xref: /openbmc/linux/mm/compaction.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered >= defer_limit) {
184 		zone->compact_considered = defer_limit;
185 		return false;
186 	}
187 
188 	trace_mm_compaction_deferred(zone, order);
189 
190 	return true;
191 }
192 
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199 		bool alloc_success)
200 {
201 	if (alloc_success) {
202 		zone->compact_considered = 0;
203 		zone->compact_defer_shift = 0;
204 	}
205 	if (order >= zone->compact_order_failed)
206 		zone->compact_order_failed = order + 1;
207 
208 	trace_mm_compaction_defer_reset(zone, order);
209 }
210 
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214 	if (order < zone->compact_order_failed)
215 		return false;
216 
217 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220 
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 					struct page *page)
224 {
225 	if (cc->ignore_skip_hint)
226 		return true;
227 
228 	return !get_pageblock_skip(page);
229 }
230 
231 static void reset_cached_positions(struct zone *zone)
232 {
233 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 	zone->compact_cached_free_pfn =
236 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238 
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 	if (!PageCompound(page))
247 		return false;
248 
249 	page = compound_head(page);
250 
251 	if (compound_order(page) >= pageblock_order)
252 		return true;
253 
254 	return false;
255 }
256 
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 							bool check_target)
260 {
261 	struct page *page = pfn_to_online_page(pfn);
262 	struct page *block_page;
263 	struct page *end_page;
264 	unsigned long block_pfn;
265 
266 	if (!page)
267 		return false;
268 	if (zone != page_zone(page))
269 		return false;
270 	if (pageblock_skip_persistent(page))
271 		return false;
272 
273 	/*
274 	 * If skip is already cleared do no further checking once the
275 	 * restart points have been set.
276 	 */
277 	if (check_source && check_target && !get_pageblock_skip(page))
278 		return true;
279 
280 	/*
281 	 * If clearing skip for the target scanner, do not select a
282 	 * non-movable pageblock as the starting point.
283 	 */
284 	if (!check_source && check_target &&
285 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 		return false;
287 
288 	/* Ensure the start of the pageblock or zone is online and valid */
289 	block_pfn = pageblock_start_pfn(pfn);
290 	block_pfn = max(block_pfn, zone->zone_start_pfn);
291 	block_page = pfn_to_online_page(block_pfn);
292 	if (block_page) {
293 		page = block_page;
294 		pfn = block_pfn;
295 	}
296 
297 	/* Ensure the end of the pageblock or zone is online and valid */
298 	block_pfn = pageblock_end_pfn(pfn) - 1;
299 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 	end_page = pfn_to_online_page(block_pfn);
301 	if (!end_page)
302 		return false;
303 
304 	/*
305 	 * Only clear the hint if a sample indicates there is either a
306 	 * free page or an LRU page in the block. One or other condition
307 	 * is necessary for the block to be a migration source/target.
308 	 */
309 	do {
310 		if (pfn_valid_within(pfn)) {
311 			if (check_source && PageLRU(page)) {
312 				clear_pageblock_skip(page);
313 				return true;
314 			}
315 
316 			if (check_target && PageBuddy(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 		}
321 
322 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 	} while (page <= end_page);
325 
326 	return false;
327 }
328 
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 	unsigned long migrate_pfn = zone->zone_start_pfn;
337 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 	unsigned long reset_migrate = free_pfn;
339 	unsigned long reset_free = migrate_pfn;
340 	bool source_set = false;
341 	bool free_set = false;
342 
343 	if (!zone->compact_blockskip_flush)
344 		return;
345 
346 	zone->compact_blockskip_flush = false;
347 
348 	/*
349 	 * Walk the zone and update pageblock skip information. Source looks
350 	 * for PageLRU while target looks for PageBuddy. When the scanner
351 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 	 * is suitable as both source and target.
353 	 */
354 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 					free_pfn -= pageblock_nr_pages) {
356 		cond_resched();
357 
358 		/* Update the migrate PFN */
359 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 		    migrate_pfn < reset_migrate) {
361 			source_set = true;
362 			reset_migrate = migrate_pfn;
363 			zone->compact_init_migrate_pfn = reset_migrate;
364 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 		}
367 
368 		/* Update the free PFN */
369 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 		    free_pfn > reset_free) {
371 			free_set = true;
372 			reset_free = free_pfn;
373 			zone->compact_init_free_pfn = reset_free;
374 			zone->compact_cached_free_pfn = reset_free;
375 		}
376 	}
377 
378 	/* Leave no distance if no suitable block was reset */
379 	if (reset_migrate >= reset_free) {
380 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 		zone->compact_cached_free_pfn = free_pfn;
383 	}
384 }
385 
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 	int zoneid;
389 
390 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 		struct zone *zone = &pgdat->node_zones[zoneid];
392 		if (!populated_zone(zone))
393 			continue;
394 
395 		/* Only flush if a full compaction finished recently */
396 		if (zone->compact_blockskip_flush)
397 			__reset_isolation_suitable(zone);
398 	}
399 }
400 
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 							unsigned long pfn)
407 {
408 	bool skip;
409 
410 	/* Do no update if skip hint is being ignored */
411 	if (cc->ignore_skip_hint)
412 		return false;
413 
414 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 		return false;
416 
417 	skip = get_pageblock_skip(page);
418 	if (!skip && !cc->no_set_skip_hint)
419 		set_pageblock_skip(page);
420 
421 	return skip;
422 }
423 
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 	struct zone *zone = cc->zone;
427 
428 	pfn = pageblock_end_pfn(pfn);
429 
430 	/* Set for isolation rather than compaction */
431 	if (cc->no_set_skip_hint)
432 		return;
433 
434 	if (pfn > zone->compact_cached_migrate_pfn[0])
435 		zone->compact_cached_migrate_pfn[0] = pfn;
436 	if (cc->mode != MIGRATE_ASYNC &&
437 	    pfn > zone->compact_cached_migrate_pfn[1])
438 		zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440 
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446 			struct page *page, unsigned long pfn)
447 {
448 	struct zone *zone = cc->zone;
449 
450 	if (cc->no_set_skip_hint)
451 		return;
452 
453 	if (!page)
454 		return;
455 
456 	set_pageblock_skip(page);
457 
458 	/* Update where async and sync compaction should restart */
459 	if (pfn < zone->compact_cached_free_pfn)
460 		zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 					struct page *page)
465 {
466 	return true;
467 }
468 
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 	return false;
472 }
473 
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 			struct page *page, unsigned long pfn)
476 {
477 }
478 
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482 
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 							unsigned long pfn)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489 
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 						struct compact_control *cc)
501 	__acquires(lock)
502 {
503 	/* Track if the lock is contended in async mode */
504 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 		if (spin_trylock_irqsave(lock, *flags))
506 			return true;
507 
508 		cc->contended = true;
509 	}
510 
511 	spin_lock_irqsave(lock, *flags);
512 	return true;
513 }
514 
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *		async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *		scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 		unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 	if (*locked) {
534 		spin_unlock_irqrestore(lock, flags);
535 		*locked = false;
536 	}
537 
538 	if (fatal_signal_pending(current)) {
539 		cc->contended = true;
540 		return true;
541 	}
542 
543 	cond_resched();
544 
545 	return false;
546 }
547 
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 				unsigned long *start_pfn,
555 				unsigned long end_pfn,
556 				struct list_head *freelist,
557 				unsigned int stride,
558 				bool strict)
559 {
560 	int nr_scanned = 0, total_isolated = 0;
561 	struct page *cursor;
562 	unsigned long flags = 0;
563 	bool locked = false;
564 	unsigned long blockpfn = *start_pfn;
565 	unsigned int order;
566 
567 	/* Strict mode is for isolation, speed is secondary */
568 	if (strict)
569 		stride = 1;
570 
571 	cursor = pfn_to_page(blockpfn);
572 
573 	/* Isolate free pages. */
574 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 		int isolated;
576 		struct page *page = cursor;
577 
578 		/*
579 		 * Periodically drop the lock (if held) regardless of its
580 		 * contention, to give chance to IRQs. Abort if fatal signal
581 		 * pending or async compaction detects need_resched()
582 		 */
583 		if (!(blockpfn % SWAP_CLUSTER_MAX)
584 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585 								&locked, cc))
586 			break;
587 
588 		nr_scanned++;
589 		if (!pfn_valid_within(blockpfn))
590 			goto isolate_fail;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if (likely(order < MAX_ORDER)) {
602 				blockpfn += (1UL << order) - 1;
603 				cursor += (1UL << order) - 1;
604 			}
605 			goto isolate_fail;
606 		}
607 
608 		if (!PageBuddy(page))
609 			goto isolate_fail;
610 
611 		/*
612 		 * If we already hold the lock, we can skip some rechecking.
613 		 * Note that if we hold the lock now, checked_pageblock was
614 		 * already set in some previous iteration (or strict is true),
615 		 * so it is correct to skip the suitable migration target
616 		 * recheck as well.
617 		 */
618 		if (!locked) {
619 			locked = compact_lock_irqsave(&cc->zone->lock,
620 								&flags, cc);
621 
622 			/* Recheck this is a buddy page under lock */
623 			if (!PageBuddy(page))
624 				goto isolate_fail;
625 		}
626 
627 		/* Found a free page, will break it into order-0 pages */
628 		order = buddy_order(page);
629 		isolated = __isolate_free_page(page, order);
630 		if (!isolated)
631 			break;
632 		set_page_private(page, order);
633 
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 	unsigned long active, inactive, isolated;
770 
771 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 			node_page_state(pgdat, NR_INACTIVE_ANON);
773 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 			node_page_state(pgdat, NR_ACTIVE_ANON);
775 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 			node_page_state(pgdat, NR_ISOLATED_ANON);
777 
778 	return isolated > (inactive + active) / 2;
779 }
780 
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *				  a single pageblock
784  * @cc:		Compaction control structure.
785  * @low_pfn:	The first PFN to isolate
786  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	bool locked = false;
808 	struct page *page = NULL, *valid_page = NULL;
809 	unsigned long start_pfn = low_pfn;
810 	bool skip_on_failure = false;
811 	unsigned long next_skip_pfn = 0;
812 	bool skip_updated = false;
813 
814 	/*
815 	 * Ensure that there are not too many pages isolated from the LRU
816 	 * list by either parallel reclaimers or compaction. If there are,
817 	 * delay for some time until fewer pages are isolated
818 	 */
819 	while (unlikely(too_many_isolated(pgdat))) {
820 		/* stop isolation if there are still pages not migrated */
821 		if (cc->nr_migratepages)
822 			return 0;
823 
824 		/* async migration should just abort */
825 		if (cc->mode == MIGRATE_ASYNC)
826 			return 0;
827 
828 		congestion_wait(BLK_RW_ASYNC, HZ/10);
829 
830 		if (fatal_signal_pending(current))
831 			return 0;
832 	}
833 
834 	cond_resched();
835 
836 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 		skip_on_failure = true;
838 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 	}
840 
841 	/* Time to isolate some pages for migration */
842 	for (; low_pfn < end_pfn; low_pfn++) {
843 
844 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 			/*
846 			 * We have isolated all migration candidates in the
847 			 * previous order-aligned block, and did not skip it due
848 			 * to failure. We should migrate the pages now and
849 			 * hopefully succeed compaction.
850 			 */
851 			if (nr_isolated)
852 				break;
853 
854 			/*
855 			 * We failed to isolate in the previous order-aligned
856 			 * block. Set the new boundary to the end of the
857 			 * current block. Note we can't simply increase
858 			 * next_skip_pfn by 1 << order, as low_pfn might have
859 			 * been incremented by a higher number due to skipping
860 			 * a compound or a high-order buddy page in the
861 			 * previous loop iteration.
862 			 */
863 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 		}
865 
866 		/*
867 		 * Periodically drop the lock (if held) regardless of its
868 		 * contention, to give chance to IRQs. Abort completely if
869 		 * a fatal signal is pending.
870 		 */
871 		if (!(low_pfn % SWAP_CLUSTER_MAX)
872 		    && compact_unlock_should_abort(&pgdat->lru_lock,
873 					    flags, &locked, cc)) {
874 			low_pfn = 0;
875 			goto fatal_pending;
876 		}
877 
878 		if (!pfn_valid_within(low_pfn))
879 			goto isolate_fail;
880 		nr_scanned++;
881 
882 		page = pfn_to_page(low_pfn);
883 
884 		/*
885 		 * Check if the pageblock has already been marked skipped.
886 		 * Only the aligned PFN is checked as the caller isolates
887 		 * COMPACT_CLUSTER_MAX at a time so the second call must
888 		 * not falsely conclude that the block should be skipped.
889 		 */
890 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
891 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
892 				low_pfn = end_pfn;
893 				goto isolate_abort;
894 			}
895 			valid_page = page;
896 		}
897 
898 		/*
899 		 * Skip if free. We read page order here without zone lock
900 		 * which is generally unsafe, but the race window is small and
901 		 * the worst thing that can happen is that we skip some
902 		 * potential isolation targets.
903 		 */
904 		if (PageBuddy(page)) {
905 			unsigned long freepage_order = buddy_order_unsafe(page);
906 
907 			/*
908 			 * Without lock, we cannot be sure that what we got is
909 			 * a valid page order. Consider only values in the
910 			 * valid order range to prevent low_pfn overflow.
911 			 */
912 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
913 				low_pfn += (1UL << freepage_order) - 1;
914 			continue;
915 		}
916 
917 		/*
918 		 * Regardless of being on LRU, compound pages such as THP and
919 		 * hugetlbfs are not to be compacted unless we are attempting
920 		 * an allocation much larger than the huge page size (eg CMA).
921 		 * We can potentially save a lot of iterations if we skip them
922 		 * at once. The check is racy, but we can consider only valid
923 		 * values and the only danger is skipping too much.
924 		 */
925 		if (PageCompound(page) && !cc->alloc_contig) {
926 			const unsigned int order = compound_order(page);
927 
928 			if (likely(order < MAX_ORDER))
929 				low_pfn += (1UL << order) - 1;
930 			goto isolate_fail;
931 		}
932 
933 		/*
934 		 * Check may be lockless but that's ok as we recheck later.
935 		 * It's possible to migrate LRU and non-lru movable pages.
936 		 * Skip any other type of page
937 		 */
938 		if (!PageLRU(page)) {
939 			/*
940 			 * __PageMovable can return false positive so we need
941 			 * to verify it under page_lock.
942 			 */
943 			if (unlikely(__PageMovable(page)) &&
944 					!PageIsolated(page)) {
945 				if (locked) {
946 					spin_unlock_irqrestore(&pgdat->lru_lock,
947 									flags);
948 					locked = false;
949 				}
950 
951 				if (!isolate_movable_page(page, isolate_mode))
952 					goto isolate_success;
953 			}
954 
955 			goto isolate_fail;
956 		}
957 
958 		/*
959 		 * Migration will fail if an anonymous page is pinned in memory,
960 		 * so avoid taking lru_lock and isolating it unnecessarily in an
961 		 * admittedly racy check.
962 		 */
963 		if (!page_mapping(page) &&
964 		    page_count(page) > page_mapcount(page))
965 			goto isolate_fail;
966 
967 		/*
968 		 * Only allow to migrate anonymous pages in GFP_NOFS context
969 		 * because those do not depend on fs locks.
970 		 */
971 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
972 			goto isolate_fail;
973 
974 		/* If we already hold the lock, we can skip some rechecking */
975 		if (!locked) {
976 			locked = compact_lock_irqsave(&pgdat->lru_lock,
977 								&flags, cc);
978 
979 			/* Try get exclusive access under lock */
980 			if (!skip_updated) {
981 				skip_updated = true;
982 				if (test_and_set_skip(cc, page, low_pfn))
983 					goto isolate_abort;
984 			}
985 
986 			/* Recheck PageLRU and PageCompound under lock */
987 			if (!PageLRU(page))
988 				goto isolate_fail;
989 
990 			/*
991 			 * Page become compound since the non-locked check,
992 			 * and it's on LRU. It can only be a THP so the order
993 			 * is safe to read and it's 0 for tail pages.
994 			 */
995 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
996 				low_pfn += compound_nr(page) - 1;
997 				goto isolate_fail;
998 			}
999 		}
1000 
1001 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1002 
1003 		/* Try isolate the page */
1004 		if (__isolate_lru_page(page, isolate_mode) != 0)
1005 			goto isolate_fail;
1006 
1007 		/* The whole page is taken off the LRU; skip the tail pages. */
1008 		if (PageCompound(page))
1009 			low_pfn += compound_nr(page) - 1;
1010 
1011 		/* Successfully isolated */
1012 		del_page_from_lru_list(page, lruvec, page_lru(page));
1013 		mod_node_page_state(page_pgdat(page),
1014 				NR_ISOLATED_ANON + page_is_file_lru(page),
1015 				thp_nr_pages(page));
1016 
1017 isolate_success:
1018 		list_add(&page->lru, &cc->migratepages);
1019 		cc->nr_migratepages += compound_nr(page);
1020 		nr_isolated += compound_nr(page);
1021 
1022 		/*
1023 		 * Avoid isolating too much unless this block is being
1024 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1025 		 * or a lock is contended. For contention, isolate quickly to
1026 		 * potentially remove one source of contention.
1027 		 */
1028 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1029 		    !cc->rescan && !cc->contended) {
1030 			++low_pfn;
1031 			break;
1032 		}
1033 
1034 		continue;
1035 isolate_fail:
1036 		if (!skip_on_failure)
1037 			continue;
1038 
1039 		/*
1040 		 * We have isolated some pages, but then failed. Release them
1041 		 * instead of migrating, as we cannot form the cc->order buddy
1042 		 * page anyway.
1043 		 */
1044 		if (nr_isolated) {
1045 			if (locked) {
1046 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1047 				locked = false;
1048 			}
1049 			putback_movable_pages(&cc->migratepages);
1050 			cc->nr_migratepages = 0;
1051 			nr_isolated = 0;
1052 		}
1053 
1054 		if (low_pfn < next_skip_pfn) {
1055 			low_pfn = next_skip_pfn - 1;
1056 			/*
1057 			 * The check near the loop beginning would have updated
1058 			 * next_skip_pfn too, but this is a bit simpler.
1059 			 */
1060 			next_skip_pfn += 1UL << cc->order;
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * The PageBuddy() check could have potentially brought us outside
1066 	 * the range to be scanned.
1067 	 */
1068 	if (unlikely(low_pfn > end_pfn))
1069 		low_pfn = end_pfn;
1070 
1071 isolate_abort:
1072 	if (locked)
1073 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1074 
1075 	/*
1076 	 * Updated the cached scanner pfn once the pageblock has been scanned
1077 	 * Pages will either be migrated in which case there is no point
1078 	 * scanning in the near future or migration failed in which case the
1079 	 * failure reason may persist. The block is marked for skipping if
1080 	 * there were no pages isolated in the block or if the block is
1081 	 * rescanned twice in a row.
1082 	 */
1083 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1084 		if (valid_page && !skip_updated)
1085 			set_pageblock_skip(valid_page);
1086 		update_cached_migrate(cc, low_pfn);
1087 	}
1088 
1089 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1090 						nr_scanned, nr_isolated);
1091 
1092 fatal_pending:
1093 	cc->total_migrate_scanned += nr_scanned;
1094 	if (nr_isolated)
1095 		count_compact_events(COMPACTISOLATED, nr_isolated);
1096 
1097 	return low_pfn;
1098 }
1099 
1100 /**
1101  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1102  * @cc:        Compaction control structure.
1103  * @start_pfn: The first PFN to start isolating.
1104  * @end_pfn:   The one-past-last PFN.
1105  *
1106  * Returns zero if isolation fails fatally due to e.g. pending signal.
1107  * Otherwise, function returns one-past-the-last PFN of isolated page
1108  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1109  */
1110 unsigned long
1111 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1112 							unsigned long end_pfn)
1113 {
1114 	unsigned long pfn, block_start_pfn, block_end_pfn;
1115 
1116 	/* Scan block by block. First and last block may be incomplete */
1117 	pfn = start_pfn;
1118 	block_start_pfn = pageblock_start_pfn(pfn);
1119 	if (block_start_pfn < cc->zone->zone_start_pfn)
1120 		block_start_pfn = cc->zone->zone_start_pfn;
1121 	block_end_pfn = pageblock_end_pfn(pfn);
1122 
1123 	for (; pfn < end_pfn; pfn = block_end_pfn,
1124 				block_start_pfn = block_end_pfn,
1125 				block_end_pfn += pageblock_nr_pages) {
1126 
1127 		block_end_pfn = min(block_end_pfn, end_pfn);
1128 
1129 		if (!pageblock_pfn_to_page(block_start_pfn,
1130 					block_end_pfn, cc->zone))
1131 			continue;
1132 
1133 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1134 							ISOLATE_UNEVICTABLE);
1135 
1136 		if (!pfn)
1137 			break;
1138 
1139 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1140 			break;
1141 	}
1142 
1143 	return pfn;
1144 }
1145 
1146 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1147 #ifdef CONFIG_COMPACTION
1148 
1149 static bool suitable_migration_source(struct compact_control *cc,
1150 							struct page *page)
1151 {
1152 	int block_mt;
1153 
1154 	if (pageblock_skip_persistent(page))
1155 		return false;
1156 
1157 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1158 		return true;
1159 
1160 	block_mt = get_pageblock_migratetype(page);
1161 
1162 	if (cc->migratetype == MIGRATE_MOVABLE)
1163 		return is_migrate_movable(block_mt);
1164 	else
1165 		return block_mt == cc->migratetype;
1166 }
1167 
1168 /* Returns true if the page is within a block suitable for migration to */
1169 static bool suitable_migration_target(struct compact_control *cc,
1170 							struct page *page)
1171 {
1172 	/* If the page is a large free page, then disallow migration */
1173 	if (PageBuddy(page)) {
1174 		/*
1175 		 * We are checking page_order without zone->lock taken. But
1176 		 * the only small danger is that we skip a potentially suitable
1177 		 * pageblock, so it's not worth to check order for valid range.
1178 		 */
1179 		if (buddy_order_unsafe(page) >= pageblock_order)
1180 			return false;
1181 	}
1182 
1183 	if (cc->ignore_block_suitable)
1184 		return true;
1185 
1186 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1187 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1188 		return true;
1189 
1190 	/* Otherwise skip the block */
1191 	return false;
1192 }
1193 
1194 static inline unsigned int
1195 freelist_scan_limit(struct compact_control *cc)
1196 {
1197 	unsigned short shift = BITS_PER_LONG - 1;
1198 
1199 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1200 }
1201 
1202 /*
1203  * Test whether the free scanner has reached the same or lower pageblock than
1204  * the migration scanner, and compaction should thus terminate.
1205  */
1206 static inline bool compact_scanners_met(struct compact_control *cc)
1207 {
1208 	return (cc->free_pfn >> pageblock_order)
1209 		<= (cc->migrate_pfn >> pageblock_order);
1210 }
1211 
1212 /*
1213  * Used when scanning for a suitable migration target which scans freelists
1214  * in reverse. Reorders the list such as the unscanned pages are scanned
1215  * first on the next iteration of the free scanner
1216  */
1217 static void
1218 move_freelist_head(struct list_head *freelist, struct page *freepage)
1219 {
1220 	LIST_HEAD(sublist);
1221 
1222 	if (!list_is_last(freelist, &freepage->lru)) {
1223 		list_cut_before(&sublist, freelist, &freepage->lru);
1224 		if (!list_empty(&sublist))
1225 			list_splice_tail(&sublist, freelist);
1226 	}
1227 }
1228 
1229 /*
1230  * Similar to move_freelist_head except used by the migration scanner
1231  * when scanning forward. It's possible for these list operations to
1232  * move against each other if they search the free list exactly in
1233  * lockstep.
1234  */
1235 static void
1236 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1237 {
1238 	LIST_HEAD(sublist);
1239 
1240 	if (!list_is_first(freelist, &freepage->lru)) {
1241 		list_cut_position(&sublist, freelist, &freepage->lru);
1242 		if (!list_empty(&sublist))
1243 			list_splice_tail(&sublist, freelist);
1244 	}
1245 }
1246 
1247 static void
1248 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1249 {
1250 	unsigned long start_pfn, end_pfn;
1251 	struct page *page = pfn_to_page(pfn);
1252 
1253 	/* Do not search around if there are enough pages already */
1254 	if (cc->nr_freepages >= cc->nr_migratepages)
1255 		return;
1256 
1257 	/* Minimise scanning during async compaction */
1258 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1259 		return;
1260 
1261 	/* Pageblock boundaries */
1262 	start_pfn = pageblock_start_pfn(pfn);
1263 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1264 
1265 	/* Scan before */
1266 	if (start_pfn != pfn) {
1267 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1268 		if (cc->nr_freepages >= cc->nr_migratepages)
1269 			return;
1270 	}
1271 
1272 	/* Scan after */
1273 	start_pfn = pfn + nr_isolated;
1274 	if (start_pfn < end_pfn)
1275 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1276 
1277 	/* Skip this pageblock in the future as it's full or nearly full */
1278 	if (cc->nr_freepages < cc->nr_migratepages)
1279 		set_pageblock_skip(page);
1280 }
1281 
1282 /* Search orders in round-robin fashion */
1283 static int next_search_order(struct compact_control *cc, int order)
1284 {
1285 	order--;
1286 	if (order < 0)
1287 		order = cc->order - 1;
1288 
1289 	/* Search wrapped around? */
1290 	if (order == cc->search_order) {
1291 		cc->search_order--;
1292 		if (cc->search_order < 0)
1293 			cc->search_order = cc->order - 1;
1294 		return -1;
1295 	}
1296 
1297 	return order;
1298 }
1299 
1300 static unsigned long
1301 fast_isolate_freepages(struct compact_control *cc)
1302 {
1303 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1304 	unsigned int nr_scanned = 0;
1305 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1306 	unsigned long nr_isolated = 0;
1307 	unsigned long distance;
1308 	struct page *page = NULL;
1309 	bool scan_start = false;
1310 	int order;
1311 
1312 	/* Full compaction passes in a negative order */
1313 	if (cc->order <= 0)
1314 		return cc->free_pfn;
1315 
1316 	/*
1317 	 * If starting the scan, use a deeper search and use the highest
1318 	 * PFN found if a suitable one is not found.
1319 	 */
1320 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1321 		limit = pageblock_nr_pages >> 1;
1322 		scan_start = true;
1323 	}
1324 
1325 	/*
1326 	 * Preferred point is in the top quarter of the scan space but take
1327 	 * a pfn from the top half if the search is problematic.
1328 	 */
1329 	distance = (cc->free_pfn - cc->migrate_pfn);
1330 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1331 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1332 
1333 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1334 		low_pfn = min_pfn;
1335 
1336 	/*
1337 	 * Search starts from the last successful isolation order or the next
1338 	 * order to search after a previous failure
1339 	 */
1340 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1341 
1342 	for (order = cc->search_order;
1343 	     !page && order >= 0;
1344 	     order = next_search_order(cc, order)) {
1345 		struct free_area *area = &cc->zone->free_area[order];
1346 		struct list_head *freelist;
1347 		struct page *freepage;
1348 		unsigned long flags;
1349 		unsigned int order_scanned = 0;
1350 
1351 		if (!area->nr_free)
1352 			continue;
1353 
1354 		spin_lock_irqsave(&cc->zone->lock, flags);
1355 		freelist = &area->free_list[MIGRATE_MOVABLE];
1356 		list_for_each_entry_reverse(freepage, freelist, lru) {
1357 			unsigned long pfn;
1358 
1359 			order_scanned++;
1360 			nr_scanned++;
1361 			pfn = page_to_pfn(freepage);
1362 
1363 			if (pfn >= highest)
1364 				highest = pageblock_start_pfn(pfn);
1365 
1366 			if (pfn >= low_pfn) {
1367 				cc->fast_search_fail = 0;
1368 				cc->search_order = order;
1369 				page = freepage;
1370 				break;
1371 			}
1372 
1373 			if (pfn >= min_pfn && pfn > high_pfn) {
1374 				high_pfn = pfn;
1375 
1376 				/* Shorten the scan if a candidate is found */
1377 				limit >>= 1;
1378 			}
1379 
1380 			if (order_scanned >= limit)
1381 				break;
1382 		}
1383 
1384 		/* Use a minimum pfn if a preferred one was not found */
1385 		if (!page && high_pfn) {
1386 			page = pfn_to_page(high_pfn);
1387 
1388 			/* Update freepage for the list reorder below */
1389 			freepage = page;
1390 		}
1391 
1392 		/* Reorder to so a future search skips recent pages */
1393 		move_freelist_head(freelist, freepage);
1394 
1395 		/* Isolate the page if available */
1396 		if (page) {
1397 			if (__isolate_free_page(page, order)) {
1398 				set_page_private(page, order);
1399 				nr_isolated = 1 << order;
1400 				cc->nr_freepages += nr_isolated;
1401 				list_add_tail(&page->lru, &cc->freepages);
1402 				count_compact_events(COMPACTISOLATED, nr_isolated);
1403 			} else {
1404 				/* If isolation fails, abort the search */
1405 				order = cc->search_order + 1;
1406 				page = NULL;
1407 			}
1408 		}
1409 
1410 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1411 
1412 		/*
1413 		 * Smaller scan on next order so the total scan ig related
1414 		 * to freelist_scan_limit.
1415 		 */
1416 		if (order_scanned >= limit)
1417 			limit = min(1U, limit >> 1);
1418 	}
1419 
1420 	if (!page) {
1421 		cc->fast_search_fail++;
1422 		if (scan_start) {
1423 			/*
1424 			 * Use the highest PFN found above min. If one was
1425 			 * not found, be pessimistic for direct compaction
1426 			 * and use the min mark.
1427 			 */
1428 			if (highest) {
1429 				page = pfn_to_page(highest);
1430 				cc->free_pfn = highest;
1431 			} else {
1432 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1433 					page = pageblock_pfn_to_page(min_pfn,
1434 						pageblock_end_pfn(min_pfn),
1435 						cc->zone);
1436 					cc->free_pfn = min_pfn;
1437 				}
1438 			}
1439 		}
1440 	}
1441 
1442 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1443 		highest -= pageblock_nr_pages;
1444 		cc->zone->compact_cached_free_pfn = highest;
1445 	}
1446 
1447 	cc->total_free_scanned += nr_scanned;
1448 	if (!page)
1449 		return cc->free_pfn;
1450 
1451 	low_pfn = page_to_pfn(page);
1452 	fast_isolate_around(cc, low_pfn, nr_isolated);
1453 	return low_pfn;
1454 }
1455 
1456 /*
1457  * Based on information in the current compact_control, find blocks
1458  * suitable for isolating free pages from and then isolate them.
1459  */
1460 static void isolate_freepages(struct compact_control *cc)
1461 {
1462 	struct zone *zone = cc->zone;
1463 	struct page *page;
1464 	unsigned long block_start_pfn;	/* start of current pageblock */
1465 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1466 	unsigned long block_end_pfn;	/* end of current pageblock */
1467 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1468 	struct list_head *freelist = &cc->freepages;
1469 	unsigned int stride;
1470 
1471 	/* Try a small search of the free lists for a candidate */
1472 	isolate_start_pfn = fast_isolate_freepages(cc);
1473 	if (cc->nr_freepages)
1474 		goto splitmap;
1475 
1476 	/*
1477 	 * Initialise the free scanner. The starting point is where we last
1478 	 * successfully isolated from, zone-cached value, or the end of the
1479 	 * zone when isolating for the first time. For looping we also need
1480 	 * this pfn aligned down to the pageblock boundary, because we do
1481 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1482 	 * For ending point, take care when isolating in last pageblock of a
1483 	 * zone which ends in the middle of a pageblock.
1484 	 * The low boundary is the end of the pageblock the migration scanner
1485 	 * is using.
1486 	 */
1487 	isolate_start_pfn = cc->free_pfn;
1488 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1489 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1490 						zone_end_pfn(zone));
1491 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1492 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1493 
1494 	/*
1495 	 * Isolate free pages until enough are available to migrate the
1496 	 * pages on cc->migratepages. We stop searching if the migrate
1497 	 * and free page scanners meet or enough free pages are isolated.
1498 	 */
1499 	for (; block_start_pfn >= low_pfn;
1500 				block_end_pfn = block_start_pfn,
1501 				block_start_pfn -= pageblock_nr_pages,
1502 				isolate_start_pfn = block_start_pfn) {
1503 		unsigned long nr_isolated;
1504 
1505 		/*
1506 		 * This can iterate a massively long zone without finding any
1507 		 * suitable migration targets, so periodically check resched.
1508 		 */
1509 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1510 			cond_resched();
1511 
1512 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1513 									zone);
1514 		if (!page)
1515 			continue;
1516 
1517 		/* Check the block is suitable for migration */
1518 		if (!suitable_migration_target(cc, page))
1519 			continue;
1520 
1521 		/* If isolation recently failed, do not retry */
1522 		if (!isolation_suitable(cc, page))
1523 			continue;
1524 
1525 		/* Found a block suitable for isolating free pages from. */
1526 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1527 					block_end_pfn, freelist, stride, false);
1528 
1529 		/* Update the skip hint if the full pageblock was scanned */
1530 		if (isolate_start_pfn == block_end_pfn)
1531 			update_pageblock_skip(cc, page, block_start_pfn);
1532 
1533 		/* Are enough freepages isolated? */
1534 		if (cc->nr_freepages >= cc->nr_migratepages) {
1535 			if (isolate_start_pfn >= block_end_pfn) {
1536 				/*
1537 				 * Restart at previous pageblock if more
1538 				 * freepages can be isolated next time.
1539 				 */
1540 				isolate_start_pfn =
1541 					block_start_pfn - pageblock_nr_pages;
1542 			}
1543 			break;
1544 		} else if (isolate_start_pfn < block_end_pfn) {
1545 			/*
1546 			 * If isolation failed early, do not continue
1547 			 * needlessly.
1548 			 */
1549 			break;
1550 		}
1551 
1552 		/* Adjust stride depending on isolation */
1553 		if (nr_isolated) {
1554 			stride = 1;
1555 			continue;
1556 		}
1557 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1558 	}
1559 
1560 	/*
1561 	 * Record where the free scanner will restart next time. Either we
1562 	 * broke from the loop and set isolate_start_pfn based on the last
1563 	 * call to isolate_freepages_block(), or we met the migration scanner
1564 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1565 	 */
1566 	cc->free_pfn = isolate_start_pfn;
1567 
1568 splitmap:
1569 	/* __isolate_free_page() does not map the pages */
1570 	split_map_pages(freelist);
1571 }
1572 
1573 /*
1574  * This is a migrate-callback that "allocates" freepages by taking pages
1575  * from the isolated freelists in the block we are migrating to.
1576  */
1577 static struct page *compaction_alloc(struct page *migratepage,
1578 					unsigned long data)
1579 {
1580 	struct compact_control *cc = (struct compact_control *)data;
1581 	struct page *freepage;
1582 
1583 	if (list_empty(&cc->freepages)) {
1584 		isolate_freepages(cc);
1585 
1586 		if (list_empty(&cc->freepages))
1587 			return NULL;
1588 	}
1589 
1590 	freepage = list_entry(cc->freepages.next, struct page, lru);
1591 	list_del(&freepage->lru);
1592 	cc->nr_freepages--;
1593 
1594 	return freepage;
1595 }
1596 
1597 /*
1598  * This is a migrate-callback that "frees" freepages back to the isolated
1599  * freelist.  All pages on the freelist are from the same zone, so there is no
1600  * special handling needed for NUMA.
1601  */
1602 static void compaction_free(struct page *page, unsigned long data)
1603 {
1604 	struct compact_control *cc = (struct compact_control *)data;
1605 
1606 	list_add(&page->lru, &cc->freepages);
1607 	cc->nr_freepages++;
1608 }
1609 
1610 /* possible outcome of isolate_migratepages */
1611 typedef enum {
1612 	ISOLATE_ABORT,		/* Abort compaction now */
1613 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1614 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1615 } isolate_migrate_t;
1616 
1617 /*
1618  * Allow userspace to control policy on scanning the unevictable LRU for
1619  * compactable pages.
1620  */
1621 #ifdef CONFIG_PREEMPT_RT
1622 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1623 #else
1624 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1625 #endif
1626 
1627 static inline void
1628 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1629 {
1630 	if (cc->fast_start_pfn == ULONG_MAX)
1631 		return;
1632 
1633 	if (!cc->fast_start_pfn)
1634 		cc->fast_start_pfn = pfn;
1635 
1636 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1637 }
1638 
1639 static inline unsigned long
1640 reinit_migrate_pfn(struct compact_control *cc)
1641 {
1642 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1643 		return cc->migrate_pfn;
1644 
1645 	cc->migrate_pfn = cc->fast_start_pfn;
1646 	cc->fast_start_pfn = ULONG_MAX;
1647 
1648 	return cc->migrate_pfn;
1649 }
1650 
1651 /*
1652  * Briefly search the free lists for a migration source that already has
1653  * some free pages to reduce the number of pages that need migration
1654  * before a pageblock is free.
1655  */
1656 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1657 {
1658 	unsigned int limit = freelist_scan_limit(cc);
1659 	unsigned int nr_scanned = 0;
1660 	unsigned long distance;
1661 	unsigned long pfn = cc->migrate_pfn;
1662 	unsigned long high_pfn;
1663 	int order;
1664 
1665 	/* Skip hints are relied on to avoid repeats on the fast search */
1666 	if (cc->ignore_skip_hint)
1667 		return pfn;
1668 
1669 	/*
1670 	 * If the migrate_pfn is not at the start of a zone or the start
1671 	 * of a pageblock then assume this is a continuation of a previous
1672 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1673 	 */
1674 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1675 		return pfn;
1676 
1677 	/*
1678 	 * For smaller orders, just linearly scan as the number of pages
1679 	 * to migrate should be relatively small and does not necessarily
1680 	 * justify freeing up a large block for a small allocation.
1681 	 */
1682 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1683 		return pfn;
1684 
1685 	/*
1686 	 * Only allow kcompactd and direct requests for movable pages to
1687 	 * quickly clear out a MOVABLE pageblock for allocation. This
1688 	 * reduces the risk that a large movable pageblock is freed for
1689 	 * an unmovable/reclaimable small allocation.
1690 	 */
1691 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1692 		return pfn;
1693 
1694 	/*
1695 	 * When starting the migration scanner, pick any pageblock within the
1696 	 * first half of the search space. Otherwise try and pick a pageblock
1697 	 * within the first eighth to reduce the chances that a migration
1698 	 * target later becomes a source.
1699 	 */
1700 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1701 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1702 		distance >>= 2;
1703 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1704 
1705 	for (order = cc->order - 1;
1706 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1707 	     order--) {
1708 		struct free_area *area = &cc->zone->free_area[order];
1709 		struct list_head *freelist;
1710 		unsigned long flags;
1711 		struct page *freepage;
1712 
1713 		if (!area->nr_free)
1714 			continue;
1715 
1716 		spin_lock_irqsave(&cc->zone->lock, flags);
1717 		freelist = &area->free_list[MIGRATE_MOVABLE];
1718 		list_for_each_entry(freepage, freelist, lru) {
1719 			unsigned long free_pfn;
1720 
1721 			nr_scanned++;
1722 			free_pfn = page_to_pfn(freepage);
1723 			if (free_pfn < high_pfn) {
1724 				/*
1725 				 * Avoid if skipped recently. Ideally it would
1726 				 * move to the tail but even safe iteration of
1727 				 * the list assumes an entry is deleted, not
1728 				 * reordered.
1729 				 */
1730 				if (get_pageblock_skip(freepage)) {
1731 					if (list_is_last(freelist, &freepage->lru))
1732 						break;
1733 
1734 					continue;
1735 				}
1736 
1737 				/* Reorder to so a future search skips recent pages */
1738 				move_freelist_tail(freelist, freepage);
1739 
1740 				update_fast_start_pfn(cc, free_pfn);
1741 				pfn = pageblock_start_pfn(free_pfn);
1742 				cc->fast_search_fail = 0;
1743 				set_pageblock_skip(freepage);
1744 				break;
1745 			}
1746 
1747 			if (nr_scanned >= limit) {
1748 				cc->fast_search_fail++;
1749 				move_freelist_tail(freelist, freepage);
1750 				break;
1751 			}
1752 		}
1753 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1754 	}
1755 
1756 	cc->total_migrate_scanned += nr_scanned;
1757 
1758 	/*
1759 	 * If fast scanning failed then use a cached entry for a page block
1760 	 * that had free pages as the basis for starting a linear scan.
1761 	 */
1762 	if (pfn == cc->migrate_pfn)
1763 		pfn = reinit_migrate_pfn(cc);
1764 
1765 	return pfn;
1766 }
1767 
1768 /*
1769  * Isolate all pages that can be migrated from the first suitable block,
1770  * starting at the block pointed to by the migrate scanner pfn within
1771  * compact_control.
1772  */
1773 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1774 {
1775 	unsigned long block_start_pfn;
1776 	unsigned long block_end_pfn;
1777 	unsigned long low_pfn;
1778 	struct page *page;
1779 	const isolate_mode_t isolate_mode =
1780 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1781 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1782 	bool fast_find_block;
1783 
1784 	/*
1785 	 * Start at where we last stopped, or beginning of the zone as
1786 	 * initialized by compact_zone(). The first failure will use
1787 	 * the lowest PFN as the starting point for linear scanning.
1788 	 */
1789 	low_pfn = fast_find_migrateblock(cc);
1790 	block_start_pfn = pageblock_start_pfn(low_pfn);
1791 	if (block_start_pfn < cc->zone->zone_start_pfn)
1792 		block_start_pfn = cc->zone->zone_start_pfn;
1793 
1794 	/*
1795 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1796 	 * the isolation_suitable check below, check whether the fast
1797 	 * search was successful.
1798 	 */
1799 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1800 
1801 	/* Only scan within a pageblock boundary */
1802 	block_end_pfn = pageblock_end_pfn(low_pfn);
1803 
1804 	/*
1805 	 * Iterate over whole pageblocks until we find the first suitable.
1806 	 * Do not cross the free scanner.
1807 	 */
1808 	for (; block_end_pfn <= cc->free_pfn;
1809 			fast_find_block = false,
1810 			low_pfn = block_end_pfn,
1811 			block_start_pfn = block_end_pfn,
1812 			block_end_pfn += pageblock_nr_pages) {
1813 
1814 		/*
1815 		 * This can potentially iterate a massively long zone with
1816 		 * many pageblocks unsuitable, so periodically check if we
1817 		 * need to schedule.
1818 		 */
1819 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1820 			cond_resched();
1821 
1822 		page = pageblock_pfn_to_page(block_start_pfn,
1823 						block_end_pfn, cc->zone);
1824 		if (!page)
1825 			continue;
1826 
1827 		/*
1828 		 * If isolation recently failed, do not retry. Only check the
1829 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1830 		 * to be visited multiple times. Assume skip was checked
1831 		 * before making it "skip" so other compaction instances do
1832 		 * not scan the same block.
1833 		 */
1834 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1835 		    !fast_find_block && !isolation_suitable(cc, page))
1836 			continue;
1837 
1838 		/*
1839 		 * For async compaction, also only scan in MOVABLE blocks
1840 		 * without huge pages. Async compaction is optimistic to see
1841 		 * if the minimum amount of work satisfies the allocation.
1842 		 * The cached PFN is updated as it's possible that all
1843 		 * remaining blocks between source and target are unsuitable
1844 		 * and the compaction scanners fail to meet.
1845 		 */
1846 		if (!suitable_migration_source(cc, page)) {
1847 			update_cached_migrate(cc, block_end_pfn);
1848 			continue;
1849 		}
1850 
1851 		/* Perform the isolation */
1852 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1853 						block_end_pfn, isolate_mode);
1854 
1855 		if (!low_pfn)
1856 			return ISOLATE_ABORT;
1857 
1858 		/*
1859 		 * Either we isolated something and proceed with migration. Or
1860 		 * we failed and compact_zone should decide if we should
1861 		 * continue or not.
1862 		 */
1863 		break;
1864 	}
1865 
1866 	/* Record where migration scanner will be restarted. */
1867 	cc->migrate_pfn = low_pfn;
1868 
1869 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1870 }
1871 
1872 /*
1873  * order == -1 is expected when compacting via
1874  * /proc/sys/vm/compact_memory
1875  */
1876 static inline bool is_via_compact_memory(int order)
1877 {
1878 	return order == -1;
1879 }
1880 
1881 static bool kswapd_is_running(pg_data_t *pgdat)
1882 {
1883 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1884 }
1885 
1886 /*
1887  * A zone's fragmentation score is the external fragmentation wrt to the
1888  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1889  * in the range [0, 100].
1890  *
1891  * The scaling factor ensures that proactive compaction focuses on larger
1892  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1893  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1894  * and thus never exceeds the high threshold for proactive compaction.
1895  */
1896 static unsigned int fragmentation_score_zone(struct zone *zone)
1897 {
1898 	unsigned long score;
1899 
1900 	score = zone->present_pages *
1901 			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1902 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1903 }
1904 
1905 /*
1906  * The per-node proactive (background) compaction process is started by its
1907  * corresponding kcompactd thread when the node's fragmentation score
1908  * exceeds the high threshold. The compaction process remains active till
1909  * the node's score falls below the low threshold, or one of the back-off
1910  * conditions is met.
1911  */
1912 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1913 {
1914 	unsigned int score = 0;
1915 	int zoneid;
1916 
1917 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1918 		struct zone *zone;
1919 
1920 		zone = &pgdat->node_zones[zoneid];
1921 		score += fragmentation_score_zone(zone);
1922 	}
1923 
1924 	return score;
1925 }
1926 
1927 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1928 {
1929 	unsigned int wmark_low;
1930 
1931 	/*
1932 	 * Cap the low watermak to avoid excessive compaction
1933 	 * activity in case a user sets the proactivess tunable
1934 	 * close to 100 (maximum).
1935 	 */
1936 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1937 	return low ? wmark_low : min(wmark_low + 10, 100U);
1938 }
1939 
1940 static bool should_proactive_compact_node(pg_data_t *pgdat)
1941 {
1942 	int wmark_high;
1943 
1944 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1945 		return false;
1946 
1947 	wmark_high = fragmentation_score_wmark(pgdat, false);
1948 	return fragmentation_score_node(pgdat) > wmark_high;
1949 }
1950 
1951 static enum compact_result __compact_finished(struct compact_control *cc)
1952 {
1953 	unsigned int order;
1954 	const int migratetype = cc->migratetype;
1955 	int ret;
1956 
1957 	/* Compaction run completes if the migrate and free scanner meet */
1958 	if (compact_scanners_met(cc)) {
1959 		/* Let the next compaction start anew. */
1960 		reset_cached_positions(cc->zone);
1961 
1962 		/*
1963 		 * Mark that the PG_migrate_skip information should be cleared
1964 		 * by kswapd when it goes to sleep. kcompactd does not set the
1965 		 * flag itself as the decision to be clear should be directly
1966 		 * based on an allocation request.
1967 		 */
1968 		if (cc->direct_compaction)
1969 			cc->zone->compact_blockskip_flush = true;
1970 
1971 		if (cc->whole_zone)
1972 			return COMPACT_COMPLETE;
1973 		else
1974 			return COMPACT_PARTIAL_SKIPPED;
1975 	}
1976 
1977 	if (cc->proactive_compaction) {
1978 		int score, wmark_low;
1979 		pg_data_t *pgdat;
1980 
1981 		pgdat = cc->zone->zone_pgdat;
1982 		if (kswapd_is_running(pgdat))
1983 			return COMPACT_PARTIAL_SKIPPED;
1984 
1985 		score = fragmentation_score_zone(cc->zone);
1986 		wmark_low = fragmentation_score_wmark(pgdat, true);
1987 
1988 		if (score > wmark_low)
1989 			ret = COMPACT_CONTINUE;
1990 		else
1991 			ret = COMPACT_SUCCESS;
1992 
1993 		goto out;
1994 	}
1995 
1996 	if (is_via_compact_memory(cc->order))
1997 		return COMPACT_CONTINUE;
1998 
1999 	/*
2000 	 * Always finish scanning a pageblock to reduce the possibility of
2001 	 * fallbacks in the future. This is particularly important when
2002 	 * migration source is unmovable/reclaimable but it's not worth
2003 	 * special casing.
2004 	 */
2005 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2006 		return COMPACT_CONTINUE;
2007 
2008 	/* Direct compactor: Is a suitable page free? */
2009 	ret = COMPACT_NO_SUITABLE_PAGE;
2010 	for (order = cc->order; order < MAX_ORDER; order++) {
2011 		struct free_area *area = &cc->zone->free_area[order];
2012 		bool can_steal;
2013 
2014 		/* Job done if page is free of the right migratetype */
2015 		if (!free_area_empty(area, migratetype))
2016 			return COMPACT_SUCCESS;
2017 
2018 #ifdef CONFIG_CMA
2019 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2020 		if (migratetype == MIGRATE_MOVABLE &&
2021 			!free_area_empty(area, MIGRATE_CMA))
2022 			return COMPACT_SUCCESS;
2023 #endif
2024 		/*
2025 		 * Job done if allocation would steal freepages from
2026 		 * other migratetype buddy lists.
2027 		 */
2028 		if (find_suitable_fallback(area, order, migratetype,
2029 						true, &can_steal) != -1) {
2030 
2031 			/* movable pages are OK in any pageblock */
2032 			if (migratetype == MIGRATE_MOVABLE)
2033 				return COMPACT_SUCCESS;
2034 
2035 			/*
2036 			 * We are stealing for a non-movable allocation. Make
2037 			 * sure we finish compacting the current pageblock
2038 			 * first so it is as free as possible and we won't
2039 			 * have to steal another one soon. This only applies
2040 			 * to sync compaction, as async compaction operates
2041 			 * on pageblocks of the same migratetype.
2042 			 */
2043 			if (cc->mode == MIGRATE_ASYNC ||
2044 					IS_ALIGNED(cc->migrate_pfn,
2045 							pageblock_nr_pages)) {
2046 				return COMPACT_SUCCESS;
2047 			}
2048 
2049 			ret = COMPACT_CONTINUE;
2050 			break;
2051 		}
2052 	}
2053 
2054 out:
2055 	if (cc->contended || fatal_signal_pending(current))
2056 		ret = COMPACT_CONTENDED;
2057 
2058 	return ret;
2059 }
2060 
2061 static enum compact_result compact_finished(struct compact_control *cc)
2062 {
2063 	int ret;
2064 
2065 	ret = __compact_finished(cc);
2066 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2067 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2068 		ret = COMPACT_CONTINUE;
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * compaction_suitable: Is this suitable to run compaction on this zone now?
2075  * Returns
2076  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2077  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2078  *   COMPACT_CONTINUE - If compaction should run now
2079  */
2080 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2081 					unsigned int alloc_flags,
2082 					int highest_zoneidx,
2083 					unsigned long wmark_target)
2084 {
2085 	unsigned long watermark;
2086 
2087 	if (is_via_compact_memory(order))
2088 		return COMPACT_CONTINUE;
2089 
2090 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2091 	/*
2092 	 * If watermarks for high-order allocation are already met, there
2093 	 * should be no need for compaction at all.
2094 	 */
2095 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2096 								alloc_flags))
2097 		return COMPACT_SUCCESS;
2098 
2099 	/*
2100 	 * Watermarks for order-0 must be met for compaction to be able to
2101 	 * isolate free pages for migration targets. This means that the
2102 	 * watermark and alloc_flags have to match, or be more pessimistic than
2103 	 * the check in __isolate_free_page(). We don't use the direct
2104 	 * compactor's alloc_flags, as they are not relevant for freepage
2105 	 * isolation. We however do use the direct compactor's highest_zoneidx
2106 	 * to skip over zones where lowmem reserves would prevent allocation
2107 	 * even if compaction succeeds.
2108 	 * For costly orders, we require low watermark instead of min for
2109 	 * compaction to proceed to increase its chances.
2110 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2111 	 * suitable migration targets
2112 	 */
2113 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2114 				low_wmark_pages(zone) : min_wmark_pages(zone);
2115 	watermark += compact_gap(order);
2116 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2117 						ALLOC_CMA, wmark_target))
2118 		return COMPACT_SKIPPED;
2119 
2120 	return COMPACT_CONTINUE;
2121 }
2122 
2123 enum compact_result compaction_suitable(struct zone *zone, int order,
2124 					unsigned int alloc_flags,
2125 					int highest_zoneidx)
2126 {
2127 	enum compact_result ret;
2128 	int fragindex;
2129 
2130 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2131 				    zone_page_state(zone, NR_FREE_PAGES));
2132 	/*
2133 	 * fragmentation index determines if allocation failures are due to
2134 	 * low memory or external fragmentation
2135 	 *
2136 	 * index of -1000 would imply allocations might succeed depending on
2137 	 * watermarks, but we already failed the high-order watermark check
2138 	 * index towards 0 implies failure is due to lack of memory
2139 	 * index towards 1000 implies failure is due to fragmentation
2140 	 *
2141 	 * Only compact if a failure would be due to fragmentation. Also
2142 	 * ignore fragindex for non-costly orders where the alternative to
2143 	 * a successful reclaim/compaction is OOM. Fragindex and the
2144 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2145 	 * excessive compaction for costly orders, but it should not be at the
2146 	 * expense of system stability.
2147 	 */
2148 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2149 		fragindex = fragmentation_index(zone, order);
2150 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2151 			ret = COMPACT_NOT_SUITABLE_ZONE;
2152 	}
2153 
2154 	trace_mm_compaction_suitable(zone, order, ret);
2155 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2156 		ret = COMPACT_SKIPPED;
2157 
2158 	return ret;
2159 }
2160 
2161 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2162 		int alloc_flags)
2163 {
2164 	struct zone *zone;
2165 	struct zoneref *z;
2166 
2167 	/*
2168 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2169 	 * retrying the reclaim.
2170 	 */
2171 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2172 				ac->highest_zoneidx, ac->nodemask) {
2173 		unsigned long available;
2174 		enum compact_result compact_result;
2175 
2176 		/*
2177 		 * Do not consider all the reclaimable memory because we do not
2178 		 * want to trash just for a single high order allocation which
2179 		 * is even not guaranteed to appear even if __compaction_suitable
2180 		 * is happy about the watermark check.
2181 		 */
2182 		available = zone_reclaimable_pages(zone) / order;
2183 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2184 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2185 				ac->highest_zoneidx, available);
2186 		if (compact_result != COMPACT_SKIPPED)
2187 			return true;
2188 	}
2189 
2190 	return false;
2191 }
2192 
2193 static enum compact_result
2194 compact_zone(struct compact_control *cc, struct capture_control *capc)
2195 {
2196 	enum compact_result ret;
2197 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2198 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2199 	unsigned long last_migrated_pfn;
2200 	const bool sync = cc->mode != MIGRATE_ASYNC;
2201 	bool update_cached;
2202 
2203 	/*
2204 	 * These counters track activities during zone compaction.  Initialize
2205 	 * them before compacting a new zone.
2206 	 */
2207 	cc->total_migrate_scanned = 0;
2208 	cc->total_free_scanned = 0;
2209 	cc->nr_migratepages = 0;
2210 	cc->nr_freepages = 0;
2211 	INIT_LIST_HEAD(&cc->freepages);
2212 	INIT_LIST_HEAD(&cc->migratepages);
2213 
2214 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2215 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2216 							cc->highest_zoneidx);
2217 	/* Compaction is likely to fail */
2218 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2219 		return ret;
2220 
2221 	/* huh, compaction_suitable is returning something unexpected */
2222 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2223 
2224 	/*
2225 	 * Clear pageblock skip if there were failures recently and compaction
2226 	 * is about to be retried after being deferred.
2227 	 */
2228 	if (compaction_restarting(cc->zone, cc->order))
2229 		__reset_isolation_suitable(cc->zone);
2230 
2231 	/*
2232 	 * Setup to move all movable pages to the end of the zone. Used cached
2233 	 * information on where the scanners should start (unless we explicitly
2234 	 * want to compact the whole zone), but check that it is initialised
2235 	 * by ensuring the values are within zone boundaries.
2236 	 */
2237 	cc->fast_start_pfn = 0;
2238 	if (cc->whole_zone) {
2239 		cc->migrate_pfn = start_pfn;
2240 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2241 	} else {
2242 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2243 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2244 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2245 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2246 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2247 		}
2248 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2249 			cc->migrate_pfn = start_pfn;
2250 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2251 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2252 		}
2253 
2254 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2255 			cc->whole_zone = true;
2256 	}
2257 
2258 	last_migrated_pfn = 0;
2259 
2260 	/*
2261 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2262 	 * the basis that some migrations will fail in ASYNC mode. However,
2263 	 * if the cached PFNs match and pageblocks are skipped due to having
2264 	 * no isolation candidates, then the sync state does not matter.
2265 	 * Until a pageblock with isolation candidates is found, keep the
2266 	 * cached PFNs in sync to avoid revisiting the same blocks.
2267 	 */
2268 	update_cached = !sync &&
2269 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2270 
2271 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2272 				cc->free_pfn, end_pfn, sync);
2273 
2274 	migrate_prep_local();
2275 
2276 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2277 		int err;
2278 		unsigned long start_pfn = cc->migrate_pfn;
2279 
2280 		/*
2281 		 * Avoid multiple rescans which can happen if a page cannot be
2282 		 * isolated (dirty/writeback in async mode) or if the migrated
2283 		 * pages are being allocated before the pageblock is cleared.
2284 		 * The first rescan will capture the entire pageblock for
2285 		 * migration. If it fails, it'll be marked skip and scanning
2286 		 * will proceed as normal.
2287 		 */
2288 		cc->rescan = false;
2289 		if (pageblock_start_pfn(last_migrated_pfn) ==
2290 		    pageblock_start_pfn(start_pfn)) {
2291 			cc->rescan = true;
2292 		}
2293 
2294 		switch (isolate_migratepages(cc)) {
2295 		case ISOLATE_ABORT:
2296 			ret = COMPACT_CONTENDED;
2297 			putback_movable_pages(&cc->migratepages);
2298 			cc->nr_migratepages = 0;
2299 			goto out;
2300 		case ISOLATE_NONE:
2301 			if (update_cached) {
2302 				cc->zone->compact_cached_migrate_pfn[1] =
2303 					cc->zone->compact_cached_migrate_pfn[0];
2304 			}
2305 
2306 			/*
2307 			 * We haven't isolated and migrated anything, but
2308 			 * there might still be unflushed migrations from
2309 			 * previous cc->order aligned block.
2310 			 */
2311 			goto check_drain;
2312 		case ISOLATE_SUCCESS:
2313 			update_cached = false;
2314 			last_migrated_pfn = start_pfn;
2315 			;
2316 		}
2317 
2318 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2319 				compaction_free, (unsigned long)cc, cc->mode,
2320 				MR_COMPACTION);
2321 
2322 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2323 							&cc->migratepages);
2324 
2325 		/* All pages were either migrated or will be released */
2326 		cc->nr_migratepages = 0;
2327 		if (err) {
2328 			putback_movable_pages(&cc->migratepages);
2329 			/*
2330 			 * migrate_pages() may return -ENOMEM when scanners meet
2331 			 * and we want compact_finished() to detect it
2332 			 */
2333 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2334 				ret = COMPACT_CONTENDED;
2335 				goto out;
2336 			}
2337 			/*
2338 			 * We failed to migrate at least one page in the current
2339 			 * order-aligned block, so skip the rest of it.
2340 			 */
2341 			if (cc->direct_compaction &&
2342 						(cc->mode == MIGRATE_ASYNC)) {
2343 				cc->migrate_pfn = block_end_pfn(
2344 						cc->migrate_pfn - 1, cc->order);
2345 				/* Draining pcplists is useless in this case */
2346 				last_migrated_pfn = 0;
2347 			}
2348 		}
2349 
2350 check_drain:
2351 		/*
2352 		 * Has the migration scanner moved away from the previous
2353 		 * cc->order aligned block where we migrated from? If yes,
2354 		 * flush the pages that were freed, so that they can merge and
2355 		 * compact_finished() can detect immediately if allocation
2356 		 * would succeed.
2357 		 */
2358 		if (cc->order > 0 && last_migrated_pfn) {
2359 			unsigned long current_block_start =
2360 				block_start_pfn(cc->migrate_pfn, cc->order);
2361 
2362 			if (last_migrated_pfn < current_block_start) {
2363 				lru_add_drain_cpu_zone(cc->zone);
2364 				/* No more flushing until we migrate again */
2365 				last_migrated_pfn = 0;
2366 			}
2367 		}
2368 
2369 		/* Stop if a page has been captured */
2370 		if (capc && capc->page) {
2371 			ret = COMPACT_SUCCESS;
2372 			break;
2373 		}
2374 	}
2375 
2376 out:
2377 	/*
2378 	 * Release free pages and update where the free scanner should restart,
2379 	 * so we don't leave any returned pages behind in the next attempt.
2380 	 */
2381 	if (cc->nr_freepages > 0) {
2382 		unsigned long free_pfn = release_freepages(&cc->freepages);
2383 
2384 		cc->nr_freepages = 0;
2385 		VM_BUG_ON(free_pfn == 0);
2386 		/* The cached pfn is always the first in a pageblock */
2387 		free_pfn = pageblock_start_pfn(free_pfn);
2388 		/*
2389 		 * Only go back, not forward. The cached pfn might have been
2390 		 * already reset to zone end in compact_finished()
2391 		 */
2392 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2393 			cc->zone->compact_cached_free_pfn = free_pfn;
2394 	}
2395 
2396 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2397 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2398 
2399 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2400 				cc->free_pfn, end_pfn, sync, ret);
2401 
2402 	return ret;
2403 }
2404 
2405 static enum compact_result compact_zone_order(struct zone *zone, int order,
2406 		gfp_t gfp_mask, enum compact_priority prio,
2407 		unsigned int alloc_flags, int highest_zoneidx,
2408 		struct page **capture)
2409 {
2410 	enum compact_result ret;
2411 	struct compact_control cc = {
2412 		.order = order,
2413 		.search_order = order,
2414 		.gfp_mask = gfp_mask,
2415 		.zone = zone,
2416 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2417 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2418 		.alloc_flags = alloc_flags,
2419 		.highest_zoneidx = highest_zoneidx,
2420 		.direct_compaction = true,
2421 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2422 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2423 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2424 	};
2425 	struct capture_control capc = {
2426 		.cc = &cc,
2427 		.page = NULL,
2428 	};
2429 
2430 	/*
2431 	 * Make sure the structs are really initialized before we expose the
2432 	 * capture control, in case we are interrupted and the interrupt handler
2433 	 * frees a page.
2434 	 */
2435 	barrier();
2436 	WRITE_ONCE(current->capture_control, &capc);
2437 
2438 	ret = compact_zone(&cc, &capc);
2439 
2440 	VM_BUG_ON(!list_empty(&cc.freepages));
2441 	VM_BUG_ON(!list_empty(&cc.migratepages));
2442 
2443 	/*
2444 	 * Make sure we hide capture control first before we read the captured
2445 	 * page pointer, otherwise an interrupt could free and capture a page
2446 	 * and we would leak it.
2447 	 */
2448 	WRITE_ONCE(current->capture_control, NULL);
2449 	*capture = READ_ONCE(capc.page);
2450 
2451 	return ret;
2452 }
2453 
2454 int sysctl_extfrag_threshold = 500;
2455 
2456 /**
2457  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2458  * @gfp_mask: The GFP mask of the current allocation
2459  * @order: The order of the current allocation
2460  * @alloc_flags: The allocation flags of the current allocation
2461  * @ac: The context of current allocation
2462  * @prio: Determines how hard direct compaction should try to succeed
2463  * @capture: Pointer to free page created by compaction will be stored here
2464  *
2465  * This is the main entry point for direct page compaction.
2466  */
2467 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2468 		unsigned int alloc_flags, const struct alloc_context *ac,
2469 		enum compact_priority prio, struct page **capture)
2470 {
2471 	int may_perform_io = gfp_mask & __GFP_IO;
2472 	struct zoneref *z;
2473 	struct zone *zone;
2474 	enum compact_result rc = COMPACT_SKIPPED;
2475 
2476 	/*
2477 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2478 	 * tricky context because the migration might require IO
2479 	 */
2480 	if (!may_perform_io)
2481 		return COMPACT_SKIPPED;
2482 
2483 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2484 
2485 	/* Compact each zone in the list */
2486 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2487 					ac->highest_zoneidx, ac->nodemask) {
2488 		enum compact_result status;
2489 
2490 		if (prio > MIN_COMPACT_PRIORITY
2491 					&& compaction_deferred(zone, order)) {
2492 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2493 			continue;
2494 		}
2495 
2496 		status = compact_zone_order(zone, order, gfp_mask, prio,
2497 				alloc_flags, ac->highest_zoneidx, capture);
2498 		rc = max(status, rc);
2499 
2500 		/* The allocation should succeed, stop compacting */
2501 		if (status == COMPACT_SUCCESS) {
2502 			/*
2503 			 * We think the allocation will succeed in this zone,
2504 			 * but it is not certain, hence the false. The caller
2505 			 * will repeat this with true if allocation indeed
2506 			 * succeeds in this zone.
2507 			 */
2508 			compaction_defer_reset(zone, order, false);
2509 
2510 			break;
2511 		}
2512 
2513 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2514 					status == COMPACT_PARTIAL_SKIPPED))
2515 			/*
2516 			 * We think that allocation won't succeed in this zone
2517 			 * so we defer compaction there. If it ends up
2518 			 * succeeding after all, it will be reset.
2519 			 */
2520 			defer_compaction(zone, order);
2521 
2522 		/*
2523 		 * We might have stopped compacting due to need_resched() in
2524 		 * async compaction, or due to a fatal signal detected. In that
2525 		 * case do not try further zones
2526 		 */
2527 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2528 					|| fatal_signal_pending(current))
2529 			break;
2530 	}
2531 
2532 	return rc;
2533 }
2534 
2535 /*
2536  * Compact all zones within a node till each zone's fragmentation score
2537  * reaches within proactive compaction thresholds (as determined by the
2538  * proactiveness tunable).
2539  *
2540  * It is possible that the function returns before reaching score targets
2541  * due to various back-off conditions, such as, contention on per-node or
2542  * per-zone locks.
2543  */
2544 static void proactive_compact_node(pg_data_t *pgdat)
2545 {
2546 	int zoneid;
2547 	struct zone *zone;
2548 	struct compact_control cc = {
2549 		.order = -1,
2550 		.mode = MIGRATE_SYNC_LIGHT,
2551 		.ignore_skip_hint = true,
2552 		.whole_zone = true,
2553 		.gfp_mask = GFP_KERNEL,
2554 		.proactive_compaction = true,
2555 	};
2556 
2557 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2558 		zone = &pgdat->node_zones[zoneid];
2559 		if (!populated_zone(zone))
2560 			continue;
2561 
2562 		cc.zone = zone;
2563 
2564 		compact_zone(&cc, NULL);
2565 
2566 		VM_BUG_ON(!list_empty(&cc.freepages));
2567 		VM_BUG_ON(!list_empty(&cc.migratepages));
2568 	}
2569 }
2570 
2571 /* Compact all zones within a node */
2572 static void compact_node(int nid)
2573 {
2574 	pg_data_t *pgdat = NODE_DATA(nid);
2575 	int zoneid;
2576 	struct zone *zone;
2577 	struct compact_control cc = {
2578 		.order = -1,
2579 		.mode = MIGRATE_SYNC,
2580 		.ignore_skip_hint = true,
2581 		.whole_zone = true,
2582 		.gfp_mask = GFP_KERNEL,
2583 	};
2584 
2585 
2586 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2587 
2588 		zone = &pgdat->node_zones[zoneid];
2589 		if (!populated_zone(zone))
2590 			continue;
2591 
2592 		cc.zone = zone;
2593 
2594 		compact_zone(&cc, NULL);
2595 
2596 		VM_BUG_ON(!list_empty(&cc.freepages));
2597 		VM_BUG_ON(!list_empty(&cc.migratepages));
2598 	}
2599 }
2600 
2601 /* Compact all nodes in the system */
2602 static void compact_nodes(void)
2603 {
2604 	int nid;
2605 
2606 	/* Flush pending updates to the LRU lists */
2607 	lru_add_drain_all();
2608 
2609 	for_each_online_node(nid)
2610 		compact_node(nid);
2611 }
2612 
2613 /* The written value is actually unused, all memory is compacted */
2614 int sysctl_compact_memory;
2615 
2616 /*
2617  * Tunable for proactive compaction. It determines how
2618  * aggressively the kernel should compact memory in the
2619  * background. It takes values in the range [0, 100].
2620  */
2621 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2622 
2623 /*
2624  * This is the entry point for compacting all nodes via
2625  * /proc/sys/vm/compact_memory
2626  */
2627 int sysctl_compaction_handler(struct ctl_table *table, int write,
2628 			void *buffer, size_t *length, loff_t *ppos)
2629 {
2630 	if (write)
2631 		compact_nodes();
2632 
2633 	return 0;
2634 }
2635 
2636 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2637 static ssize_t sysfs_compact_node(struct device *dev,
2638 			struct device_attribute *attr,
2639 			const char *buf, size_t count)
2640 {
2641 	int nid = dev->id;
2642 
2643 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2644 		/* Flush pending updates to the LRU lists */
2645 		lru_add_drain_all();
2646 
2647 		compact_node(nid);
2648 	}
2649 
2650 	return count;
2651 }
2652 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2653 
2654 int compaction_register_node(struct node *node)
2655 {
2656 	return device_create_file(&node->dev, &dev_attr_compact);
2657 }
2658 
2659 void compaction_unregister_node(struct node *node)
2660 {
2661 	return device_remove_file(&node->dev, &dev_attr_compact);
2662 }
2663 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2664 
2665 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2666 {
2667 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2668 }
2669 
2670 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2671 {
2672 	int zoneid;
2673 	struct zone *zone;
2674 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2675 
2676 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2677 		zone = &pgdat->node_zones[zoneid];
2678 
2679 		if (!populated_zone(zone))
2680 			continue;
2681 
2682 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2683 					highest_zoneidx) == COMPACT_CONTINUE)
2684 			return true;
2685 	}
2686 
2687 	return false;
2688 }
2689 
2690 static void kcompactd_do_work(pg_data_t *pgdat)
2691 {
2692 	/*
2693 	 * With no special task, compact all zones so that a page of requested
2694 	 * order is allocatable.
2695 	 */
2696 	int zoneid;
2697 	struct zone *zone;
2698 	struct compact_control cc = {
2699 		.order = pgdat->kcompactd_max_order,
2700 		.search_order = pgdat->kcompactd_max_order,
2701 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2702 		.mode = MIGRATE_SYNC_LIGHT,
2703 		.ignore_skip_hint = false,
2704 		.gfp_mask = GFP_KERNEL,
2705 	};
2706 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2707 							cc.highest_zoneidx);
2708 	count_compact_event(KCOMPACTD_WAKE);
2709 
2710 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2711 		int status;
2712 
2713 		zone = &pgdat->node_zones[zoneid];
2714 		if (!populated_zone(zone))
2715 			continue;
2716 
2717 		if (compaction_deferred(zone, cc.order))
2718 			continue;
2719 
2720 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2721 							COMPACT_CONTINUE)
2722 			continue;
2723 
2724 		if (kthread_should_stop())
2725 			return;
2726 
2727 		cc.zone = zone;
2728 		status = compact_zone(&cc, NULL);
2729 
2730 		if (status == COMPACT_SUCCESS) {
2731 			compaction_defer_reset(zone, cc.order, false);
2732 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2733 			/*
2734 			 * Buddy pages may become stranded on pcps that could
2735 			 * otherwise coalesce on the zone's free area for
2736 			 * order >= cc.order.  This is ratelimited by the
2737 			 * upcoming deferral.
2738 			 */
2739 			drain_all_pages(zone);
2740 
2741 			/*
2742 			 * We use sync migration mode here, so we defer like
2743 			 * sync direct compaction does.
2744 			 */
2745 			defer_compaction(zone, cc.order);
2746 		}
2747 
2748 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2749 				     cc.total_migrate_scanned);
2750 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2751 				     cc.total_free_scanned);
2752 
2753 		VM_BUG_ON(!list_empty(&cc.freepages));
2754 		VM_BUG_ON(!list_empty(&cc.migratepages));
2755 	}
2756 
2757 	/*
2758 	 * Regardless of success, we are done until woken up next. But remember
2759 	 * the requested order/highest_zoneidx in case it was higher/tighter
2760 	 * than our current ones
2761 	 */
2762 	if (pgdat->kcompactd_max_order <= cc.order)
2763 		pgdat->kcompactd_max_order = 0;
2764 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2765 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2766 }
2767 
2768 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2769 {
2770 	if (!order)
2771 		return;
2772 
2773 	if (pgdat->kcompactd_max_order < order)
2774 		pgdat->kcompactd_max_order = order;
2775 
2776 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2777 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2778 
2779 	/*
2780 	 * Pairs with implicit barrier in wait_event_freezable()
2781 	 * such that wakeups are not missed.
2782 	 */
2783 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2784 		return;
2785 
2786 	if (!kcompactd_node_suitable(pgdat))
2787 		return;
2788 
2789 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2790 							highest_zoneidx);
2791 	wake_up_interruptible(&pgdat->kcompactd_wait);
2792 }
2793 
2794 /*
2795  * The background compaction daemon, started as a kernel thread
2796  * from the init process.
2797  */
2798 static int kcompactd(void *p)
2799 {
2800 	pg_data_t *pgdat = (pg_data_t*)p;
2801 	struct task_struct *tsk = current;
2802 	unsigned int proactive_defer = 0;
2803 
2804 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2805 
2806 	if (!cpumask_empty(cpumask))
2807 		set_cpus_allowed_ptr(tsk, cpumask);
2808 
2809 	set_freezable();
2810 
2811 	pgdat->kcompactd_max_order = 0;
2812 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2813 
2814 	while (!kthread_should_stop()) {
2815 		unsigned long pflags;
2816 
2817 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2818 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2819 			kcompactd_work_requested(pgdat),
2820 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2821 
2822 			psi_memstall_enter(&pflags);
2823 			kcompactd_do_work(pgdat);
2824 			psi_memstall_leave(&pflags);
2825 			continue;
2826 		}
2827 
2828 		/* kcompactd wait timeout */
2829 		if (should_proactive_compact_node(pgdat)) {
2830 			unsigned int prev_score, score;
2831 
2832 			if (proactive_defer) {
2833 				proactive_defer--;
2834 				continue;
2835 			}
2836 			prev_score = fragmentation_score_node(pgdat);
2837 			proactive_compact_node(pgdat);
2838 			score = fragmentation_score_node(pgdat);
2839 			/*
2840 			 * Defer proactive compaction if the fragmentation
2841 			 * score did not go down i.e. no progress made.
2842 			 */
2843 			proactive_defer = score < prev_score ?
2844 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2845 		}
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /*
2852  * This kcompactd start function will be called by init and node-hot-add.
2853  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2854  */
2855 int kcompactd_run(int nid)
2856 {
2857 	pg_data_t *pgdat = NODE_DATA(nid);
2858 	int ret = 0;
2859 
2860 	if (pgdat->kcompactd)
2861 		return 0;
2862 
2863 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2864 	if (IS_ERR(pgdat->kcompactd)) {
2865 		pr_err("Failed to start kcompactd on node %d\n", nid);
2866 		ret = PTR_ERR(pgdat->kcompactd);
2867 		pgdat->kcompactd = NULL;
2868 	}
2869 	return ret;
2870 }
2871 
2872 /*
2873  * Called by memory hotplug when all memory in a node is offlined. Caller must
2874  * hold mem_hotplug_begin/end().
2875  */
2876 void kcompactd_stop(int nid)
2877 {
2878 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2879 
2880 	if (kcompactd) {
2881 		kthread_stop(kcompactd);
2882 		NODE_DATA(nid)->kcompactd = NULL;
2883 	}
2884 }
2885 
2886 /*
2887  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2888  * not required for correctness. So if the last cpu in a node goes
2889  * away, we get changed to run anywhere: as the first one comes back,
2890  * restore their cpu bindings.
2891  */
2892 static int kcompactd_cpu_online(unsigned int cpu)
2893 {
2894 	int nid;
2895 
2896 	for_each_node_state(nid, N_MEMORY) {
2897 		pg_data_t *pgdat = NODE_DATA(nid);
2898 		const struct cpumask *mask;
2899 
2900 		mask = cpumask_of_node(pgdat->node_id);
2901 
2902 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2903 			/* One of our CPUs online: restore mask */
2904 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int __init kcompactd_init(void)
2910 {
2911 	int nid;
2912 	int ret;
2913 
2914 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2915 					"mm/compaction:online",
2916 					kcompactd_cpu_online, NULL);
2917 	if (ret < 0) {
2918 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2919 		return ret;
2920 	}
2921 
2922 	for_each_node_state(nid, N_MEMORY)
2923 		kcompactd_run(nid);
2924 	return 0;
2925 }
2926 subsys_initcall(kcompactd_init)
2927 
2928 #endif /* CONFIG_COMPACTION */
2929