xref: /openbmc/linux/mm/compaction.c (revision aded0023)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 #else
253 static unsigned long skip_offline_sections(unsigned long start_pfn)
254 {
255 	return 0;
256 }
257 #endif
258 
259 /*
260  * Compound pages of >= pageblock_order should consistently be skipped until
261  * released. It is always pointless to compact pages of such order (if they are
262  * migratable), and the pageblocks they occupy cannot contain any free pages.
263  */
264 static bool pageblock_skip_persistent(struct page *page)
265 {
266 	if (!PageCompound(page))
267 		return false;
268 
269 	page = compound_head(page);
270 
271 	if (compound_order(page) >= pageblock_order)
272 		return true;
273 
274 	return false;
275 }
276 
277 static bool
278 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
279 							bool check_target)
280 {
281 	struct page *page = pfn_to_online_page(pfn);
282 	struct page *block_page;
283 	struct page *end_page;
284 	unsigned long block_pfn;
285 
286 	if (!page)
287 		return false;
288 	if (zone != page_zone(page))
289 		return false;
290 	if (pageblock_skip_persistent(page))
291 		return false;
292 
293 	/*
294 	 * If skip is already cleared do no further checking once the
295 	 * restart points have been set.
296 	 */
297 	if (check_source && check_target && !get_pageblock_skip(page))
298 		return true;
299 
300 	/*
301 	 * If clearing skip for the target scanner, do not select a
302 	 * non-movable pageblock as the starting point.
303 	 */
304 	if (!check_source && check_target &&
305 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
306 		return false;
307 
308 	/* Ensure the start of the pageblock or zone is online and valid */
309 	block_pfn = pageblock_start_pfn(pfn);
310 	block_pfn = max(block_pfn, zone->zone_start_pfn);
311 	block_page = pfn_to_online_page(block_pfn);
312 	if (block_page) {
313 		page = block_page;
314 		pfn = block_pfn;
315 	}
316 
317 	/* Ensure the end of the pageblock or zone is online and valid */
318 	block_pfn = pageblock_end_pfn(pfn) - 1;
319 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
320 	end_page = pfn_to_online_page(block_pfn);
321 	if (!end_page)
322 		return false;
323 
324 	/*
325 	 * Only clear the hint if a sample indicates there is either a
326 	 * free page or an LRU page in the block. One or other condition
327 	 * is necessary for the block to be a migration source/target.
328 	 */
329 	do {
330 		if (check_source && PageLRU(page)) {
331 			clear_pageblock_skip(page);
332 			return true;
333 		}
334 
335 		if (check_target && PageBuddy(page)) {
336 			clear_pageblock_skip(page);
337 			return true;
338 		}
339 
340 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
341 	} while (page <= end_page);
342 
343 	return false;
344 }
345 
346 /*
347  * This function is called to clear all cached information on pageblocks that
348  * should be skipped for page isolation when the migrate and free page scanner
349  * meet.
350  */
351 static void __reset_isolation_suitable(struct zone *zone)
352 {
353 	unsigned long migrate_pfn = zone->zone_start_pfn;
354 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
355 	unsigned long reset_migrate = free_pfn;
356 	unsigned long reset_free = migrate_pfn;
357 	bool source_set = false;
358 	bool free_set = false;
359 
360 	if (!zone->compact_blockskip_flush)
361 		return;
362 
363 	zone->compact_blockskip_flush = false;
364 
365 	/*
366 	 * Walk the zone and update pageblock skip information. Source looks
367 	 * for PageLRU while target looks for PageBuddy. When the scanner
368 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
369 	 * is suitable as both source and target.
370 	 */
371 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
372 					free_pfn -= pageblock_nr_pages) {
373 		cond_resched();
374 
375 		/* Update the migrate PFN */
376 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
377 		    migrate_pfn < reset_migrate) {
378 			source_set = true;
379 			reset_migrate = migrate_pfn;
380 			zone->compact_init_migrate_pfn = reset_migrate;
381 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
382 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
383 		}
384 
385 		/* Update the free PFN */
386 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
387 		    free_pfn > reset_free) {
388 			free_set = true;
389 			reset_free = free_pfn;
390 			zone->compact_init_free_pfn = reset_free;
391 			zone->compact_cached_free_pfn = reset_free;
392 		}
393 	}
394 
395 	/* Leave no distance if no suitable block was reset */
396 	if (reset_migrate >= reset_free) {
397 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
398 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
399 		zone->compact_cached_free_pfn = free_pfn;
400 	}
401 }
402 
403 void reset_isolation_suitable(pg_data_t *pgdat)
404 {
405 	int zoneid;
406 
407 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
408 		struct zone *zone = &pgdat->node_zones[zoneid];
409 		if (!populated_zone(zone))
410 			continue;
411 
412 		/* Only flush if a full compaction finished recently */
413 		if (zone->compact_blockskip_flush)
414 			__reset_isolation_suitable(zone);
415 	}
416 }
417 
418 /*
419  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
420  * locks are not required for read/writers. Returns true if it was already set.
421  */
422 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
423 {
424 	bool skip;
425 
426 	/* Do not update if skip hint is being ignored */
427 	if (cc->ignore_skip_hint)
428 		return false;
429 
430 	skip = get_pageblock_skip(page);
431 	if (!skip && !cc->no_set_skip_hint)
432 		set_pageblock_skip(page);
433 
434 	return skip;
435 }
436 
437 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
438 {
439 	struct zone *zone = cc->zone;
440 
441 	pfn = pageblock_end_pfn(pfn);
442 
443 	/* Set for isolation rather than compaction */
444 	if (cc->no_set_skip_hint)
445 		return;
446 
447 	if (pfn > zone->compact_cached_migrate_pfn[0])
448 		zone->compact_cached_migrate_pfn[0] = pfn;
449 	if (cc->mode != MIGRATE_ASYNC &&
450 	    pfn > zone->compact_cached_migrate_pfn[1])
451 		zone->compact_cached_migrate_pfn[1] = pfn;
452 }
453 
454 /*
455  * If no pages were isolated then mark this pageblock to be skipped in the
456  * future. The information is later cleared by __reset_isolation_suitable().
457  */
458 static void update_pageblock_skip(struct compact_control *cc,
459 			struct page *page, unsigned long pfn)
460 {
461 	struct zone *zone = cc->zone;
462 
463 	if (cc->no_set_skip_hint)
464 		return;
465 
466 	set_pageblock_skip(page);
467 
468 	/* Update where async and sync compaction should restart */
469 	if (pfn < zone->compact_cached_free_pfn)
470 		zone->compact_cached_free_pfn = pfn;
471 }
472 #else
473 static inline bool isolation_suitable(struct compact_control *cc,
474 					struct page *page)
475 {
476 	return true;
477 }
478 
479 static inline bool pageblock_skip_persistent(struct page *page)
480 {
481 	return false;
482 }
483 
484 static inline void update_pageblock_skip(struct compact_control *cc,
485 			struct page *page, unsigned long pfn)
486 {
487 }
488 
489 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
490 {
491 }
492 
493 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
494 {
495 	return false;
496 }
497 #endif /* CONFIG_COMPACTION */
498 
499 /*
500  * Compaction requires the taking of some coarse locks that are potentially
501  * very heavily contended. For async compaction, trylock and record if the
502  * lock is contended. The lock will still be acquired but compaction will
503  * abort when the current block is finished regardless of success rate.
504  * Sync compaction acquires the lock.
505  *
506  * Always returns true which makes it easier to track lock state in callers.
507  */
508 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
509 						struct compact_control *cc)
510 	__acquires(lock)
511 {
512 	/* Track if the lock is contended in async mode */
513 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
514 		if (spin_trylock_irqsave(lock, *flags))
515 			return true;
516 
517 		cc->contended = true;
518 	}
519 
520 	spin_lock_irqsave(lock, *flags);
521 	return true;
522 }
523 
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. The lock should be periodically unlocked to avoid
527  * having disabled IRQs for a long time, even when there is nobody waiting on
528  * the lock. It might also be that allowing the IRQs will result in
529  * need_resched() becoming true. If scheduling is needed, compaction schedules.
530  * Either compaction type will also abort if a fatal signal is pending.
531  * In either case if the lock was locked, it is dropped and not regained.
532  *
533  * Returns true if compaction should abort due to fatal signal pending.
534  * Returns false when compaction can continue.
535  */
536 static bool compact_unlock_should_abort(spinlock_t *lock,
537 		unsigned long flags, bool *locked, struct compact_control *cc)
538 {
539 	if (*locked) {
540 		spin_unlock_irqrestore(lock, flags);
541 		*locked = false;
542 	}
543 
544 	if (fatal_signal_pending(current)) {
545 		cc->contended = true;
546 		return true;
547 	}
548 
549 	cond_resched();
550 
551 	return false;
552 }
553 
554 /*
555  * Isolate free pages onto a private freelist. If @strict is true, will abort
556  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
557  * (even though it may still end up isolating some pages).
558  */
559 static unsigned long isolate_freepages_block(struct compact_control *cc,
560 				unsigned long *start_pfn,
561 				unsigned long end_pfn,
562 				struct list_head *freelist,
563 				unsigned int stride,
564 				bool strict)
565 {
566 	int nr_scanned = 0, total_isolated = 0;
567 	struct page *cursor;
568 	unsigned long flags = 0;
569 	bool locked = false;
570 	unsigned long blockpfn = *start_pfn;
571 	unsigned int order;
572 
573 	/* Strict mode is for isolation, speed is secondary */
574 	if (strict)
575 		stride = 1;
576 
577 	cursor = pfn_to_page(blockpfn);
578 
579 	/* Isolate free pages. */
580 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
581 		int isolated;
582 		struct page *page = cursor;
583 
584 		/*
585 		 * Periodically drop the lock (if held) regardless of its
586 		 * contention, to give chance to IRQs. Abort if fatal signal
587 		 * pending.
588 		 */
589 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
590 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
591 								&locked, cc))
592 			break;
593 
594 		nr_scanned++;
595 
596 		/*
597 		 * For compound pages such as THP and hugetlbfs, we can save
598 		 * potentially a lot of iterations if we skip them at once.
599 		 * The check is racy, but we can consider only valid values
600 		 * and the only danger is skipping too much.
601 		 */
602 		if (PageCompound(page)) {
603 			const unsigned int order = compound_order(page);
604 
605 			if (likely(order <= MAX_ORDER)) {
606 				blockpfn += (1UL << order) - 1;
607 				cursor += (1UL << order) - 1;
608 				nr_scanned += (1UL << order) - 1;
609 			}
610 			goto isolate_fail;
611 		}
612 
613 		if (!PageBuddy(page))
614 			goto isolate_fail;
615 
616 		/* If we already hold the lock, we can skip some rechecking. */
617 		if (!locked) {
618 			locked = compact_lock_irqsave(&cc->zone->lock,
619 								&flags, cc);
620 
621 			/* Recheck this is a buddy page under lock */
622 			if (!PageBuddy(page))
623 				goto isolate_fail;
624 		}
625 
626 		/* Found a free page, will break it into order-0 pages */
627 		order = buddy_order(page);
628 		isolated = __isolate_free_page(page, order);
629 		if (!isolated)
630 			break;
631 		set_page_private(page, order);
632 
633 		nr_scanned += isolated - 1;
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(struct compact_control *cc)
768 {
769 	pg_data_t *pgdat = cc->zone->zone_pgdat;
770 	bool too_many;
771 
772 	unsigned long active, inactive, isolated;
773 
774 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
775 			node_page_state(pgdat, NR_INACTIVE_ANON);
776 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
777 			node_page_state(pgdat, NR_ACTIVE_ANON);
778 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
779 			node_page_state(pgdat, NR_ISOLATED_ANON);
780 
781 	/*
782 	 * Allow GFP_NOFS to isolate past the limit set for regular
783 	 * compaction runs. This prevents an ABBA deadlock when other
784 	 * compactors have already isolated to the limit, but are
785 	 * blocked on filesystem locks held by the GFP_NOFS thread.
786 	 */
787 	if (cc->gfp_mask & __GFP_FS) {
788 		inactive >>= 3;
789 		active >>= 3;
790 	}
791 
792 	too_many = isolated > (inactive + active) / 2;
793 	if (!too_many)
794 		wake_throttle_isolated(pgdat);
795 
796 	return too_many;
797 }
798 
799 /**
800  * isolate_migratepages_block() - isolate all migrate-able pages within
801  *				  a single pageblock
802  * @cc:		Compaction control structure.
803  * @low_pfn:	The first PFN to isolate
804  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
805  * @mode:	Isolation mode to be used.
806  *
807  * Isolate all pages that can be migrated from the range specified by
808  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
809  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
810  * -ENOMEM in case we could not allocate a page, or 0.
811  * cc->migrate_pfn will contain the next pfn to scan.
812  *
813  * The pages are isolated on cc->migratepages list (not required to be empty),
814  * and cc->nr_migratepages is updated accordingly.
815  */
816 static int
817 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
818 			unsigned long end_pfn, isolate_mode_t mode)
819 {
820 	pg_data_t *pgdat = cc->zone->zone_pgdat;
821 	unsigned long nr_scanned = 0, nr_isolated = 0;
822 	struct lruvec *lruvec;
823 	unsigned long flags = 0;
824 	struct lruvec *locked = NULL;
825 	struct folio *folio = NULL;
826 	struct page *page = NULL, *valid_page = NULL;
827 	struct address_space *mapping;
828 	unsigned long start_pfn = low_pfn;
829 	bool skip_on_failure = false;
830 	unsigned long next_skip_pfn = 0;
831 	bool skip_updated = false;
832 	int ret = 0;
833 
834 	cc->migrate_pfn = low_pfn;
835 
836 	/*
837 	 * Ensure that there are not too many pages isolated from the LRU
838 	 * list by either parallel reclaimers or compaction. If there are,
839 	 * delay for some time until fewer pages are isolated
840 	 */
841 	while (unlikely(too_many_isolated(cc))) {
842 		/* stop isolation if there are still pages not migrated */
843 		if (cc->nr_migratepages)
844 			return -EAGAIN;
845 
846 		/* async migration should just abort */
847 		if (cc->mode == MIGRATE_ASYNC)
848 			return -EAGAIN;
849 
850 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
851 
852 		if (fatal_signal_pending(current))
853 			return -EINTR;
854 	}
855 
856 	cond_resched();
857 
858 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
859 		skip_on_failure = true;
860 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861 	}
862 
863 	/* Time to isolate some pages for migration */
864 	for (; low_pfn < end_pfn; low_pfn++) {
865 
866 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
867 			/*
868 			 * We have isolated all migration candidates in the
869 			 * previous order-aligned block, and did not skip it due
870 			 * to failure. We should migrate the pages now and
871 			 * hopefully succeed compaction.
872 			 */
873 			if (nr_isolated)
874 				break;
875 
876 			/*
877 			 * We failed to isolate in the previous order-aligned
878 			 * block. Set the new boundary to the end of the
879 			 * current block. Note we can't simply increase
880 			 * next_skip_pfn by 1 << order, as low_pfn might have
881 			 * been incremented by a higher number due to skipping
882 			 * a compound or a high-order buddy page in the
883 			 * previous loop iteration.
884 			 */
885 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
886 		}
887 
888 		/*
889 		 * Periodically drop the lock (if held) regardless of its
890 		 * contention, to give chance to IRQs. Abort completely if
891 		 * a fatal signal is pending.
892 		 */
893 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
894 			if (locked) {
895 				unlock_page_lruvec_irqrestore(locked, flags);
896 				locked = NULL;
897 			}
898 
899 			if (fatal_signal_pending(current)) {
900 				cc->contended = true;
901 				ret = -EINTR;
902 
903 				goto fatal_pending;
904 			}
905 
906 			cond_resched();
907 		}
908 
909 		nr_scanned++;
910 
911 		page = pfn_to_page(low_pfn);
912 
913 		/*
914 		 * Check if the pageblock has already been marked skipped.
915 		 * Only the aligned PFN is checked as the caller isolates
916 		 * COMPACT_CLUSTER_MAX at a time so the second call must
917 		 * not falsely conclude that the block should be skipped.
918 		 */
919 		if (!valid_page && pageblock_aligned(low_pfn)) {
920 			if (!isolation_suitable(cc, page)) {
921 				low_pfn = end_pfn;
922 				folio = NULL;
923 				goto isolate_abort;
924 			}
925 			valid_page = page;
926 		}
927 
928 		if (PageHuge(page) && cc->alloc_contig) {
929 			if (locked) {
930 				unlock_page_lruvec_irqrestore(locked, flags);
931 				locked = NULL;
932 			}
933 
934 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
935 
936 			/*
937 			 * Fail isolation in case isolate_or_dissolve_huge_page()
938 			 * reports an error. In case of -ENOMEM, abort right away.
939 			 */
940 			if (ret < 0) {
941 				 /* Do not report -EBUSY down the chain */
942 				if (ret == -EBUSY)
943 					ret = 0;
944 				low_pfn += compound_nr(page) - 1;
945 				nr_scanned += compound_nr(page) - 1;
946 				goto isolate_fail;
947 			}
948 
949 			if (PageHuge(page)) {
950 				/*
951 				 * Hugepage was successfully isolated and placed
952 				 * on the cc->migratepages list.
953 				 */
954 				folio = page_folio(page);
955 				low_pfn += folio_nr_pages(folio) - 1;
956 				goto isolate_success_no_list;
957 			}
958 
959 			/*
960 			 * Ok, the hugepage was dissolved. Now these pages are
961 			 * Buddy and cannot be re-allocated because they are
962 			 * isolated. Fall-through as the check below handles
963 			 * Buddy pages.
964 			 */
965 		}
966 
967 		/*
968 		 * Skip if free. We read page order here without zone lock
969 		 * which is generally unsafe, but the race window is small and
970 		 * the worst thing that can happen is that we skip some
971 		 * potential isolation targets.
972 		 */
973 		if (PageBuddy(page)) {
974 			unsigned long freepage_order = buddy_order_unsafe(page);
975 
976 			/*
977 			 * Without lock, we cannot be sure that what we got is
978 			 * a valid page order. Consider only values in the
979 			 * valid order range to prevent low_pfn overflow.
980 			 */
981 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
982 				low_pfn += (1UL << freepage_order) - 1;
983 				nr_scanned += (1UL << freepage_order) - 1;
984 			}
985 			continue;
986 		}
987 
988 		/*
989 		 * Regardless of being on LRU, compound pages such as THP and
990 		 * hugetlbfs are not to be compacted unless we are attempting
991 		 * an allocation much larger than the huge page size (eg CMA).
992 		 * We can potentially save a lot of iterations if we skip them
993 		 * at once. The check is racy, but we can consider only valid
994 		 * values and the only danger is skipping too much.
995 		 */
996 		if (PageCompound(page) && !cc->alloc_contig) {
997 			const unsigned int order = compound_order(page);
998 
999 			if (likely(order <= MAX_ORDER)) {
1000 				low_pfn += (1UL << order) - 1;
1001 				nr_scanned += (1UL << order) - 1;
1002 			}
1003 			goto isolate_fail;
1004 		}
1005 
1006 		/*
1007 		 * Check may be lockless but that's ok as we recheck later.
1008 		 * It's possible to migrate LRU and non-lru movable pages.
1009 		 * Skip any other type of page
1010 		 */
1011 		if (!PageLRU(page)) {
1012 			/*
1013 			 * __PageMovable can return false positive so we need
1014 			 * to verify it under page_lock.
1015 			 */
1016 			if (unlikely(__PageMovable(page)) &&
1017 					!PageIsolated(page)) {
1018 				if (locked) {
1019 					unlock_page_lruvec_irqrestore(locked, flags);
1020 					locked = NULL;
1021 				}
1022 
1023 				if (isolate_movable_page(page, mode)) {
1024 					folio = page_folio(page);
1025 					goto isolate_success;
1026 				}
1027 			}
1028 
1029 			goto isolate_fail;
1030 		}
1031 
1032 		/*
1033 		 * Be careful not to clear PageLRU until after we're
1034 		 * sure the page is not being freed elsewhere -- the
1035 		 * page release code relies on it.
1036 		 */
1037 		folio = folio_get_nontail_page(page);
1038 		if (unlikely(!folio))
1039 			goto isolate_fail;
1040 
1041 		/*
1042 		 * Migration will fail if an anonymous page is pinned in memory,
1043 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1044 		 * admittedly racy check.
1045 		 */
1046 		mapping = folio_mapping(folio);
1047 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1048 			goto isolate_fail_put;
1049 
1050 		/*
1051 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1052 		 * because those do not depend on fs locks.
1053 		 */
1054 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1055 			goto isolate_fail_put;
1056 
1057 		/* Only take pages on LRU: a check now makes later tests safe */
1058 		if (!folio_test_lru(folio))
1059 			goto isolate_fail_put;
1060 
1061 		/* Compaction might skip unevictable pages but CMA takes them */
1062 		if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1063 			goto isolate_fail_put;
1064 
1065 		/*
1066 		 * To minimise LRU disruption, the caller can indicate with
1067 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1068 		 * it will be able to migrate without blocking - clean pages
1069 		 * for the most part.  PageWriteback would require blocking.
1070 		 */
1071 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1072 			goto isolate_fail_put;
1073 
1074 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1075 			bool migrate_dirty;
1076 
1077 			/*
1078 			 * Only pages without mappings or that have a
1079 			 * ->migrate_folio callback are possible to migrate
1080 			 * without blocking. However, we can be racing with
1081 			 * truncation so it's necessary to lock the page
1082 			 * to stabilise the mapping as truncation holds
1083 			 * the page lock until after the page is removed
1084 			 * from the page cache.
1085 			 */
1086 			if (!folio_trylock(folio))
1087 				goto isolate_fail_put;
1088 
1089 			mapping = folio_mapping(folio);
1090 			migrate_dirty = !mapping ||
1091 					mapping->a_ops->migrate_folio;
1092 			folio_unlock(folio);
1093 			if (!migrate_dirty)
1094 				goto isolate_fail_put;
1095 		}
1096 
1097 		/* Try isolate the folio */
1098 		if (!folio_test_clear_lru(folio))
1099 			goto isolate_fail_put;
1100 
1101 		lruvec = folio_lruvec(folio);
1102 
1103 		/* If we already hold the lock, we can skip some rechecking */
1104 		if (lruvec != locked) {
1105 			if (locked)
1106 				unlock_page_lruvec_irqrestore(locked, flags);
1107 
1108 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1109 			locked = lruvec;
1110 
1111 			lruvec_memcg_debug(lruvec, folio);
1112 
1113 			/*
1114 			 * Try get exclusive access under lock. If marked for
1115 			 * skip, the scan is aborted unless the current context
1116 			 * is a rescan to reach the end of the pageblock.
1117 			 */
1118 			if (!skip_updated && valid_page) {
1119 				skip_updated = true;
1120 				if (test_and_set_skip(cc, valid_page) &&
1121 				    !cc->finish_pageblock) {
1122 					goto isolate_abort;
1123 				}
1124 			}
1125 
1126 			/*
1127 			 * folio become large since the non-locked check,
1128 			 * and it's on LRU.
1129 			 */
1130 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1131 				low_pfn += folio_nr_pages(folio) - 1;
1132 				nr_scanned += folio_nr_pages(folio) - 1;
1133 				folio_set_lru(folio);
1134 				goto isolate_fail_put;
1135 			}
1136 		}
1137 
1138 		/* The folio is taken off the LRU */
1139 		if (folio_test_large(folio))
1140 			low_pfn += folio_nr_pages(folio) - 1;
1141 
1142 		/* Successfully isolated */
1143 		lruvec_del_folio(lruvec, folio);
1144 		node_stat_mod_folio(folio,
1145 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1146 				folio_nr_pages(folio));
1147 
1148 isolate_success:
1149 		list_add(&folio->lru, &cc->migratepages);
1150 isolate_success_no_list:
1151 		cc->nr_migratepages += folio_nr_pages(folio);
1152 		nr_isolated += folio_nr_pages(folio);
1153 		nr_scanned += folio_nr_pages(folio) - 1;
1154 
1155 		/*
1156 		 * Avoid isolating too much unless this block is being
1157 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1158 		 * or a lock is contended. For contention, isolate quickly to
1159 		 * potentially remove one source of contention.
1160 		 */
1161 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1162 		    !cc->finish_pageblock && !cc->contended) {
1163 			++low_pfn;
1164 			break;
1165 		}
1166 
1167 		continue;
1168 
1169 isolate_fail_put:
1170 		/* Avoid potential deadlock in freeing page under lru_lock */
1171 		if (locked) {
1172 			unlock_page_lruvec_irqrestore(locked, flags);
1173 			locked = NULL;
1174 		}
1175 		folio_put(folio);
1176 
1177 isolate_fail:
1178 		if (!skip_on_failure && ret != -ENOMEM)
1179 			continue;
1180 
1181 		/*
1182 		 * We have isolated some pages, but then failed. Release them
1183 		 * instead of migrating, as we cannot form the cc->order buddy
1184 		 * page anyway.
1185 		 */
1186 		if (nr_isolated) {
1187 			if (locked) {
1188 				unlock_page_lruvec_irqrestore(locked, flags);
1189 				locked = NULL;
1190 			}
1191 			putback_movable_pages(&cc->migratepages);
1192 			cc->nr_migratepages = 0;
1193 			nr_isolated = 0;
1194 		}
1195 
1196 		if (low_pfn < next_skip_pfn) {
1197 			low_pfn = next_skip_pfn - 1;
1198 			/*
1199 			 * The check near the loop beginning would have updated
1200 			 * next_skip_pfn too, but this is a bit simpler.
1201 			 */
1202 			next_skip_pfn += 1UL << cc->order;
1203 		}
1204 
1205 		if (ret == -ENOMEM)
1206 			break;
1207 	}
1208 
1209 	/*
1210 	 * The PageBuddy() check could have potentially brought us outside
1211 	 * the range to be scanned.
1212 	 */
1213 	if (unlikely(low_pfn > end_pfn))
1214 		low_pfn = end_pfn;
1215 
1216 	folio = NULL;
1217 
1218 isolate_abort:
1219 	if (locked)
1220 		unlock_page_lruvec_irqrestore(locked, flags);
1221 	if (folio) {
1222 		folio_set_lru(folio);
1223 		folio_put(folio);
1224 	}
1225 
1226 	/*
1227 	 * Update the cached scanner pfn once the pageblock has been scanned.
1228 	 * Pages will either be migrated in which case there is no point
1229 	 * scanning in the near future or migration failed in which case the
1230 	 * failure reason may persist. The block is marked for skipping if
1231 	 * there were no pages isolated in the block or if the block is
1232 	 * rescanned twice in a row.
1233 	 */
1234 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1235 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1236 			set_pageblock_skip(valid_page);
1237 		update_cached_migrate(cc, low_pfn);
1238 	}
1239 
1240 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1241 						nr_scanned, nr_isolated);
1242 
1243 fatal_pending:
1244 	cc->total_migrate_scanned += nr_scanned;
1245 	if (nr_isolated)
1246 		count_compact_events(COMPACTISOLATED, nr_isolated);
1247 
1248 	cc->migrate_pfn = low_pfn;
1249 
1250 	return ret;
1251 }
1252 
1253 /**
1254  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1255  * @cc:        Compaction control structure.
1256  * @start_pfn: The first PFN to start isolating.
1257  * @end_pfn:   The one-past-last PFN.
1258  *
1259  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1260  * in case we could not allocate a page, or 0.
1261  */
1262 int
1263 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1264 							unsigned long end_pfn)
1265 {
1266 	unsigned long pfn, block_start_pfn, block_end_pfn;
1267 	int ret = 0;
1268 
1269 	/* Scan block by block. First and last block may be incomplete */
1270 	pfn = start_pfn;
1271 	block_start_pfn = pageblock_start_pfn(pfn);
1272 	if (block_start_pfn < cc->zone->zone_start_pfn)
1273 		block_start_pfn = cc->zone->zone_start_pfn;
1274 	block_end_pfn = pageblock_end_pfn(pfn);
1275 
1276 	for (; pfn < end_pfn; pfn = block_end_pfn,
1277 				block_start_pfn = block_end_pfn,
1278 				block_end_pfn += pageblock_nr_pages) {
1279 
1280 		block_end_pfn = min(block_end_pfn, end_pfn);
1281 
1282 		if (!pageblock_pfn_to_page(block_start_pfn,
1283 					block_end_pfn, cc->zone))
1284 			continue;
1285 
1286 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1287 						 ISOLATE_UNEVICTABLE);
1288 
1289 		if (ret)
1290 			break;
1291 
1292 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1293 			break;
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1300 #ifdef CONFIG_COMPACTION
1301 
1302 static bool suitable_migration_source(struct compact_control *cc,
1303 							struct page *page)
1304 {
1305 	int block_mt;
1306 
1307 	if (pageblock_skip_persistent(page))
1308 		return false;
1309 
1310 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1311 		return true;
1312 
1313 	block_mt = get_pageblock_migratetype(page);
1314 
1315 	if (cc->migratetype == MIGRATE_MOVABLE)
1316 		return is_migrate_movable(block_mt);
1317 	else
1318 		return block_mt == cc->migratetype;
1319 }
1320 
1321 /* Returns true if the page is within a block suitable for migration to */
1322 static bool suitable_migration_target(struct compact_control *cc,
1323 							struct page *page)
1324 {
1325 	/* If the page is a large free page, then disallow migration */
1326 	if (PageBuddy(page)) {
1327 		/*
1328 		 * We are checking page_order without zone->lock taken. But
1329 		 * the only small danger is that we skip a potentially suitable
1330 		 * pageblock, so it's not worth to check order for valid range.
1331 		 */
1332 		if (buddy_order_unsafe(page) >= pageblock_order)
1333 			return false;
1334 	}
1335 
1336 	if (cc->ignore_block_suitable)
1337 		return true;
1338 
1339 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1340 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1341 		return true;
1342 
1343 	/* Otherwise skip the block */
1344 	return false;
1345 }
1346 
1347 static inline unsigned int
1348 freelist_scan_limit(struct compact_control *cc)
1349 {
1350 	unsigned short shift = BITS_PER_LONG - 1;
1351 
1352 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1353 }
1354 
1355 /*
1356  * Test whether the free scanner has reached the same or lower pageblock than
1357  * the migration scanner, and compaction should thus terminate.
1358  */
1359 static inline bool compact_scanners_met(struct compact_control *cc)
1360 {
1361 	return (cc->free_pfn >> pageblock_order)
1362 		<= (cc->migrate_pfn >> pageblock_order);
1363 }
1364 
1365 /*
1366  * Used when scanning for a suitable migration target which scans freelists
1367  * in reverse. Reorders the list such as the unscanned pages are scanned
1368  * first on the next iteration of the free scanner
1369  */
1370 static void
1371 move_freelist_head(struct list_head *freelist, struct page *freepage)
1372 {
1373 	LIST_HEAD(sublist);
1374 
1375 	if (!list_is_last(freelist, &freepage->lru)) {
1376 		list_cut_before(&sublist, freelist, &freepage->lru);
1377 		list_splice_tail(&sublist, freelist);
1378 	}
1379 }
1380 
1381 /*
1382  * Similar to move_freelist_head except used by the migration scanner
1383  * when scanning forward. It's possible for these list operations to
1384  * move against each other if they search the free list exactly in
1385  * lockstep.
1386  */
1387 static void
1388 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1389 {
1390 	LIST_HEAD(sublist);
1391 
1392 	if (!list_is_first(freelist, &freepage->lru)) {
1393 		list_cut_position(&sublist, freelist, &freepage->lru);
1394 		list_splice_tail(&sublist, freelist);
1395 	}
1396 }
1397 
1398 static void
1399 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1400 {
1401 	unsigned long start_pfn, end_pfn;
1402 	struct page *page;
1403 
1404 	/* Do not search around if there are enough pages already */
1405 	if (cc->nr_freepages >= cc->nr_migratepages)
1406 		return;
1407 
1408 	/* Minimise scanning during async compaction */
1409 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1410 		return;
1411 
1412 	/* Pageblock boundaries */
1413 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1414 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1415 
1416 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1417 	if (!page)
1418 		return;
1419 
1420 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1421 
1422 	/* Skip this pageblock in the future as it's full or nearly full */
1423 	if (start_pfn == end_pfn)
1424 		set_pageblock_skip(page);
1425 
1426 	return;
1427 }
1428 
1429 /* Search orders in round-robin fashion */
1430 static int next_search_order(struct compact_control *cc, int order)
1431 {
1432 	order--;
1433 	if (order < 0)
1434 		order = cc->order - 1;
1435 
1436 	/* Search wrapped around? */
1437 	if (order == cc->search_order) {
1438 		cc->search_order--;
1439 		if (cc->search_order < 0)
1440 			cc->search_order = cc->order - 1;
1441 		return -1;
1442 	}
1443 
1444 	return order;
1445 }
1446 
1447 static void fast_isolate_freepages(struct compact_control *cc)
1448 {
1449 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1450 	unsigned int nr_scanned = 0, total_isolated = 0;
1451 	unsigned long low_pfn, min_pfn, highest = 0;
1452 	unsigned long nr_isolated = 0;
1453 	unsigned long distance;
1454 	struct page *page = NULL;
1455 	bool scan_start = false;
1456 	int order;
1457 
1458 	/* Full compaction passes in a negative order */
1459 	if (cc->order <= 0)
1460 		return;
1461 
1462 	/*
1463 	 * If starting the scan, use a deeper search and use the highest
1464 	 * PFN found if a suitable one is not found.
1465 	 */
1466 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1467 		limit = pageblock_nr_pages >> 1;
1468 		scan_start = true;
1469 	}
1470 
1471 	/*
1472 	 * Preferred point is in the top quarter of the scan space but take
1473 	 * a pfn from the top half if the search is problematic.
1474 	 */
1475 	distance = (cc->free_pfn - cc->migrate_pfn);
1476 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1477 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1478 
1479 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1480 		low_pfn = min_pfn;
1481 
1482 	/*
1483 	 * Search starts from the last successful isolation order or the next
1484 	 * order to search after a previous failure
1485 	 */
1486 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1487 
1488 	for (order = cc->search_order;
1489 	     !page && order >= 0;
1490 	     order = next_search_order(cc, order)) {
1491 		struct free_area *area = &cc->zone->free_area[order];
1492 		struct list_head *freelist;
1493 		struct page *freepage;
1494 		unsigned long flags;
1495 		unsigned int order_scanned = 0;
1496 		unsigned long high_pfn = 0;
1497 
1498 		if (!area->nr_free)
1499 			continue;
1500 
1501 		spin_lock_irqsave(&cc->zone->lock, flags);
1502 		freelist = &area->free_list[MIGRATE_MOVABLE];
1503 		list_for_each_entry_reverse(freepage, freelist, lru) {
1504 			unsigned long pfn;
1505 
1506 			order_scanned++;
1507 			nr_scanned++;
1508 			pfn = page_to_pfn(freepage);
1509 
1510 			if (pfn >= highest)
1511 				highest = max(pageblock_start_pfn(pfn),
1512 					      cc->zone->zone_start_pfn);
1513 
1514 			if (pfn >= low_pfn) {
1515 				cc->fast_search_fail = 0;
1516 				cc->search_order = order;
1517 				page = freepage;
1518 				break;
1519 			}
1520 
1521 			if (pfn >= min_pfn && pfn > high_pfn) {
1522 				high_pfn = pfn;
1523 
1524 				/* Shorten the scan if a candidate is found */
1525 				limit >>= 1;
1526 			}
1527 
1528 			if (order_scanned >= limit)
1529 				break;
1530 		}
1531 
1532 		/* Use a minimum pfn if a preferred one was not found */
1533 		if (!page && high_pfn) {
1534 			page = pfn_to_page(high_pfn);
1535 
1536 			/* Update freepage for the list reorder below */
1537 			freepage = page;
1538 		}
1539 
1540 		/* Reorder to so a future search skips recent pages */
1541 		move_freelist_head(freelist, freepage);
1542 
1543 		/* Isolate the page if available */
1544 		if (page) {
1545 			if (__isolate_free_page(page, order)) {
1546 				set_page_private(page, order);
1547 				nr_isolated = 1 << order;
1548 				nr_scanned += nr_isolated - 1;
1549 				total_isolated += nr_isolated;
1550 				cc->nr_freepages += nr_isolated;
1551 				list_add_tail(&page->lru, &cc->freepages);
1552 				count_compact_events(COMPACTISOLATED, nr_isolated);
1553 			} else {
1554 				/* If isolation fails, abort the search */
1555 				order = cc->search_order + 1;
1556 				page = NULL;
1557 			}
1558 		}
1559 
1560 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1561 
1562 		/* Skip fast search if enough freepages isolated */
1563 		if (cc->nr_freepages >= cc->nr_migratepages)
1564 			break;
1565 
1566 		/*
1567 		 * Smaller scan on next order so the total scan is related
1568 		 * to freelist_scan_limit.
1569 		 */
1570 		if (order_scanned >= limit)
1571 			limit = max(1U, limit >> 1);
1572 	}
1573 
1574 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1575 						   nr_scanned, total_isolated);
1576 
1577 	if (!page) {
1578 		cc->fast_search_fail++;
1579 		if (scan_start) {
1580 			/*
1581 			 * Use the highest PFN found above min. If one was
1582 			 * not found, be pessimistic for direct compaction
1583 			 * and use the min mark.
1584 			 */
1585 			if (highest >= min_pfn) {
1586 				page = pfn_to_page(highest);
1587 				cc->free_pfn = highest;
1588 			} else {
1589 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1590 					page = pageblock_pfn_to_page(min_pfn,
1591 						min(pageblock_end_pfn(min_pfn),
1592 						    zone_end_pfn(cc->zone)),
1593 						cc->zone);
1594 					cc->free_pfn = min_pfn;
1595 				}
1596 			}
1597 		}
1598 	}
1599 
1600 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1601 		highest -= pageblock_nr_pages;
1602 		cc->zone->compact_cached_free_pfn = highest;
1603 	}
1604 
1605 	cc->total_free_scanned += nr_scanned;
1606 	if (!page)
1607 		return;
1608 
1609 	low_pfn = page_to_pfn(page);
1610 	fast_isolate_around(cc, low_pfn);
1611 }
1612 
1613 /*
1614  * Based on information in the current compact_control, find blocks
1615  * suitable for isolating free pages from and then isolate them.
1616  */
1617 static void isolate_freepages(struct compact_control *cc)
1618 {
1619 	struct zone *zone = cc->zone;
1620 	struct page *page;
1621 	unsigned long block_start_pfn;	/* start of current pageblock */
1622 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1623 	unsigned long block_end_pfn;	/* end of current pageblock */
1624 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1625 	struct list_head *freelist = &cc->freepages;
1626 	unsigned int stride;
1627 
1628 	/* Try a small search of the free lists for a candidate */
1629 	fast_isolate_freepages(cc);
1630 	if (cc->nr_freepages)
1631 		goto splitmap;
1632 
1633 	/*
1634 	 * Initialise the free scanner. The starting point is where we last
1635 	 * successfully isolated from, zone-cached value, or the end of the
1636 	 * zone when isolating for the first time. For looping we also need
1637 	 * this pfn aligned down to the pageblock boundary, because we do
1638 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1639 	 * For ending point, take care when isolating in last pageblock of a
1640 	 * zone which ends in the middle of a pageblock.
1641 	 * The low boundary is the end of the pageblock the migration scanner
1642 	 * is using.
1643 	 */
1644 	isolate_start_pfn = cc->free_pfn;
1645 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1646 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1647 						zone_end_pfn(zone));
1648 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1649 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1650 
1651 	/*
1652 	 * Isolate free pages until enough are available to migrate the
1653 	 * pages on cc->migratepages. We stop searching if the migrate
1654 	 * and free page scanners meet or enough free pages are isolated.
1655 	 */
1656 	for (; block_start_pfn >= low_pfn;
1657 				block_end_pfn = block_start_pfn,
1658 				block_start_pfn -= pageblock_nr_pages,
1659 				isolate_start_pfn = block_start_pfn) {
1660 		unsigned long nr_isolated;
1661 
1662 		/*
1663 		 * This can iterate a massively long zone without finding any
1664 		 * suitable migration targets, so periodically check resched.
1665 		 */
1666 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1667 			cond_resched();
1668 
1669 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1670 									zone);
1671 		if (!page)
1672 			continue;
1673 
1674 		/* Check the block is suitable for migration */
1675 		if (!suitable_migration_target(cc, page))
1676 			continue;
1677 
1678 		/* If isolation recently failed, do not retry */
1679 		if (!isolation_suitable(cc, page))
1680 			continue;
1681 
1682 		/* Found a block suitable for isolating free pages from. */
1683 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1684 					block_end_pfn, freelist, stride, false);
1685 
1686 		/* Update the skip hint if the full pageblock was scanned */
1687 		if (isolate_start_pfn == block_end_pfn)
1688 			update_pageblock_skip(cc, page, block_start_pfn);
1689 
1690 		/* Are enough freepages isolated? */
1691 		if (cc->nr_freepages >= cc->nr_migratepages) {
1692 			if (isolate_start_pfn >= block_end_pfn) {
1693 				/*
1694 				 * Restart at previous pageblock if more
1695 				 * freepages can be isolated next time.
1696 				 */
1697 				isolate_start_pfn =
1698 					block_start_pfn - pageblock_nr_pages;
1699 			}
1700 			break;
1701 		} else if (isolate_start_pfn < block_end_pfn) {
1702 			/*
1703 			 * If isolation failed early, do not continue
1704 			 * needlessly.
1705 			 */
1706 			break;
1707 		}
1708 
1709 		/* Adjust stride depending on isolation */
1710 		if (nr_isolated) {
1711 			stride = 1;
1712 			continue;
1713 		}
1714 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1715 	}
1716 
1717 	/*
1718 	 * Record where the free scanner will restart next time. Either we
1719 	 * broke from the loop and set isolate_start_pfn based on the last
1720 	 * call to isolate_freepages_block(), or we met the migration scanner
1721 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1722 	 */
1723 	cc->free_pfn = isolate_start_pfn;
1724 
1725 splitmap:
1726 	/* __isolate_free_page() does not map the pages */
1727 	split_map_pages(freelist);
1728 }
1729 
1730 /*
1731  * This is a migrate-callback that "allocates" freepages by taking pages
1732  * from the isolated freelists in the block we are migrating to.
1733  */
1734 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1735 {
1736 	struct compact_control *cc = (struct compact_control *)data;
1737 	struct folio *dst;
1738 
1739 	if (list_empty(&cc->freepages)) {
1740 		isolate_freepages(cc);
1741 
1742 		if (list_empty(&cc->freepages))
1743 			return NULL;
1744 	}
1745 
1746 	dst = list_entry(cc->freepages.next, struct folio, lru);
1747 	list_del(&dst->lru);
1748 	cc->nr_freepages--;
1749 
1750 	return dst;
1751 }
1752 
1753 /*
1754  * This is a migrate-callback that "frees" freepages back to the isolated
1755  * freelist.  All pages on the freelist are from the same zone, so there is no
1756  * special handling needed for NUMA.
1757  */
1758 static void compaction_free(struct folio *dst, unsigned long data)
1759 {
1760 	struct compact_control *cc = (struct compact_control *)data;
1761 
1762 	list_add(&dst->lru, &cc->freepages);
1763 	cc->nr_freepages++;
1764 }
1765 
1766 /* possible outcome of isolate_migratepages */
1767 typedef enum {
1768 	ISOLATE_ABORT,		/* Abort compaction now */
1769 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1770 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1771 } isolate_migrate_t;
1772 
1773 /*
1774  * Allow userspace to control policy on scanning the unevictable LRU for
1775  * compactable pages.
1776  */
1777 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1778 /*
1779  * Tunable for proactive compaction. It determines how
1780  * aggressively the kernel should compact memory in the
1781  * background. It takes values in the range [0, 100].
1782  */
1783 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1784 static int sysctl_extfrag_threshold = 500;
1785 static int __read_mostly sysctl_compact_memory;
1786 
1787 static inline void
1788 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1789 {
1790 	if (cc->fast_start_pfn == ULONG_MAX)
1791 		return;
1792 
1793 	if (!cc->fast_start_pfn)
1794 		cc->fast_start_pfn = pfn;
1795 
1796 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1797 }
1798 
1799 static inline unsigned long
1800 reinit_migrate_pfn(struct compact_control *cc)
1801 {
1802 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1803 		return cc->migrate_pfn;
1804 
1805 	cc->migrate_pfn = cc->fast_start_pfn;
1806 	cc->fast_start_pfn = ULONG_MAX;
1807 
1808 	return cc->migrate_pfn;
1809 }
1810 
1811 /*
1812  * Briefly search the free lists for a migration source that already has
1813  * some free pages to reduce the number of pages that need migration
1814  * before a pageblock is free.
1815  */
1816 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1817 {
1818 	unsigned int limit = freelist_scan_limit(cc);
1819 	unsigned int nr_scanned = 0;
1820 	unsigned long distance;
1821 	unsigned long pfn = cc->migrate_pfn;
1822 	unsigned long high_pfn;
1823 	int order;
1824 	bool found_block = false;
1825 
1826 	/* Skip hints are relied on to avoid repeats on the fast search */
1827 	if (cc->ignore_skip_hint)
1828 		return pfn;
1829 
1830 	/*
1831 	 * If the pageblock should be finished then do not select a different
1832 	 * pageblock.
1833 	 */
1834 	if (cc->finish_pageblock)
1835 		return pfn;
1836 
1837 	/*
1838 	 * If the migrate_pfn is not at the start of a zone or the start
1839 	 * of a pageblock then assume this is a continuation of a previous
1840 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1841 	 */
1842 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1843 		return pfn;
1844 
1845 	/*
1846 	 * For smaller orders, just linearly scan as the number of pages
1847 	 * to migrate should be relatively small and does not necessarily
1848 	 * justify freeing up a large block for a small allocation.
1849 	 */
1850 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1851 		return pfn;
1852 
1853 	/*
1854 	 * Only allow kcompactd and direct requests for movable pages to
1855 	 * quickly clear out a MOVABLE pageblock for allocation. This
1856 	 * reduces the risk that a large movable pageblock is freed for
1857 	 * an unmovable/reclaimable small allocation.
1858 	 */
1859 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1860 		return pfn;
1861 
1862 	/*
1863 	 * When starting the migration scanner, pick any pageblock within the
1864 	 * first half of the search space. Otherwise try and pick a pageblock
1865 	 * within the first eighth to reduce the chances that a migration
1866 	 * target later becomes a source.
1867 	 */
1868 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1869 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1870 		distance >>= 2;
1871 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1872 
1873 	for (order = cc->order - 1;
1874 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1875 	     order--) {
1876 		struct free_area *area = &cc->zone->free_area[order];
1877 		struct list_head *freelist;
1878 		unsigned long flags;
1879 		struct page *freepage;
1880 
1881 		if (!area->nr_free)
1882 			continue;
1883 
1884 		spin_lock_irqsave(&cc->zone->lock, flags);
1885 		freelist = &area->free_list[MIGRATE_MOVABLE];
1886 		list_for_each_entry(freepage, freelist, lru) {
1887 			unsigned long free_pfn;
1888 
1889 			if (nr_scanned++ >= limit) {
1890 				move_freelist_tail(freelist, freepage);
1891 				break;
1892 			}
1893 
1894 			free_pfn = page_to_pfn(freepage);
1895 			if (free_pfn < high_pfn) {
1896 				/*
1897 				 * Avoid if skipped recently. Ideally it would
1898 				 * move to the tail but even safe iteration of
1899 				 * the list assumes an entry is deleted, not
1900 				 * reordered.
1901 				 */
1902 				if (get_pageblock_skip(freepage))
1903 					continue;
1904 
1905 				/* Reorder to so a future search skips recent pages */
1906 				move_freelist_tail(freelist, freepage);
1907 
1908 				update_fast_start_pfn(cc, free_pfn);
1909 				pfn = pageblock_start_pfn(free_pfn);
1910 				if (pfn < cc->zone->zone_start_pfn)
1911 					pfn = cc->zone->zone_start_pfn;
1912 				cc->fast_search_fail = 0;
1913 				found_block = true;
1914 				break;
1915 			}
1916 		}
1917 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1918 	}
1919 
1920 	cc->total_migrate_scanned += nr_scanned;
1921 
1922 	/*
1923 	 * If fast scanning failed then use a cached entry for a page block
1924 	 * that had free pages as the basis for starting a linear scan.
1925 	 */
1926 	if (!found_block) {
1927 		cc->fast_search_fail++;
1928 		pfn = reinit_migrate_pfn(cc);
1929 	}
1930 	return pfn;
1931 }
1932 
1933 /*
1934  * Isolate all pages that can be migrated from the first suitable block,
1935  * starting at the block pointed to by the migrate scanner pfn within
1936  * compact_control.
1937  */
1938 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1939 {
1940 	unsigned long block_start_pfn;
1941 	unsigned long block_end_pfn;
1942 	unsigned long low_pfn;
1943 	struct page *page;
1944 	const isolate_mode_t isolate_mode =
1945 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1946 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1947 	bool fast_find_block;
1948 
1949 	/*
1950 	 * Start at where we last stopped, or beginning of the zone as
1951 	 * initialized by compact_zone(). The first failure will use
1952 	 * the lowest PFN as the starting point for linear scanning.
1953 	 */
1954 	low_pfn = fast_find_migrateblock(cc);
1955 	block_start_pfn = pageblock_start_pfn(low_pfn);
1956 	if (block_start_pfn < cc->zone->zone_start_pfn)
1957 		block_start_pfn = cc->zone->zone_start_pfn;
1958 
1959 	/*
1960 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1961 	 * the isolation_suitable check below, check whether the fast
1962 	 * search was successful.
1963 	 */
1964 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1965 
1966 	/* Only scan within a pageblock boundary */
1967 	block_end_pfn = pageblock_end_pfn(low_pfn);
1968 
1969 	/*
1970 	 * Iterate over whole pageblocks until we find the first suitable.
1971 	 * Do not cross the free scanner.
1972 	 */
1973 	for (; block_end_pfn <= cc->free_pfn;
1974 			fast_find_block = false,
1975 			cc->migrate_pfn = low_pfn = block_end_pfn,
1976 			block_start_pfn = block_end_pfn,
1977 			block_end_pfn += pageblock_nr_pages) {
1978 
1979 		/*
1980 		 * This can potentially iterate a massively long zone with
1981 		 * many pageblocks unsuitable, so periodically check if we
1982 		 * need to schedule.
1983 		 */
1984 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1985 			cond_resched();
1986 
1987 		page = pageblock_pfn_to_page(block_start_pfn,
1988 						block_end_pfn, cc->zone);
1989 		if (!page) {
1990 			unsigned long next_pfn;
1991 
1992 			next_pfn = skip_offline_sections(block_start_pfn);
1993 			if (next_pfn)
1994 				block_end_pfn = min(next_pfn, cc->free_pfn);
1995 			continue;
1996 		}
1997 
1998 		/*
1999 		 * If isolation recently failed, do not retry. Only check the
2000 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2001 		 * to be visited multiple times. Assume skip was checked
2002 		 * before making it "skip" so other compaction instances do
2003 		 * not scan the same block.
2004 		 */
2005 		if (pageblock_aligned(low_pfn) &&
2006 		    !fast_find_block && !isolation_suitable(cc, page))
2007 			continue;
2008 
2009 		/*
2010 		 * For async direct compaction, only scan the pageblocks of the
2011 		 * same migratetype without huge pages. Async direct compaction
2012 		 * is optimistic to see if the minimum amount of work satisfies
2013 		 * the allocation. The cached PFN is updated as it's possible
2014 		 * that all remaining blocks between source and target are
2015 		 * unsuitable and the compaction scanners fail to meet.
2016 		 */
2017 		if (!suitable_migration_source(cc, page)) {
2018 			update_cached_migrate(cc, block_end_pfn);
2019 			continue;
2020 		}
2021 
2022 		/* Perform the isolation */
2023 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2024 						isolate_mode))
2025 			return ISOLATE_ABORT;
2026 
2027 		/*
2028 		 * Either we isolated something and proceed with migration. Or
2029 		 * we failed and compact_zone should decide if we should
2030 		 * continue or not.
2031 		 */
2032 		break;
2033 	}
2034 
2035 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2036 }
2037 
2038 /*
2039  * order == -1 is expected when compacting via
2040  * /proc/sys/vm/compact_memory
2041  */
2042 static inline bool is_via_compact_memory(int order)
2043 {
2044 	return order == -1;
2045 }
2046 
2047 /*
2048  * Determine whether kswapd is (or recently was!) running on this node.
2049  *
2050  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2051  * zero it.
2052  */
2053 static bool kswapd_is_running(pg_data_t *pgdat)
2054 {
2055 	bool running;
2056 
2057 	pgdat_kswapd_lock(pgdat);
2058 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2059 	pgdat_kswapd_unlock(pgdat);
2060 
2061 	return running;
2062 }
2063 
2064 /*
2065  * A zone's fragmentation score is the external fragmentation wrt to the
2066  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2067  */
2068 static unsigned int fragmentation_score_zone(struct zone *zone)
2069 {
2070 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2071 }
2072 
2073 /*
2074  * A weighted zone's fragmentation score is the external fragmentation
2075  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2076  * returns a value in the range [0, 100].
2077  *
2078  * The scaling factor ensures that proactive compaction focuses on larger
2079  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2080  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2081  * and thus never exceeds the high threshold for proactive compaction.
2082  */
2083 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2084 {
2085 	unsigned long score;
2086 
2087 	score = zone->present_pages * fragmentation_score_zone(zone);
2088 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2089 }
2090 
2091 /*
2092  * The per-node proactive (background) compaction process is started by its
2093  * corresponding kcompactd thread when the node's fragmentation score
2094  * exceeds the high threshold. The compaction process remains active till
2095  * the node's score falls below the low threshold, or one of the back-off
2096  * conditions is met.
2097  */
2098 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2099 {
2100 	unsigned int score = 0;
2101 	int zoneid;
2102 
2103 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2104 		struct zone *zone;
2105 
2106 		zone = &pgdat->node_zones[zoneid];
2107 		if (!populated_zone(zone))
2108 			continue;
2109 		score += fragmentation_score_zone_weighted(zone);
2110 	}
2111 
2112 	return score;
2113 }
2114 
2115 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2116 {
2117 	unsigned int wmark_low;
2118 
2119 	/*
2120 	 * Cap the low watermark to avoid excessive compaction
2121 	 * activity in case a user sets the proactiveness tunable
2122 	 * close to 100 (maximum).
2123 	 */
2124 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2125 	return low ? wmark_low : min(wmark_low + 10, 100U);
2126 }
2127 
2128 static bool should_proactive_compact_node(pg_data_t *pgdat)
2129 {
2130 	int wmark_high;
2131 
2132 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2133 		return false;
2134 
2135 	wmark_high = fragmentation_score_wmark(pgdat, false);
2136 	return fragmentation_score_node(pgdat) > wmark_high;
2137 }
2138 
2139 static enum compact_result __compact_finished(struct compact_control *cc)
2140 {
2141 	unsigned int order;
2142 	const int migratetype = cc->migratetype;
2143 	int ret;
2144 
2145 	/* Compaction run completes if the migrate and free scanner meet */
2146 	if (compact_scanners_met(cc)) {
2147 		/* Let the next compaction start anew. */
2148 		reset_cached_positions(cc->zone);
2149 
2150 		/*
2151 		 * Mark that the PG_migrate_skip information should be cleared
2152 		 * by kswapd when it goes to sleep. kcompactd does not set the
2153 		 * flag itself as the decision to be clear should be directly
2154 		 * based on an allocation request.
2155 		 */
2156 		if (cc->direct_compaction)
2157 			cc->zone->compact_blockskip_flush = true;
2158 
2159 		if (cc->whole_zone)
2160 			return COMPACT_COMPLETE;
2161 		else
2162 			return COMPACT_PARTIAL_SKIPPED;
2163 	}
2164 
2165 	if (cc->proactive_compaction) {
2166 		int score, wmark_low;
2167 		pg_data_t *pgdat;
2168 
2169 		pgdat = cc->zone->zone_pgdat;
2170 		if (kswapd_is_running(pgdat))
2171 			return COMPACT_PARTIAL_SKIPPED;
2172 
2173 		score = fragmentation_score_zone(cc->zone);
2174 		wmark_low = fragmentation_score_wmark(pgdat, true);
2175 
2176 		if (score > wmark_low)
2177 			ret = COMPACT_CONTINUE;
2178 		else
2179 			ret = COMPACT_SUCCESS;
2180 
2181 		goto out;
2182 	}
2183 
2184 	if (is_via_compact_memory(cc->order))
2185 		return COMPACT_CONTINUE;
2186 
2187 	/*
2188 	 * Always finish scanning a pageblock to reduce the possibility of
2189 	 * fallbacks in the future. This is particularly important when
2190 	 * migration source is unmovable/reclaimable but it's not worth
2191 	 * special casing.
2192 	 */
2193 	if (!pageblock_aligned(cc->migrate_pfn))
2194 		return COMPACT_CONTINUE;
2195 
2196 	/* Direct compactor: Is a suitable page free? */
2197 	ret = COMPACT_NO_SUITABLE_PAGE;
2198 	for (order = cc->order; order <= MAX_ORDER; order++) {
2199 		struct free_area *area = &cc->zone->free_area[order];
2200 		bool can_steal;
2201 
2202 		/* Job done if page is free of the right migratetype */
2203 		if (!free_area_empty(area, migratetype))
2204 			return COMPACT_SUCCESS;
2205 
2206 #ifdef CONFIG_CMA
2207 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2208 		if (migratetype == MIGRATE_MOVABLE &&
2209 			!free_area_empty(area, MIGRATE_CMA))
2210 			return COMPACT_SUCCESS;
2211 #endif
2212 		/*
2213 		 * Job done if allocation would steal freepages from
2214 		 * other migratetype buddy lists.
2215 		 */
2216 		if (find_suitable_fallback(area, order, migratetype,
2217 						true, &can_steal) != -1)
2218 			/*
2219 			 * Movable pages are OK in any pageblock. If we are
2220 			 * stealing for a non-movable allocation, make sure
2221 			 * we finish compacting the current pageblock first
2222 			 * (which is assured by the above migrate_pfn align
2223 			 * check) so it is as free as possible and we won't
2224 			 * have to steal another one soon.
2225 			 */
2226 			return COMPACT_SUCCESS;
2227 	}
2228 
2229 out:
2230 	if (cc->contended || fatal_signal_pending(current))
2231 		ret = COMPACT_CONTENDED;
2232 
2233 	return ret;
2234 }
2235 
2236 static enum compact_result compact_finished(struct compact_control *cc)
2237 {
2238 	int ret;
2239 
2240 	ret = __compact_finished(cc);
2241 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2242 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2243 		ret = COMPACT_CONTINUE;
2244 
2245 	return ret;
2246 }
2247 
2248 static bool __compaction_suitable(struct zone *zone, int order,
2249 				  int highest_zoneidx,
2250 				  unsigned long wmark_target)
2251 {
2252 	unsigned long watermark;
2253 	/*
2254 	 * Watermarks for order-0 must be met for compaction to be able to
2255 	 * isolate free pages for migration targets. This means that the
2256 	 * watermark and alloc_flags have to match, or be more pessimistic than
2257 	 * the check in __isolate_free_page(). We don't use the direct
2258 	 * compactor's alloc_flags, as they are not relevant for freepage
2259 	 * isolation. We however do use the direct compactor's highest_zoneidx
2260 	 * to skip over zones where lowmem reserves would prevent allocation
2261 	 * even if compaction succeeds.
2262 	 * For costly orders, we require low watermark instead of min for
2263 	 * compaction to proceed to increase its chances.
2264 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2265 	 * suitable migration targets
2266 	 */
2267 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2268 				low_wmark_pages(zone) : min_wmark_pages(zone);
2269 	watermark += compact_gap(order);
2270 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2271 				   ALLOC_CMA, wmark_target);
2272 }
2273 
2274 /*
2275  * compaction_suitable: Is this suitable to run compaction on this zone now?
2276  */
2277 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2278 {
2279 	enum compact_result compact_result;
2280 	bool suitable;
2281 
2282 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2283 					 zone_page_state(zone, NR_FREE_PAGES));
2284 	/*
2285 	 * fragmentation index determines if allocation failures are due to
2286 	 * low memory or external fragmentation
2287 	 *
2288 	 * index of -1000 would imply allocations might succeed depending on
2289 	 * watermarks, but we already failed the high-order watermark check
2290 	 * index towards 0 implies failure is due to lack of memory
2291 	 * index towards 1000 implies failure is due to fragmentation
2292 	 *
2293 	 * Only compact if a failure would be due to fragmentation. Also
2294 	 * ignore fragindex for non-costly orders where the alternative to
2295 	 * a successful reclaim/compaction is OOM. Fragindex and the
2296 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2297 	 * excessive compaction for costly orders, but it should not be at the
2298 	 * expense of system stability.
2299 	 */
2300 	if (suitable) {
2301 		compact_result = COMPACT_CONTINUE;
2302 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2303 			int fragindex = fragmentation_index(zone, order);
2304 
2305 			if (fragindex >= 0 &&
2306 			    fragindex <= sysctl_extfrag_threshold) {
2307 				suitable = false;
2308 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2309 			}
2310 		}
2311 	} else {
2312 		compact_result = COMPACT_SKIPPED;
2313 	}
2314 
2315 	trace_mm_compaction_suitable(zone, order, compact_result);
2316 
2317 	return suitable;
2318 }
2319 
2320 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2321 		int alloc_flags)
2322 {
2323 	struct zone *zone;
2324 	struct zoneref *z;
2325 
2326 	/*
2327 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2328 	 * retrying the reclaim.
2329 	 */
2330 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2331 				ac->highest_zoneidx, ac->nodemask) {
2332 		unsigned long available;
2333 
2334 		/*
2335 		 * Do not consider all the reclaimable memory because we do not
2336 		 * want to trash just for a single high order allocation which
2337 		 * is even not guaranteed to appear even if __compaction_suitable
2338 		 * is happy about the watermark check.
2339 		 */
2340 		available = zone_reclaimable_pages(zone) / order;
2341 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2342 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2343 					  available))
2344 			return true;
2345 	}
2346 
2347 	return false;
2348 }
2349 
2350 static enum compact_result
2351 compact_zone(struct compact_control *cc, struct capture_control *capc)
2352 {
2353 	enum compact_result ret;
2354 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2355 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2356 	unsigned long last_migrated_pfn;
2357 	const bool sync = cc->mode != MIGRATE_ASYNC;
2358 	bool update_cached;
2359 	unsigned int nr_succeeded = 0;
2360 
2361 	/*
2362 	 * These counters track activities during zone compaction.  Initialize
2363 	 * them before compacting a new zone.
2364 	 */
2365 	cc->total_migrate_scanned = 0;
2366 	cc->total_free_scanned = 0;
2367 	cc->nr_migratepages = 0;
2368 	cc->nr_freepages = 0;
2369 	INIT_LIST_HEAD(&cc->freepages);
2370 	INIT_LIST_HEAD(&cc->migratepages);
2371 
2372 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2373 
2374 	if (!is_via_compact_memory(cc->order)) {
2375 		unsigned long watermark;
2376 
2377 		/* Allocation can already succeed, nothing to do */
2378 		watermark = wmark_pages(cc->zone,
2379 					cc->alloc_flags & ALLOC_WMARK_MASK);
2380 		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2381 				      cc->highest_zoneidx, cc->alloc_flags))
2382 			return COMPACT_SUCCESS;
2383 
2384 		/* Compaction is likely to fail */
2385 		if (!compaction_suitable(cc->zone, cc->order,
2386 					 cc->highest_zoneidx))
2387 			return COMPACT_SKIPPED;
2388 	}
2389 
2390 	/*
2391 	 * Clear pageblock skip if there were failures recently and compaction
2392 	 * is about to be retried after being deferred.
2393 	 */
2394 	if (compaction_restarting(cc->zone, cc->order))
2395 		__reset_isolation_suitable(cc->zone);
2396 
2397 	/*
2398 	 * Setup to move all movable pages to the end of the zone. Used cached
2399 	 * information on where the scanners should start (unless we explicitly
2400 	 * want to compact the whole zone), but check that it is initialised
2401 	 * by ensuring the values are within zone boundaries.
2402 	 */
2403 	cc->fast_start_pfn = 0;
2404 	if (cc->whole_zone) {
2405 		cc->migrate_pfn = start_pfn;
2406 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2407 	} else {
2408 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2409 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2410 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2411 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2412 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2413 		}
2414 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2415 			cc->migrate_pfn = start_pfn;
2416 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2417 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2418 		}
2419 
2420 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2421 			cc->whole_zone = true;
2422 	}
2423 
2424 	last_migrated_pfn = 0;
2425 
2426 	/*
2427 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2428 	 * the basis that some migrations will fail in ASYNC mode. However,
2429 	 * if the cached PFNs match and pageblocks are skipped due to having
2430 	 * no isolation candidates, then the sync state does not matter.
2431 	 * Until a pageblock with isolation candidates is found, keep the
2432 	 * cached PFNs in sync to avoid revisiting the same blocks.
2433 	 */
2434 	update_cached = !sync &&
2435 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2436 
2437 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2438 
2439 	/* lru_add_drain_all could be expensive with involving other CPUs */
2440 	lru_add_drain();
2441 
2442 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2443 		int err;
2444 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2445 
2446 		/*
2447 		 * Avoid multiple rescans of the same pageblock which can
2448 		 * happen if a page cannot be isolated (dirty/writeback in
2449 		 * async mode) or if the migrated pages are being allocated
2450 		 * before the pageblock is cleared.  The first rescan will
2451 		 * capture the entire pageblock for migration. If it fails,
2452 		 * it'll be marked skip and scanning will proceed as normal.
2453 		 */
2454 		cc->finish_pageblock = false;
2455 		if (pageblock_start_pfn(last_migrated_pfn) ==
2456 		    pageblock_start_pfn(iteration_start_pfn)) {
2457 			cc->finish_pageblock = true;
2458 		}
2459 
2460 rescan:
2461 		switch (isolate_migratepages(cc)) {
2462 		case ISOLATE_ABORT:
2463 			ret = COMPACT_CONTENDED;
2464 			putback_movable_pages(&cc->migratepages);
2465 			cc->nr_migratepages = 0;
2466 			goto out;
2467 		case ISOLATE_NONE:
2468 			if (update_cached) {
2469 				cc->zone->compact_cached_migrate_pfn[1] =
2470 					cc->zone->compact_cached_migrate_pfn[0];
2471 			}
2472 
2473 			/*
2474 			 * We haven't isolated and migrated anything, but
2475 			 * there might still be unflushed migrations from
2476 			 * previous cc->order aligned block.
2477 			 */
2478 			goto check_drain;
2479 		case ISOLATE_SUCCESS:
2480 			update_cached = false;
2481 			last_migrated_pfn = iteration_start_pfn;
2482 		}
2483 
2484 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2485 				compaction_free, (unsigned long)cc, cc->mode,
2486 				MR_COMPACTION, &nr_succeeded);
2487 
2488 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2489 
2490 		/* All pages were either migrated or will be released */
2491 		cc->nr_migratepages = 0;
2492 		if (err) {
2493 			putback_movable_pages(&cc->migratepages);
2494 			/*
2495 			 * migrate_pages() may return -ENOMEM when scanners meet
2496 			 * and we want compact_finished() to detect it
2497 			 */
2498 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2499 				ret = COMPACT_CONTENDED;
2500 				goto out;
2501 			}
2502 			/*
2503 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2504 			 * within the current order-aligned block and
2505 			 * fast_find_migrateblock may be used then scan the
2506 			 * remainder of the pageblock. This will mark the
2507 			 * pageblock "skip" to avoid rescanning in the near
2508 			 * future. This will isolate more pages than necessary
2509 			 * for the request but avoid loops due to
2510 			 * fast_find_migrateblock revisiting blocks that were
2511 			 * recently partially scanned.
2512 			 */
2513 			if (!pageblock_aligned(cc->migrate_pfn) &&
2514 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2515 			    (cc->mode < MIGRATE_SYNC)) {
2516 				cc->finish_pageblock = true;
2517 
2518 				/*
2519 				 * Draining pcplists does not help THP if
2520 				 * any page failed to migrate. Even after
2521 				 * drain, the pageblock will not be free.
2522 				 */
2523 				if (cc->order == COMPACTION_HPAGE_ORDER)
2524 					last_migrated_pfn = 0;
2525 
2526 				goto rescan;
2527 			}
2528 		}
2529 
2530 		/* Stop if a page has been captured */
2531 		if (capc && capc->page) {
2532 			ret = COMPACT_SUCCESS;
2533 			break;
2534 		}
2535 
2536 check_drain:
2537 		/*
2538 		 * Has the migration scanner moved away from the previous
2539 		 * cc->order aligned block where we migrated from? If yes,
2540 		 * flush the pages that were freed, so that they can merge and
2541 		 * compact_finished() can detect immediately if allocation
2542 		 * would succeed.
2543 		 */
2544 		if (cc->order > 0 && last_migrated_pfn) {
2545 			unsigned long current_block_start =
2546 				block_start_pfn(cc->migrate_pfn, cc->order);
2547 
2548 			if (last_migrated_pfn < current_block_start) {
2549 				lru_add_drain_cpu_zone(cc->zone);
2550 				/* No more flushing until we migrate again */
2551 				last_migrated_pfn = 0;
2552 			}
2553 		}
2554 	}
2555 
2556 out:
2557 	/*
2558 	 * Release free pages and update where the free scanner should restart,
2559 	 * so we don't leave any returned pages behind in the next attempt.
2560 	 */
2561 	if (cc->nr_freepages > 0) {
2562 		unsigned long free_pfn = release_freepages(&cc->freepages);
2563 
2564 		cc->nr_freepages = 0;
2565 		VM_BUG_ON(free_pfn == 0);
2566 		/* The cached pfn is always the first in a pageblock */
2567 		free_pfn = pageblock_start_pfn(free_pfn);
2568 		/*
2569 		 * Only go back, not forward. The cached pfn might have been
2570 		 * already reset to zone end in compact_finished()
2571 		 */
2572 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2573 			cc->zone->compact_cached_free_pfn = free_pfn;
2574 	}
2575 
2576 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2577 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2578 
2579 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2580 
2581 	VM_BUG_ON(!list_empty(&cc->freepages));
2582 	VM_BUG_ON(!list_empty(&cc->migratepages));
2583 
2584 	return ret;
2585 }
2586 
2587 static enum compact_result compact_zone_order(struct zone *zone, int order,
2588 		gfp_t gfp_mask, enum compact_priority prio,
2589 		unsigned int alloc_flags, int highest_zoneidx,
2590 		struct page **capture)
2591 {
2592 	enum compact_result ret;
2593 	struct compact_control cc = {
2594 		.order = order,
2595 		.search_order = order,
2596 		.gfp_mask = gfp_mask,
2597 		.zone = zone,
2598 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2599 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2600 		.alloc_flags = alloc_flags,
2601 		.highest_zoneidx = highest_zoneidx,
2602 		.direct_compaction = true,
2603 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2604 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2605 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2606 	};
2607 	struct capture_control capc = {
2608 		.cc = &cc,
2609 		.page = NULL,
2610 	};
2611 
2612 	/*
2613 	 * Make sure the structs are really initialized before we expose the
2614 	 * capture control, in case we are interrupted and the interrupt handler
2615 	 * frees a page.
2616 	 */
2617 	barrier();
2618 	WRITE_ONCE(current->capture_control, &capc);
2619 
2620 	ret = compact_zone(&cc, &capc);
2621 
2622 	/*
2623 	 * Make sure we hide capture control first before we read the captured
2624 	 * page pointer, otherwise an interrupt could free and capture a page
2625 	 * and we would leak it.
2626 	 */
2627 	WRITE_ONCE(current->capture_control, NULL);
2628 	*capture = READ_ONCE(capc.page);
2629 	/*
2630 	 * Technically, it is also possible that compaction is skipped but
2631 	 * the page is still captured out of luck(IRQ came and freed the page).
2632 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2633 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2634 	 */
2635 	if (*capture)
2636 		ret = COMPACT_SUCCESS;
2637 
2638 	return ret;
2639 }
2640 
2641 /**
2642  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2643  * @gfp_mask: The GFP mask of the current allocation
2644  * @order: The order of the current allocation
2645  * @alloc_flags: The allocation flags of the current allocation
2646  * @ac: The context of current allocation
2647  * @prio: Determines how hard direct compaction should try to succeed
2648  * @capture: Pointer to free page created by compaction will be stored here
2649  *
2650  * This is the main entry point for direct page compaction.
2651  */
2652 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2653 		unsigned int alloc_flags, const struct alloc_context *ac,
2654 		enum compact_priority prio, struct page **capture)
2655 {
2656 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2657 	struct zoneref *z;
2658 	struct zone *zone;
2659 	enum compact_result rc = COMPACT_SKIPPED;
2660 
2661 	/*
2662 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2663 	 * tricky context because the migration might require IO
2664 	 */
2665 	if (!may_perform_io)
2666 		return COMPACT_SKIPPED;
2667 
2668 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2669 
2670 	/* Compact each zone in the list */
2671 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2672 					ac->highest_zoneidx, ac->nodemask) {
2673 		enum compact_result status;
2674 
2675 		if (prio > MIN_COMPACT_PRIORITY
2676 					&& compaction_deferred(zone, order)) {
2677 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2678 			continue;
2679 		}
2680 
2681 		status = compact_zone_order(zone, order, gfp_mask, prio,
2682 				alloc_flags, ac->highest_zoneidx, capture);
2683 		rc = max(status, rc);
2684 
2685 		/* The allocation should succeed, stop compacting */
2686 		if (status == COMPACT_SUCCESS) {
2687 			/*
2688 			 * We think the allocation will succeed in this zone,
2689 			 * but it is not certain, hence the false. The caller
2690 			 * will repeat this with true if allocation indeed
2691 			 * succeeds in this zone.
2692 			 */
2693 			compaction_defer_reset(zone, order, false);
2694 
2695 			break;
2696 		}
2697 
2698 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2699 					status == COMPACT_PARTIAL_SKIPPED))
2700 			/*
2701 			 * We think that allocation won't succeed in this zone
2702 			 * so we defer compaction there. If it ends up
2703 			 * succeeding after all, it will be reset.
2704 			 */
2705 			defer_compaction(zone, order);
2706 
2707 		/*
2708 		 * We might have stopped compacting due to need_resched() in
2709 		 * async compaction, or due to a fatal signal detected. In that
2710 		 * case do not try further zones
2711 		 */
2712 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2713 					|| fatal_signal_pending(current))
2714 			break;
2715 	}
2716 
2717 	return rc;
2718 }
2719 
2720 /*
2721  * Compact all zones within a node till each zone's fragmentation score
2722  * reaches within proactive compaction thresholds (as determined by the
2723  * proactiveness tunable).
2724  *
2725  * It is possible that the function returns before reaching score targets
2726  * due to various back-off conditions, such as, contention on per-node or
2727  * per-zone locks.
2728  */
2729 static void proactive_compact_node(pg_data_t *pgdat)
2730 {
2731 	int zoneid;
2732 	struct zone *zone;
2733 	struct compact_control cc = {
2734 		.order = -1,
2735 		.mode = MIGRATE_SYNC_LIGHT,
2736 		.ignore_skip_hint = true,
2737 		.whole_zone = true,
2738 		.gfp_mask = GFP_KERNEL,
2739 		.proactive_compaction = true,
2740 	};
2741 
2742 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2743 		zone = &pgdat->node_zones[zoneid];
2744 		if (!populated_zone(zone))
2745 			continue;
2746 
2747 		cc.zone = zone;
2748 
2749 		compact_zone(&cc, NULL);
2750 
2751 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2752 				     cc.total_migrate_scanned);
2753 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2754 				     cc.total_free_scanned);
2755 	}
2756 }
2757 
2758 /* Compact all zones within a node */
2759 static void compact_node(int nid)
2760 {
2761 	pg_data_t *pgdat = NODE_DATA(nid);
2762 	int zoneid;
2763 	struct zone *zone;
2764 	struct compact_control cc = {
2765 		.order = -1,
2766 		.mode = MIGRATE_SYNC,
2767 		.ignore_skip_hint = true,
2768 		.whole_zone = true,
2769 		.gfp_mask = GFP_KERNEL,
2770 	};
2771 
2772 
2773 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2774 
2775 		zone = &pgdat->node_zones[zoneid];
2776 		if (!populated_zone(zone))
2777 			continue;
2778 
2779 		cc.zone = zone;
2780 
2781 		compact_zone(&cc, NULL);
2782 	}
2783 }
2784 
2785 /* Compact all nodes in the system */
2786 static void compact_nodes(void)
2787 {
2788 	int nid;
2789 
2790 	/* Flush pending updates to the LRU lists */
2791 	lru_add_drain_all();
2792 
2793 	for_each_online_node(nid)
2794 		compact_node(nid);
2795 }
2796 
2797 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2798 		void *buffer, size_t *length, loff_t *ppos)
2799 {
2800 	int rc, nid;
2801 
2802 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2803 	if (rc)
2804 		return rc;
2805 
2806 	if (write && sysctl_compaction_proactiveness) {
2807 		for_each_online_node(nid) {
2808 			pg_data_t *pgdat = NODE_DATA(nid);
2809 
2810 			if (pgdat->proactive_compact_trigger)
2811 				continue;
2812 
2813 			pgdat->proactive_compact_trigger = true;
2814 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2815 							     pgdat->nr_zones - 1);
2816 			wake_up_interruptible(&pgdat->kcompactd_wait);
2817 		}
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 /*
2824  * This is the entry point for compacting all nodes via
2825  * /proc/sys/vm/compact_memory
2826  */
2827 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2828 			void *buffer, size_t *length, loff_t *ppos)
2829 {
2830 	int ret;
2831 
2832 	ret = proc_dointvec(table, write, buffer, length, ppos);
2833 	if (ret)
2834 		return ret;
2835 
2836 	if (sysctl_compact_memory != 1)
2837 		return -EINVAL;
2838 
2839 	if (write)
2840 		compact_nodes();
2841 
2842 	return 0;
2843 }
2844 
2845 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2846 static ssize_t compact_store(struct device *dev,
2847 			     struct device_attribute *attr,
2848 			     const char *buf, size_t count)
2849 {
2850 	int nid = dev->id;
2851 
2852 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2853 		/* Flush pending updates to the LRU lists */
2854 		lru_add_drain_all();
2855 
2856 		compact_node(nid);
2857 	}
2858 
2859 	return count;
2860 }
2861 static DEVICE_ATTR_WO(compact);
2862 
2863 int compaction_register_node(struct node *node)
2864 {
2865 	return device_create_file(&node->dev, &dev_attr_compact);
2866 }
2867 
2868 void compaction_unregister_node(struct node *node)
2869 {
2870 	return device_remove_file(&node->dev, &dev_attr_compact);
2871 }
2872 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2873 
2874 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2875 {
2876 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2877 		pgdat->proactive_compact_trigger;
2878 }
2879 
2880 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2881 {
2882 	int zoneid;
2883 	struct zone *zone;
2884 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2885 
2886 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2887 		zone = &pgdat->node_zones[zoneid];
2888 
2889 		if (!populated_zone(zone))
2890 			continue;
2891 
2892 		/* Allocation can already succeed, check other zones */
2893 		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2894 				      min_wmark_pages(zone),
2895 				      highest_zoneidx, 0))
2896 			continue;
2897 
2898 		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2899 					highest_zoneidx))
2900 			return true;
2901 	}
2902 
2903 	return false;
2904 }
2905 
2906 static void kcompactd_do_work(pg_data_t *pgdat)
2907 {
2908 	/*
2909 	 * With no special task, compact all zones so that a page of requested
2910 	 * order is allocatable.
2911 	 */
2912 	int zoneid;
2913 	struct zone *zone;
2914 	struct compact_control cc = {
2915 		.order = pgdat->kcompactd_max_order,
2916 		.search_order = pgdat->kcompactd_max_order,
2917 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2918 		.mode = MIGRATE_SYNC_LIGHT,
2919 		.ignore_skip_hint = false,
2920 		.gfp_mask = GFP_KERNEL,
2921 	};
2922 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2923 							cc.highest_zoneidx);
2924 	count_compact_event(KCOMPACTD_WAKE);
2925 
2926 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2927 		int status;
2928 
2929 		zone = &pgdat->node_zones[zoneid];
2930 		if (!populated_zone(zone))
2931 			continue;
2932 
2933 		if (compaction_deferred(zone, cc.order))
2934 			continue;
2935 
2936 		/* Allocation can already succeed, nothing to do */
2937 		if (zone_watermark_ok(zone, cc.order,
2938 				      min_wmark_pages(zone), zoneid, 0))
2939 			continue;
2940 
2941 		if (!compaction_suitable(zone, cc.order, zoneid))
2942 			continue;
2943 
2944 		if (kthread_should_stop())
2945 			return;
2946 
2947 		cc.zone = zone;
2948 		status = compact_zone(&cc, NULL);
2949 
2950 		if (status == COMPACT_SUCCESS) {
2951 			compaction_defer_reset(zone, cc.order, false);
2952 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2953 			/*
2954 			 * Buddy pages may become stranded on pcps that could
2955 			 * otherwise coalesce on the zone's free area for
2956 			 * order >= cc.order.  This is ratelimited by the
2957 			 * upcoming deferral.
2958 			 */
2959 			drain_all_pages(zone);
2960 
2961 			/*
2962 			 * We use sync migration mode here, so we defer like
2963 			 * sync direct compaction does.
2964 			 */
2965 			defer_compaction(zone, cc.order);
2966 		}
2967 
2968 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2969 				     cc.total_migrate_scanned);
2970 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2971 				     cc.total_free_scanned);
2972 	}
2973 
2974 	/*
2975 	 * Regardless of success, we are done until woken up next. But remember
2976 	 * the requested order/highest_zoneidx in case it was higher/tighter
2977 	 * than our current ones
2978 	 */
2979 	if (pgdat->kcompactd_max_order <= cc.order)
2980 		pgdat->kcompactd_max_order = 0;
2981 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2982 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2983 }
2984 
2985 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2986 {
2987 	if (!order)
2988 		return;
2989 
2990 	if (pgdat->kcompactd_max_order < order)
2991 		pgdat->kcompactd_max_order = order;
2992 
2993 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2994 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2995 
2996 	/*
2997 	 * Pairs with implicit barrier in wait_event_freezable()
2998 	 * such that wakeups are not missed.
2999 	 */
3000 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3001 		return;
3002 
3003 	if (!kcompactd_node_suitable(pgdat))
3004 		return;
3005 
3006 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3007 							highest_zoneidx);
3008 	wake_up_interruptible(&pgdat->kcompactd_wait);
3009 }
3010 
3011 /*
3012  * The background compaction daemon, started as a kernel thread
3013  * from the init process.
3014  */
3015 static int kcompactd(void *p)
3016 {
3017 	pg_data_t *pgdat = (pg_data_t *)p;
3018 	struct task_struct *tsk = current;
3019 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3020 	long timeout = default_timeout;
3021 
3022 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3023 
3024 	if (!cpumask_empty(cpumask))
3025 		set_cpus_allowed_ptr(tsk, cpumask);
3026 
3027 	set_freezable();
3028 
3029 	pgdat->kcompactd_max_order = 0;
3030 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3031 
3032 	while (!kthread_should_stop()) {
3033 		unsigned long pflags;
3034 
3035 		/*
3036 		 * Avoid the unnecessary wakeup for proactive compaction
3037 		 * when it is disabled.
3038 		 */
3039 		if (!sysctl_compaction_proactiveness)
3040 			timeout = MAX_SCHEDULE_TIMEOUT;
3041 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3042 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3043 			kcompactd_work_requested(pgdat), timeout) &&
3044 			!pgdat->proactive_compact_trigger) {
3045 
3046 			psi_memstall_enter(&pflags);
3047 			kcompactd_do_work(pgdat);
3048 			psi_memstall_leave(&pflags);
3049 			/*
3050 			 * Reset the timeout value. The defer timeout from
3051 			 * proactive compaction is lost here but that is fine
3052 			 * as the condition of the zone changing substantionally
3053 			 * then carrying on with the previous defer interval is
3054 			 * not useful.
3055 			 */
3056 			timeout = default_timeout;
3057 			continue;
3058 		}
3059 
3060 		/*
3061 		 * Start the proactive work with default timeout. Based
3062 		 * on the fragmentation score, this timeout is updated.
3063 		 */
3064 		timeout = default_timeout;
3065 		if (should_proactive_compact_node(pgdat)) {
3066 			unsigned int prev_score, score;
3067 
3068 			prev_score = fragmentation_score_node(pgdat);
3069 			proactive_compact_node(pgdat);
3070 			score = fragmentation_score_node(pgdat);
3071 			/*
3072 			 * Defer proactive compaction if the fragmentation
3073 			 * score did not go down i.e. no progress made.
3074 			 */
3075 			if (unlikely(score >= prev_score))
3076 				timeout =
3077 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3078 		}
3079 		if (unlikely(pgdat->proactive_compact_trigger))
3080 			pgdat->proactive_compact_trigger = false;
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * This kcompactd start function will be called by init and node-hot-add.
3088  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3089  */
3090 void __meminit kcompactd_run(int nid)
3091 {
3092 	pg_data_t *pgdat = NODE_DATA(nid);
3093 
3094 	if (pgdat->kcompactd)
3095 		return;
3096 
3097 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3098 	if (IS_ERR(pgdat->kcompactd)) {
3099 		pr_err("Failed to start kcompactd on node %d\n", nid);
3100 		pgdat->kcompactd = NULL;
3101 	}
3102 }
3103 
3104 /*
3105  * Called by memory hotplug when all memory in a node is offlined. Caller must
3106  * be holding mem_hotplug_begin/done().
3107  */
3108 void __meminit kcompactd_stop(int nid)
3109 {
3110 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3111 
3112 	if (kcompactd) {
3113 		kthread_stop(kcompactd);
3114 		NODE_DATA(nid)->kcompactd = NULL;
3115 	}
3116 }
3117 
3118 /*
3119  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3120  * not required for correctness. So if the last cpu in a node goes
3121  * away, we get changed to run anywhere: as the first one comes back,
3122  * restore their cpu bindings.
3123  */
3124 static int kcompactd_cpu_online(unsigned int cpu)
3125 {
3126 	int nid;
3127 
3128 	for_each_node_state(nid, N_MEMORY) {
3129 		pg_data_t *pgdat = NODE_DATA(nid);
3130 		const struct cpumask *mask;
3131 
3132 		mask = cpumask_of_node(pgdat->node_id);
3133 
3134 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3135 			/* One of our CPUs online: restore mask */
3136 			if (pgdat->kcompactd)
3137 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3138 	}
3139 	return 0;
3140 }
3141 
3142 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3143 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3144 {
3145 	int ret, old;
3146 
3147 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3148 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3149 
3150 	old = *(int *)table->data;
3151 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3152 	if (ret)
3153 		return ret;
3154 	if (old != *(int *)table->data)
3155 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3156 			     table->procname, current->comm,
3157 			     task_pid_nr(current));
3158 	return ret;
3159 }
3160 
3161 static struct ctl_table vm_compaction[] = {
3162 	{
3163 		.procname	= "compact_memory",
3164 		.data		= &sysctl_compact_memory,
3165 		.maxlen		= sizeof(int),
3166 		.mode		= 0200,
3167 		.proc_handler	= sysctl_compaction_handler,
3168 	},
3169 	{
3170 		.procname	= "compaction_proactiveness",
3171 		.data		= &sysctl_compaction_proactiveness,
3172 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3173 		.mode		= 0644,
3174 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3175 		.extra1		= SYSCTL_ZERO,
3176 		.extra2		= SYSCTL_ONE_HUNDRED,
3177 	},
3178 	{
3179 		.procname	= "extfrag_threshold",
3180 		.data		= &sysctl_extfrag_threshold,
3181 		.maxlen		= sizeof(int),
3182 		.mode		= 0644,
3183 		.proc_handler	= proc_dointvec_minmax,
3184 		.extra1		= SYSCTL_ZERO,
3185 		.extra2		= SYSCTL_ONE_THOUSAND,
3186 	},
3187 	{
3188 		.procname	= "compact_unevictable_allowed",
3189 		.data		= &sysctl_compact_unevictable_allowed,
3190 		.maxlen		= sizeof(int),
3191 		.mode		= 0644,
3192 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3193 		.extra1		= SYSCTL_ZERO,
3194 		.extra2		= SYSCTL_ONE,
3195 	},
3196 	{ }
3197 };
3198 
3199 static int __init kcompactd_init(void)
3200 {
3201 	int nid;
3202 	int ret;
3203 
3204 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3205 					"mm/compaction:online",
3206 					kcompactd_cpu_online, NULL);
3207 	if (ret < 0) {
3208 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3209 		return ret;
3210 	}
3211 
3212 	for_each_node_state(nid, N_MEMORY)
3213 		kcompactd_run(nid);
3214 	register_sysctl_init("vm", vm_compaction);
3215 	return 0;
3216 }
3217 subsys_initcall(kcompactd_init)
3218 
3219 #endif /* CONFIG_COMPACTION */
3220