1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include "internal.h" 19 20 #ifdef CONFIG_COMPACTION 21 static inline void count_compact_event(enum vm_event_item item) 22 { 23 count_vm_event(item); 24 } 25 26 static inline void count_compact_events(enum vm_event_item item, long delta) 27 { 28 count_vm_events(item, delta); 29 } 30 #else 31 #define count_compact_event(item) do { } while (0) 32 #define count_compact_events(item, delta) do { } while (0) 33 #endif 34 35 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/compaction.h> 39 40 static unsigned long release_freepages(struct list_head *freelist) 41 { 42 struct page *page, *next; 43 unsigned long count = 0; 44 45 list_for_each_entry_safe(page, next, freelist, lru) { 46 list_del(&page->lru); 47 __free_page(page); 48 count++; 49 } 50 51 return count; 52 } 53 54 static void map_pages(struct list_head *list) 55 { 56 struct page *page; 57 58 list_for_each_entry(page, list, lru) { 59 arch_alloc_page(page, 0); 60 kernel_map_pages(page, 1, 1); 61 } 62 } 63 64 static inline bool migrate_async_suitable(int migratetype) 65 { 66 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 67 } 68 69 #ifdef CONFIG_COMPACTION 70 /* Returns true if the pageblock should be scanned for pages to isolate. */ 71 static inline bool isolation_suitable(struct compact_control *cc, 72 struct page *page) 73 { 74 if (cc->ignore_skip_hint) 75 return true; 76 77 return !get_pageblock_skip(page); 78 } 79 80 /* 81 * This function is called to clear all cached information on pageblocks that 82 * should be skipped for page isolation when the migrate and free page scanner 83 * meet. 84 */ 85 static void __reset_isolation_suitable(struct zone *zone) 86 { 87 unsigned long start_pfn = zone->zone_start_pfn; 88 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 89 unsigned long pfn; 90 91 zone->compact_cached_migrate_pfn = start_pfn; 92 zone->compact_cached_free_pfn = end_pfn; 93 zone->compact_blockskip_flush = false; 94 95 /* Walk the zone and mark every pageblock as suitable for isolation */ 96 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 97 struct page *page; 98 99 cond_resched(); 100 101 if (!pfn_valid(pfn)) 102 continue; 103 104 page = pfn_to_page(pfn); 105 if (zone != page_zone(page)) 106 continue; 107 108 clear_pageblock_skip(page); 109 } 110 } 111 112 void reset_isolation_suitable(pg_data_t *pgdat) 113 { 114 int zoneid; 115 116 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 117 struct zone *zone = &pgdat->node_zones[zoneid]; 118 if (!populated_zone(zone)) 119 continue; 120 121 /* Only flush if a full compaction finished recently */ 122 if (zone->compact_blockskip_flush) 123 __reset_isolation_suitable(zone); 124 } 125 } 126 127 /* 128 * If no pages were isolated then mark this pageblock to be skipped in the 129 * future. The information is later cleared by __reset_isolation_suitable(). 130 */ 131 static void update_pageblock_skip(struct compact_control *cc, 132 struct page *page, unsigned long nr_isolated, 133 bool migrate_scanner) 134 { 135 struct zone *zone = cc->zone; 136 if (!page) 137 return; 138 139 if (!nr_isolated) { 140 unsigned long pfn = page_to_pfn(page); 141 set_pageblock_skip(page); 142 143 /* Update where compaction should restart */ 144 if (migrate_scanner) { 145 if (!cc->finished_update_migrate && 146 pfn > zone->compact_cached_migrate_pfn) 147 zone->compact_cached_migrate_pfn = pfn; 148 } else { 149 if (!cc->finished_update_free && 150 pfn < zone->compact_cached_free_pfn) 151 zone->compact_cached_free_pfn = pfn; 152 } 153 } 154 } 155 #else 156 static inline bool isolation_suitable(struct compact_control *cc, 157 struct page *page) 158 { 159 return true; 160 } 161 162 static void update_pageblock_skip(struct compact_control *cc, 163 struct page *page, unsigned long nr_isolated, 164 bool migrate_scanner) 165 { 166 } 167 #endif /* CONFIG_COMPACTION */ 168 169 static inline bool should_release_lock(spinlock_t *lock) 170 { 171 return need_resched() || spin_is_contended(lock); 172 } 173 174 /* 175 * Compaction requires the taking of some coarse locks that are potentially 176 * very heavily contended. Check if the process needs to be scheduled or 177 * if the lock is contended. For async compaction, back out in the event 178 * if contention is severe. For sync compaction, schedule. 179 * 180 * Returns true if the lock is held. 181 * Returns false if the lock is released and compaction should abort 182 */ 183 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 184 bool locked, struct compact_control *cc) 185 { 186 if (should_release_lock(lock)) { 187 if (locked) { 188 spin_unlock_irqrestore(lock, *flags); 189 locked = false; 190 } 191 192 /* async aborts if taking too long or contended */ 193 if (!cc->sync) { 194 cc->contended = true; 195 return false; 196 } 197 198 cond_resched(); 199 } 200 201 if (!locked) 202 spin_lock_irqsave(lock, *flags); 203 return true; 204 } 205 206 static inline bool compact_trylock_irqsave(spinlock_t *lock, 207 unsigned long *flags, struct compact_control *cc) 208 { 209 return compact_checklock_irqsave(lock, flags, false, cc); 210 } 211 212 /* Returns true if the page is within a block suitable for migration to */ 213 static bool suitable_migration_target(struct page *page) 214 { 215 int migratetype = get_pageblock_migratetype(page); 216 217 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 218 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 219 return false; 220 221 /* If the page is a large free page, then allow migration */ 222 if (PageBuddy(page) && page_order(page) >= pageblock_order) 223 return true; 224 225 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 226 if (migrate_async_suitable(migratetype)) 227 return true; 228 229 /* Otherwise skip the block */ 230 return false; 231 } 232 233 /* 234 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 235 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 236 * pages inside of the pageblock (even though it may still end up isolating 237 * some pages). 238 */ 239 static unsigned long isolate_freepages_block(struct compact_control *cc, 240 unsigned long blockpfn, 241 unsigned long end_pfn, 242 struct list_head *freelist, 243 bool strict) 244 { 245 int nr_scanned = 0, total_isolated = 0; 246 struct page *cursor, *valid_page = NULL; 247 unsigned long nr_strict_required = end_pfn - blockpfn; 248 unsigned long flags; 249 bool locked = false; 250 251 cursor = pfn_to_page(blockpfn); 252 253 /* Isolate free pages. */ 254 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 255 int isolated, i; 256 struct page *page = cursor; 257 258 nr_scanned++; 259 if (!pfn_valid_within(blockpfn)) 260 continue; 261 if (!valid_page) 262 valid_page = page; 263 if (!PageBuddy(page)) 264 continue; 265 266 /* 267 * The zone lock must be held to isolate freepages. 268 * Unfortunately this is a very coarse lock and can be 269 * heavily contended if there are parallel allocations 270 * or parallel compactions. For async compaction do not 271 * spin on the lock and we acquire the lock as late as 272 * possible. 273 */ 274 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 275 locked, cc); 276 if (!locked) 277 break; 278 279 /* Recheck this is a suitable migration target under lock */ 280 if (!strict && !suitable_migration_target(page)) 281 break; 282 283 /* Recheck this is a buddy page under lock */ 284 if (!PageBuddy(page)) 285 continue; 286 287 /* Found a free page, break it into order-0 pages */ 288 isolated = split_free_page(page); 289 if (!isolated && strict) 290 break; 291 total_isolated += isolated; 292 for (i = 0; i < isolated; i++) { 293 list_add(&page->lru, freelist); 294 page++; 295 } 296 297 /* If a page was split, advance to the end of it */ 298 if (isolated) { 299 blockpfn += isolated - 1; 300 cursor += isolated - 1; 301 } 302 } 303 304 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 305 306 /* 307 * If strict isolation is requested by CMA then check that all the 308 * pages requested were isolated. If there were any failures, 0 is 309 * returned and CMA will fail. 310 */ 311 if (strict && nr_strict_required > total_isolated) 312 total_isolated = 0; 313 314 if (locked) 315 spin_unlock_irqrestore(&cc->zone->lock, flags); 316 317 /* Update the pageblock-skip if the whole pageblock was scanned */ 318 if (blockpfn == end_pfn) 319 update_pageblock_skip(cc, valid_page, total_isolated, false); 320 321 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 322 if (total_isolated) 323 count_compact_events(COMPACTISOLATED, total_isolated); 324 return total_isolated; 325 } 326 327 /** 328 * isolate_freepages_range() - isolate free pages. 329 * @start_pfn: The first PFN to start isolating. 330 * @end_pfn: The one-past-last PFN. 331 * 332 * Non-free pages, invalid PFNs, or zone boundaries within the 333 * [start_pfn, end_pfn) range are considered errors, cause function to 334 * undo its actions and return zero. 335 * 336 * Otherwise, function returns one-past-the-last PFN of isolated page 337 * (which may be greater then end_pfn if end fell in a middle of 338 * a free page). 339 */ 340 unsigned long 341 isolate_freepages_range(struct compact_control *cc, 342 unsigned long start_pfn, unsigned long end_pfn) 343 { 344 unsigned long isolated, pfn, block_end_pfn; 345 LIST_HEAD(freelist); 346 347 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 348 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 349 break; 350 351 /* 352 * On subsequent iterations ALIGN() is actually not needed, 353 * but we keep it that we not to complicate the code. 354 */ 355 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 356 block_end_pfn = min(block_end_pfn, end_pfn); 357 358 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 359 &freelist, true); 360 361 /* 362 * In strict mode, isolate_freepages_block() returns 0 if 363 * there are any holes in the block (ie. invalid PFNs or 364 * non-free pages). 365 */ 366 if (!isolated) 367 break; 368 369 /* 370 * If we managed to isolate pages, it is always (1 << n) * 371 * pageblock_nr_pages for some non-negative n. (Max order 372 * page may span two pageblocks). 373 */ 374 } 375 376 /* split_free_page does not map the pages */ 377 map_pages(&freelist); 378 379 if (pfn < end_pfn) { 380 /* Loop terminated early, cleanup. */ 381 release_freepages(&freelist); 382 return 0; 383 } 384 385 /* We don't use freelists for anything. */ 386 return pfn; 387 } 388 389 /* Update the number of anon and file isolated pages in the zone */ 390 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 391 { 392 struct page *page; 393 unsigned int count[2] = { 0, }; 394 395 list_for_each_entry(page, &cc->migratepages, lru) 396 count[!!page_is_file_cache(page)]++; 397 398 /* If locked we can use the interrupt unsafe versions */ 399 if (locked) { 400 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 401 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 402 } else { 403 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 404 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 405 } 406 } 407 408 /* Similar to reclaim, but different enough that they don't share logic */ 409 static bool too_many_isolated(struct zone *zone) 410 { 411 unsigned long active, inactive, isolated; 412 413 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 414 zone_page_state(zone, NR_INACTIVE_ANON); 415 active = zone_page_state(zone, NR_ACTIVE_FILE) + 416 zone_page_state(zone, NR_ACTIVE_ANON); 417 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 418 zone_page_state(zone, NR_ISOLATED_ANON); 419 420 return isolated > (inactive + active) / 2; 421 } 422 423 /** 424 * isolate_migratepages_range() - isolate all migrate-able pages in range. 425 * @zone: Zone pages are in. 426 * @cc: Compaction control structure. 427 * @low_pfn: The first PFN of the range. 428 * @end_pfn: The one-past-the-last PFN of the range. 429 * @unevictable: true if it allows to isolate unevictable pages 430 * 431 * Isolate all pages that can be migrated from the range specified by 432 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 433 * pending), otherwise PFN of the first page that was not scanned 434 * (which may be both less, equal to or more then end_pfn). 435 * 436 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 437 * zero. 438 * 439 * Apart from cc->migratepages and cc->nr_migratetypes this function 440 * does not modify any cc's fields, in particular it does not modify 441 * (or read for that matter) cc->migrate_pfn. 442 */ 443 unsigned long 444 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 445 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 446 { 447 unsigned long last_pageblock_nr = 0, pageblock_nr; 448 unsigned long nr_scanned = 0, nr_isolated = 0; 449 struct list_head *migratelist = &cc->migratepages; 450 isolate_mode_t mode = 0; 451 struct lruvec *lruvec; 452 unsigned long flags; 453 bool locked = false; 454 struct page *page = NULL, *valid_page = NULL; 455 456 /* 457 * Ensure that there are not too many pages isolated from the LRU 458 * list by either parallel reclaimers or compaction. If there are, 459 * delay for some time until fewer pages are isolated 460 */ 461 while (unlikely(too_many_isolated(zone))) { 462 /* async migration should just abort */ 463 if (!cc->sync) 464 return 0; 465 466 congestion_wait(BLK_RW_ASYNC, HZ/10); 467 468 if (fatal_signal_pending(current)) 469 return 0; 470 } 471 472 /* Time to isolate some pages for migration */ 473 cond_resched(); 474 for (; low_pfn < end_pfn; low_pfn++) { 475 /* give a chance to irqs before checking need_resched() */ 476 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 477 if (should_release_lock(&zone->lru_lock)) { 478 spin_unlock_irqrestore(&zone->lru_lock, flags); 479 locked = false; 480 } 481 } 482 483 /* 484 * migrate_pfn does not necessarily start aligned to a 485 * pageblock. Ensure that pfn_valid is called when moving 486 * into a new MAX_ORDER_NR_PAGES range in case of large 487 * memory holes within the zone 488 */ 489 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 490 if (!pfn_valid(low_pfn)) { 491 low_pfn += MAX_ORDER_NR_PAGES - 1; 492 continue; 493 } 494 } 495 496 if (!pfn_valid_within(low_pfn)) 497 continue; 498 nr_scanned++; 499 500 /* 501 * Get the page and ensure the page is within the same zone. 502 * See the comment in isolate_freepages about overlapping 503 * nodes. It is deliberate that the new zone lock is not taken 504 * as memory compaction should not move pages between nodes. 505 */ 506 page = pfn_to_page(low_pfn); 507 if (page_zone(page) != zone) 508 continue; 509 510 if (!valid_page) 511 valid_page = page; 512 513 /* If isolation recently failed, do not retry */ 514 pageblock_nr = low_pfn >> pageblock_order; 515 if (!isolation_suitable(cc, page)) 516 goto next_pageblock; 517 518 /* Skip if free */ 519 if (PageBuddy(page)) 520 continue; 521 522 /* 523 * For async migration, also only scan in MOVABLE blocks. Async 524 * migration is optimistic to see if the minimum amount of work 525 * satisfies the allocation 526 */ 527 if (!cc->sync && last_pageblock_nr != pageblock_nr && 528 !migrate_async_suitable(get_pageblock_migratetype(page))) { 529 cc->finished_update_migrate = true; 530 goto next_pageblock; 531 } 532 533 /* 534 * Check may be lockless but that's ok as we recheck later. 535 * It's possible to migrate LRU pages and balloon pages 536 * Skip any other type of page 537 */ 538 if (!PageLRU(page)) { 539 if (unlikely(balloon_page_movable(page))) { 540 if (locked && balloon_page_isolate(page)) { 541 /* Successfully isolated */ 542 cc->finished_update_migrate = true; 543 list_add(&page->lru, migratelist); 544 cc->nr_migratepages++; 545 nr_isolated++; 546 goto check_compact_cluster; 547 } 548 } 549 continue; 550 } 551 552 /* 553 * PageLRU is set. lru_lock normally excludes isolation 554 * splitting and collapsing (collapsing has already happened 555 * if PageLRU is set) but the lock is not necessarily taken 556 * here and it is wasteful to take it just to check transhuge. 557 * Check TransHuge without lock and skip the whole pageblock if 558 * it's either a transhuge or hugetlbfs page, as calling 559 * compound_order() without preventing THP from splitting the 560 * page underneath us may return surprising results. 561 */ 562 if (PageTransHuge(page)) { 563 if (!locked) 564 goto next_pageblock; 565 low_pfn += (1 << compound_order(page)) - 1; 566 continue; 567 } 568 569 /* Check if it is ok to still hold the lock */ 570 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 571 locked, cc); 572 if (!locked || fatal_signal_pending(current)) 573 break; 574 575 /* Recheck PageLRU and PageTransHuge under lock */ 576 if (!PageLRU(page)) 577 continue; 578 if (PageTransHuge(page)) { 579 low_pfn += (1 << compound_order(page)) - 1; 580 continue; 581 } 582 583 if (!cc->sync) 584 mode |= ISOLATE_ASYNC_MIGRATE; 585 586 if (unevictable) 587 mode |= ISOLATE_UNEVICTABLE; 588 589 lruvec = mem_cgroup_page_lruvec(page, zone); 590 591 /* Try isolate the page */ 592 if (__isolate_lru_page(page, mode) != 0) 593 continue; 594 595 VM_BUG_ON(PageTransCompound(page)); 596 597 /* Successfully isolated */ 598 cc->finished_update_migrate = true; 599 del_page_from_lru_list(page, lruvec, page_lru(page)); 600 list_add(&page->lru, migratelist); 601 cc->nr_migratepages++; 602 nr_isolated++; 603 604 check_compact_cluster: 605 /* Avoid isolating too much */ 606 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 607 ++low_pfn; 608 break; 609 } 610 611 continue; 612 613 next_pageblock: 614 low_pfn += pageblock_nr_pages; 615 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 616 last_pageblock_nr = pageblock_nr; 617 } 618 619 acct_isolated(zone, locked, cc); 620 621 if (locked) 622 spin_unlock_irqrestore(&zone->lru_lock, flags); 623 624 /* Update the pageblock-skip if the whole pageblock was scanned */ 625 if (low_pfn == end_pfn) 626 update_pageblock_skip(cc, valid_page, nr_isolated, true); 627 628 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 629 630 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 631 if (nr_isolated) 632 count_compact_events(COMPACTISOLATED, nr_isolated); 633 634 return low_pfn; 635 } 636 637 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 638 #ifdef CONFIG_COMPACTION 639 /* 640 * Based on information in the current compact_control, find blocks 641 * suitable for isolating free pages from and then isolate them. 642 */ 643 static void isolate_freepages(struct zone *zone, 644 struct compact_control *cc) 645 { 646 struct page *page; 647 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn; 648 int nr_freepages = cc->nr_freepages; 649 struct list_head *freelist = &cc->freepages; 650 651 /* 652 * Initialise the free scanner. The starting point is where we last 653 * scanned from (or the end of the zone if starting). The low point 654 * is the end of the pageblock the migration scanner is using. 655 */ 656 pfn = cc->free_pfn; 657 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 658 659 /* 660 * Take care that if the migration scanner is at the end of the zone 661 * that the free scanner does not accidentally move to the next zone 662 * in the next isolation cycle. 663 */ 664 high_pfn = min(low_pfn, pfn); 665 666 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 667 668 /* 669 * Isolate free pages until enough are available to migrate the 670 * pages on cc->migratepages. We stop searching if the migrate 671 * and free page scanners meet or enough free pages are isolated. 672 */ 673 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 674 pfn -= pageblock_nr_pages) { 675 unsigned long isolated; 676 677 if (!pfn_valid(pfn)) 678 continue; 679 680 /* 681 * Check for overlapping nodes/zones. It's possible on some 682 * configurations to have a setup like 683 * node0 node1 node0 684 * i.e. it's possible that all pages within a zones range of 685 * pages do not belong to a single zone. 686 */ 687 page = pfn_to_page(pfn); 688 if (page_zone(page) != zone) 689 continue; 690 691 /* Check the block is suitable for migration */ 692 if (!suitable_migration_target(page)) 693 continue; 694 695 /* If isolation recently failed, do not retry */ 696 if (!isolation_suitable(cc, page)) 697 continue; 698 699 /* Found a block suitable for isolating free pages from */ 700 isolated = 0; 701 702 /* 703 * As pfn may not start aligned, pfn+pageblock_nr_page 704 * may cross a MAX_ORDER_NR_PAGES boundary and miss 705 * a pfn_valid check. Ensure isolate_freepages_block() 706 * only scans within a pageblock 707 */ 708 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 709 end_pfn = min(end_pfn, zone_end_pfn); 710 isolated = isolate_freepages_block(cc, pfn, end_pfn, 711 freelist, false); 712 nr_freepages += isolated; 713 714 /* 715 * Record the highest PFN we isolated pages from. When next 716 * looking for free pages, the search will restart here as 717 * page migration may have returned some pages to the allocator 718 */ 719 if (isolated) { 720 cc->finished_update_free = true; 721 high_pfn = max(high_pfn, pfn); 722 } 723 } 724 725 /* split_free_page does not map the pages */ 726 map_pages(freelist); 727 728 cc->free_pfn = high_pfn; 729 cc->nr_freepages = nr_freepages; 730 } 731 732 /* 733 * This is a migrate-callback that "allocates" freepages by taking pages 734 * from the isolated freelists in the block we are migrating to. 735 */ 736 static struct page *compaction_alloc(struct page *migratepage, 737 unsigned long data, 738 int **result) 739 { 740 struct compact_control *cc = (struct compact_control *)data; 741 struct page *freepage; 742 743 /* Isolate free pages if necessary */ 744 if (list_empty(&cc->freepages)) { 745 isolate_freepages(cc->zone, cc); 746 747 if (list_empty(&cc->freepages)) 748 return NULL; 749 } 750 751 freepage = list_entry(cc->freepages.next, struct page, lru); 752 list_del(&freepage->lru); 753 cc->nr_freepages--; 754 755 return freepage; 756 } 757 758 /* 759 * We cannot control nr_migratepages and nr_freepages fully when migration is 760 * running as migrate_pages() has no knowledge of compact_control. When 761 * migration is complete, we count the number of pages on the lists by hand. 762 */ 763 static void update_nr_listpages(struct compact_control *cc) 764 { 765 int nr_migratepages = 0; 766 int nr_freepages = 0; 767 struct page *page; 768 769 list_for_each_entry(page, &cc->migratepages, lru) 770 nr_migratepages++; 771 list_for_each_entry(page, &cc->freepages, lru) 772 nr_freepages++; 773 774 cc->nr_migratepages = nr_migratepages; 775 cc->nr_freepages = nr_freepages; 776 } 777 778 /* possible outcome of isolate_migratepages */ 779 typedef enum { 780 ISOLATE_ABORT, /* Abort compaction now */ 781 ISOLATE_NONE, /* No pages isolated, continue scanning */ 782 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 783 } isolate_migrate_t; 784 785 /* 786 * Isolate all pages that can be migrated from the block pointed to by 787 * the migrate scanner within compact_control. 788 */ 789 static isolate_migrate_t isolate_migratepages(struct zone *zone, 790 struct compact_control *cc) 791 { 792 unsigned long low_pfn, end_pfn; 793 794 /* Do not scan outside zone boundaries */ 795 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 796 797 /* Only scan within a pageblock boundary */ 798 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 799 800 /* Do not cross the free scanner or scan within a memory hole */ 801 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 802 cc->migrate_pfn = end_pfn; 803 return ISOLATE_NONE; 804 } 805 806 /* Perform the isolation */ 807 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 808 if (!low_pfn || cc->contended) 809 return ISOLATE_ABORT; 810 811 cc->migrate_pfn = low_pfn; 812 813 return ISOLATE_SUCCESS; 814 } 815 816 static int compact_finished(struct zone *zone, 817 struct compact_control *cc) 818 { 819 unsigned int order; 820 unsigned long watermark; 821 822 if (fatal_signal_pending(current)) 823 return COMPACT_PARTIAL; 824 825 /* Compaction run completes if the migrate and free scanner meet */ 826 if (cc->free_pfn <= cc->migrate_pfn) { 827 /* 828 * Mark that the PG_migrate_skip information should be cleared 829 * by kswapd when it goes to sleep. kswapd does not set the 830 * flag itself as the decision to be clear should be directly 831 * based on an allocation request. 832 */ 833 if (!current_is_kswapd()) 834 zone->compact_blockskip_flush = true; 835 836 return COMPACT_COMPLETE; 837 } 838 839 /* 840 * order == -1 is expected when compacting via 841 * /proc/sys/vm/compact_memory 842 */ 843 if (cc->order == -1) 844 return COMPACT_CONTINUE; 845 846 /* Compaction run is not finished if the watermark is not met */ 847 watermark = low_wmark_pages(zone); 848 watermark += (1 << cc->order); 849 850 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 851 return COMPACT_CONTINUE; 852 853 /* Direct compactor: Is a suitable page free? */ 854 for (order = cc->order; order < MAX_ORDER; order++) { 855 struct free_area *area = &zone->free_area[order]; 856 857 /* Job done if page is free of the right migratetype */ 858 if (!list_empty(&area->free_list[cc->migratetype])) 859 return COMPACT_PARTIAL; 860 861 /* Job done if allocation would set block type */ 862 if (cc->order >= pageblock_order && area->nr_free) 863 return COMPACT_PARTIAL; 864 } 865 866 return COMPACT_CONTINUE; 867 } 868 869 /* 870 * compaction_suitable: Is this suitable to run compaction on this zone now? 871 * Returns 872 * COMPACT_SKIPPED - If there are too few free pages for compaction 873 * COMPACT_PARTIAL - If the allocation would succeed without compaction 874 * COMPACT_CONTINUE - If compaction should run now 875 */ 876 unsigned long compaction_suitable(struct zone *zone, int order) 877 { 878 int fragindex; 879 unsigned long watermark; 880 881 /* 882 * order == -1 is expected when compacting via 883 * /proc/sys/vm/compact_memory 884 */ 885 if (order == -1) 886 return COMPACT_CONTINUE; 887 888 /* 889 * Watermarks for order-0 must be met for compaction. Note the 2UL. 890 * This is because during migration, copies of pages need to be 891 * allocated and for a short time, the footprint is higher 892 */ 893 watermark = low_wmark_pages(zone) + (2UL << order); 894 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 895 return COMPACT_SKIPPED; 896 897 /* 898 * fragmentation index determines if allocation failures are due to 899 * low memory or external fragmentation 900 * 901 * index of -1000 implies allocations might succeed depending on 902 * watermarks 903 * index towards 0 implies failure is due to lack of memory 904 * index towards 1000 implies failure is due to fragmentation 905 * 906 * Only compact if a failure would be due to fragmentation. 907 */ 908 fragindex = fragmentation_index(zone, order); 909 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 910 return COMPACT_SKIPPED; 911 912 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 913 0, 0)) 914 return COMPACT_PARTIAL; 915 916 return COMPACT_CONTINUE; 917 } 918 919 static int compact_zone(struct zone *zone, struct compact_control *cc) 920 { 921 int ret; 922 unsigned long start_pfn = zone->zone_start_pfn; 923 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 924 925 ret = compaction_suitable(zone, cc->order); 926 switch (ret) { 927 case COMPACT_PARTIAL: 928 case COMPACT_SKIPPED: 929 /* Compaction is likely to fail */ 930 return ret; 931 case COMPACT_CONTINUE: 932 /* Fall through to compaction */ 933 ; 934 } 935 936 /* 937 * Setup to move all movable pages to the end of the zone. Used cached 938 * information on where the scanners should start but check that it 939 * is initialised by ensuring the values are within zone boundaries. 940 */ 941 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 942 cc->free_pfn = zone->compact_cached_free_pfn; 943 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 944 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 945 zone->compact_cached_free_pfn = cc->free_pfn; 946 } 947 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 948 cc->migrate_pfn = start_pfn; 949 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 950 } 951 952 /* 953 * Clear pageblock skip if there were failures recently and compaction 954 * is about to be retried after being deferred. kswapd does not do 955 * this reset as it'll reset the cached information when going to sleep. 956 */ 957 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 958 __reset_isolation_suitable(zone); 959 960 migrate_prep_local(); 961 962 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 963 unsigned long nr_migrate, nr_remaining; 964 int err; 965 966 switch (isolate_migratepages(zone, cc)) { 967 case ISOLATE_ABORT: 968 ret = COMPACT_PARTIAL; 969 putback_movable_pages(&cc->migratepages); 970 cc->nr_migratepages = 0; 971 goto out; 972 case ISOLATE_NONE: 973 continue; 974 case ISOLATE_SUCCESS: 975 ; 976 } 977 978 nr_migrate = cc->nr_migratepages; 979 err = migrate_pages(&cc->migratepages, compaction_alloc, 980 (unsigned long)cc, false, 981 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 982 MR_COMPACTION); 983 update_nr_listpages(cc); 984 nr_remaining = cc->nr_migratepages; 985 986 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 987 nr_remaining); 988 989 /* Release isolated pages not migrated */ 990 if (err) { 991 putback_movable_pages(&cc->migratepages); 992 cc->nr_migratepages = 0; 993 if (err == -ENOMEM) { 994 ret = COMPACT_PARTIAL; 995 goto out; 996 } 997 } 998 } 999 1000 out: 1001 /* Release free pages and check accounting */ 1002 cc->nr_freepages -= release_freepages(&cc->freepages); 1003 VM_BUG_ON(cc->nr_freepages != 0); 1004 1005 return ret; 1006 } 1007 1008 static unsigned long compact_zone_order(struct zone *zone, 1009 int order, gfp_t gfp_mask, 1010 bool sync, bool *contended) 1011 { 1012 unsigned long ret; 1013 struct compact_control cc = { 1014 .nr_freepages = 0, 1015 .nr_migratepages = 0, 1016 .order = order, 1017 .migratetype = allocflags_to_migratetype(gfp_mask), 1018 .zone = zone, 1019 .sync = sync, 1020 }; 1021 INIT_LIST_HEAD(&cc.freepages); 1022 INIT_LIST_HEAD(&cc.migratepages); 1023 1024 ret = compact_zone(zone, &cc); 1025 1026 VM_BUG_ON(!list_empty(&cc.freepages)); 1027 VM_BUG_ON(!list_empty(&cc.migratepages)); 1028 1029 *contended = cc.contended; 1030 return ret; 1031 } 1032 1033 int sysctl_extfrag_threshold = 500; 1034 1035 /** 1036 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1037 * @zonelist: The zonelist used for the current allocation 1038 * @order: The order of the current allocation 1039 * @gfp_mask: The GFP mask of the current allocation 1040 * @nodemask: The allowed nodes to allocate from 1041 * @sync: Whether migration is synchronous or not 1042 * @contended: Return value that is true if compaction was aborted due to lock contention 1043 * @page: Optionally capture a free page of the requested order during compaction 1044 * 1045 * This is the main entry point for direct page compaction. 1046 */ 1047 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1048 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1049 bool sync, bool *contended) 1050 { 1051 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1052 int may_enter_fs = gfp_mask & __GFP_FS; 1053 int may_perform_io = gfp_mask & __GFP_IO; 1054 struct zoneref *z; 1055 struct zone *zone; 1056 int rc = COMPACT_SKIPPED; 1057 int alloc_flags = 0; 1058 1059 /* Check if the GFP flags allow compaction */ 1060 if (!order || !may_enter_fs || !may_perform_io) 1061 return rc; 1062 1063 count_compact_event(COMPACTSTALL); 1064 1065 #ifdef CONFIG_CMA 1066 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1067 alloc_flags |= ALLOC_CMA; 1068 #endif 1069 /* Compact each zone in the list */ 1070 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1071 nodemask) { 1072 int status; 1073 1074 status = compact_zone_order(zone, order, gfp_mask, sync, 1075 contended); 1076 rc = max(status, rc); 1077 1078 /* If a normal allocation would succeed, stop compacting */ 1079 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1080 alloc_flags)) 1081 break; 1082 } 1083 1084 return rc; 1085 } 1086 1087 1088 /* Compact all zones within a node */ 1089 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1090 { 1091 int zoneid; 1092 struct zone *zone; 1093 1094 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1095 1096 zone = &pgdat->node_zones[zoneid]; 1097 if (!populated_zone(zone)) 1098 continue; 1099 1100 cc->nr_freepages = 0; 1101 cc->nr_migratepages = 0; 1102 cc->zone = zone; 1103 INIT_LIST_HEAD(&cc->freepages); 1104 INIT_LIST_HEAD(&cc->migratepages); 1105 1106 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1107 compact_zone(zone, cc); 1108 1109 if (cc->order > 0) { 1110 int ok = zone_watermark_ok(zone, cc->order, 1111 low_wmark_pages(zone), 0, 0); 1112 if (ok && cc->order >= zone->compact_order_failed) 1113 zone->compact_order_failed = cc->order + 1; 1114 /* Currently async compaction is never deferred. */ 1115 else if (!ok && cc->sync) 1116 defer_compaction(zone, cc->order); 1117 } 1118 1119 VM_BUG_ON(!list_empty(&cc->freepages)); 1120 VM_BUG_ON(!list_empty(&cc->migratepages)); 1121 } 1122 1123 return 0; 1124 } 1125 1126 int compact_pgdat(pg_data_t *pgdat, int order) 1127 { 1128 struct compact_control cc = { 1129 .order = order, 1130 .sync = false, 1131 }; 1132 1133 return __compact_pgdat(pgdat, &cc); 1134 } 1135 1136 static int compact_node(int nid) 1137 { 1138 struct compact_control cc = { 1139 .order = -1, 1140 .sync = true, 1141 }; 1142 1143 return __compact_pgdat(NODE_DATA(nid), &cc); 1144 } 1145 1146 /* Compact all nodes in the system */ 1147 static void compact_nodes(void) 1148 { 1149 int nid; 1150 1151 /* Flush pending updates to the LRU lists */ 1152 lru_add_drain_all(); 1153 1154 for_each_online_node(nid) 1155 compact_node(nid); 1156 } 1157 1158 /* The written value is actually unused, all memory is compacted */ 1159 int sysctl_compact_memory; 1160 1161 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1162 int sysctl_compaction_handler(struct ctl_table *table, int write, 1163 void __user *buffer, size_t *length, loff_t *ppos) 1164 { 1165 if (write) 1166 compact_nodes(); 1167 1168 return 0; 1169 } 1170 1171 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1172 void __user *buffer, size_t *length, loff_t *ppos) 1173 { 1174 proc_dointvec_minmax(table, write, buffer, length, ppos); 1175 1176 return 0; 1177 } 1178 1179 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1180 ssize_t sysfs_compact_node(struct device *dev, 1181 struct device_attribute *attr, 1182 const char *buf, size_t count) 1183 { 1184 int nid = dev->id; 1185 1186 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1187 /* Flush pending updates to the LRU lists */ 1188 lru_add_drain_all(); 1189 1190 compact_node(nid); 1191 } 1192 1193 return count; 1194 } 1195 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1196 1197 int compaction_register_node(struct node *node) 1198 { 1199 return device_create_file(&node->dev, &dev_attr_compact); 1200 } 1201 1202 void compaction_unregister_node(struct node *node) 1203 { 1204 return device_remove_file(&node->dev, &dev_attr_compact); 1205 } 1206 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1207 1208 #endif /* CONFIG_COMPACTION */ 1209