1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149 } 150 EXPORT_SYMBOL(__ClearPageMovable); 151 152 /* Do not skip compaction more than 64 times */ 153 #define COMPACT_MAX_DEFER_SHIFT 6 154 155 /* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160 void defer_compaction(struct zone *zone, int order) 161 { 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172 } 173 174 /* Returns true if compaction should be skipped this time */ 175 bool compaction_deferred(struct zone *zone, int order) 176 { 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered >= defer_limit) { 184 zone->compact_considered = defer_limit; 185 return false; 186 } 187 188 trace_mm_compaction_deferred(zone, order); 189 190 return true; 191 } 192 193 /* 194 * Update defer tracking counters after successful compaction of given order, 195 * which means an allocation either succeeded (alloc_success == true) or is 196 * expected to succeed. 197 */ 198 void compaction_defer_reset(struct zone *zone, int order, 199 bool alloc_success) 200 { 201 if (alloc_success) { 202 zone->compact_considered = 0; 203 zone->compact_defer_shift = 0; 204 } 205 if (order >= zone->compact_order_failed) 206 zone->compact_order_failed = order + 1; 207 208 trace_mm_compaction_defer_reset(zone, order); 209 } 210 211 /* Returns true if restarting compaction after many failures */ 212 bool compaction_restarting(struct zone *zone, int order) 213 { 214 if (order < zone->compact_order_failed) 215 return false; 216 217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 218 zone->compact_considered >= 1UL << zone->compact_defer_shift; 219 } 220 221 /* Returns true if the pageblock should be scanned for pages to isolate. */ 222 static inline bool isolation_suitable(struct compact_control *cc, 223 struct page *page) 224 { 225 if (cc->ignore_skip_hint) 226 return true; 227 228 return !get_pageblock_skip(page); 229 } 230 231 static void reset_cached_positions(struct zone *zone) 232 { 233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 235 zone->compact_cached_free_pfn = 236 pageblock_start_pfn(zone_end_pfn(zone) - 1); 237 } 238 239 /* 240 * Compound pages of >= pageblock_order should consistenly be skipped until 241 * released. It is always pointless to compact pages of such order (if they are 242 * migratable), and the pageblocks they occupy cannot contain any free pages. 243 */ 244 static bool pageblock_skip_persistent(struct page *page) 245 { 246 if (!PageCompound(page)) 247 return false; 248 249 page = compound_head(page); 250 251 if (compound_order(page) >= pageblock_order) 252 return true; 253 254 return false; 255 } 256 257 static bool 258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 259 bool check_target) 260 { 261 struct page *page = pfn_to_online_page(pfn); 262 struct page *block_page; 263 struct page *end_page; 264 unsigned long block_pfn; 265 266 if (!page) 267 return false; 268 if (zone != page_zone(page)) 269 return false; 270 if (pageblock_skip_persistent(page)) 271 return false; 272 273 /* 274 * If skip is already cleared do no further checking once the 275 * restart points have been set. 276 */ 277 if (check_source && check_target && !get_pageblock_skip(page)) 278 return true; 279 280 /* 281 * If clearing skip for the target scanner, do not select a 282 * non-movable pageblock as the starting point. 283 */ 284 if (!check_source && check_target && 285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 286 return false; 287 288 /* Ensure the start of the pageblock or zone is online and valid */ 289 block_pfn = pageblock_start_pfn(pfn); 290 block_pfn = max(block_pfn, zone->zone_start_pfn); 291 block_page = pfn_to_online_page(block_pfn); 292 if (block_page) { 293 page = block_page; 294 pfn = block_pfn; 295 } 296 297 /* Ensure the end of the pageblock or zone is online and valid */ 298 block_pfn = pageblock_end_pfn(pfn) - 1; 299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 300 end_page = pfn_to_online_page(block_pfn); 301 if (!end_page) 302 return false; 303 304 /* 305 * Only clear the hint if a sample indicates there is either a 306 * free page or an LRU page in the block. One or other condition 307 * is necessary for the block to be a migration source/target. 308 */ 309 do { 310 if (pfn_valid_within(pfn)) { 311 if (check_source && PageLRU(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 if (check_target && PageBuddy(page)) { 317 clear_pageblock_skip(page); 318 return true; 319 } 320 } 321 322 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 } while (page <= end_page); 325 326 return false; 327 } 328 329 /* 330 * This function is called to clear all cached information on pageblocks that 331 * should be skipped for page isolation when the migrate and free page scanner 332 * meet. 333 */ 334 static void __reset_isolation_suitable(struct zone *zone) 335 { 336 unsigned long migrate_pfn = zone->zone_start_pfn; 337 unsigned long free_pfn = zone_end_pfn(zone) - 1; 338 unsigned long reset_migrate = free_pfn; 339 unsigned long reset_free = migrate_pfn; 340 bool source_set = false; 341 bool free_set = false; 342 343 if (!zone->compact_blockskip_flush) 344 return; 345 346 zone->compact_blockskip_flush = false; 347 348 /* 349 * Walk the zone and update pageblock skip information. Source looks 350 * for PageLRU while target looks for PageBuddy. When the scanner 351 * is found, both PageBuddy and PageLRU are checked as the pageblock 352 * is suitable as both source and target. 353 */ 354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 355 free_pfn -= pageblock_nr_pages) { 356 cond_resched(); 357 358 /* Update the migrate PFN */ 359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 360 migrate_pfn < reset_migrate) { 361 source_set = true; 362 reset_migrate = migrate_pfn; 363 zone->compact_init_migrate_pfn = reset_migrate; 364 zone->compact_cached_migrate_pfn[0] = reset_migrate; 365 zone->compact_cached_migrate_pfn[1] = reset_migrate; 366 } 367 368 /* Update the free PFN */ 369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 370 free_pfn > reset_free) { 371 free_set = true; 372 reset_free = free_pfn; 373 zone->compact_init_free_pfn = reset_free; 374 zone->compact_cached_free_pfn = reset_free; 375 } 376 } 377 378 /* Leave no distance if no suitable block was reset */ 379 if (reset_migrate >= reset_free) { 380 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 381 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 382 zone->compact_cached_free_pfn = free_pfn; 383 } 384 } 385 386 void reset_isolation_suitable(pg_data_t *pgdat) 387 { 388 int zoneid; 389 390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 391 struct zone *zone = &pgdat->node_zones[zoneid]; 392 if (!populated_zone(zone)) 393 continue; 394 395 /* Only flush if a full compaction finished recently */ 396 if (zone->compact_blockskip_flush) 397 __reset_isolation_suitable(zone); 398 } 399 } 400 401 /* 402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 403 * locks are not required for read/writers. Returns true if it was already set. 404 */ 405 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 406 unsigned long pfn) 407 { 408 bool skip; 409 410 /* Do no update if skip hint is being ignored */ 411 if (cc->ignore_skip_hint) 412 return false; 413 414 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 415 return false; 416 417 skip = get_pageblock_skip(page); 418 if (!skip && !cc->no_set_skip_hint) 419 set_pageblock_skip(page); 420 421 return skip; 422 } 423 424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 425 { 426 struct zone *zone = cc->zone; 427 428 pfn = pageblock_end_pfn(pfn); 429 430 /* Set for isolation rather than compaction */ 431 if (cc->no_set_skip_hint) 432 return; 433 434 if (pfn > zone->compact_cached_migrate_pfn[0]) 435 zone->compact_cached_migrate_pfn[0] = pfn; 436 if (cc->mode != MIGRATE_ASYNC && 437 pfn > zone->compact_cached_migrate_pfn[1]) 438 zone->compact_cached_migrate_pfn[1] = pfn; 439 } 440 441 /* 442 * If no pages were isolated then mark this pageblock to be skipped in the 443 * future. The information is later cleared by __reset_isolation_suitable(). 444 */ 445 static void update_pageblock_skip(struct compact_control *cc, 446 struct page *page, unsigned long pfn) 447 { 448 struct zone *zone = cc->zone; 449 450 if (cc->no_set_skip_hint) 451 return; 452 453 if (!page) 454 return; 455 456 set_pageblock_skip(page); 457 458 /* Update where async and sync compaction should restart */ 459 if (pfn < zone->compact_cached_free_pfn) 460 zone->compact_cached_free_pfn = pfn; 461 } 462 #else 463 static inline bool isolation_suitable(struct compact_control *cc, 464 struct page *page) 465 { 466 return true; 467 } 468 469 static inline bool pageblock_skip_persistent(struct page *page) 470 { 471 return false; 472 } 473 474 static inline void update_pageblock_skip(struct compact_control *cc, 475 struct page *page, unsigned long pfn) 476 { 477 } 478 479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 480 { 481 } 482 483 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 484 unsigned long pfn) 485 { 486 return false; 487 } 488 #endif /* CONFIG_COMPACTION */ 489 490 /* 491 * Compaction requires the taking of some coarse locks that are potentially 492 * very heavily contended. For async compaction, trylock and record if the 493 * lock is contended. The lock will still be acquired but compaction will 494 * abort when the current block is finished regardless of success rate. 495 * Sync compaction acquires the lock. 496 * 497 * Always returns true which makes it easier to track lock state in callers. 498 */ 499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 500 struct compact_control *cc) 501 __acquires(lock) 502 { 503 /* Track if the lock is contended in async mode */ 504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 505 if (spin_trylock_irqsave(lock, *flags)) 506 return true; 507 508 cc->contended = true; 509 } 510 511 spin_lock_irqsave(lock, *flags); 512 return true; 513 } 514 515 /* 516 * Compaction requires the taking of some coarse locks that are potentially 517 * very heavily contended. The lock should be periodically unlocked to avoid 518 * having disabled IRQs for a long time, even when there is nobody waiting on 519 * the lock. It might also be that allowing the IRQs will result in 520 * need_resched() becoming true. If scheduling is needed, async compaction 521 * aborts. Sync compaction schedules. 522 * Either compaction type will also abort if a fatal signal is pending. 523 * In either case if the lock was locked, it is dropped and not regained. 524 * 525 * Returns true if compaction should abort due to fatal signal pending, or 526 * async compaction due to need_resched() 527 * Returns false when compaction can continue (sync compaction might have 528 * scheduled) 529 */ 530 static bool compact_unlock_should_abort(spinlock_t *lock, 531 unsigned long flags, bool *locked, struct compact_control *cc) 532 { 533 if (*locked) { 534 spin_unlock_irqrestore(lock, flags); 535 *locked = false; 536 } 537 538 if (fatal_signal_pending(current)) { 539 cc->contended = true; 540 return true; 541 } 542 543 cond_resched(); 544 545 return false; 546 } 547 548 /* 549 * Isolate free pages onto a private freelist. If @strict is true, will abort 550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 551 * (even though it may still end up isolating some pages). 552 */ 553 static unsigned long isolate_freepages_block(struct compact_control *cc, 554 unsigned long *start_pfn, 555 unsigned long end_pfn, 556 struct list_head *freelist, 557 unsigned int stride, 558 bool strict) 559 { 560 int nr_scanned = 0, total_isolated = 0; 561 struct page *cursor; 562 unsigned long flags = 0; 563 bool locked = false; 564 unsigned long blockpfn = *start_pfn; 565 unsigned int order; 566 567 /* Strict mode is for isolation, speed is secondary */ 568 if (strict) 569 stride = 1; 570 571 cursor = pfn_to_page(blockpfn); 572 573 /* Isolate free pages. */ 574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 575 int isolated; 576 struct page *page = cursor; 577 578 /* 579 * Periodically drop the lock (if held) regardless of its 580 * contention, to give chance to IRQs. Abort if fatal signal 581 * pending or async compaction detects need_resched() 582 */ 583 if (!(blockpfn % SWAP_CLUSTER_MAX) 584 && compact_unlock_should_abort(&cc->zone->lock, flags, 585 &locked, cc)) 586 break; 587 588 nr_scanned++; 589 if (!pfn_valid_within(blockpfn)) 590 goto isolate_fail; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if (likely(order < MAX_ORDER)) { 602 blockpfn += (1UL << order) - 1; 603 cursor += (1UL << order) - 1; 604 } 605 goto isolate_fail; 606 } 607 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 611 /* 612 * If we already hold the lock, we can skip some rechecking. 613 * Note that if we hold the lock now, checked_pageblock was 614 * already set in some previous iteration (or strict is true), 615 * so it is correct to skip the suitable migration target 616 * recheck as well. 617 */ 618 if (!locked) { 619 locked = compact_lock_irqsave(&cc->zone->lock, 620 &flags, cc); 621 622 /* Recheck this is a buddy page under lock */ 623 if (!PageBuddy(page)) 624 goto isolate_fail; 625 } 626 627 /* Found a free page, will break it into order-0 pages */ 628 order = buddy_order(page); 629 isolated = __isolate_free_page(page, order); 630 if (!isolated) 631 break; 632 set_page_private(page, order); 633 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647 isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683 } 684 685 /** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699 unsigned long 700 isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764 } 765 766 /* Similar to reclaim, but different enough that they don't share logic */ 767 static bool too_many_isolated(pg_data_t *pgdat) 768 { 769 unsigned long active, inactive, isolated; 770 771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 772 node_page_state(pgdat, NR_INACTIVE_ANON); 773 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 774 node_page_state(pgdat, NR_ACTIVE_ANON); 775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 776 node_page_state(pgdat, NR_ISOLATED_ANON); 777 778 return isolated > (inactive + active) / 2; 779 } 780 781 /** 782 * isolate_migratepages_block() - isolate all migrate-able pages within 783 * a single pageblock 784 * @cc: Compaction control structure. 785 * @low_pfn: The first PFN to isolate 786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 787 * @isolate_mode: Isolation mode to be used. 788 * 789 * Isolate all pages that can be migrated from the range specified by 790 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 791 * Returns zero if there is a fatal signal pending, otherwise PFN of the 792 * first page that was not scanned (which may be both less, equal to or more 793 * than end_pfn). 794 * 795 * The pages are isolated on cc->migratepages list (not required to be empty), 796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 797 * is neither read nor updated. 798 */ 799 static unsigned long 800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t isolate_mode) 802 { 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 bool locked = false; 808 struct page *page = NULL, *valid_page = NULL; 809 unsigned long start_pfn = low_pfn; 810 bool skip_on_failure = false; 811 unsigned long next_skip_pfn = 0; 812 bool skip_updated = false; 813 814 /* 815 * Ensure that there are not too many pages isolated from the LRU 816 * list by either parallel reclaimers or compaction. If there are, 817 * delay for some time until fewer pages are isolated 818 */ 819 while (unlikely(too_many_isolated(pgdat))) { 820 /* stop isolation if there are still pages not migrated */ 821 if (cc->nr_migratepages) 822 return 0; 823 824 /* async migration should just abort */ 825 if (cc->mode == MIGRATE_ASYNC) 826 return 0; 827 828 congestion_wait(BLK_RW_ASYNC, HZ/10); 829 830 if (fatal_signal_pending(current)) 831 return 0; 832 } 833 834 cond_resched(); 835 836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 837 skip_on_failure = true; 838 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 839 } 840 841 /* Time to isolate some pages for migration */ 842 for (; low_pfn < end_pfn; low_pfn++) { 843 844 if (skip_on_failure && low_pfn >= next_skip_pfn) { 845 /* 846 * We have isolated all migration candidates in the 847 * previous order-aligned block, and did not skip it due 848 * to failure. We should migrate the pages now and 849 * hopefully succeed compaction. 850 */ 851 if (nr_isolated) 852 break; 853 854 /* 855 * We failed to isolate in the previous order-aligned 856 * block. Set the new boundary to the end of the 857 * current block. Note we can't simply increase 858 * next_skip_pfn by 1 << order, as low_pfn might have 859 * been incremented by a higher number due to skipping 860 * a compound or a high-order buddy page in the 861 * previous loop iteration. 862 */ 863 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 864 } 865 866 /* 867 * Periodically drop the lock (if held) regardless of its 868 * contention, to give chance to IRQs. Abort completely if 869 * a fatal signal is pending. 870 */ 871 if (!(low_pfn % SWAP_CLUSTER_MAX) 872 && compact_unlock_should_abort(&pgdat->lru_lock, 873 flags, &locked, cc)) { 874 low_pfn = 0; 875 goto fatal_pending; 876 } 877 878 if (!pfn_valid_within(low_pfn)) 879 goto isolate_fail; 880 nr_scanned++; 881 882 page = pfn_to_page(low_pfn); 883 884 /* 885 * Check if the pageblock has already been marked skipped. 886 * Only the aligned PFN is checked as the caller isolates 887 * COMPACT_CLUSTER_MAX at a time so the second call must 888 * not falsely conclude that the block should be skipped. 889 */ 890 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 891 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 892 low_pfn = end_pfn; 893 goto isolate_abort; 894 } 895 valid_page = page; 896 } 897 898 /* 899 * Skip if free. We read page order here without zone lock 900 * which is generally unsafe, but the race window is small and 901 * the worst thing that can happen is that we skip some 902 * potential isolation targets. 903 */ 904 if (PageBuddy(page)) { 905 unsigned long freepage_order = buddy_order_unsafe(page); 906 907 /* 908 * Without lock, we cannot be sure that what we got is 909 * a valid page order. Consider only values in the 910 * valid order range to prevent low_pfn overflow. 911 */ 912 if (freepage_order > 0 && freepage_order < MAX_ORDER) 913 low_pfn += (1UL << freepage_order) - 1; 914 continue; 915 } 916 917 /* 918 * Regardless of being on LRU, compound pages such as THP and 919 * hugetlbfs are not to be compacted unless we are attempting 920 * an allocation much larger than the huge page size (eg CMA). 921 * We can potentially save a lot of iterations if we skip them 922 * at once. The check is racy, but we can consider only valid 923 * values and the only danger is skipping too much. 924 */ 925 if (PageCompound(page) && !cc->alloc_contig) { 926 const unsigned int order = compound_order(page); 927 928 if (likely(order < MAX_ORDER)) 929 low_pfn += (1UL << order) - 1; 930 goto isolate_fail; 931 } 932 933 /* 934 * Check may be lockless but that's ok as we recheck later. 935 * It's possible to migrate LRU and non-lru movable pages. 936 * Skip any other type of page 937 */ 938 if (!PageLRU(page)) { 939 /* 940 * __PageMovable can return false positive so we need 941 * to verify it under page_lock. 942 */ 943 if (unlikely(__PageMovable(page)) && 944 !PageIsolated(page)) { 945 if (locked) { 946 spin_unlock_irqrestore(&pgdat->lru_lock, 947 flags); 948 locked = false; 949 } 950 951 if (!isolate_movable_page(page, isolate_mode)) 952 goto isolate_success; 953 } 954 955 goto isolate_fail; 956 } 957 958 /* 959 * Migration will fail if an anonymous page is pinned in memory, 960 * so avoid taking lru_lock and isolating it unnecessarily in an 961 * admittedly racy check. 962 */ 963 if (!page_mapping(page) && 964 page_count(page) > page_mapcount(page)) 965 goto isolate_fail; 966 967 /* 968 * Only allow to migrate anonymous pages in GFP_NOFS context 969 * because those do not depend on fs locks. 970 */ 971 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 972 goto isolate_fail; 973 974 /* If we already hold the lock, we can skip some rechecking */ 975 if (!locked) { 976 locked = compact_lock_irqsave(&pgdat->lru_lock, 977 &flags, cc); 978 979 /* Try get exclusive access under lock */ 980 if (!skip_updated) { 981 skip_updated = true; 982 if (test_and_set_skip(cc, page, low_pfn)) 983 goto isolate_abort; 984 } 985 986 /* Recheck PageLRU and PageCompound under lock */ 987 if (!PageLRU(page)) 988 goto isolate_fail; 989 990 /* 991 * Page become compound since the non-locked check, 992 * and it's on LRU. It can only be a THP so the order 993 * is safe to read and it's 0 for tail pages. 994 */ 995 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 996 low_pfn += compound_nr(page) - 1; 997 goto isolate_fail; 998 } 999 } 1000 1001 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1002 1003 /* Try isolate the page */ 1004 if (__isolate_lru_page(page, isolate_mode) != 0) 1005 goto isolate_fail; 1006 1007 /* The whole page is taken off the LRU; skip the tail pages. */ 1008 if (PageCompound(page)) 1009 low_pfn += compound_nr(page) - 1; 1010 1011 /* Successfully isolated */ 1012 del_page_from_lru_list(page, lruvec, page_lru(page)); 1013 mod_node_page_state(page_pgdat(page), 1014 NR_ISOLATED_ANON + page_is_file_lru(page), 1015 thp_nr_pages(page)); 1016 1017 isolate_success: 1018 list_add(&page->lru, &cc->migratepages); 1019 cc->nr_migratepages += compound_nr(page); 1020 nr_isolated += compound_nr(page); 1021 1022 /* 1023 * Avoid isolating too much unless this block is being 1024 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1025 * or a lock is contended. For contention, isolate quickly to 1026 * potentially remove one source of contention. 1027 */ 1028 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1029 !cc->rescan && !cc->contended) { 1030 ++low_pfn; 1031 break; 1032 } 1033 1034 continue; 1035 isolate_fail: 1036 if (!skip_on_failure) 1037 continue; 1038 1039 /* 1040 * We have isolated some pages, but then failed. Release them 1041 * instead of migrating, as we cannot form the cc->order buddy 1042 * page anyway. 1043 */ 1044 if (nr_isolated) { 1045 if (locked) { 1046 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1047 locked = false; 1048 } 1049 putback_movable_pages(&cc->migratepages); 1050 cc->nr_migratepages = 0; 1051 nr_isolated = 0; 1052 } 1053 1054 if (low_pfn < next_skip_pfn) { 1055 low_pfn = next_skip_pfn - 1; 1056 /* 1057 * The check near the loop beginning would have updated 1058 * next_skip_pfn too, but this is a bit simpler. 1059 */ 1060 next_skip_pfn += 1UL << cc->order; 1061 } 1062 } 1063 1064 /* 1065 * The PageBuddy() check could have potentially brought us outside 1066 * the range to be scanned. 1067 */ 1068 if (unlikely(low_pfn > end_pfn)) 1069 low_pfn = end_pfn; 1070 1071 isolate_abort: 1072 if (locked) 1073 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1074 1075 /* 1076 * Updated the cached scanner pfn once the pageblock has been scanned 1077 * Pages will either be migrated in which case there is no point 1078 * scanning in the near future or migration failed in which case the 1079 * failure reason may persist. The block is marked for skipping if 1080 * there were no pages isolated in the block or if the block is 1081 * rescanned twice in a row. 1082 */ 1083 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1084 if (valid_page && !skip_updated) 1085 set_pageblock_skip(valid_page); 1086 update_cached_migrate(cc, low_pfn); 1087 } 1088 1089 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1090 nr_scanned, nr_isolated); 1091 1092 fatal_pending: 1093 cc->total_migrate_scanned += nr_scanned; 1094 if (nr_isolated) 1095 count_compact_events(COMPACTISOLATED, nr_isolated); 1096 1097 return low_pfn; 1098 } 1099 1100 /** 1101 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1102 * @cc: Compaction control structure. 1103 * @start_pfn: The first PFN to start isolating. 1104 * @end_pfn: The one-past-last PFN. 1105 * 1106 * Returns zero if isolation fails fatally due to e.g. pending signal. 1107 * Otherwise, function returns one-past-the-last PFN of isolated page 1108 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1109 */ 1110 unsigned long 1111 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1112 unsigned long end_pfn) 1113 { 1114 unsigned long pfn, block_start_pfn, block_end_pfn; 1115 1116 /* Scan block by block. First and last block may be incomplete */ 1117 pfn = start_pfn; 1118 block_start_pfn = pageblock_start_pfn(pfn); 1119 if (block_start_pfn < cc->zone->zone_start_pfn) 1120 block_start_pfn = cc->zone->zone_start_pfn; 1121 block_end_pfn = pageblock_end_pfn(pfn); 1122 1123 for (; pfn < end_pfn; pfn = block_end_pfn, 1124 block_start_pfn = block_end_pfn, 1125 block_end_pfn += pageblock_nr_pages) { 1126 1127 block_end_pfn = min(block_end_pfn, end_pfn); 1128 1129 if (!pageblock_pfn_to_page(block_start_pfn, 1130 block_end_pfn, cc->zone)) 1131 continue; 1132 1133 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1134 ISOLATE_UNEVICTABLE); 1135 1136 if (!pfn) 1137 break; 1138 1139 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1140 break; 1141 } 1142 1143 return pfn; 1144 } 1145 1146 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1147 #ifdef CONFIG_COMPACTION 1148 1149 static bool suitable_migration_source(struct compact_control *cc, 1150 struct page *page) 1151 { 1152 int block_mt; 1153 1154 if (pageblock_skip_persistent(page)) 1155 return false; 1156 1157 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1158 return true; 1159 1160 block_mt = get_pageblock_migratetype(page); 1161 1162 if (cc->migratetype == MIGRATE_MOVABLE) 1163 return is_migrate_movable(block_mt); 1164 else 1165 return block_mt == cc->migratetype; 1166 } 1167 1168 /* Returns true if the page is within a block suitable for migration to */ 1169 static bool suitable_migration_target(struct compact_control *cc, 1170 struct page *page) 1171 { 1172 /* If the page is a large free page, then disallow migration */ 1173 if (PageBuddy(page)) { 1174 /* 1175 * We are checking page_order without zone->lock taken. But 1176 * the only small danger is that we skip a potentially suitable 1177 * pageblock, so it's not worth to check order for valid range. 1178 */ 1179 if (buddy_order_unsafe(page) >= pageblock_order) 1180 return false; 1181 } 1182 1183 if (cc->ignore_block_suitable) 1184 return true; 1185 1186 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1187 if (is_migrate_movable(get_pageblock_migratetype(page))) 1188 return true; 1189 1190 /* Otherwise skip the block */ 1191 return false; 1192 } 1193 1194 static inline unsigned int 1195 freelist_scan_limit(struct compact_control *cc) 1196 { 1197 unsigned short shift = BITS_PER_LONG - 1; 1198 1199 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1200 } 1201 1202 /* 1203 * Test whether the free scanner has reached the same or lower pageblock than 1204 * the migration scanner, and compaction should thus terminate. 1205 */ 1206 static inline bool compact_scanners_met(struct compact_control *cc) 1207 { 1208 return (cc->free_pfn >> pageblock_order) 1209 <= (cc->migrate_pfn >> pageblock_order); 1210 } 1211 1212 /* 1213 * Used when scanning for a suitable migration target which scans freelists 1214 * in reverse. Reorders the list such as the unscanned pages are scanned 1215 * first on the next iteration of the free scanner 1216 */ 1217 static void 1218 move_freelist_head(struct list_head *freelist, struct page *freepage) 1219 { 1220 LIST_HEAD(sublist); 1221 1222 if (!list_is_last(freelist, &freepage->lru)) { 1223 list_cut_before(&sublist, freelist, &freepage->lru); 1224 if (!list_empty(&sublist)) 1225 list_splice_tail(&sublist, freelist); 1226 } 1227 } 1228 1229 /* 1230 * Similar to move_freelist_head except used by the migration scanner 1231 * when scanning forward. It's possible for these list operations to 1232 * move against each other if they search the free list exactly in 1233 * lockstep. 1234 */ 1235 static void 1236 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1237 { 1238 LIST_HEAD(sublist); 1239 1240 if (!list_is_first(freelist, &freepage->lru)) { 1241 list_cut_position(&sublist, freelist, &freepage->lru); 1242 if (!list_empty(&sublist)) 1243 list_splice_tail(&sublist, freelist); 1244 } 1245 } 1246 1247 static void 1248 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1249 { 1250 unsigned long start_pfn, end_pfn; 1251 struct page *page = pfn_to_page(pfn); 1252 1253 /* Do not search around if there are enough pages already */ 1254 if (cc->nr_freepages >= cc->nr_migratepages) 1255 return; 1256 1257 /* Minimise scanning during async compaction */ 1258 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1259 return; 1260 1261 /* Pageblock boundaries */ 1262 start_pfn = pageblock_start_pfn(pfn); 1263 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1264 1265 /* Scan before */ 1266 if (start_pfn != pfn) { 1267 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1268 if (cc->nr_freepages >= cc->nr_migratepages) 1269 return; 1270 } 1271 1272 /* Scan after */ 1273 start_pfn = pfn + nr_isolated; 1274 if (start_pfn < end_pfn) 1275 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1276 1277 /* Skip this pageblock in the future as it's full or nearly full */ 1278 if (cc->nr_freepages < cc->nr_migratepages) 1279 set_pageblock_skip(page); 1280 } 1281 1282 /* Search orders in round-robin fashion */ 1283 static int next_search_order(struct compact_control *cc, int order) 1284 { 1285 order--; 1286 if (order < 0) 1287 order = cc->order - 1; 1288 1289 /* Search wrapped around? */ 1290 if (order == cc->search_order) { 1291 cc->search_order--; 1292 if (cc->search_order < 0) 1293 cc->search_order = cc->order - 1; 1294 return -1; 1295 } 1296 1297 return order; 1298 } 1299 1300 static unsigned long 1301 fast_isolate_freepages(struct compact_control *cc) 1302 { 1303 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1304 unsigned int nr_scanned = 0; 1305 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1306 unsigned long nr_isolated = 0; 1307 unsigned long distance; 1308 struct page *page = NULL; 1309 bool scan_start = false; 1310 int order; 1311 1312 /* Full compaction passes in a negative order */ 1313 if (cc->order <= 0) 1314 return cc->free_pfn; 1315 1316 /* 1317 * If starting the scan, use a deeper search and use the highest 1318 * PFN found if a suitable one is not found. 1319 */ 1320 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1321 limit = pageblock_nr_pages >> 1; 1322 scan_start = true; 1323 } 1324 1325 /* 1326 * Preferred point is in the top quarter of the scan space but take 1327 * a pfn from the top half if the search is problematic. 1328 */ 1329 distance = (cc->free_pfn - cc->migrate_pfn); 1330 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1331 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1332 1333 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1334 low_pfn = min_pfn; 1335 1336 /* 1337 * Search starts from the last successful isolation order or the next 1338 * order to search after a previous failure 1339 */ 1340 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1341 1342 for (order = cc->search_order; 1343 !page && order >= 0; 1344 order = next_search_order(cc, order)) { 1345 struct free_area *area = &cc->zone->free_area[order]; 1346 struct list_head *freelist; 1347 struct page *freepage; 1348 unsigned long flags; 1349 unsigned int order_scanned = 0; 1350 1351 if (!area->nr_free) 1352 continue; 1353 1354 spin_lock_irqsave(&cc->zone->lock, flags); 1355 freelist = &area->free_list[MIGRATE_MOVABLE]; 1356 list_for_each_entry_reverse(freepage, freelist, lru) { 1357 unsigned long pfn; 1358 1359 order_scanned++; 1360 nr_scanned++; 1361 pfn = page_to_pfn(freepage); 1362 1363 if (pfn >= highest) 1364 highest = pageblock_start_pfn(pfn); 1365 1366 if (pfn >= low_pfn) { 1367 cc->fast_search_fail = 0; 1368 cc->search_order = order; 1369 page = freepage; 1370 break; 1371 } 1372 1373 if (pfn >= min_pfn && pfn > high_pfn) { 1374 high_pfn = pfn; 1375 1376 /* Shorten the scan if a candidate is found */ 1377 limit >>= 1; 1378 } 1379 1380 if (order_scanned >= limit) 1381 break; 1382 } 1383 1384 /* Use a minimum pfn if a preferred one was not found */ 1385 if (!page && high_pfn) { 1386 page = pfn_to_page(high_pfn); 1387 1388 /* Update freepage for the list reorder below */ 1389 freepage = page; 1390 } 1391 1392 /* Reorder to so a future search skips recent pages */ 1393 move_freelist_head(freelist, freepage); 1394 1395 /* Isolate the page if available */ 1396 if (page) { 1397 if (__isolate_free_page(page, order)) { 1398 set_page_private(page, order); 1399 nr_isolated = 1 << order; 1400 cc->nr_freepages += nr_isolated; 1401 list_add_tail(&page->lru, &cc->freepages); 1402 count_compact_events(COMPACTISOLATED, nr_isolated); 1403 } else { 1404 /* If isolation fails, abort the search */ 1405 order = cc->search_order + 1; 1406 page = NULL; 1407 } 1408 } 1409 1410 spin_unlock_irqrestore(&cc->zone->lock, flags); 1411 1412 /* 1413 * Smaller scan on next order so the total scan ig related 1414 * to freelist_scan_limit. 1415 */ 1416 if (order_scanned >= limit) 1417 limit = min(1U, limit >> 1); 1418 } 1419 1420 if (!page) { 1421 cc->fast_search_fail++; 1422 if (scan_start) { 1423 /* 1424 * Use the highest PFN found above min. If one was 1425 * not found, be pessimistic for direct compaction 1426 * and use the min mark. 1427 */ 1428 if (highest) { 1429 page = pfn_to_page(highest); 1430 cc->free_pfn = highest; 1431 } else { 1432 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1433 page = pageblock_pfn_to_page(min_pfn, 1434 pageblock_end_pfn(min_pfn), 1435 cc->zone); 1436 cc->free_pfn = min_pfn; 1437 } 1438 } 1439 } 1440 } 1441 1442 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1443 highest -= pageblock_nr_pages; 1444 cc->zone->compact_cached_free_pfn = highest; 1445 } 1446 1447 cc->total_free_scanned += nr_scanned; 1448 if (!page) 1449 return cc->free_pfn; 1450 1451 low_pfn = page_to_pfn(page); 1452 fast_isolate_around(cc, low_pfn, nr_isolated); 1453 return low_pfn; 1454 } 1455 1456 /* 1457 * Based on information in the current compact_control, find blocks 1458 * suitable for isolating free pages from and then isolate them. 1459 */ 1460 static void isolate_freepages(struct compact_control *cc) 1461 { 1462 struct zone *zone = cc->zone; 1463 struct page *page; 1464 unsigned long block_start_pfn; /* start of current pageblock */ 1465 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1466 unsigned long block_end_pfn; /* end of current pageblock */ 1467 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1468 struct list_head *freelist = &cc->freepages; 1469 unsigned int stride; 1470 1471 /* Try a small search of the free lists for a candidate */ 1472 isolate_start_pfn = fast_isolate_freepages(cc); 1473 if (cc->nr_freepages) 1474 goto splitmap; 1475 1476 /* 1477 * Initialise the free scanner. The starting point is where we last 1478 * successfully isolated from, zone-cached value, or the end of the 1479 * zone when isolating for the first time. For looping we also need 1480 * this pfn aligned down to the pageblock boundary, because we do 1481 * block_start_pfn -= pageblock_nr_pages in the for loop. 1482 * For ending point, take care when isolating in last pageblock of a 1483 * zone which ends in the middle of a pageblock. 1484 * The low boundary is the end of the pageblock the migration scanner 1485 * is using. 1486 */ 1487 isolate_start_pfn = cc->free_pfn; 1488 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1489 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1490 zone_end_pfn(zone)); 1491 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1492 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1493 1494 /* 1495 * Isolate free pages until enough are available to migrate the 1496 * pages on cc->migratepages. We stop searching if the migrate 1497 * and free page scanners meet or enough free pages are isolated. 1498 */ 1499 for (; block_start_pfn >= low_pfn; 1500 block_end_pfn = block_start_pfn, 1501 block_start_pfn -= pageblock_nr_pages, 1502 isolate_start_pfn = block_start_pfn) { 1503 unsigned long nr_isolated; 1504 1505 /* 1506 * This can iterate a massively long zone without finding any 1507 * suitable migration targets, so periodically check resched. 1508 */ 1509 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1510 cond_resched(); 1511 1512 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1513 zone); 1514 if (!page) 1515 continue; 1516 1517 /* Check the block is suitable for migration */ 1518 if (!suitable_migration_target(cc, page)) 1519 continue; 1520 1521 /* If isolation recently failed, do not retry */ 1522 if (!isolation_suitable(cc, page)) 1523 continue; 1524 1525 /* Found a block suitable for isolating free pages from. */ 1526 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1527 block_end_pfn, freelist, stride, false); 1528 1529 /* Update the skip hint if the full pageblock was scanned */ 1530 if (isolate_start_pfn == block_end_pfn) 1531 update_pageblock_skip(cc, page, block_start_pfn); 1532 1533 /* Are enough freepages isolated? */ 1534 if (cc->nr_freepages >= cc->nr_migratepages) { 1535 if (isolate_start_pfn >= block_end_pfn) { 1536 /* 1537 * Restart at previous pageblock if more 1538 * freepages can be isolated next time. 1539 */ 1540 isolate_start_pfn = 1541 block_start_pfn - pageblock_nr_pages; 1542 } 1543 break; 1544 } else if (isolate_start_pfn < block_end_pfn) { 1545 /* 1546 * If isolation failed early, do not continue 1547 * needlessly. 1548 */ 1549 break; 1550 } 1551 1552 /* Adjust stride depending on isolation */ 1553 if (nr_isolated) { 1554 stride = 1; 1555 continue; 1556 } 1557 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1558 } 1559 1560 /* 1561 * Record where the free scanner will restart next time. Either we 1562 * broke from the loop and set isolate_start_pfn based on the last 1563 * call to isolate_freepages_block(), or we met the migration scanner 1564 * and the loop terminated due to isolate_start_pfn < low_pfn 1565 */ 1566 cc->free_pfn = isolate_start_pfn; 1567 1568 splitmap: 1569 /* __isolate_free_page() does not map the pages */ 1570 split_map_pages(freelist); 1571 } 1572 1573 /* 1574 * This is a migrate-callback that "allocates" freepages by taking pages 1575 * from the isolated freelists in the block we are migrating to. 1576 */ 1577 static struct page *compaction_alloc(struct page *migratepage, 1578 unsigned long data) 1579 { 1580 struct compact_control *cc = (struct compact_control *)data; 1581 struct page *freepage; 1582 1583 if (list_empty(&cc->freepages)) { 1584 isolate_freepages(cc); 1585 1586 if (list_empty(&cc->freepages)) 1587 return NULL; 1588 } 1589 1590 freepage = list_entry(cc->freepages.next, struct page, lru); 1591 list_del(&freepage->lru); 1592 cc->nr_freepages--; 1593 1594 return freepage; 1595 } 1596 1597 /* 1598 * This is a migrate-callback that "frees" freepages back to the isolated 1599 * freelist. All pages on the freelist are from the same zone, so there is no 1600 * special handling needed for NUMA. 1601 */ 1602 static void compaction_free(struct page *page, unsigned long data) 1603 { 1604 struct compact_control *cc = (struct compact_control *)data; 1605 1606 list_add(&page->lru, &cc->freepages); 1607 cc->nr_freepages++; 1608 } 1609 1610 /* possible outcome of isolate_migratepages */ 1611 typedef enum { 1612 ISOLATE_ABORT, /* Abort compaction now */ 1613 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1614 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1615 } isolate_migrate_t; 1616 1617 /* 1618 * Allow userspace to control policy on scanning the unevictable LRU for 1619 * compactable pages. 1620 */ 1621 #ifdef CONFIG_PREEMPT_RT 1622 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1623 #else 1624 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1625 #endif 1626 1627 static inline void 1628 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1629 { 1630 if (cc->fast_start_pfn == ULONG_MAX) 1631 return; 1632 1633 if (!cc->fast_start_pfn) 1634 cc->fast_start_pfn = pfn; 1635 1636 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1637 } 1638 1639 static inline unsigned long 1640 reinit_migrate_pfn(struct compact_control *cc) 1641 { 1642 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1643 return cc->migrate_pfn; 1644 1645 cc->migrate_pfn = cc->fast_start_pfn; 1646 cc->fast_start_pfn = ULONG_MAX; 1647 1648 return cc->migrate_pfn; 1649 } 1650 1651 /* 1652 * Briefly search the free lists for a migration source that already has 1653 * some free pages to reduce the number of pages that need migration 1654 * before a pageblock is free. 1655 */ 1656 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1657 { 1658 unsigned int limit = freelist_scan_limit(cc); 1659 unsigned int nr_scanned = 0; 1660 unsigned long distance; 1661 unsigned long pfn = cc->migrate_pfn; 1662 unsigned long high_pfn; 1663 int order; 1664 1665 /* Skip hints are relied on to avoid repeats on the fast search */ 1666 if (cc->ignore_skip_hint) 1667 return pfn; 1668 1669 /* 1670 * If the migrate_pfn is not at the start of a zone or the start 1671 * of a pageblock then assume this is a continuation of a previous 1672 * scan restarted due to COMPACT_CLUSTER_MAX. 1673 */ 1674 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1675 return pfn; 1676 1677 /* 1678 * For smaller orders, just linearly scan as the number of pages 1679 * to migrate should be relatively small and does not necessarily 1680 * justify freeing up a large block for a small allocation. 1681 */ 1682 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1683 return pfn; 1684 1685 /* 1686 * Only allow kcompactd and direct requests for movable pages to 1687 * quickly clear out a MOVABLE pageblock for allocation. This 1688 * reduces the risk that a large movable pageblock is freed for 1689 * an unmovable/reclaimable small allocation. 1690 */ 1691 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1692 return pfn; 1693 1694 /* 1695 * When starting the migration scanner, pick any pageblock within the 1696 * first half of the search space. Otherwise try and pick a pageblock 1697 * within the first eighth to reduce the chances that a migration 1698 * target later becomes a source. 1699 */ 1700 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1701 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1702 distance >>= 2; 1703 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1704 1705 for (order = cc->order - 1; 1706 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1707 order--) { 1708 struct free_area *area = &cc->zone->free_area[order]; 1709 struct list_head *freelist; 1710 unsigned long flags; 1711 struct page *freepage; 1712 1713 if (!area->nr_free) 1714 continue; 1715 1716 spin_lock_irqsave(&cc->zone->lock, flags); 1717 freelist = &area->free_list[MIGRATE_MOVABLE]; 1718 list_for_each_entry(freepage, freelist, lru) { 1719 unsigned long free_pfn; 1720 1721 nr_scanned++; 1722 free_pfn = page_to_pfn(freepage); 1723 if (free_pfn < high_pfn) { 1724 /* 1725 * Avoid if skipped recently. Ideally it would 1726 * move to the tail but even safe iteration of 1727 * the list assumes an entry is deleted, not 1728 * reordered. 1729 */ 1730 if (get_pageblock_skip(freepage)) { 1731 if (list_is_last(freelist, &freepage->lru)) 1732 break; 1733 1734 continue; 1735 } 1736 1737 /* Reorder to so a future search skips recent pages */ 1738 move_freelist_tail(freelist, freepage); 1739 1740 update_fast_start_pfn(cc, free_pfn); 1741 pfn = pageblock_start_pfn(free_pfn); 1742 cc->fast_search_fail = 0; 1743 set_pageblock_skip(freepage); 1744 break; 1745 } 1746 1747 if (nr_scanned >= limit) { 1748 cc->fast_search_fail++; 1749 move_freelist_tail(freelist, freepage); 1750 break; 1751 } 1752 } 1753 spin_unlock_irqrestore(&cc->zone->lock, flags); 1754 } 1755 1756 cc->total_migrate_scanned += nr_scanned; 1757 1758 /* 1759 * If fast scanning failed then use a cached entry for a page block 1760 * that had free pages as the basis for starting a linear scan. 1761 */ 1762 if (pfn == cc->migrate_pfn) 1763 pfn = reinit_migrate_pfn(cc); 1764 1765 return pfn; 1766 } 1767 1768 /* 1769 * Isolate all pages that can be migrated from the first suitable block, 1770 * starting at the block pointed to by the migrate scanner pfn within 1771 * compact_control. 1772 */ 1773 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1774 { 1775 unsigned long block_start_pfn; 1776 unsigned long block_end_pfn; 1777 unsigned long low_pfn; 1778 struct page *page; 1779 const isolate_mode_t isolate_mode = 1780 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1781 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1782 bool fast_find_block; 1783 1784 /* 1785 * Start at where we last stopped, or beginning of the zone as 1786 * initialized by compact_zone(). The first failure will use 1787 * the lowest PFN as the starting point for linear scanning. 1788 */ 1789 low_pfn = fast_find_migrateblock(cc); 1790 block_start_pfn = pageblock_start_pfn(low_pfn); 1791 if (block_start_pfn < cc->zone->zone_start_pfn) 1792 block_start_pfn = cc->zone->zone_start_pfn; 1793 1794 /* 1795 * fast_find_migrateblock marks a pageblock skipped so to avoid 1796 * the isolation_suitable check below, check whether the fast 1797 * search was successful. 1798 */ 1799 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1800 1801 /* Only scan within a pageblock boundary */ 1802 block_end_pfn = pageblock_end_pfn(low_pfn); 1803 1804 /* 1805 * Iterate over whole pageblocks until we find the first suitable. 1806 * Do not cross the free scanner. 1807 */ 1808 for (; block_end_pfn <= cc->free_pfn; 1809 fast_find_block = false, 1810 low_pfn = block_end_pfn, 1811 block_start_pfn = block_end_pfn, 1812 block_end_pfn += pageblock_nr_pages) { 1813 1814 /* 1815 * This can potentially iterate a massively long zone with 1816 * many pageblocks unsuitable, so periodically check if we 1817 * need to schedule. 1818 */ 1819 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1820 cond_resched(); 1821 1822 page = pageblock_pfn_to_page(block_start_pfn, 1823 block_end_pfn, cc->zone); 1824 if (!page) 1825 continue; 1826 1827 /* 1828 * If isolation recently failed, do not retry. Only check the 1829 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1830 * to be visited multiple times. Assume skip was checked 1831 * before making it "skip" so other compaction instances do 1832 * not scan the same block. 1833 */ 1834 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1835 !fast_find_block && !isolation_suitable(cc, page)) 1836 continue; 1837 1838 /* 1839 * For async compaction, also only scan in MOVABLE blocks 1840 * without huge pages. Async compaction is optimistic to see 1841 * if the minimum amount of work satisfies the allocation. 1842 * The cached PFN is updated as it's possible that all 1843 * remaining blocks between source and target are unsuitable 1844 * and the compaction scanners fail to meet. 1845 */ 1846 if (!suitable_migration_source(cc, page)) { 1847 update_cached_migrate(cc, block_end_pfn); 1848 continue; 1849 } 1850 1851 /* Perform the isolation */ 1852 low_pfn = isolate_migratepages_block(cc, low_pfn, 1853 block_end_pfn, isolate_mode); 1854 1855 if (!low_pfn) 1856 return ISOLATE_ABORT; 1857 1858 /* 1859 * Either we isolated something and proceed with migration. Or 1860 * we failed and compact_zone should decide if we should 1861 * continue or not. 1862 */ 1863 break; 1864 } 1865 1866 /* Record where migration scanner will be restarted. */ 1867 cc->migrate_pfn = low_pfn; 1868 1869 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1870 } 1871 1872 /* 1873 * order == -1 is expected when compacting via 1874 * /proc/sys/vm/compact_memory 1875 */ 1876 static inline bool is_via_compact_memory(int order) 1877 { 1878 return order == -1; 1879 } 1880 1881 static bool kswapd_is_running(pg_data_t *pgdat) 1882 { 1883 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1884 } 1885 1886 /* 1887 * A zone's fragmentation score is the external fragmentation wrt to the 1888 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1889 * in the range [0, 100]. 1890 * 1891 * The scaling factor ensures that proactive compaction focuses on larger 1892 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1893 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1894 * and thus never exceeds the high threshold for proactive compaction. 1895 */ 1896 static unsigned int fragmentation_score_zone(struct zone *zone) 1897 { 1898 unsigned long score; 1899 1900 score = zone->present_pages * 1901 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1902 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1903 } 1904 1905 /* 1906 * The per-node proactive (background) compaction process is started by its 1907 * corresponding kcompactd thread when the node's fragmentation score 1908 * exceeds the high threshold. The compaction process remains active till 1909 * the node's score falls below the low threshold, or one of the back-off 1910 * conditions is met. 1911 */ 1912 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1913 { 1914 unsigned int score = 0; 1915 int zoneid; 1916 1917 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1918 struct zone *zone; 1919 1920 zone = &pgdat->node_zones[zoneid]; 1921 score += fragmentation_score_zone(zone); 1922 } 1923 1924 return score; 1925 } 1926 1927 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1928 { 1929 unsigned int wmark_low; 1930 1931 /* 1932 * Cap the low watermak to avoid excessive compaction 1933 * activity in case a user sets the proactivess tunable 1934 * close to 100 (maximum). 1935 */ 1936 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1937 return low ? wmark_low : min(wmark_low + 10, 100U); 1938 } 1939 1940 static bool should_proactive_compact_node(pg_data_t *pgdat) 1941 { 1942 int wmark_high; 1943 1944 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1945 return false; 1946 1947 wmark_high = fragmentation_score_wmark(pgdat, false); 1948 return fragmentation_score_node(pgdat) > wmark_high; 1949 } 1950 1951 static enum compact_result __compact_finished(struct compact_control *cc) 1952 { 1953 unsigned int order; 1954 const int migratetype = cc->migratetype; 1955 int ret; 1956 1957 /* Compaction run completes if the migrate and free scanner meet */ 1958 if (compact_scanners_met(cc)) { 1959 /* Let the next compaction start anew. */ 1960 reset_cached_positions(cc->zone); 1961 1962 /* 1963 * Mark that the PG_migrate_skip information should be cleared 1964 * by kswapd when it goes to sleep. kcompactd does not set the 1965 * flag itself as the decision to be clear should be directly 1966 * based on an allocation request. 1967 */ 1968 if (cc->direct_compaction) 1969 cc->zone->compact_blockskip_flush = true; 1970 1971 if (cc->whole_zone) 1972 return COMPACT_COMPLETE; 1973 else 1974 return COMPACT_PARTIAL_SKIPPED; 1975 } 1976 1977 if (cc->proactive_compaction) { 1978 int score, wmark_low; 1979 pg_data_t *pgdat; 1980 1981 pgdat = cc->zone->zone_pgdat; 1982 if (kswapd_is_running(pgdat)) 1983 return COMPACT_PARTIAL_SKIPPED; 1984 1985 score = fragmentation_score_zone(cc->zone); 1986 wmark_low = fragmentation_score_wmark(pgdat, true); 1987 1988 if (score > wmark_low) 1989 ret = COMPACT_CONTINUE; 1990 else 1991 ret = COMPACT_SUCCESS; 1992 1993 goto out; 1994 } 1995 1996 if (is_via_compact_memory(cc->order)) 1997 return COMPACT_CONTINUE; 1998 1999 /* 2000 * Always finish scanning a pageblock to reduce the possibility of 2001 * fallbacks in the future. This is particularly important when 2002 * migration source is unmovable/reclaimable but it's not worth 2003 * special casing. 2004 */ 2005 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2006 return COMPACT_CONTINUE; 2007 2008 /* Direct compactor: Is a suitable page free? */ 2009 ret = COMPACT_NO_SUITABLE_PAGE; 2010 for (order = cc->order; order < MAX_ORDER; order++) { 2011 struct free_area *area = &cc->zone->free_area[order]; 2012 bool can_steal; 2013 2014 /* Job done if page is free of the right migratetype */ 2015 if (!free_area_empty(area, migratetype)) 2016 return COMPACT_SUCCESS; 2017 2018 #ifdef CONFIG_CMA 2019 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2020 if (migratetype == MIGRATE_MOVABLE && 2021 !free_area_empty(area, MIGRATE_CMA)) 2022 return COMPACT_SUCCESS; 2023 #endif 2024 /* 2025 * Job done if allocation would steal freepages from 2026 * other migratetype buddy lists. 2027 */ 2028 if (find_suitable_fallback(area, order, migratetype, 2029 true, &can_steal) != -1) { 2030 2031 /* movable pages are OK in any pageblock */ 2032 if (migratetype == MIGRATE_MOVABLE) 2033 return COMPACT_SUCCESS; 2034 2035 /* 2036 * We are stealing for a non-movable allocation. Make 2037 * sure we finish compacting the current pageblock 2038 * first so it is as free as possible and we won't 2039 * have to steal another one soon. This only applies 2040 * to sync compaction, as async compaction operates 2041 * on pageblocks of the same migratetype. 2042 */ 2043 if (cc->mode == MIGRATE_ASYNC || 2044 IS_ALIGNED(cc->migrate_pfn, 2045 pageblock_nr_pages)) { 2046 return COMPACT_SUCCESS; 2047 } 2048 2049 ret = COMPACT_CONTINUE; 2050 break; 2051 } 2052 } 2053 2054 out: 2055 if (cc->contended || fatal_signal_pending(current)) 2056 ret = COMPACT_CONTENDED; 2057 2058 return ret; 2059 } 2060 2061 static enum compact_result compact_finished(struct compact_control *cc) 2062 { 2063 int ret; 2064 2065 ret = __compact_finished(cc); 2066 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2067 if (ret == COMPACT_NO_SUITABLE_PAGE) 2068 ret = COMPACT_CONTINUE; 2069 2070 return ret; 2071 } 2072 2073 /* 2074 * compaction_suitable: Is this suitable to run compaction on this zone now? 2075 * Returns 2076 * COMPACT_SKIPPED - If there are too few free pages for compaction 2077 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2078 * COMPACT_CONTINUE - If compaction should run now 2079 */ 2080 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2081 unsigned int alloc_flags, 2082 int highest_zoneidx, 2083 unsigned long wmark_target) 2084 { 2085 unsigned long watermark; 2086 2087 if (is_via_compact_memory(order)) 2088 return COMPACT_CONTINUE; 2089 2090 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2091 /* 2092 * If watermarks for high-order allocation are already met, there 2093 * should be no need for compaction at all. 2094 */ 2095 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2096 alloc_flags)) 2097 return COMPACT_SUCCESS; 2098 2099 /* 2100 * Watermarks for order-0 must be met for compaction to be able to 2101 * isolate free pages for migration targets. This means that the 2102 * watermark and alloc_flags have to match, or be more pessimistic than 2103 * the check in __isolate_free_page(). We don't use the direct 2104 * compactor's alloc_flags, as they are not relevant for freepage 2105 * isolation. We however do use the direct compactor's highest_zoneidx 2106 * to skip over zones where lowmem reserves would prevent allocation 2107 * even if compaction succeeds. 2108 * For costly orders, we require low watermark instead of min for 2109 * compaction to proceed to increase its chances. 2110 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2111 * suitable migration targets 2112 */ 2113 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2114 low_wmark_pages(zone) : min_wmark_pages(zone); 2115 watermark += compact_gap(order); 2116 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2117 ALLOC_CMA, wmark_target)) 2118 return COMPACT_SKIPPED; 2119 2120 return COMPACT_CONTINUE; 2121 } 2122 2123 enum compact_result compaction_suitable(struct zone *zone, int order, 2124 unsigned int alloc_flags, 2125 int highest_zoneidx) 2126 { 2127 enum compact_result ret; 2128 int fragindex; 2129 2130 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2131 zone_page_state(zone, NR_FREE_PAGES)); 2132 /* 2133 * fragmentation index determines if allocation failures are due to 2134 * low memory or external fragmentation 2135 * 2136 * index of -1000 would imply allocations might succeed depending on 2137 * watermarks, but we already failed the high-order watermark check 2138 * index towards 0 implies failure is due to lack of memory 2139 * index towards 1000 implies failure is due to fragmentation 2140 * 2141 * Only compact if a failure would be due to fragmentation. Also 2142 * ignore fragindex for non-costly orders where the alternative to 2143 * a successful reclaim/compaction is OOM. Fragindex and the 2144 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2145 * excessive compaction for costly orders, but it should not be at the 2146 * expense of system stability. 2147 */ 2148 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2149 fragindex = fragmentation_index(zone, order); 2150 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2151 ret = COMPACT_NOT_SUITABLE_ZONE; 2152 } 2153 2154 trace_mm_compaction_suitable(zone, order, ret); 2155 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2156 ret = COMPACT_SKIPPED; 2157 2158 return ret; 2159 } 2160 2161 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2162 int alloc_flags) 2163 { 2164 struct zone *zone; 2165 struct zoneref *z; 2166 2167 /* 2168 * Make sure at least one zone would pass __compaction_suitable if we continue 2169 * retrying the reclaim. 2170 */ 2171 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2172 ac->highest_zoneidx, ac->nodemask) { 2173 unsigned long available; 2174 enum compact_result compact_result; 2175 2176 /* 2177 * Do not consider all the reclaimable memory because we do not 2178 * want to trash just for a single high order allocation which 2179 * is even not guaranteed to appear even if __compaction_suitable 2180 * is happy about the watermark check. 2181 */ 2182 available = zone_reclaimable_pages(zone) / order; 2183 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2184 compact_result = __compaction_suitable(zone, order, alloc_flags, 2185 ac->highest_zoneidx, available); 2186 if (compact_result != COMPACT_SKIPPED) 2187 return true; 2188 } 2189 2190 return false; 2191 } 2192 2193 static enum compact_result 2194 compact_zone(struct compact_control *cc, struct capture_control *capc) 2195 { 2196 enum compact_result ret; 2197 unsigned long start_pfn = cc->zone->zone_start_pfn; 2198 unsigned long end_pfn = zone_end_pfn(cc->zone); 2199 unsigned long last_migrated_pfn; 2200 const bool sync = cc->mode != MIGRATE_ASYNC; 2201 bool update_cached; 2202 2203 /* 2204 * These counters track activities during zone compaction. Initialize 2205 * them before compacting a new zone. 2206 */ 2207 cc->total_migrate_scanned = 0; 2208 cc->total_free_scanned = 0; 2209 cc->nr_migratepages = 0; 2210 cc->nr_freepages = 0; 2211 INIT_LIST_HEAD(&cc->freepages); 2212 INIT_LIST_HEAD(&cc->migratepages); 2213 2214 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2215 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2216 cc->highest_zoneidx); 2217 /* Compaction is likely to fail */ 2218 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2219 return ret; 2220 2221 /* huh, compaction_suitable is returning something unexpected */ 2222 VM_BUG_ON(ret != COMPACT_CONTINUE); 2223 2224 /* 2225 * Clear pageblock skip if there were failures recently and compaction 2226 * is about to be retried after being deferred. 2227 */ 2228 if (compaction_restarting(cc->zone, cc->order)) 2229 __reset_isolation_suitable(cc->zone); 2230 2231 /* 2232 * Setup to move all movable pages to the end of the zone. Used cached 2233 * information on where the scanners should start (unless we explicitly 2234 * want to compact the whole zone), but check that it is initialised 2235 * by ensuring the values are within zone boundaries. 2236 */ 2237 cc->fast_start_pfn = 0; 2238 if (cc->whole_zone) { 2239 cc->migrate_pfn = start_pfn; 2240 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2241 } else { 2242 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2243 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2244 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2245 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2246 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2247 } 2248 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2249 cc->migrate_pfn = start_pfn; 2250 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2251 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2252 } 2253 2254 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2255 cc->whole_zone = true; 2256 } 2257 2258 last_migrated_pfn = 0; 2259 2260 /* 2261 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2262 * the basis that some migrations will fail in ASYNC mode. However, 2263 * if the cached PFNs match and pageblocks are skipped due to having 2264 * no isolation candidates, then the sync state does not matter. 2265 * Until a pageblock with isolation candidates is found, keep the 2266 * cached PFNs in sync to avoid revisiting the same blocks. 2267 */ 2268 update_cached = !sync && 2269 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2270 2271 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2272 cc->free_pfn, end_pfn, sync); 2273 2274 migrate_prep_local(); 2275 2276 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2277 int err; 2278 unsigned long start_pfn = cc->migrate_pfn; 2279 2280 /* 2281 * Avoid multiple rescans which can happen if a page cannot be 2282 * isolated (dirty/writeback in async mode) or if the migrated 2283 * pages are being allocated before the pageblock is cleared. 2284 * The first rescan will capture the entire pageblock for 2285 * migration. If it fails, it'll be marked skip and scanning 2286 * will proceed as normal. 2287 */ 2288 cc->rescan = false; 2289 if (pageblock_start_pfn(last_migrated_pfn) == 2290 pageblock_start_pfn(start_pfn)) { 2291 cc->rescan = true; 2292 } 2293 2294 switch (isolate_migratepages(cc)) { 2295 case ISOLATE_ABORT: 2296 ret = COMPACT_CONTENDED; 2297 putback_movable_pages(&cc->migratepages); 2298 cc->nr_migratepages = 0; 2299 goto out; 2300 case ISOLATE_NONE: 2301 if (update_cached) { 2302 cc->zone->compact_cached_migrate_pfn[1] = 2303 cc->zone->compact_cached_migrate_pfn[0]; 2304 } 2305 2306 /* 2307 * We haven't isolated and migrated anything, but 2308 * there might still be unflushed migrations from 2309 * previous cc->order aligned block. 2310 */ 2311 goto check_drain; 2312 case ISOLATE_SUCCESS: 2313 update_cached = false; 2314 last_migrated_pfn = start_pfn; 2315 ; 2316 } 2317 2318 err = migrate_pages(&cc->migratepages, compaction_alloc, 2319 compaction_free, (unsigned long)cc, cc->mode, 2320 MR_COMPACTION); 2321 2322 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2323 &cc->migratepages); 2324 2325 /* All pages were either migrated or will be released */ 2326 cc->nr_migratepages = 0; 2327 if (err) { 2328 putback_movable_pages(&cc->migratepages); 2329 /* 2330 * migrate_pages() may return -ENOMEM when scanners meet 2331 * and we want compact_finished() to detect it 2332 */ 2333 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2334 ret = COMPACT_CONTENDED; 2335 goto out; 2336 } 2337 /* 2338 * We failed to migrate at least one page in the current 2339 * order-aligned block, so skip the rest of it. 2340 */ 2341 if (cc->direct_compaction && 2342 (cc->mode == MIGRATE_ASYNC)) { 2343 cc->migrate_pfn = block_end_pfn( 2344 cc->migrate_pfn - 1, cc->order); 2345 /* Draining pcplists is useless in this case */ 2346 last_migrated_pfn = 0; 2347 } 2348 } 2349 2350 check_drain: 2351 /* 2352 * Has the migration scanner moved away from the previous 2353 * cc->order aligned block where we migrated from? If yes, 2354 * flush the pages that were freed, so that they can merge and 2355 * compact_finished() can detect immediately if allocation 2356 * would succeed. 2357 */ 2358 if (cc->order > 0 && last_migrated_pfn) { 2359 unsigned long current_block_start = 2360 block_start_pfn(cc->migrate_pfn, cc->order); 2361 2362 if (last_migrated_pfn < current_block_start) { 2363 lru_add_drain_cpu_zone(cc->zone); 2364 /* No more flushing until we migrate again */ 2365 last_migrated_pfn = 0; 2366 } 2367 } 2368 2369 /* Stop if a page has been captured */ 2370 if (capc && capc->page) { 2371 ret = COMPACT_SUCCESS; 2372 break; 2373 } 2374 } 2375 2376 out: 2377 /* 2378 * Release free pages and update where the free scanner should restart, 2379 * so we don't leave any returned pages behind in the next attempt. 2380 */ 2381 if (cc->nr_freepages > 0) { 2382 unsigned long free_pfn = release_freepages(&cc->freepages); 2383 2384 cc->nr_freepages = 0; 2385 VM_BUG_ON(free_pfn == 0); 2386 /* The cached pfn is always the first in a pageblock */ 2387 free_pfn = pageblock_start_pfn(free_pfn); 2388 /* 2389 * Only go back, not forward. The cached pfn might have been 2390 * already reset to zone end in compact_finished() 2391 */ 2392 if (free_pfn > cc->zone->compact_cached_free_pfn) 2393 cc->zone->compact_cached_free_pfn = free_pfn; 2394 } 2395 2396 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2397 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2398 2399 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2400 cc->free_pfn, end_pfn, sync, ret); 2401 2402 return ret; 2403 } 2404 2405 static enum compact_result compact_zone_order(struct zone *zone, int order, 2406 gfp_t gfp_mask, enum compact_priority prio, 2407 unsigned int alloc_flags, int highest_zoneidx, 2408 struct page **capture) 2409 { 2410 enum compact_result ret; 2411 struct compact_control cc = { 2412 .order = order, 2413 .search_order = order, 2414 .gfp_mask = gfp_mask, 2415 .zone = zone, 2416 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2417 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2418 .alloc_flags = alloc_flags, 2419 .highest_zoneidx = highest_zoneidx, 2420 .direct_compaction = true, 2421 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2422 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2423 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2424 }; 2425 struct capture_control capc = { 2426 .cc = &cc, 2427 .page = NULL, 2428 }; 2429 2430 /* 2431 * Make sure the structs are really initialized before we expose the 2432 * capture control, in case we are interrupted and the interrupt handler 2433 * frees a page. 2434 */ 2435 barrier(); 2436 WRITE_ONCE(current->capture_control, &capc); 2437 2438 ret = compact_zone(&cc, &capc); 2439 2440 VM_BUG_ON(!list_empty(&cc.freepages)); 2441 VM_BUG_ON(!list_empty(&cc.migratepages)); 2442 2443 /* 2444 * Make sure we hide capture control first before we read the captured 2445 * page pointer, otherwise an interrupt could free and capture a page 2446 * and we would leak it. 2447 */ 2448 WRITE_ONCE(current->capture_control, NULL); 2449 *capture = READ_ONCE(capc.page); 2450 2451 return ret; 2452 } 2453 2454 int sysctl_extfrag_threshold = 500; 2455 2456 /** 2457 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2458 * @gfp_mask: The GFP mask of the current allocation 2459 * @order: The order of the current allocation 2460 * @alloc_flags: The allocation flags of the current allocation 2461 * @ac: The context of current allocation 2462 * @prio: Determines how hard direct compaction should try to succeed 2463 * @capture: Pointer to free page created by compaction will be stored here 2464 * 2465 * This is the main entry point for direct page compaction. 2466 */ 2467 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2468 unsigned int alloc_flags, const struct alloc_context *ac, 2469 enum compact_priority prio, struct page **capture) 2470 { 2471 int may_perform_io = gfp_mask & __GFP_IO; 2472 struct zoneref *z; 2473 struct zone *zone; 2474 enum compact_result rc = COMPACT_SKIPPED; 2475 2476 /* 2477 * Check if the GFP flags allow compaction - GFP_NOIO is really 2478 * tricky context because the migration might require IO 2479 */ 2480 if (!may_perform_io) 2481 return COMPACT_SKIPPED; 2482 2483 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2484 2485 /* Compact each zone in the list */ 2486 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2487 ac->highest_zoneidx, ac->nodemask) { 2488 enum compact_result status; 2489 2490 if (prio > MIN_COMPACT_PRIORITY 2491 && compaction_deferred(zone, order)) { 2492 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2493 continue; 2494 } 2495 2496 status = compact_zone_order(zone, order, gfp_mask, prio, 2497 alloc_flags, ac->highest_zoneidx, capture); 2498 rc = max(status, rc); 2499 2500 /* The allocation should succeed, stop compacting */ 2501 if (status == COMPACT_SUCCESS) { 2502 /* 2503 * We think the allocation will succeed in this zone, 2504 * but it is not certain, hence the false. The caller 2505 * will repeat this with true if allocation indeed 2506 * succeeds in this zone. 2507 */ 2508 compaction_defer_reset(zone, order, false); 2509 2510 break; 2511 } 2512 2513 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2514 status == COMPACT_PARTIAL_SKIPPED)) 2515 /* 2516 * We think that allocation won't succeed in this zone 2517 * so we defer compaction there. If it ends up 2518 * succeeding after all, it will be reset. 2519 */ 2520 defer_compaction(zone, order); 2521 2522 /* 2523 * We might have stopped compacting due to need_resched() in 2524 * async compaction, or due to a fatal signal detected. In that 2525 * case do not try further zones 2526 */ 2527 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2528 || fatal_signal_pending(current)) 2529 break; 2530 } 2531 2532 return rc; 2533 } 2534 2535 /* 2536 * Compact all zones within a node till each zone's fragmentation score 2537 * reaches within proactive compaction thresholds (as determined by the 2538 * proactiveness tunable). 2539 * 2540 * It is possible that the function returns before reaching score targets 2541 * due to various back-off conditions, such as, contention on per-node or 2542 * per-zone locks. 2543 */ 2544 static void proactive_compact_node(pg_data_t *pgdat) 2545 { 2546 int zoneid; 2547 struct zone *zone; 2548 struct compact_control cc = { 2549 .order = -1, 2550 .mode = MIGRATE_SYNC_LIGHT, 2551 .ignore_skip_hint = true, 2552 .whole_zone = true, 2553 .gfp_mask = GFP_KERNEL, 2554 .proactive_compaction = true, 2555 }; 2556 2557 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2558 zone = &pgdat->node_zones[zoneid]; 2559 if (!populated_zone(zone)) 2560 continue; 2561 2562 cc.zone = zone; 2563 2564 compact_zone(&cc, NULL); 2565 2566 VM_BUG_ON(!list_empty(&cc.freepages)); 2567 VM_BUG_ON(!list_empty(&cc.migratepages)); 2568 } 2569 } 2570 2571 /* Compact all zones within a node */ 2572 static void compact_node(int nid) 2573 { 2574 pg_data_t *pgdat = NODE_DATA(nid); 2575 int zoneid; 2576 struct zone *zone; 2577 struct compact_control cc = { 2578 .order = -1, 2579 .mode = MIGRATE_SYNC, 2580 .ignore_skip_hint = true, 2581 .whole_zone = true, 2582 .gfp_mask = GFP_KERNEL, 2583 }; 2584 2585 2586 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2587 2588 zone = &pgdat->node_zones[zoneid]; 2589 if (!populated_zone(zone)) 2590 continue; 2591 2592 cc.zone = zone; 2593 2594 compact_zone(&cc, NULL); 2595 2596 VM_BUG_ON(!list_empty(&cc.freepages)); 2597 VM_BUG_ON(!list_empty(&cc.migratepages)); 2598 } 2599 } 2600 2601 /* Compact all nodes in the system */ 2602 static void compact_nodes(void) 2603 { 2604 int nid; 2605 2606 /* Flush pending updates to the LRU lists */ 2607 lru_add_drain_all(); 2608 2609 for_each_online_node(nid) 2610 compact_node(nid); 2611 } 2612 2613 /* The written value is actually unused, all memory is compacted */ 2614 int sysctl_compact_memory; 2615 2616 /* 2617 * Tunable for proactive compaction. It determines how 2618 * aggressively the kernel should compact memory in the 2619 * background. It takes values in the range [0, 100]. 2620 */ 2621 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2622 2623 /* 2624 * This is the entry point for compacting all nodes via 2625 * /proc/sys/vm/compact_memory 2626 */ 2627 int sysctl_compaction_handler(struct ctl_table *table, int write, 2628 void *buffer, size_t *length, loff_t *ppos) 2629 { 2630 if (write) 2631 compact_nodes(); 2632 2633 return 0; 2634 } 2635 2636 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2637 static ssize_t sysfs_compact_node(struct device *dev, 2638 struct device_attribute *attr, 2639 const char *buf, size_t count) 2640 { 2641 int nid = dev->id; 2642 2643 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2644 /* Flush pending updates to the LRU lists */ 2645 lru_add_drain_all(); 2646 2647 compact_node(nid); 2648 } 2649 2650 return count; 2651 } 2652 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2653 2654 int compaction_register_node(struct node *node) 2655 { 2656 return device_create_file(&node->dev, &dev_attr_compact); 2657 } 2658 2659 void compaction_unregister_node(struct node *node) 2660 { 2661 return device_remove_file(&node->dev, &dev_attr_compact); 2662 } 2663 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2664 2665 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2666 { 2667 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2668 } 2669 2670 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2671 { 2672 int zoneid; 2673 struct zone *zone; 2674 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2675 2676 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2677 zone = &pgdat->node_zones[zoneid]; 2678 2679 if (!populated_zone(zone)) 2680 continue; 2681 2682 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2683 highest_zoneidx) == COMPACT_CONTINUE) 2684 return true; 2685 } 2686 2687 return false; 2688 } 2689 2690 static void kcompactd_do_work(pg_data_t *pgdat) 2691 { 2692 /* 2693 * With no special task, compact all zones so that a page of requested 2694 * order is allocatable. 2695 */ 2696 int zoneid; 2697 struct zone *zone; 2698 struct compact_control cc = { 2699 .order = pgdat->kcompactd_max_order, 2700 .search_order = pgdat->kcompactd_max_order, 2701 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2702 .mode = MIGRATE_SYNC_LIGHT, 2703 .ignore_skip_hint = false, 2704 .gfp_mask = GFP_KERNEL, 2705 }; 2706 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2707 cc.highest_zoneidx); 2708 count_compact_event(KCOMPACTD_WAKE); 2709 2710 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2711 int status; 2712 2713 zone = &pgdat->node_zones[zoneid]; 2714 if (!populated_zone(zone)) 2715 continue; 2716 2717 if (compaction_deferred(zone, cc.order)) 2718 continue; 2719 2720 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2721 COMPACT_CONTINUE) 2722 continue; 2723 2724 if (kthread_should_stop()) 2725 return; 2726 2727 cc.zone = zone; 2728 status = compact_zone(&cc, NULL); 2729 2730 if (status == COMPACT_SUCCESS) { 2731 compaction_defer_reset(zone, cc.order, false); 2732 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2733 /* 2734 * Buddy pages may become stranded on pcps that could 2735 * otherwise coalesce on the zone's free area for 2736 * order >= cc.order. This is ratelimited by the 2737 * upcoming deferral. 2738 */ 2739 drain_all_pages(zone); 2740 2741 /* 2742 * We use sync migration mode here, so we defer like 2743 * sync direct compaction does. 2744 */ 2745 defer_compaction(zone, cc.order); 2746 } 2747 2748 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2749 cc.total_migrate_scanned); 2750 count_compact_events(KCOMPACTD_FREE_SCANNED, 2751 cc.total_free_scanned); 2752 2753 VM_BUG_ON(!list_empty(&cc.freepages)); 2754 VM_BUG_ON(!list_empty(&cc.migratepages)); 2755 } 2756 2757 /* 2758 * Regardless of success, we are done until woken up next. But remember 2759 * the requested order/highest_zoneidx in case it was higher/tighter 2760 * than our current ones 2761 */ 2762 if (pgdat->kcompactd_max_order <= cc.order) 2763 pgdat->kcompactd_max_order = 0; 2764 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2765 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2766 } 2767 2768 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2769 { 2770 if (!order) 2771 return; 2772 2773 if (pgdat->kcompactd_max_order < order) 2774 pgdat->kcompactd_max_order = order; 2775 2776 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2777 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2778 2779 /* 2780 * Pairs with implicit barrier in wait_event_freezable() 2781 * such that wakeups are not missed. 2782 */ 2783 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2784 return; 2785 2786 if (!kcompactd_node_suitable(pgdat)) 2787 return; 2788 2789 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2790 highest_zoneidx); 2791 wake_up_interruptible(&pgdat->kcompactd_wait); 2792 } 2793 2794 /* 2795 * The background compaction daemon, started as a kernel thread 2796 * from the init process. 2797 */ 2798 static int kcompactd(void *p) 2799 { 2800 pg_data_t *pgdat = (pg_data_t*)p; 2801 struct task_struct *tsk = current; 2802 unsigned int proactive_defer = 0; 2803 2804 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2805 2806 if (!cpumask_empty(cpumask)) 2807 set_cpus_allowed_ptr(tsk, cpumask); 2808 2809 set_freezable(); 2810 2811 pgdat->kcompactd_max_order = 0; 2812 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2813 2814 while (!kthread_should_stop()) { 2815 unsigned long pflags; 2816 2817 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2818 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2819 kcompactd_work_requested(pgdat), 2820 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2821 2822 psi_memstall_enter(&pflags); 2823 kcompactd_do_work(pgdat); 2824 psi_memstall_leave(&pflags); 2825 continue; 2826 } 2827 2828 /* kcompactd wait timeout */ 2829 if (should_proactive_compact_node(pgdat)) { 2830 unsigned int prev_score, score; 2831 2832 if (proactive_defer) { 2833 proactive_defer--; 2834 continue; 2835 } 2836 prev_score = fragmentation_score_node(pgdat); 2837 proactive_compact_node(pgdat); 2838 score = fragmentation_score_node(pgdat); 2839 /* 2840 * Defer proactive compaction if the fragmentation 2841 * score did not go down i.e. no progress made. 2842 */ 2843 proactive_defer = score < prev_score ? 2844 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2845 } 2846 } 2847 2848 return 0; 2849 } 2850 2851 /* 2852 * This kcompactd start function will be called by init and node-hot-add. 2853 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2854 */ 2855 int kcompactd_run(int nid) 2856 { 2857 pg_data_t *pgdat = NODE_DATA(nid); 2858 int ret = 0; 2859 2860 if (pgdat->kcompactd) 2861 return 0; 2862 2863 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2864 if (IS_ERR(pgdat->kcompactd)) { 2865 pr_err("Failed to start kcompactd on node %d\n", nid); 2866 ret = PTR_ERR(pgdat->kcompactd); 2867 pgdat->kcompactd = NULL; 2868 } 2869 return ret; 2870 } 2871 2872 /* 2873 * Called by memory hotplug when all memory in a node is offlined. Caller must 2874 * hold mem_hotplug_begin/end(). 2875 */ 2876 void kcompactd_stop(int nid) 2877 { 2878 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2879 2880 if (kcompactd) { 2881 kthread_stop(kcompactd); 2882 NODE_DATA(nid)->kcompactd = NULL; 2883 } 2884 } 2885 2886 /* 2887 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2888 * not required for correctness. So if the last cpu in a node goes 2889 * away, we get changed to run anywhere: as the first one comes back, 2890 * restore their cpu bindings. 2891 */ 2892 static int kcompactd_cpu_online(unsigned int cpu) 2893 { 2894 int nid; 2895 2896 for_each_node_state(nid, N_MEMORY) { 2897 pg_data_t *pgdat = NODE_DATA(nid); 2898 const struct cpumask *mask; 2899 2900 mask = cpumask_of_node(pgdat->node_id); 2901 2902 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2903 /* One of our CPUs online: restore mask */ 2904 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2905 } 2906 return 0; 2907 } 2908 2909 static int __init kcompactd_init(void) 2910 { 2911 int nid; 2912 int ret; 2913 2914 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2915 "mm/compaction:online", 2916 kcompactd_cpu_online, NULL); 2917 if (ret < 0) { 2918 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2919 return ret; 2920 } 2921 2922 for_each_node_state(nid, N_MEMORY) 2923 kcompactd_run(nid); 2924 return 0; 2925 } 2926 subsys_initcall(kcompactd_init) 2927 2928 #endif /* CONFIG_COMPACTION */ 2929