the pages that were freed, so that they can merge and 1447 * compact_finished() can detect immediately if allocation 1448 * would succeed. 1449 */ 1450 if (cc->order > 0 && cc->last_migrated_pfn) { 1451 int cpu; 1452 unsigned long current_block_start = 1453 cc->migrate_pfn & ~((1UL << cc->order) - 1); 1454 1455 if (cc->last_migrated_pfn < current_block_start) { 1456 cpu = get_cpu(); 1457 lru_add_drain_cpu(cpu); 1458 drain_local_pages(zone); 1459 put_cpu(); 1460 /* No more flushing until we migrate again */ 1461 cc->last_migrated_pfn = 0; 1462 } 1463 } 1464 1465 } 1466 1467 out: 1468 /* 1469 * Release free pages and update where the free scanner should restart, 1470 * so we don't leave any returned pages behind in the next attempt. 1471 */ 1472 if (cc->nr_freepages > 0) { 1473 unsigned long free_pfn = release_freepages(&cc->freepages); 1474 1475 cc->nr_freepages = 0; 1476 VM_BUG_ON(free_pfn == 0); 1477 /* The cached pfn is always the first in a pageblock */ 1478 free_pfn &= ~(pageblock_nr_pages-1); 1479 /* 1480 * Only go back, not forward. The cached pfn might have been 1481 * already reset to zone end in compact_finished() 1482 */ 1483 if (free_pfn > zone->compact_cached_free_pfn) 1484 zone->compact_cached_free_pfn = free_pfn; 1485 } 1486 1487 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1488 cc->free_pfn, end_pfn, sync, ret); 1489 1490 return ret; 1491 } 1492 1493 static unsigned long compact_zone_order(struct zone *zone, int order, 1494 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1495 int alloc_flags, int classzone_idx) 1496 { 1497 unsigned long ret; 1498 struct compact_control cc = { 1499 .nr_freepages = 0, 1500 .nr_migratepages = 0, 1501 .order = order, 1502 .gfp_mask = gfp_mask, 1503 .zone = zone, 1504 .mode = mode, 1505 .alloc_flags = alloc_flags, 1506 .classzone_idx = classzone_idx, 1507 }; 1508 INIT_LIST_HEAD(&cc.freepages); 1509 INIT_LIST_HEAD(&cc.migratepages); 1510 1511 ret = compact_zone(zone, &cc); 1512 1513 VM_BUG_ON(!list_empty(&cc.freepages)); 1514 VM_BUG_ON(!list_empty(&cc.migratepages)); 1515 1516 *contended = cc.contended; 1517 return ret; 1518 } 1519 1520 int sysctl_extfrag_threshold = 500; 1521 1522 /** 1523 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1524 * @gfp_mask: The GFP mask of the current allocation 1525 * @order: The order of the current allocation 1526 * @alloc_flags: The allocation flags of the current allocation 1527 * @ac: The context of current allocation 1528 * @mode: The migration mode for async, sync light, or sync migration 1529 * @contended: Return value that determines if compaction was aborted due to 1530 * need_resched() or lock contention 1531 * 1532 * This is the main entry point for direct page compaction. 1533 */ 1534 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1535 int alloc_flags, const struct alloc_context *ac, 1536 enum migrate_mode mode, int *contended) 1537 { 1538 int may_enter_fs = gfp_mask & __GFP_FS; 1539 int may_perform_io = gfp_mask & __GFP_IO; 1540 struct zoneref *z; 1541 struct zone *zone; 1542 int rc = COMPACT_DEFERRED; 1543 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1544 1545 *contended = COMPACT_CONTENDED_NONE; 1546 1547 /* Check if the GFP flags allow compaction */ 1548 if (!order || !may_enter_fs || !may_perform_io) 1549 return COMPACT_SKIPPED; 1550 1551 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); 1552 1553 /* Compact each zone in the list */ 1554 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1555 ac->nodemask) { 1556 int status; 1557 int zone_contended; 1558 1559 if (compaction_deferred(zone, order)) 1560 continue; 1561 1562 status = compact_zone_order(zone, order, gfp_mask, mode, 1563 &zone_contended, alloc_flags, 1564 ac->classzone_idx); 1565 rc = max(status, rc); 1566 /* 1567 * It takes at least one zone that wasn't lock contended 1568 * to clear all_zones_contended. 1569 */ 1570 all_zones_contended &= zone_contended; 1571 1572 /* If a normal allocation would succeed, stop compacting */ 1573 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1574 ac->classzone_idx, alloc_flags)) { 1575 /* 1576 * We think the allocation will succeed in this zone, 1577 * but it is not certain, hence the false. The caller 1578 * will repeat this with true if allocation indeed 1579 * succeeds in this zone. 1580 */ 1581 compaction_defer_reset(zone, order, false); 1582 /* 1583 * It is possible that async compaction aborted due to 1584 * need_resched() and the watermarks were ok thanks to 1585 * somebody else freeing memory. The allocation can 1586 * however still fail so we better signal the 1587 * need_resched() contention anyway (this will not 1588 * prevent the allocation attempt). 1589 */ 1590 if (zone_contended == COMPACT_CONTENDED_SCHED) 1591 *contended = COMPACT_CONTENDED_SCHED; 1592 1593 goto break_loop; 1594 } 1595 1596 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) { 1597 /* 1598 * We think that allocation won't succeed in this zone 1599 * so we defer compaction there. If it ends up 1600 * succeeding after all, it will be reset. 1601 */ 1602 defer_compaction(zone, order); 1603 } 1604 1605 /* 1606 * We might have stopped compacting due to need_resched() in 1607 * async compaction, or due to a fatal signal detected. In that 1608 * case do not try further zones and signal need_resched() 1609 * contention. 1610 */ 1611 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1612 || fatal_signal_pending(current)) { 1613 *contended = COMPACT_CONTENDED_SCHED; 1614 goto break_loop; 1615 } 1616 1617 continue; 1618 break_loop: 1619 /* 1620 * We might not have tried all the zones, so be conservative 1621 * and assume they are not all lock contended. 1622 */ 1623 all_zones_contended = 0; 1624 break; 1625 } 1626 1627 /* 1628 * If at least one zone wasn't deferred or skipped, we report if all 1629 * zones that were tried were lock contended. 1630 */ 1631 if (rc > COMPACT_SKIPPED && all_zones_contended) 1632 *contended = COMPACT_CONTENDED_LOCK; 1633 1634 return rc; 1635 } 1636 1637 1638 /* Compact all zones within a node */ 1639 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1640 { 1641 int zoneid; 1642 struct zone *zone; 1643 1644 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1645 1646 zone = &pgdat->node_zones[zoneid]; 1647 if (!populated_zone(zone)) 1648 continue; 1649 1650 cc->nr_freepages = 0; 1651 cc->nr_migratepages = 0; 1652 cc->zone = zone; 1653 INIT_LIST_HEAD(&cc->freepages); 1654 INIT_LIST_HEAD(&cc->migratepages); 1655 1656 /* 1657 * When called via /proc/sys/vm/compact_memory 1658 * this makes sure we compact the whole zone regardless of 1659 * cached scanner positions. 1660 */ 1661 if (cc->order == -1) 1662 __reset_isolation_suitable(zone); 1663 1664 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1665 compact_zone(zone, cc); 1666 1667 if (cc->order > 0) { 1668 if (zone_watermark_ok(zone, cc->order, 1669 low_wmark_pages(zone), 0, 0)) 1670 compaction_defer_reset(zone, cc->order, false); 1671 } 1672 1673 VM_BUG_ON(!list_empty(&cc->freepages)); 1674 VM_BUG_ON(!list_empty(&cc->migratepages)); 1675 } 1676 } 1677 1678 void compact_pgdat(pg_data_t *pgdat, int order) 1679 { 1680 struct compact_control cc = { 1681 .order = order, 1682 .mode = MIGRATE_ASYNC, 1683 }; 1684 1685 if (!order) 1686 return; 1687 1688 __compact_pgdat(pgdat, &cc); 1689 } 1690 1691 static void compact_node(int nid) 1692 { 1693 struct compact_control cc = { 1694 .order = -1, 1695 .mode = MIGRATE_SYNC, 1696 .ignore_skip_hint = true, 1697 }; 1698 1699 __compact_pgdat(NODE_DATA(nid), &cc); 1700 } 1701 1702 /* Compact all nodes in the system */ 1703 static void compact_nodes(void) 1704 { 1705 int nid; 1706 1707 /* Flush pending updates to the LRU lists */ 1708 lru_add_drain_all(); 1709 1710 for_each_online_node(nid) 1711 compact_node(nid); 1712 } 1713 1714 /* The written value is actually unused, all memory is compacted */ 1715 int sysctl_compact_memory; 1716 1717 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1718 int sysctl_compaction_handler(struct ctl_table *table, int write, 1719 void __user *buffer, size_t *length, loff_t *ppos) 1720 { 1721 if (write) 1722 compact_nodes(); 1723 1724 return 0; 1725 } 1726 1727 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1728 void __user *buffer, size_t *length, loff_t *ppos) 1729 { 1730 proc_dointvec_minmax(table, write, buffer, length, ppos); 1731 1732 return 0; 1733 } 1734 1735 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1736 static ssize_t sysfs_compact_node(struct device *dev, 1737 struct device_attribute *attr, 1738 const char *buf, size_t count) 1739 { 1740 int nid = dev->id; 1741 1742 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1743 /* Flush pending updates to the LRU lists */ 1744 lru_add_drain_all(); 1745 1746 compact_node(nid); 1747 } 1748 1749 return count; 1750 } 1751 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1752 1753 int compaction_register_node(struct node *node) 1754 { 1755 return device_create_file(&node->dev, &dev_attr_compact); 1756 } 1757 1758 void compaction_unregister_node(struct node *node) 1759 { 1760 return device_remove_file(&node->dev, &dev_attr_compact); 1761 } 1762 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1763 1764 #endif /* CONFIG_COMPACTION */ 1765